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Abstract
Objective To clarify CT diagnostic performance in extranodal extension of cervical lymph node metastases using deep 
learning classification.
Methods Seven-hundred and three CT images (178 with and 525 without extranodal extension) in 51 patients with cervi-
cal lymph node metastases from oral squamous cell carcinoma were enrolled in this study. CT images were cropped to an 
arbitrary size to include lymph nodes and surrounding tissues. All images were automatically divided into two datasets, 
assigning 80% as the training dataset and 20% as the testing dataset. The automated selection was repeated five times. Each 
training dataset was imported to a deep learning training system “DIGITS”. Five learning models were created after 300 
epochs of the learning process using a neural network “AlexNet”. Each testing dataset was applied to each created learning 
model and resulting five performances were averaged as estimated diagnostic performances. A radiologist measured the 
minor axis and three radiologists evaluated central necrosis and irregular borders of each lymph node, and the diagnostic 
performances were obtained.
Results The deep learning accuracy of extranodal extension was 84.0%. The radiologists’ accuracies based on minor 
axis ≥ 11 mm, central necrosis, and irregular borders were 55.7%, 51.1% and 62.6%, respectively.
Conclusions The deep learning diagnostic performance in extranodal extension was significantly higher than that of radi-
ologists. This method is expected to improve diagnostic accuracy by further study with increasing the number of patients.

Keywords Deep learning classification · Extranodal extension · Cervical lymph node metastasis · Oral squamous cell 
carcinoma · Computed tomography

Introduction

Extranodal extension (ENE) occurs when metastatic tumor 
cells within a lymph node break through the nodal capsule 
into surrounding tissues [1]. It is characterized clinically 
by skin invasion, soft-tissue invasion with deep tethering to 
underlying muscle or adjacent structures, or clinical signs 
of nerve involvement [2]. The presence of ENE is associated 
with higher rate of local recurrence and poorer survival in 
head and neck cancers [3]. The AJCC 8th edition introduces 
the use of ENE in the “N” category for metastases in cervi-
cal lymph nodes [3].

ENE can be reliably diagnosed only by postoperative 
pathological specimens [1, 3, 4]. The identification of patho-
logic ENE is an indication for adjuvant treatment intensifica-
tion [1, 3, 5]. Patients being treated without surgery would 
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benefit from concurrent chemoradiotherapy, and patients 
being treated with surgery may require adjuvant chemo-
therapy [5, 6]. The detection of ENE prior to treatment may 
be helpful in guiding subsequent therapy [1, 3, 5–7].

Contrast-enhanced CT is the imaging modality most 
commonly used to evaluate cervical lymph node status [5]. 
The CT findings suggesting ENE are size increase, cen-
tral necrosis with contour irregularity, irregular borders 
with infiltration into adjacent fat and muscle planes, and/
or gross invasion [4, 5]. Although CT is recommended to 
visualize macroscopic ENE [4], its diagnostic performances 
is reported to be suboptimal, with an area under the curve 
(AUC) of the receiver-operating characteristic (ROC) plot 
ranging from 0.65 to 0.69 [1, 3]. In addition, high intra-
observer variability is found [1].

Artificial intelligence with a deep learning system has 
increasingly been applied to medical fields [8, 9], especially 
to diagnostic imaging. A deep learning system using mul-
tiple layered convolutional neural networks (CNNs) can 
extract and analyze quantitative image features automati-
cally, and has created predictive models [10–13].

Kann et al. have achieved an AUC of 0.91 in diagnosis 
of ENE on CT images using the deep learning architecture 
DualNet [1]. Although the actual ability and size of the 
graphics processing unit (GPU) are not described in detail, 
DualNet, which is used in the go gaming program AlphaGo 
[14, 15], can easily be identified as requiring a large and 
expensive GPU. In our previous study using a relatively low-
cost system with a neural network of AlexNet and the deep 
learning training system DIGITS on an 11 GB GPU machine 
(NVIDIA Corporation, Holmdel NJ, USA), a high AUC of 
0.80 was achieved in the diagnosis of lymph node metastases 
in oral cancer patients on contrast-enhanced CT [16].

