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Abstract
Purpose  (1) To evaluate the effects of denoising and data balancing on deep learning to detect endodontic treatment outcomes 
from radiographs. (2) To develop and train a deep-learning model and classifier to predict obturation quality from radiomics.
Methods  The study conformed to the STARD 2015 and MI-CLAIMS 2021 guidelines. 250 deidentified dental radiographs 
were collected and augmented to produce 2226 images. The dataset was classified according to endodontic treatment 
outcomes following a set of customized criteria. The dataset was denoised and balanced, and processed with YOLOv5s, 
YOLOv5x, and YOLOv7 models of real-time deep-learning computer vision. Diagnostic test parameters such as sensitiv-
ity (Sn), specificity (Sp), accuracy (Ac), precision, recall, mean average precision (mAP), and confidence were evaluated.
Results  Overall accuracy for all the deep-learning models was above 85%. Imbalanced datasets with noise removal led to 
YOLOv5x’s prediction accuracy to drop to 72%, while balancing and noise removal led to all three models performing at 
over 95% accuracy. mAP saw an improvement from 52 to 92% following balancing and denoising.
Conclusion  The current study of computer vision applied to radiomic datasets successfully classified endodontic treatment 
obturation and mishaps according to a custom progressive classification system and serves as a foundation to larger research 
on the subject matter.

Keywords  Malpractice · Endodontic failure · Obturation · Object detection · Deep learning

Introduction

Endodontic (root canal) treatment refers to the treatment 
sequence for the infected pulp chamber and root canals of 
a tooth in an effort to eliminate infection and protect the 
decontaminated tooth from future microbial invasion. His-
torically, root canal treatments have seen varying long-term 
success ranging from 31 to 96% based on strict criteria or 
from 60 to 100% based on loose criteria, with significant 
heterogeneity in the assessments of aggregated success rates 
[1].

Oral health requirements are not universally or equally 
met as geographic variables affect the quality of health-
care delivered and infrastructure provisioned for dental 
management. Similar to every other aspect of dentistry, 
professional experience and quality of equipment used 
dictates the level of success that can be achieved during 
endodontic practice. Therefore, it comes as no surprise 
that in inadequately provisioned dental healthcare systems 
there are frequent suboptimal endodontic treatments, with 
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some leading to catastrophic failures. This is also paired 
with noise and artifact-prone radiomics that plagues older 
technology that is predominantly present in developing 
nations and rural practices owing to a lack of formal skill 
assessment [2]. There are numerous causes of root canal 
treatment failure, including but not limited to inadequate 
filling, poor filling, inappropriate filling, and the existence 
of methodological problems. A study of 100 cases evaluat-
ing possible causes of treatment failure showed that 46.9% 
of the root canals were underfilled while poorly filled and 
overfilled canals made up for 28.5% and 13% of the total 
cohort, respectively [3].

Outcomes of root canal treatment are determined by 
clinical symptoms presented by the patient such as pain and 
correlating the symptoms to post-treatment radiographs. 
The procedure is once again driven by experience, while 
an automated decision support system trained to identify 
suboptimal or endodontic mistreatment is still lacking. A 
model designed to identify and classify such outcomes can 
assist dental practitioners in validating their diagnoses and 
aid undergraduate students in training to become dentists. 
European judicial and legal institutions have lately intro-
duced AI and its subsidiary applications in facial recogni-
tion and confirmation of criminal accusation can possibly 
find its way into dental litigations in the near future [4, 5]. 
Research on forensic applications of dental radiomics is 
already underway with Rabbani et. al [6] documenting the 
use of dentition data from panoramic radiograph to detect 
missing persons from disaster scenarios.

Machines mimicking human cognitive abilities are 
called artificial intelligence, or AI. Neural Networks (NN) 
are the building blocks of AI and are synthetic adaptive 
systems whose automated and unsupervised functionali-
ties draw inspiration from the human brain's operations 
[7]. A neural network in computer vision, in this case the 
YOLO (You only look once) algorithm, predicts items 
within a picture in real-time and identifies them using 
‘bounding boxes’ through object detection, which is a 
sophisticated and refined method of image classification. 
Thus, ‘object detection’ or ‘object recognition’ refers to 
the identification and location of items within an image 
that fall under one in a set of pre-established classes. To 
find objects and classes within images, YOLO employs 
Convolutional Neural Networks (CNN) which operates by 
obtaining an image, assign different weights to the objects 
within it, and then separate them from one another with 
remarkable speed. The current study developed a classi-
fication model trained using computer-vision algorithms 
YOLOv5s, YOLOv5x, and YOLOv7 from the YOLO fam-
ily. YOLOv5s is smaller in size and faster to train while 
YOLOv5x requires more weighted parameters as mini-
mum data to build a valid model, thus making it more reli-
able at the expense of longer processing times. Finally, 

YOLOv7, the latest version of its series aimed to secure 
a stable middle ground by increasing detection accuracy 
without decreasing the detection speed.

