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Abstract
Objectives  The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting 
vertical root fracture (VRF) on panoramic radiography.
Methods  Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were 
selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endo-
dontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A 
CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend 
test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evalu-
ated using recall, precision, and F measure.
Results  Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, preci-
sion 0.93, and F measure 0.83.
Conclusions  The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function 
as a CAD tool.
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Introduction

Panoramic radiography is frequently used for screening 
for various abnormalities of the jaws and their adjacent 
structures, and is recognized as a reliable and convenient 
technique [1]. However, because of the complexity of the 

relationships between anatomical structures and the pano-
ramic image layer, panoramic radiography images may 
sometimes be difficult to interpret, especially for inexperi-
enced observers, with the result that critical disease may be 
overlooked [2]. In this regard, a number of computer-assisted 
detection/diagnosis (CAD) systems have been developed for 
various diseases, including maxillary sinusitis [3], osteopo-
rosis [4, 5], and carotid artery calcification [6]. In these sys-
tems, image characteristics that are extracted by experienced 
human observers are input into the CAD system for diag-
nostic assistance. More recently, deep learning (DL) sys-
tems with convolutional neural networks (CNN) have been 
introduced into the field of oral and maxillofacial diagnostic 
imaging [7–17]. In this technique, the computer system can 
automatically learn to extract image characteristics suitable 
for performing various tasks such as classification, segmen-
tation, and image enhancement. Object detection, which is 
one such function, involves the detection of objects learned 
during the training process. One such CNN-based DL sys-
tem is DetectNet, which outputs the XY coordinates of a 
detected object as a colored box when a testing image is 
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input into the trained learning model [18]. DetectNet has 
already been applied to diseases in various medical fields, 
such as mammary disease, and showed high diagnostic per-
formance [19]. Although deep learning systems may provide 
a way to fully automate the detection of abnormalities or 
anatomic structures, there are relatively small number of 
studies reporting their application to panoramic imaging 
[11–16].

Vertical root fractures (VRF) are reported to occur in 
3.7–30.8% of endodontically treated teeth, and are pre-
dominantly seen in the mandibular premolars and molars 
[20–23]. They are one of the most difficult dental diseases 
to treat conservatively, and almost all VRF teeth are either 
extracted or treated by hemisection or root separation tech-
niques. However, early treatment involving the resection 
of affected roots can achieve relatively long survival times 
for the remaining roots, with 5- and 10-year survival rates 
of 94% and 64%, respectively [24]. In addition, VRFs are 
sometimes identified incidentally on panoramic images, 
because some endodontically treated teeth show no or 
only slight symptoms, even when a VRF is present [25]. 
Although the detectability of VRF is reported to be higher 
with cone-beam computed tomography (CBCT) for dental 
use than with intra-oral or panoramic radiography [20–22, 
26–32], the radiation dose to patients from CBCT is rela-
tively large [20, 30, 31], and CBCT is not therefore suitable 
for screening purposes.

The aims of the present study were to develop an object 
detection model to identify teeth with a VRF on panoramic 
images, and to evaluate the diagnostic performance of this 
model.

Materials and methods

Materials

A total of 1914 images were extracted from our hospital 
image database of 65,490 panoramic images stored between 
April 2013 and February 2019. These 1914 images were 
retrieved using the search engine of our radiology informa-
tion system, using the reference words “root fracture” on 
the imaging reports. From these 1914 extracted images, 300 
subjects (150 females and 150 males, with a mean age of 
66.05 years) were selected through a review process involv-
ing two oral and maxillofacial radiologists (MF and EA) 
and an endodontist (KI). For each included subject, at least 
one tooth with a VRF could be clearly identified on pano-
ramic images, with all three observers being in agreement. 
In 28 subjects, two teeth showed a VRF on a single image, 
while one subject had three teeth with a VRF. Consequently, 
300 panoramic images of 1039 × 1378 pixels showing 330 
teeth with a VRF were downloaded in jpeg format, and 
these served to create the dataset for the deep learning pro-
cess. The distributions of the tooth types of these 330 teeth 
(described true boxes) are summarized in Table 1. The VRFs 
were most frequently observed in the mandibular molars 
(54.8%) and mandibular premolars (17.6%). Most of the 
teeth with a VRF (96.4%) could be judged as endodonti-
cally treated teeth according to the finding of root canal fill-
ing materials.