The purpose of the this study was to verify the possi-
bility of using a relatively low-cost deep learning system 
for diagnosing ENE of cervical lymph node metastases on 
contrast-enhanced CT in oral cancer patients by comparing 
its diagnostic performance with that of radiologists.

Materials and methods

This study was approved from the Ethics Committee of our 
University (No. 496), and planned according to the ethical 
standards of the Helsinki Declaration.

Subjects

The subjects were selected from patients whose contrast-
enhanced CT imaging data were stored in the image data-
base of our hospital between 2007 and 2018. Fifty-one 
patients with oral squamous cell carcinoma, who underwent 
neck dissection in our hospital, and who were pathologically 

confirmed to have cervical lymph node metastasis, were 
registered. They were 27 men and 24 women, and the age 
ranged from 28 to 94 years with a median of 64 years.

The contrast-enhanced CT examinations were performed 
by an Asterion TXT machine (Canon Medical Systems, 
Otawara, Japan). Patients received a 100-mL injection of 
iodinate contrast media (Iopamiron 300; Bayer Yakuhin, 
Ltd., Osaka, Japan), with 300 mg of iodine /mL at a rate 
of 20 mL/s. Axial scans from the skull base to the superior 
mediastinum were acquired parallel to the Frankfort plane, 
with tube voltage of 120kVp and amperage of 100mAs. The 
other parameters were slice thickness of 0.5 mm, pitch of 
0.3 mm, and field of view of 20 cm.

The lymph nodes on CT images and dissected specimens 
were carefully investigated to obtain one-to-one correspond-
ence between them. A total of 143 metastatic lymph nodes 
were identified with one-to-one correspondence. These 
lymph nodes were fixed in 10% formalin and then embed-
ded in paraffin. The specimens were sliced 2.5 µm in thick-
ness and stained with hematoxylin and eosin. A center-sliced 
specimen was re-evaluated by an oral pathologist (YS) to 
determine the presence or absence of ENE. As a result, 33 
metastatic lymph nodes showed ENE (Group 1), and 110 
metastatic lymph nodes showed no evidence of ENE (Group 
0).

The 4–6 consecutive axial CT images were selected 
for each lymph node: one slice was centered on the lymph 
node, and two or three slices were located above and below 
the lymph node center. The adopted CT images were 178 
images in Group 1 and 525 images in Group 0. A radiologist 
cropped all images into arbitrarily sized squares including 
histopathologically proven metastatic lymph nodes and sur-
rounding tissues using the macro function of Adobe Photo-
shop v. 13.0 (Adobe Systems Co. Ltd., San Jose CA, USA). 
The squares ranged from 4 to 32 mm (median 10.8 mm) with 
a 1-mm size represented by 51 pixels (Fig. 1).

Preparation of training and testing imaging 
datasets

All imaging patches were automatically divided into two 
datasets using an automated selection method (Fig. 2), 
assigning 80% to a training dataset and 20% to a testing 
dataset. Although this method did not assign the images, 
which were obtained from the same lymph node or from 
the same patient, as the different groups, it could repeat the 
training and testing processes with randomly selected slices.

Deep learning procedure

A deep learning system was built on graphic cards (GeForce 
GTX 1080 Ti, NVIDIA) with 11 GB of GPU, 128 GB of 
memory, and the open-source operating system Ubuntu OS 
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v. 16.04.2. The prepared training datasets were imported 
into the deep learning training system DIGITS library v. 5.0 
(NVIDIA; https ://devel oper.nvidi a.com/digit s). The learn-
ing process for 300 epochs was performed using the CNN 
“AlexNet”, which consists of five convolutional layers and 
three fully connected layers. For a deep learning framework, 
the open-source Convolutional Architecture for Fast Feature 
Embedding (Caffe) was used.