Prior to the introduction of deep-learning models for 
object detection, image processing-based algorithms were 
extensively utilized for image segmentation and detection in 
dentistry. However, both situations are prone to noise gener-
ation. An erratically transmitted signal's fluctuation produces 
noise and plagues images ranging from radiographs to low 
light photography and impede the AI’s ability to learn of a 
situation with maximum accuracy.

Study rationale

Studies using machine learning and computer vision in 
endodontic treatment ranged from working length deter-
mination from radiographic images using artificial neural 
networks to the identification of canal morphology from 
3D imaging such as cone-beam computed tomography [8]. 
However, most outcomes from radiographic images were 
based on successful endodontic canal obturations, with a 
study of computer-vision based deep learning to classify 
incomplete or failed endodontic canal obturation through 
radiomics still lacking. There are few studies published on 
computer vision and object detection in endodontic treat-
ment. Researchers have proposed several image processing 
techniques and machine-learning algorithms for detecting 
dental decay from colored photographs and radiographic 
images. However, very few investigations have looked at 
object detection for endodontic treatment and none for sub-
optimal obturation. Finally, to the authors’ knowledge, no 
study has implemented computer vision to classify subop-
timal and failed endodontic canal obturation, and potential 
endodontic malpractice.

Therefore, the aims of this study were to develop a novel 
in-house machine-learning classification system for endo-
dontic obturation for implementation with computer-vision 
diagnostics to classify endodontic treatment outcomes from 
radiographic images. It was expected that the system would 
be able to classify outcomes accurately, irrespective of the 
noise and artifacts present within the original radiograph.

Objectives

1.	 To evaluate the impact of artifact noise and dataset 
imbalance and subsequent augmentation on computer-
vision models when classifying endodontic treatment 
outcomes

2.	 To develop an object detection model to accurately pre-
dict obturation outcomes and suboptimal endodontic 
treatment from radiographic images
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Materials & methods

Reporting protocols

The current in vitro retrospective study was conducted and 
reported in accordance with the Standards for Reporting 
Diagnostic accuracy studies (STARD) 2015 guidelines [9] 
and Minimum Information about Clinical Artificial Intel-
ligence Modeling (MI-CLAMS) 2021 protocol [10].

Ethics

The study was deemed ‘negligible risk’ according to the 
relevant ethics committees and was therefore exempt from 
ethical review.

Study tools

All radiographic images were provided for deep learning 
as JPEG files at maximum quality. Virtual areas of interest 
(v-ROI) were identified through “bounding boxes” (creat-
ing boxes around ROIs inside photographs) on an open-
source Python-based image labeling system and labeled by 
the two dentists  allowing revision until complete in-person 
agreement (κ = 1.00) was attained regarding placement of 
bounding boxes. Virtual labeling was carried out inside the 
LabelImg.py system for computer-vision object detection 
(YOLO; Bochkovskiy et al. 2020).

Participant characteristics

250 deidentified digital radiographic images of endodon-
tic obturation and failed endodontic canal obturation were 
obtained via anonymised submissions from dental practi-
tioners. The eligibility criteria included submission of dei-
dentified patient radiographs in physical or printed copies 
(either periapical, bitewing, or panoramic) that demonstrated 
one of the four target conditions (described in next subsec-
tion) according to the submitting practitioner’s judgment. 
The anonymized submission requested inclusion of radio-
graphs of endodontic treatment performed on patients visit-
ing the dental practices from remote rural communities with-
out resolution of initial symptoms or referred patients who 
were incorrectly diagnosed or treated by dental ‘quacks’, as 
confirmed by the practitioners who followed up on the mat-
ter with the regulating Dental Board. Quacks are individuals 
who do not hold a formal dental degree but illegally perform 
complex dental procedures in poverty-stricken communities 
without regulation. [11] It was requested that radiographs 
of the teeth subsequently obturated by the submitting prac-
titioner or retreated following best practice protocols in 

the last one month be also supplied. This was to help the 
computer-vision models to learn and differentiate obtura-
tion levels on the same environment and tooth morphology. 
Exclusion criteria included radiographs following endodon-
tic or periodontal surgery or images that demonstrated surgi-
cal fixation units such as implants, screws, and miniplates. 
Systemic conditions or medical records were neither col-
lected nor considered during image exclusion. All result-
ant images were screened and annotated by two dentists for 
acceptability of selection criteria and images that did not 
generate κ = 1.00 interrater agreement were discarded, lead-
ing to 240 images that were fully agreed upon. The images 
contained treatment outcomes ranging from complete treat-
ment to suboptimal obturation and was noted that the dataset 
was imbalanced. This was addressed and discussed in the 
following sections.