All 300 images were obtained on a panoramic machine 
(Veraviewepocs X550 P-CR, J. Morita Mfg Corp., Kyoto, 
Japan) with a tube voltage of 75 kVp, tube current of 9 mA, 
and acquisition time of 16 s.

Table 1   Materials and results 
of the computer-aided diagnosis 
model according to tooth type

VRF vertical root fracture
Number in parenthesis shows the number of endodontically untreated teeth

True boxes Correctly detected boxes Falsely 
detected 
boxes

Undetected boxes

(Teeth truly with VRF) (Detected teeth with VRF) (Detected 
teeth with-
out VRF)

(Undetected teeth with 
VRF)

Maxilla
 Incisor 16 (1) 6 2 10 (1)
 Premolar 33 (1) 20 (1) 2 13
 Molar 36 (3) 21 0 15 (3)

Mandible
 Incisor 6 4 0 2
 Premolar 58 (3) 45 (2) 1 13 (1)
 Molar 181 (4) 151 (2) 15 30 (2)
 Total 330 (12) 247 (5) 20 83 (7)



339Oral Radiology (2020) 36:337–343	

1 3

Preparation of the dataset

Images of 900 × 900 pixels were cropped from the down-
loaded images and teeth with a VRF were labeled by the 
setting of arbitrary-sized rectangular regions of interest 
(ROI) sufficient to contain their crown and roots. These ROIs 
were set by an oral and maxillofacial radiologist (MF) using 
Image J software (National Institute of Health, Bethesda, 
Maryland, USA), and the coordinates of the upper left (X1, 
Y1) and lower right (X2, Y2) corners were recorded and 
converted to text form (Fig. 1).

Architecture of the deep learning system

The deep learning process was performed using the Dig-
its version 5.0 training system (Nvidia, California, USA) 
with a customized DetectNet (https​://devbl​ogs.nvidi​a.com/
detec​tnet-deep-neura​l-netwo​rk-objec​t-detec​tion-digit​s/). 
The workstation had an Ubuntu 16.04 operating system and 
GeForce 1080Ti graphics processor unit (Nvidia).

Learning process and evaluation of diagnostic 
performance

A fivefold cross-validation method was applied to the train-
ing and testing process [33, 34] (Fig. 2). The dataset was 
divided into five parts, with four parts (b, c, d, and e) being 
used as training data and the remaining part (a) being used as 
testing data. This process was repeated five times, changing 
the testing dataset each time. The training processes involved 
1000 epochs using the ADAM (adaptive moment estimation) 

solver with an initial learning rate of 0.0001. Five learning 
models were created, and the corresponding testing data 
were applied to the respective models. Detected areas were 
shown as red boxes on each image of the testing dataset 
(Fig. 3), and these were assigned as correct when they suf-
ficiently included the root with the VRF and fracture lines.

Diagnostic performance was evaluated with recall, preci-
sion, and F measure values [35–38] as follows:

The “number of all true boxes” is the number of teeth 
that truly have a VRF (n = 330). In other word, recall and 
precision mean sensitivity and positive predictive value, 
respectively. These two indices have a trade-off relation-
ship, therefore, their harmonic means which is the so-called 
F measure is also used to evaluate the performances of 
machine learning [35–38]. Estimated diagnostic perfor-
mances were defined as the means of the results of the five 
learning models.