The automated selection method was repeated five times, 
resulting in five learning models. Each testing dataset was 
applied to each created learning model and resulting five 
performances were averaged as estimated diagnostic perfor-
mances for accuracy, sensitivity, specificity, positive predic-
tive value, and negative predictive value. Receiver-operating 
characteristic (ROC) curves were generated and the areas 
under the curves (AUCs) were determined.

Diagnostic performance of radiologists

Diagnostic performances of radiologists were determined 
when they used three characteristic CT features suggesting 
ENE, including a minor axis > 11 mm, central necrosis, and 
irregular borders. A randomly selected center or its adjacent 
slice images of metastatic lymph nodes were used for deter-
mining the radiologists’ performances. Sixty-six respective 
slice images were selected from Group 1 and Group 0. The 
minor axis was defined as the maximum diameter perpendic-
ular to the long axis of a lymph node on CT images (Fig. 3a). 
One radiologist (YA) with more than 20 years of experience 
measured the minor axis twice and averaged the values. The 
11-mm threshold was determined from the value at which 
the largest AUC was obtained in the preliminary ROC analy-
sis (data not shown). For central necrosis and irregular bor-
ders, three radiologists > 10 years of experience evaluated 
whether these features were present or absent (Fig. 3b–e). 
After practice on several samples with central necrosis or 
irregular borders, actual interpretations were performed on 
a personal monitor (RadiForce G20; Eizo Nanao Corp., Ishi-
kawa, Japan), with a size of 20.1 inches and resolution of 
1600 × 1200 pixels. The observers evaluated the probability 
for the presence of central necrosis or irregular borders on a 
4-point rating scale: 1, absent; 2, probably absent; 3, prob-
ably present; and 4, present. The evaluation was deemed 
negative when the scores showed 1 and 2, and was deemed 
positive when the scores showed 3 and 4. The accuracy, 
sensitivity, specificity, positive predictive value, negative 
predictive value, and the AUC values were calculated.

Statistical analysis

Comparisons of AUC values were performed by the Chi-
squared test. Values of p < 0.05 were considered as statisti-
cally significant.

Fig. 1  Cropping CT images. CT images including lymph nodes and 
surrounding tissues were cropped into arbitrarily sized squares. The 
squares ranged from 4–32 mm (median 10.8 mm) with a 1-mm size 
represented by 51 pixels

Fig. 2  Automated selection 
method. All imaging patches 
were automatically divided into 
two datasets using the auto-
mated selection method, assign-
ing 80% as training dataset and 
20% as testing dataset. Gr group

https://developer.nvidia.com/digits


151Oral Radiology (2020) 36:148–155 

1 3

Results

Time required for deep learning process

The time required to import the training dataset into DIG-
ITS was 6 s. The time to perform 300 epochs learning 
process using AlexNet and create the learning model was 
9 min. The time to adapt a testing dataset into the learning 
model and judge the presence of ENE was 11 s.

Diagnostic performance of deep learning system 
and radiologists

The diagnostic performances for five models are shown in 
Table 1. In each model, the accuracies were > 80%. The esti-
mated accuracy of 84.0% and the specificity of 89.7% were 
fully expectable values, while the sensitivity of 66.9% was 
not high yet.

In the evaluation of central necrosis and irregular borders 
by three radiologists, the inter-observer agreements in kappa 

Fig. 3  Evaluation of CT features by radiologists. A radiologist meas-
ured twice and averaged the minor axis, which was defined as the 
maximum diameter perpendicular to the long axis of the lymph node 

on CT (a). Three radiologists evaluated whether central necrosis was 
present (b) or absent (c). They also evaluated whether irregular bor-
ders were present (d) or absent (e)

Table 1  Diagnostic 
performance of the deep 
learning system using automatic 
selection