Target condition and classification system

An in-house classification system was designed to classify 
endodontic obturation progression for deep learning from 
radiographic images in the following capacity:

Class 1: no endodontic treatment performed

•	 No canal sealed irrespective of carious lesion or periapi-
cal radiolucency present

•	 Possible pulp chamber or canal exposure without dental 
intervention

•	 Dental intervention performed with vital tooth crown or 
conservative restoration

Class 2: incomplete endodontic obturation performed

•	 Radiographs of canals obturated more than 1/3rd of the 
canal length but not up to the apical constriction

•	 Radiologically evident missed canals following obtura-
tion

•	 incomplete obturation thickness with visible canal radio-
lucency adjacent to the obturation material

•	 Radiographs taken of teeth showcasing root canals during 
mid-endodontic treatment

•	 Placement of posts into canals without adequate canal 
obturation underneath

Class 31: suboptimal endodontic treatment

•	 Radiographs of canals obturated to less than 1/3rd of the 
canal length with or without evidence of an iatrogenic 
mishap such as ledge formation or proximal stripping

1  Class 3 was termed ‘total endodontic failure’ which was revised 
prior to the submission of the manuscript.
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•	 Evident pulp chamber or canal perforation with subse-
quent obturation with or without perforation repair

•	 Placement of permanent prostheses like crowns or fixed 
partial dentures over endodontically treated teeth without 
adequate obturation

•	 Endodontic treatment of unrestorable teeth possessing 
roots with less than 1/3rd of periodontal attachment and 
bone support

Class 4: complete endodontic obturation performed

•	 Complete canal obturation irrespective of periapical 
radiolucency

•	 Complete canal obturation unaffected by loss of peri-
odontal attachment, furcation involvement or bone loss

Data pre‑processing

The radiographs were first converted from RGB to gray-
scale to reduce information-per-image and facilitate faster 
processing and lower storage requirements [12]. Higher 
resolution images would greatly reduce processing time 
and therefore scaled down to a standard 416 × 416 pixels for 
optimum consistency in AI training rates [13]. The original 
radiographic images contained noise, and therefore, 3 ver-
sions of the current dataset were created for comparative 
evaluation. Afterwards, 7 different augmentation methods 
were applied on the training sets using a python-based aug-
menter that included various degrees of rotation, vertical and 
horizontal flipping, inverting, and blurring.

1.	 Imbalanced dataset with noise (original dataset). The 
original dataset had 240 images that were split as 75% 
(180 images) for the training set, 5% (12 images) for the 
validation set, and 20% (48 images) for the test set. This 
split was performed in all 3 versions. The training data-
set was augmented seven folds using data augmentation 
methods resulting in 1260 images.

2.	 Imbalanced dataset after denoising: A denoising autoen-
coder is pre-trained to receive noisy image inputs and 
attempts to predict what the denoised state would appear 
as. A “noise” within an image is commonly defined as a 
random variance of radiance or color features in images, 
which is frequently created by the technological limita-
tions of the image collection sensor or by adverse envi-
ronmental conditions. Denoising autoencoders creates 
distorted versions of the input images by adding random 
noise and then attempts to restore the distorted image to 
original input. Such a model performed poorly on the 
present dataset and therefore a BM3D (Block Matching 
3D) denoising algorithm was used in its stead that was 
recently proven to have better noise removal capabilities 

without affecting image quality [14, 15], Fig. 1 shows 
a comparison before and after the denoising technique 
applied.

3.	 Balanced dataset after denoising: The current dataset 
lacked uniform distribution and was moderately skewed. 
To address this, minority classes were identified fol-
lowed by selective augmentation [16] resulting in a 
combined balanced dataset of 424 images. The role of 
selective augmentation has been shown in Fig. 2.

Model description

This section discusses the deep-learning model applied 
for endodontic treatment detection. The YOLO algorithm 

Fig. 1   Comparison between A noised and B denoised image



687Oral Radiology (2023) 39:683–698	

1 3

identifies objects in real-time within photographs. Each 
image receives an S x S grid with each grid predicting N 
bounding boxes and confidence [17]. The bounding box's 
accuracy and whether it genuinely includes an object are 
reflected in the confidence parameter (regardless of class). 
Additionally, YOLO predicts the classification score for each 
box and each training class. Convolutional neural networks 
(CNN) are then used by the YOLO algorithm for instant 
recognition and require only one forward propagation. This 
means that a single algorithm, once run, can perform pre-
diction models throughout the entire image [18]. In the cur-
rent investigation, to improve detection accuracy, YOLOv5 
and YOLOv7 models were pre-trained on the MS COCO 
dataset. This method or pre-training a model on a separate 
dataset prior to the actual learning is defined as ‘transfer 
learning’ and can greatly reduce training time and logistic 
requirements.

1.	 YOLOv5: YOLOv5 had several pre-trained models with 
differences in size, layer, and inference time of which 
YOLOv5s is smaller and computationally less demand-
ing and YOLOv5x is extensive and highly accurate. 
Hence these models were chosen, and are described in 
Table 1. The entire architecture of YOLOv5 is shown in 
Fig. 3 and is built on 3 architectural blocks: Backbone, 
Neck, and Head [19]. The Backbone, in this model being 

CSPDarknet (Cross Stage Partial Network), extracts 
important features from an input image. The neck, here 
YOLOv5 PANet, is used for the features pyramid. A 
‘Feature Pyramid Network’ is a feature extractor algo-
rithm that produces proportionately scaled-up convo-
lutional feature maps on several layers from a single-
scale picture of any size as its input. This helps to resize 
and scale the same object and proceeds to modeling the 
object on unseen data. The head is used for output detec-
tion results, namely class, score, localization, and size.