Results

The testing results are summarized in Table 1. Of the 267 
boxes detected on the 300 images, 247 boxes correctly iden-
tified teeth having a VRF, but 20 boxes incorrectly marked 

recall = number of correctly detected boxes∕number of all true boxes

precision = number of correctly detected boxes∕(number

of correctly detectedboxes + number of falsely detected boxes)

F measure = 2 × (recall + precision)∕(recall + precision).

001.jpeg (image file) 

(X1, Y1) 

(X2, Y2) 

rf 0.00 0 0.00 266 642 344 733 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

001.txt (label file) 

Label file 

X1 Y1 X2 Y2 Class name 

Fig. 1   The composition of an item in the dataset. Two files are included, the first being the panoramic image and the second a label file including 
the XY axis coordinate information. These two files must be named with the same letter

https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits/
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits/
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teeth without a VRF. Among the incorrectly detected 15 
mandibular molars, 2 received root separation surgery. Out 
of the 330 teeth with true VRFs, 83 teeth were not detected, 
with no relevant box being shown on the images. Seven 
(58.3%) of 12 teeth without endodontic treatment were not 
detected. The recall rates were low for the maxillary incisors 
but high for the mandibular premolars and molars, while the 
precision rates were high regardless of tooth type (Table 2). 

Consequently, the estimated recall, precision, and F measure 
were 0.75, 0.93, and 0.83, respectively.

A typical correctly detected box is shown in Fig. 3, 
with a VRF being detected in the right mandibular first 
molar. Figure 4 shows a maxillary second molar without 
endodontic treatment that was not detected in the image. 
In Fig. 5, although a VRF is correctly detected in the man-
dibular left premolar, the first molar after root separation 
is incorrectly detected as a tooth with a VRF. Figure 6 
shows a right first molar showing periapical and bifurca-
tion radiolucency that was misdiagnosed as having a VRF.  

Dataset 

a 

b 

c 

d 

e 

Test 

Training 

Training 

Training 

Training 

Training 

Test 

Training 

Training 

Training 

Training 

Training 

Test 

Training 

Training 

Training 

Training 

Training 

Test 

Training 

Training 

Training 

Training 

Training 

Test 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Learning 
Model 1 

1000 epoch training 

Learning 
Model 2 

Learning 
Model 3 

Learning 
Model 4 

Learning 
Model 5 

Diagnostic 
performance 

Diagnostic 
performance 

Diagnostic 
performance 

Diagnostic 
performance 

Diagnostic 
performance 

Estimated diagnostic performance 

Average 

Test with  
dataset a 

Test with  
dataset b 

Test with  
dataset c 

Test with  
dataset d 

Test with  
dataset e 

Fig. 2   A flow chart of the fivefold cross-validation procedure. Estimated diagnostic performance was calculated as the average of the five mod-
els’ test results

Fig. 3   A case of successful detection. Black arrow shows a VRF 
tooth

Table 2   Diagnostic performance according to tooth type

Recall Precision F measure

Maxilla
 Incisor 0.38 0.75 0.50
 Premolar 0.61 0.91 0.73
 Molar 0.58 1.00 0.74

Mandible
 Incisor 0.67 1.00 0.80
 Premolar 0.78 0.98 0.87
 Molar 0.83 0.91 0.87
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Discussion

In the present study, VRFs were predominantly observed 
in the mandibular molars (54.8%), followed by the 
mandibular premolars (17.6%). These results support 

the descriptions in textbooks [39] and previous reports 
[20–23]. To the contrary, a study from Romania reported 
the maxillary incisors to be the predominant tooth type 
with fracture in teeth extracted from females and males 
[40]. This discrepancy could be attributed to various fac-
tors, including differences in the study population, inclu-
sion of horizontal fractures as well as VRFs, and the 
influence of different VRF verification methods such as 
panoramic radiography, cone-beam CT, or endoscopy. 
Anyhow, the authors are in agreement with the finding 
that VRFs were mostly observed in endodontically treated 
teeth [20–22, 25, 29, 41].