First time Second time Third time Fourth time Fifth time Average

Accuracy (%) 86.4 82.9 89.3 80.7 80.7 84.0
Sensitivity (%) 71.4 71.4 68.6 60.0 62.9 66.9
Specificity (%) 91.4 86.7 96.2 87.6 86.7 89.7
Positive predictive value (%) 73.5 64.1 85.7 61.8 61.1 69.2
Negative predictive value (%) 90.6 90.1 90.2 86.8 87.5 89.0
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values were 0.798 (substantial agreement) and 0.528 (mod-
erate agreement), respectively. The AUCs based on minor 
axis, central necrosis, and irregular borders were 0.553, 
0.515, and 0.629, respectively. The AUC of the deep learn-
ing system was significantly different from that of radiolo-
gists when they used the minor axis (p = 0.0039) and central 
necrosis (p = 0.0011) as indicators of ENE (Table 2, Fig. 4).

Case presentations

Case 1. A 61-year-old woman had a carcinoma in the floor 
of mouth with a area of 15 × 10 mm (T1N0) at the first visit. 
One year and two months after surgery, a right submandibu-
lar lymph node developed to the delayed metastasis. A CT 
image of the lymph node showed a 13-mm minor axis, cen-
tral necrosis, and clear borders (Fig. 5a). The deep learning 
classification correctly diagnosed as no ENE in adaptation 
of all 5 learning models. Histopathological findings showed 
infiltration of tumor cells into the fibrotic capsule but no 
ENE (Fig. 5b).

Case 2. A 34-year-old woman had a tongue cancer with an 
area of 33 × 22 mm and depth of invasion of 6 mm (T2N0) at 
the first visit. A delayed metastasis to a right upper jugular 
lymph node occurred 3 months after the surgery. CT image 
of the lymph node showed a 12-mm minor axis, central 
necrosis, and irregular borders (Fig. 5c). The judgments as 
to irregular borders were different among radiologists, and it 
was decided as positive after discussion. Three of five lean-
ing models created by the deep learning system correctly 
diagnosed having ENE, but diagnosis in two models was 
incorrect. The histopathological findings showed that the 
capsule was destroyed, indicating ENE (Fig. 5d).

Discussion

Cervical lymph node metastasis with ENE in head and neck 
squamous cell carcinoma is a critical prognostic factor for 
disease-free survival and distant metastasis [5, 17, 18], and 
influences treatment planning [18]. When ENE is confirmed 

by histological examination, additional treatment is admin-
istered [19]. Therefore, it is desirable to know ENE status 
prior to surgery from clinical information, including imaging 
diagnosis [7]. However, considering the accuracy and limita-
tions of current imaging, treatment planning cannot rely on 
imaging findings [4].

In this study, we applied a relatively low-cost deep learn-
ing algorithm to CT diagnosis of ENE, confirmed its diag-
nostic performance, and examined the possibility of clini-
cal application. The deep learning systems using multi-layer 
CNNs can automatically extract features from raw images 
and classify them [10–13]. In the method automatically 
assigning image patches to training and testing datasets, 
learnings were repeated five times to minimize assigning 
bias. As a result, an AUC of 0.88 was obtained. The deep 

Table 2  Comparison of 
diagnostic performance between 
deep learning systems and 
radiologists

AUC  area under the ROC curve
*p < 0.05, χ2-test (it indicated whether there was a significant difference compared to deep learning system)

Deep learning 
system

Minor axis (≧ 
11 mm)

Central necrosis Irregular borders

Accuracy (%) 84.0 55.7 51.1 62.6
Sensitivity (%) 66.9 42.4 45.5 54.5
Specificity (%) 89.7 69.2 56.9 70.8
Positive predictive value (%) 69.2 58.3 51.7 65.5
Negative predictive value (%) 89.0 54.2 50.7 60.5
AUC 0.819 0.553* 0.515* 0.629

Fig. 4  Receiver-operating characteristic (ROC) curves for the deep 
learning system and radiologists
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learning method presented little inter-model variability, 
being different from radiologists’ interobserver variation [1].

The conventional imaging diagnosis of ENE has been 
performed based on a minor axis threshold of ≥ 10 mm, cen-
tral necrosis, and unclear boundaries, mainly using contrast-
enhanced CT [1–3]. The reported sensitivity was not suffi-
cient at 43–83%, but its specificity was high in the range of 
72–98% [4, 20, 21]. It means that even if the images show 
negative findings, some may have ENEs.