An artificial neural network can learn complicated patterns 
in the data with the aid of an activation function, which is 
an algorithm that was introduced to the current neural net-
work. The activation process selects the signals to be sent 
to the following neuron. YOLOv5 in the current study used 
‘LeakyReLU’ and ‘Sigmoid’ as activation function options 
[5]. Optimisers are programs or techniques that modify the 
neural network's properties, such as its weights and learning 
rate, to minimize ‘loss’. Here, YOLOv5 used SGD [24] and 
ADAM [28] as their optimisers options [19].

The loss function is commonly used in the object detec-
tion to clarify the degree of change between the predicted and 
actual values of the model and is of particular importance in 
the present investigation as the model needed to correctly clas-
sify suboptimal treatment to endodontic malpractice. The loss 
function in YOLOv5 used binary cross-entropy with logit loss 
that included three parts: bounding box regression loss, confi-
dence loss, and classification loss [20].

where S2 represents the number of grids in an image and B 
represents the number of bounding boxes in each grid. When 

LGIoU =

S2
∑

i=0

B
∑

J=0

I
obj

i,j

[

1 − IoU +
Ac − U

Ac

]

Fig. 2   distribution of dataset 
before and after balanced aug-
mentation

Table 1   YOLO models implemented and their property characteriza-
tion

Model Size Layer Inference Time

YOLOv5s 14mb 213 17 ms
YOLOv5X 168mb 444 49 ms
YOLOv7 72mb 306 28 ms



688	 Oral Radiology (2023) 39:683–698

1 3

an object exists in a bounding box, Iobj
i,j

 is equal to 1, other-
wise it is 0.[20].

Confidence Loss:

Classification Loss:

where P̂j

i
(c) represents the probability of predicting the endo-

dontic object as class c, and Pj

i
(c) represents the probability 

of the object actually belonging to class c.
The total loss function can be represented as:
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B
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Lclass = −
S2
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∑

ceclasses
[P̂j

i(c)log
(

Iji (c)
)

+
(

1 − P̂j
i(c)

)

log
(

1 − Pj
i(c)

)

2.	 YOLOv7: While very limited research has been done on 
the model in healthcare, YOLOv7 sports faster training 
times and better diagnostics thus rendering it capable of 
detecting small objects and changes. The entire architec-
ture of YOLOv7 [14] is shown in Fig. 4. The computa-
tional building component of the YOLOv7 backbone is 
called E-ELAN (Extended Efficient Layer Aggregation). 
It draws influence from earlier studies on network effec-
tiveness. It was created by looking at the following ele-
ments that affect speed and accuracy: Cost of memory 
access, I/O channel ratio, operation in elements, activa-
tions, and gradient path. The model description is shown 
in Table 1.

Evaluation metrics

The performance of classification or object detection models 
were evaluated using a variety of metrics, including preci-
sion, recall, average precision, specificity, sensitivity, and F1 
score. To evaluate the performance of the developed model, 
three evaluation metrics were considered: mean average 

LOSS = LGIoU + Lconf + Lclass

ConcatSP P

ConvCS P

BottleNeckCS P

BottleNeckCS P

BottleNeckCS P

BottleNeckCS P

BottleNeckCS P

BottleNeckCS P

BottleNeckCS P
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Concat
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Concat
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Conv1x1
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Conv1x1SP P

BackBone: CSPDarknet Neck: P ANet Head: Y olo Layer
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Spatial Pyramid Pooling

Convolutional Layer

Concatenate Function

Fig. 3   YOLOv5 architecture applied within the current study
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precision (mAP), precision, and recall. The accuracy of a 
model to detect objects is measured by the mAP [21], which 
is used as the primary evaluation metric for an object detec-
tion model. The performance of the model improves with 
increasing mAP values. mAP is simply determined by the 
mean average of the average precision (AP) of each class 
based on a predetermined IoU (intersection-over-union) 
threshold. The IoU (Fig. 5) measures the overlapping area 
between the expected bounding box (Bp)and the ground truth 
bounding box (Bgt) [21]. The formula of IoU is

IoU =
area

(

Bp ∩ Bgt

)

area
(

Bp ∪ Bgt

)

In the current investigation, YOLOv5 and YOLOv7 were 
measured for average precision with a default IoU value set 
to 0.5. Here, precision was used to measure how accurately 
the model could produce positive predictions.

Here,

•	 APi is the Average precision in the ith class and N is the 
total number of classes

•	 TP (True Positive): Actual class is positive and predicted 
positive

•	 FP (False Positive): Actual class is negative but predicted 
positive

•	 FN (False Negative): Actual class is positive but pre-
dicted negative.

Based on the IoU threshold, the YOLO model distin-
guishes between true positives (TP) and false positives (FP). 
In the current model, when the IoU threshold was greater 
than 0.5, it was regarded as a positive class, and when it was 
lower, it was regarded as a false positive class.

The hardware and software parameter of all experiments 
in this section are as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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This computational modeling was carried out within Col-
laboratory (Google Inc.) using Google’s Cloud Platform. 
The system ran on Pytorch v1.12.1 framework, CUDA 
v11.2, and was powered by a Tesla T4 Graphics process-
ing unit. The algorithms were coded using Python 3.7.13 
according to the PEP 8 guidelines.