The detectability of VRFs on CBCT is reported to be 
significantly higher than on panoramic or intra-oral radiog-
raphy [20–22, 26–32]. Takeshita et al. compared diagnostic 
performance between these modalities and showed that the 
performance of panoramic radiography according to the area 
under the receiver operating characteristic curve was lower 
than that of CBCT, but equivalent to full-mouth intra-oral 
radiography [32]. They emphasized that attention should be 
paid to the diagnosis of VRFs of the incisors and premolars 
on panoramic radiography, because the former can be over-
lapped by the vertebrae and the latter may not be exposed 
on the orthoradial projection angle. Although CBCT allows 
three-dimensional visualization of the fracture line, it should 
not be used for screening because of the considerable expo-
sure to ionizing radiation. Therefore, it is recommended that 
CBCT should only be used as an additional examination 
after screening of the whole teeth by panoramic radiography.

In recent years, various studies have been reported to 
evaluate the use of DL system for various oral and maxil-
lofacial imaging procedures, such as periapical radiography 
[7, 8], panoramic radiography [9–14], and CT images [15]. 
The object detection functionality is also used for diagnosing 
abnormalities or anatomic structures on panoramic images 
[11–16]. For automated diagnosis, the object detection 
technique is thought to be more effective than classification 
method. Therefore, we conducted this study as a step towards 
creating a fully automated diagnostic system for panoramic 
images. Although our results demonstrate the possibility of 
the technique, the currently acquired performances may be 
insufficient for clinical practice. The low number of teeth 
used for the training process may be a reason for the low 
recall rates in the maxillary teeth and mandibular incisors. 
Moreover, more than half of the endodontically untreated 
teeth with a VRF were not detected in the present study. This 
result may be attributed to the low numbers of such teeth 
and the fact that the learning model probably extracted the 
characteristics of endodontically treated teeth. Therefore, a 
future study should be conducted with higher numbers of 
such teeth with a VRF, to create a more effective model.

In the case of falsely detected teeth, mandibular molars in 
the postoperative state of root separation might be assigned 

Fig. 4   A case of failed detection. White arrow shows a VRF tooth

Fig. 5   A case of failed detection. Black arrow shows a VRF tooth, 
white arrow shows a misdetected tooth

Fig. 6   A case of failed detection. Black arrow shows a VRF tooth, 
white arrow shows a misdetected tooth
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as having a VRF. Although these teeth were regarded as 
falsely detected boxes in the present study, the detection of 
separated teeth could be another purpose of the model. In 
this case, if they were to be assigned as correct detection, 
the performance would improve. In addition, even though a 
fracture line may not be detected on a radiograph, teeth with 
VRF frequently show characteristic bony resorption, which 
presents with special appearances on imaging [42–44], such 
as the so-called halo lesion. The deep learning system might 
learn and extract these characteristic appearances, and then 
detect such teeth on the basis of their boney appearance 
when the testing data sets are applied to the learning model. 
If so, the teeth that were assigned as falsely detected may 
include those teeth with a true VRF but that went undetected 
on radiographs. In this regard, a study should be planned 
using teeth with endoscopically verified VRFs.

This study has some limitations. First, there were too few 
training data items for the maxillary teeth, mandibular inci-
sors, and endodontically untreated teeth. Second, we only 
selected panoramic radiography images that included clear 
VRF lines. Third, all the panoramic images were obtained 
in just a single hospital. Fourth, preparing the dataset and 
creating the model was a time-consuming task. Future stud-
ies should be addressed towards solving these problems.

Conclusion

We developed an artificial intelligence model for detecting 
vertical tooth fracture on panoramic radiography. Evaluation 
of the performance of this model revealed recall of 0.75, pre-
cision of 0.93, and an F measure of 0.83, thereby showing 
that a CAD system for panoramic radiography has potential 
for this particular function.
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