Other weaknesses of conventional imaging diagnosis are 
that the inter-observer agreement was not so high, 0.37–0.59 
[7, 20]. In this study, the inter-observer κ value for central 
necrosis was 0.798, indicating substantial agreement, while 
that of the irregular borders showed a moderate agreement 
of 0.528.

Among the characteristic imaging findings, central necro-
sis was strongly correlated with histopathologically con-
firmed ENE [5]. Aiken et al. stated that central necrosis was 
the most detectable finding of ENE [4]. However, this study 
showed that the sensitivity based on central necrosis was 
not high, probably due to differences in patient distribution.

Increasing lymph node diameter will be expected to be 
ENE [22]. The sensitivity based on larger > 10 mm in diam-
eter was reported as 47–55% [6]. One large series reported 
that one-third of nodes with ENE were 10 mm or smaller 
[22, 23]. Zoumalan et al. found that the mean diameter 
of nodes with and without ENE did not differ [5]. In this 
study, the cutoff value of the minor axis was determined to 
be 11 mm in the preliminary analysis of the ROC curves, 
and the sensitivity based on the minor axis was confirmed 
to be low similar as the previous reports [6].

Inter-observer agreement for evaluation of irregular bor-
ders was reported to be low [7]. This study confirmed that 
the κ value of three radiologists was moderately low, 0.528. 
Of the three characteristic findings, the sensitivity was the 
highest, but still not sufficient. If invasion into adjacent 
structures is evident, diagnosis is easier [21]. The presence 
of matted nodes, defined as three adjacent cervical lymph 
nodes abutting one another with loss of an intervening fat 
plane, may be a positive predictive factor for ENE [7]. Aiken 
et al. stated that the histopathological ENE was still present 
in nearly 50% of the cases not showing imaging positive 

Fig. 5  Case presentations. Case 
1. CT image of the lymph node 
shows a 13-mm minor axis, cen-
tral necrosis, and clear borders 
(a). Histopathological findings 
(H&E, × 40) showed infiltration 
of tumor cells into the fibrotic 
capsule but no ENE (b). Case 
2. CT image of the lymph node 
shows a 12 mm minor axis, cen-
tral necrosis, and irregular bor-
ders (c). The histopathological 
findings (H&E, × 40) showed 
that the capsule was destroyed, 
indicating ENE (d)
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signs [4]. Therefore, ENE cannot be excluded even if imag-
ing findings suggest negativity [3, 4].

PET/CT can detect aggressive tumors, whereas it gener-
ally has lower spatial resolution and may not improve the 
performance for detection of ENE compared with CT alone 
[1]. MRI has superior soft-tissue resolution, and therefore, 
it may show good performance in delineating infiltration of 
adjacent fat planes and contour irregularity [7]. However, it 
has inferior spatial resolution and can have large motion arti-
facts [7]. Its accuracy of detection of ENE beyond CT cannot 
be expected [24, 25]. Ultrasonography has the highest spatial 
resolution and can reveal structural details including nodal 
matting, perinodal edema, and indeterminate boundaries [7, 
26]. It lacks ionizing radiation, and can provide complemen-
tary information with Doppler imaging, but there has been 
little research on this topic [7, 26]. Further studies to adapt 
deep learning to PET/CT and MRI will be needed.

This study has some limitations. The data from other 
facilities was not used. External validation and prospective 
testing acquired with different in scan-specific parameters, 
including tube voltage and IV contrast protocol, should be 
performed to create a generalizable model [1]. Another 
weakness was the small sample size. For the ultimate goal 
of this project to develop a usable clinical assistance tool, 
further study will be needed.

In conclusion, the deep learning diagnostic performance 
of ENE was sufficiently higher than those of radiologists. 
This method is expected to provide diagnostic support by 
further study with increasing patients’ number.
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