A parameter whose value is utilized to regulate the learn-
ing process is known as a hyperparameter. The hyperparam-
eter values we kept constant across the entire learning pro-
cess with a Stochastic Gradient Descent used as an optimizer 
[22]. The learning rate was 0.01. Batch size was 16. Image 
size was 416 × 416. All experiments were run on 100 epochs, 
i.e., the number of cycles/passes that the machine-learning 
algorithm made across the full training dataset.

Results

Object detection models YOLOv5s, YOLOv5x, and 
YOLOv7 were employed and trained on three different ver-
sions of datasets: ‘noisy and imbalanced’, ‘denoised and 
imbalanced’, and ‘denoised and balanced’. Figure 6 sum-
marizes the workflow employed to achieve the desired deep-
learning outcome. Additionally, the pre-trained model’s 
configuration file was changed so that it corresponds to the 
four classes this study has and their names. All the results 
were gathered after validating the trained models with their 
corresponding test (unseen) dataset. The models were then 
trained for 100 epochs in each experiment.

The original dataset was imbalanced and noisy (Table 2). 
Therefore, the images underwent soft augmentation prior 
to training as the original 240 images were impractical in 
generating appreciable results. This led to 1260 images. The 
overall accuracy for the YOLOv5s and YOLOv5x model 
was 86.4% and 89.1% respectively. Where the individual 
class ‘No Endodontic Treatment’ had 100% accuracy for 
both models. However, there were some variations among 
the root canal classes in terms of the models. YOLOv5s 
and YOLOv5x models' accuracy for ‘Completed Endodon-
tic Treatment’ class was 80% and 87%, respectively with 
a 7% prediction improvement with YOLOv5x. However, 
YOLOv5s and YOLOv5x, exhibited accuracy rates of 68% 
and 83%, respectively for ‘Incomplete Endodontic Treat-
ment’. False positive rates for ‘Incomplete Endodontic Treat-
ment’ class were substantially higher for both models (73% 
for YOLOv5s and 40% for YOLOv5x) with minimal false 
positives on the other classes. Of note, the testing accuracy 
for ‘Total Endodontic Failure’ class was 86% in YOLOv5s 
and 89% in YOLOv5x.

Table 3 consists of values that were collected after the 
denoising step. It demonstrates the increase in accuracy for 
both models across all classes. But because of the dataset’s 
skewness, some classes underperformed as expected. The 

overall accuracy for the YOLOv5s and YOLOv5x model 
was 90% and 72% respectively. The overall accuracy of 
the YOLOv5s model increased by 3.6% for all four classes 
on the denoised and unbalanced dataset. Additionally, the 
False Positive Rate for the class of incomplete endodontic 
treatment was reduced from 73 to 20% while increasing the 
diagnostic accuracy from 68 to 83%. Additionally, the accu-
racy rose by 6% for the ‘Completed Endodontic Treatment’ 
Class while remaining unchanged for the ‘No Endodontic 
Treatment’ Class. ‘Total Endodontic Failure’ class accuracy 
was marginally improved by 4%. The technique of denois-
ing positively affected YOLOv5s but decreased accuracy for 
YOLOv5x. This shows the denoising approach had a signifi-
cant impact on the overall model performance. Compared to 
the Noised Imbalanced Results it increased the accuracy for 
YOLOv5s model, but the accuracy dropped significantly for 
the YOLOv5X model.

The initial dataset had 240 images. Selective augmenta-
tion of the minority class images (i.e., the classes with lesser 
data) produced 424 images. The modified dataset was then 
split into three sets of data not previously introduced during 
the selective augmentation, which produced 2226 images. 
This was achieved after performing 7 forms of augmentation 
on the training datasets. The results have been demonstrated 
in Table 4. Both the YOLOv5s and YOLOv5x models ben-
efitted from heightened accuracy with the denoised balanced 
dataset, at 98.9% and 98.4%, respectively. YOLOv7 in com-
parison produced an accuracy of 95.4%. False positive rates 
were < 1% for each class within the three models with better 
precision and specificity. The outcomes were comparable 
and had diagnostic accuracies ranging from 95 to 99% for 
each class.

The mean average precision (mAP) comparison for all 
tested models across the three dataset versions is shown in 
Table 5. The length of time required for forward propaga-
tion is referred to as the inference time. The inference time 
was divided by one to get the number of frames per second. 
The noised and unbalanced dataset's mAP for YOLOv5s 
and YOLOv5x was documented at 0.525 and 0.569, respec-
tively. This was incrementally improved to 0.596 and 0.557 
respectively for denoised and unbalanced and finally pro-
duced 0.914 and 0.924 for denoised and balanced datasets, 
respectively. The mAP for YOLOv7 was limited to 0.861. 
In addition, YOLOv5s models produced very fast inference 
times of 12–17 ms, but the YOLOv5x models had substan-
tially slower inference times of 49–60 ms.

Figure 7 shows a side-by-side comparison of the models’ 
results on the test set images. Actual labels are shown in 
image (a), while the labels predicted by the YOLOv7 model 
are shown in the image (b). The mAP following denoising 
and imbalance correction have been documented in Table 5. 
Of note, Fig. 8 highlights some of the predictions made on 
the ‘Total Endodontic Failure’ class. Figure 9 shows the 
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confusion matrix of the currently trained YOLOv7 model 
on the denoised and balanced dataset. This is trained using 
YOLOv7 and relies on a denoised balanced dataset.

To eliminate false positives and guarantee that a projected 
bounding box has a specific minimum score, a confidence 

score threshold was set [17]. Fig. 10 depicts the confidence 
vs. precision graph, which slopes upward. This demonstrated 
that the average precisions improved relative to confidence 
while the recall curve had a negative slope against confi-
dence. (Fig. 10) Finally, a Precision-Recall graph was for-
mulated (Fig. 11) that summarized the trade-off between the 

Fig. 6   STARD flowchart sum-
mary
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model’s true positive rate and positive predictive value when 
different probability thresholds were used.

Discussion

The current study developed a computer-vision directed 
classification system for endodontic obturation progression 
following denoising and balancing of radiomic dataset. To 
the authors’ knowledge, no previous study applied such a 

progressive classifier for endodontic obturation radiomics. 
In clinical endodontics, radiographs are often repeated if 
the images are blurry and not of an acceptable diagnostic 
standard [23]. Furthermore, when repeats are not indicated, 
a lack of practitioner experience or inadequate time spent 
with a radiograph may lead to inaccurate interpretations of 
endodontically obturated teeth and the possible need for 
retreatment. The issue becomes exponentially worse when 
the incident occurs in understaffed public practices within 
developing countries where practitioners have to diagnose 

Table 2   Test accuracy features of the Imbalanced dataset with noise

Models Classes TP TN FP FN F1-Score Specificity Sensitivity Accuracy Total accuracy

YOLOv5s No endodontic treatment 0.42 2.3 0 0 1 1 1 1 0.864
Complete endodontic treatment 0.77 1.64 0.08 0.53 0.72 0.95 0.59 0.8
Incomplete endodontic treatment 0.2 1.86 0.73 0.23 0.29 0.72 0.47 0.68
Total endodontic failure 0.64 1.97 0.18 0.23 0.76 0.92 0.74 0.86

YOLOv5x No endodontic treatment performed 0.42 2.24 0 0 1 1 1 1 0.891
Complete endodontic treatment 0.82 1.5 0.05 0.29 0.83 0.97 0.74 0.87
Incomplete endodontic treatment 0.33 1.88 0.4 0.05 0.59 0.82 0.87 0.83
Total endodontic failure 0.55 1.82 0.09 0.2 0.79 0.95 0.73 0.89

Table 3   Test accuracy feature of the Imbalanced dataset after denoising

Models Classes TP TN FP FN F1-Score Specificity Sensitivity Accuracy Total accuracy

YOLOv5s No endodontic treatment 0.31 2.51 0 0 1 1 1 1 0.904
Complete endodontic treatment 0.82 1.61 0.1 0.29 0.81 0.94 0.74 0.86
Incomplete endodontic treatment 0.67 1.67 0.2 0.28 0.74 0.89 0.71 0.83
Total endodontic failure 0.45 2.1 0.27 0 0.77 0.89 1 0.9

YOLOv5x No endodontic treatment performed 0.38 2.36 0.88 0.03 0.41 0.73 0.93 0.75 0.721
Complete endodontic treatment 0.77 2.41 0.18 0.29 0.77 0.93 0.73 0.87
Incomplete endodontic treatment 0.47 2.62 0.33 0.23 0.63 0.89 0.67 0.85
Total endodontic failure 0.55 2.08 0.09 0.93 0.52 0.96 0.37 0.72

Table 4   Test feature characteristics of the balanced dataset after denoising

Models Classes TP TN FP FN F1-Score Specificity Sensitivity Accuracy Total accuracy

YOLOv5s No endodontic treatment 0.65 2.93 0.04 0.02 0.96 0.99 0.97 0.98 0.989
Complete endodontic treatment 0.95 2.6 0.03 0.06 0.95 0.99 0.94 0.98
Incomplete endodontic treatment 0.96 2.61 0.04 0.03 0.96 0.98 0.97 0.98
Total endodontic failure 0.95 2.65 0.02 0.02 0.98 0.98 0.98 0.99

YOLOv5x No endodontic treatment performed 0.75 2.94 0.04 0.02 0.96 0.99 0.97 0.98 0.984
Complete endodontic treatment 0.97 2.7 0 0.08 0.96 1 0.92 0.98
Incomplete endodontic treatment 0.94 2.73 0.06 0.02 0.96 0.98 0.98 0.98
Total endodontic failure 0.95 2.74 0.04 0.02 0.97 0.99 0.98 0.98

YOLOv7 No endodontic treatment performed 0.69 2.74 0.02 0.05 0.95 0.99 0.93 0.98 0.954
Complete endodontic treatment 0.85 2.55 0.08 0.02 0.94 0.97 0.98 0.97
Incomplete endodontic treatment 0.88 2.43 0.08 0.11 0.9 0.97 0.89 0.95
Total endodontic failure 0.82 2.52 0.08 0.08 0.91 0.97 0.91 0.95
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hundreds of radiographs per day. The general fatigue and 
time constraints, among many other reasons, might lead to 
under-reporting of some incidental findings, or worse, acci-
dental omission of critical information about a tooth to be 
treated [24]. The current report applied an automated clinical 
decision support system based on real-time computer-vision 
architectures that can diagnose images of radiographs in mil-
liseconds, highlighting all areas of interest in the radiograph 
for the practitioner to view and take appropriate action upon. 
Such a method implemented through smartphone applica-
tions or smart glasses becomes especially useful in public 
hospitals and rural clinics of developing countries where tra-
ditional, blurry, blue-tinted, error-prone radiographs are still 

Table 5   Mean average precision for noise correction and balancing of 
dataset

Dataset Model Precision Recall mAp Inference

Noised & imbal-
anced

YOLOv5s 0.597 0.534 0.525 12 ms
YOLOv5x 0.655 0.539 0.569 58 ms

Denoised & imbal-
anced

YOLOv5s 0.561 0.602 0.596 12 ms
YOLOv5x 0.599 0.528 0.557 59 ms

Denoised & bal-
anced

YOLOv5s 0.945 0.845 0.914 17 ms
YOLOv5x 0.954 0.878 0.924 49 ms
YOLOv7 0.822 0.803 0.861 28 ms

Fig. 7   Comparison of predicted label a vs actual labels b from test 
data

Fig. 8   Prediction accuracy across the dataset of total endodontic fail-
ures and suboptimal treatment outcomes
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being viewed over a lightbox [23, 24]. Further iterations of 
such an implementation can also help licensed practitioners 
quickly screen the quality of work performed by quacks. who 
are known to administer questionable treatment to patients in 
poorer communities across developing country [11].

Previous reports of automated prediction of failed endo-
dontic obturation were documented from patient history and 
symptoms upon follow-ups using logistic regression (logR), 
random forests (RF), gradient boosting machine (GBM), 
and extreme gradient boosting (XGB) for machine-learning 
driven predictive modeling [25]. Herbst’s study digressed 
from the current investigation in that the investigators did 
not approach the problem from a deep-learning perspective 
and obturation failure could only be partially predicted. The 
current study trained the radiomic dataset in several layers, 
first teaching the model to detect endodontic canal obtura-
tion, followed by categorizing the quality of obturation.

Advances in deep-learning frameworks include a system 
called DENTECT that was designed to recognize five dental 
treatment procedures including endodontic obturation and 
periapical lesion therapy, and concurrently numbered the 
dentition on panoramic radiographs using the FDI notation 
[26]. DENTECT was trained on 1005 photographs and fol-
lowed expert annotations, whereas the current model was 
trained and validated with over 2000 augmented images. 
While monitoring periapical treatment is appealing, a 

periapical radiolucency was not classified as a failure within 
the current study as the lesion resolutions vary wildly, can 
take between 3 and 6 months to commence reduction in size, 
and deep-learned radiomic driven lesion therapy may not 
be clinically reliable. Furthermore, a previous systematic 
review found that ‘expert’ annotations were largely depend-
ent on the years of experience held by the practitioner, with 
new professionals faring worse than the models trained by 
practitioners with 5 to 20 years of clinical experience [27].

While the dataset of 240 images in the current study 
may be deemed small in comparison to larger scale 
machine learning, deep-learning studies of carious lesions 
using only 200 radiographs achieved 86% accuracy [28]. 
The current study can serve as a proof of concept that 
such models are capable of detecting the condition of 
canal obturation and can be transferred to larger datasets 
for more conclusive findings. Several investigations have 
been proposed to detect carious lesions using convolu-
tional neural networks. It is, however, important to note 
that some specific classes within the current study, namely 
‘No Endodontic Treatment’ and ‘Suboptimal obturation’ 
were difficult for YOLOv5x to learn. This can be partially 
attributed to the denoising algorithm over-sharpening 
images and over-exposing features like bone trabeculae 
and lamina dura in radiomics of apparently healthy den-
tition without endodontic treatment. This was when the 

Fig. 9   Confusion matrix of 
YOLOv7. (Actual values 
are shown along the X-axis, 
and”Predicted” values are 
shown along the Y-axis.)



695Oral Radiology (2023) 39:683–698	

1 3

A

B

Fig. 10   visual representation of test outcomes as A) Confidence vs 
precision and B) Confidence vs recall graphs

Fig. 11   Precision recall graph summarizing the trade-off between true 
positive rate and positive predictive values

Fig. 12   Anatomical and iatrogenic variations within the ‘No endo-
dontic treatment’ class that led to confusing the YOLO models
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model began detecting anatomical variables as anomalies. 
(Fig. 12) As a result, there was a noticeable decline in 
overall performance for these two classes, with the ‘No 
Endodontic Treatment’ class experiencing a 25% decrease 
in accuracy and a very high False Positive Rate of 88%. 
The imbalance in the dataset in addition caused data 
skewness and negatively affected the accuracy by 17% of 
the class ‘total endodontic failure’ that had the smallest 
amount of data across the classes.

To improve speed of detection, an object detection model 
was developed to first precisely predict the effects of artifact 
noise, dataset imbalance, and subsequent augmentation. The 
results from Tables 1 and 2 show that the underperforming 
classes serve as a promise that the noisy and imbalanced 
datasets can further enhance the training accuracy and 
reduce false positive reports when handled and optimized 
effectively. As some of the anonymised radiographs were 
received in physical form, glares and reflections were an evi-
dent issue when digitizing the data. All radiographic images 
therefore were converted to grayscale to improve pixel clar-
ity and decrease color fluctuations. To handle the skewness 
of the dataset, ‘selective augmentation’ was applied. Past 
reports identified two successful methods of resampling: 
under-sampling (removing data from the majority class) and 
over-sampling (adding repetitive data to the minority class). 
To account for under-fitting that may result from remov-
ing the sample, over-sampling was deemed as the preferred 
option. However, simply replicating the data would result in 
over-fitting and therefore data augmentation was performed 
prior to balancing. The imbalanced dataset was separated 
into a custom sub-dataset and 3 types of augmentation were 
applied to prevent biases induced by data duplication. The 
sub-dataset was reintroduced to the main pool of data, and 
a 7-level data augmentation was reperformed on the com-
bined dataset. This approach proved to be successful, as seen 
within the data Tables 2, 3, and 4.

Each image within an object detection task could possess 
a variety of objects belonging to one or several classifica-
tions. Therefore, a model’s classification and localisation 
had to be examined, where employing accuracy or preci-
sion metric alone would be ineffective. Therefore, the final 
outputs and algorithm performance were evaluated by the 
mAP metric.

Limitations and future recommendations

The current system classified stages of possible root canal 
fillings during endodontic treatment but could not evaluate 
the amount, for example in millimeters, of over or underfil-
ing present. This can be attributed to the knowledge that 
deep learning-based object detection models are trained 
on classes with highly specific class components that have 

the same visual properties. At present, it is not possible 
to measure the amount of filling with an object detection 
model as detection occurs through classifying pixels and 
bounding boxes and not displacement between objects. An 
alternative approach to detecting underfilling or overfilling 
could be achieved when distances are treated as separate 
classes. However, each class would then require substantial 
amounts of data and proper labeling for the model to achieve 
satisfactory results and to avoid data confusion. The differ-
ence between underfilling and overfilling property would 
be highly specific in terms of pixel density as the displace-
ment for the objects are in millimeters. Therefore, a large, 
clear, high-resolution dataset is required to attain high accu-
racy which was unavailable in the current study. Finally, 
YOLOv5x required more CUDA memory to process the data 
and perform better. Therefore, due to a lack of appropriate 
hardware infrastructure, and time restraints, more experi-
mentations with YOLOv5x was not considered.

While the practitioners were requested to submit images 
of obturation performed within the last 1 month, the degree 
of accuracy of the submitted information was not verified to 
preserve anonymity and confidentiality. Such an information 
was not deemed useful in the current study which primarily 
aimed to teach the model about the different progressive forms 
of obturation as opposed to the sequalae of relatively stable 
resolution patterns frequently seen in recall radiographs [29]. 
Future studies can be carried out to teach the computer-vision 
model of the different phases of disease resolution following 
obturation using an elaborate longitudinal dataset.

The following studies can be performed as a continuation 
of the existing outcomes.

1.	 Multi-label classification: it is used when there are 
two or more classes and the data to be classified could 
belong to none of the classes or all of them at the same 
time [30]. This issue was experienced when categorizing 
endodontic treatment outcomes within the current study. 
The model was frequently seen to misclassify or fail to 
classify features due to common characteristics of tooth 
anatomy. Future studies of multi-label classification can 
aim to sub-divide a category into separate labels and 
then classify endodontic treatments based on the indi-
vidual features possessed within the radiomic data.

2.	 Cost sensitive learning: the ‘no endodontic treatment’ 
class had average performance in the current study. 
Therefore, future studies implementing situational sensi-
tive learning may be applied to the said class to identify 
the costs of prediction error and identify feasibly appro-
priate augmentation techniques to minimize prediction 
errors [31].

3.	 Curriculum learning: a machine-learning technique 
called curriculum learning is modeled after how peo-
ple learn by first understanding simpler concepts, and 
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then moving on to information that is more difficult to 
understand. Previously, Curriculum Learning and its off-
shoots Self-Paced Learning with Diversity (SPLD) and 
Self-Paced Learning (SPL) were applied in a number 
of machine-learning contexts, including Support Vector 
Machines (SVMs), perceptrons, and multi-layer neural 
networks, where it was demonstrated that they increased 
model accuracy and training speed [6]. Transfer learning 
of the existing model can be applied in a similar manner 
to extend the classification types of endodontic treat-
ment, provided that there is sufficiently labeled data of 
cases of under- or overfilling.

Conclusion

The current study of computer vision applied to radiomic 
datasets successfully classified endodontic treatment obtu-
ration and mishaps according to a custom progressive 
classification system and serves as a foundation to larger 
research on the subject matter.
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