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Abstract
The sequential recommendation task based on the multi-interest framework aims to model
multiple interests of users from different aspects to predict their future interactions. How-
ever, researchers rarely consider the differences in features between the interests generated
by the model. In extreme cases, all interest capsules have the same meaning, leading to the
failure of modeling users with multiple interests. To address this issue, we propose the High-
level Preferences as positive examples in Contrastive Learning for multi-interest Sequence
Recommendation framework (HPCL4SR), which uses contrastive learning to distinguish dif-
ferences in interests based on user item interaction information. In order to find high-quality
comparative examples, this paper introduces the category information to construct a global
graph, learning the association between categories for high-level preference interest of users.
Then, a multi-layer perceptron is used to adaptively fuse the low-level preference interest
features of the user’s items and the high-level preference interest features of the categories.
Finally, user multi-interest contrastive samples are obtained through item sequence infor-
mation and corresponding categories, which are fed into contrastive learning to optimize
model parameters and generate multi-interest representations that are more in line with the
user sequence. In addition, when modeling the user’s item sequence information, in order
to increase the differentiation between item representations, the category of the item is used
to supervise the learning process. Extensive experiments on three real datasets demonstrate
that our method outperforms existing multi-interest recommendation models.
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1 Introduction

The sequence recommendation (SR) [1, 2] task treats the interaction between users and
items as a dynamic sequence, capturing interests of user over time by modeling sequence
dependencies, and predicting future user interactions. Sequence recommendation provides
services in many aspects of daily life, such as e-commerce [3, 4], news media [5, 6], video
music [7], and social networks [8].

Hence, a variety of SR models, including both shallow and deep models, have been
proposed to improve the performance of sequential recommendations. Specifically, Recurrent
Neural Networks built on Gate Recurrent Units (GRU) have been employed to model the
long- and short-term point-wise sequential dependencies over user-item interactions for next-
item recommendations [9, 10]. Convolutional Neural Network (CNN) [11], self-attention
[12, 13] and Graph Neural Network [14, 15] models have been incorporated into sequential
recommendation systems for capturing more complex sequential dependencies for further
improving the performance.

When modeling user interests using the above structure, it is common to represent user
interests as low dimensional embeddings, which contradicts the fact that each user may have
multiple interests in reality [16]. Some studies [3, 17–19] propose capturing multiple user
interest vectors from different aspects instead of a single vector. These methods explicitly
generate users’ diverse interest representations from their behavior sequences, breaking the
representation bottleneck of using a single generic user embedding. Although these solutions
have achieved significant performance improvements, they have not taken into account the
differences between multiple interests. In the worst-case scenario, all interest capsules have
the same meaning and cannot reflect the diversity of user interests. Recent work has further
improved the modeling ability of multiple user interests through routing regularization [20].
However, as shown in Figure 1, we calculated the similarity between multiple interest feature
vectors generated by REMI [20] and HPCL4SRmodel on the Amazon-Clothing dataset, and
randomly selected 128 users for statistical analysis. We found that although REMI [20]
models can also represent multiple interests of users, the representation of user interests has
great similarity, andHPCL4SR significantly reduces the similarity betweenmultiple interests
of users. In other words, our model can better represent multiple different interests of users,
increasing the diversity between interests.

Concretely, we propose a novel multi-interest sequence recommendation framework
(namedHPCL4SR). HPCL4SRmodels users’ high-level preference interests by constructing

Figure 1 The similarity between multiple interests of users is randomly selected from 128 users for statistical
purposes. The horizontal axis represents the range of similarity values, and the vertical axis represents the
percentage of similarity values in the corresponding interval
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a global graph of categories, and feeding them as positive examples into contrastive learning,
optimizingmultiple interest representations of users. Specifically, based on the item sequence
behavior of all users, the categories of items are constructed as global graph information for
high-level preference interest modeling. In this process, in order to alleviate the imbalance
problem in class interaction, attention weights are used to reconstruct the adjacency matrix,
and multi-hop aggregation is performed on categories that are not directly connected to each
other, reducing the sparsity of the interaction matrix and increasing the correlation between
classes. For the user’s item sequence, the context information of the sequence is obtained by
encoding the position of the item and fusing attention weights. Then, capsule networks are
used to learn the item sequence information for low-level interest preference modeling. In
order to further enhance the vector representation ability of items, the network model param-
eters are reverse optimized using the category information of items as labels. Naturally, we
will integrate high-level and low-level preference interest to generate multiple interest fea-
tures for users. Contrastive learning canmaximize the similarity between related samples and
minimize the similarity between unrelated samples. This paper draws inspiration from this
idea but distinguishes multiple interests of users through learning while not treating interests
as completely unrelated and preserving the hidden correlation information between inter-
ests. Therefore, we use low-level preference interest corresponding to the fused features of
high-level preference interest as positive examples, and other preference interest as negative
examples to learn the differences between user interests.

To summarize, the contributions of this paper are as follows:

• We propose a new novel interest sequence recommendation framework (HPCL4SR),
which solves the problem of existing methods not being able to represent the multiple
interests of users.

• Weconstruct a global graph based on the category information of items tomodel the user’s
high-level preference interest. In addition, using it as a positive example in contrastive
learning is a relatively optimal approach.

• We conduct extensive experiments on three real-world datasets to verify the effectiveness
of the HPCL4SR. Further analysis has demonstrated that the proposed method can more
reasonably model the diversity of multiple interests of users.

2 Related work

This paper mainly uses category information as positive examples to solve the problem of
differences among multiple interests in sequence recommendation through contrastive learn-
ing. Therefore, this section briefly overviews representative efforts relevant to our work from
Multi-Interest Sequence Recommendation, Large Language Models for Recommendation,
and Contrastive Learning.

2.1 Multi-interest sequence recommendation

In practical scenarios, users’ historical behavior has complex interaction patterns, and mod-
eling interests as a single vector using the above methods is not sufficient to accurately reflect
users’ true multi preference interest. Therefore, studying sequential recommendation models
based on multiple interests has become more important and practical.

MIND [17] proposes a multi-interest extractor layer based on the capsule routing mecha-
nism, which is applicable for clustering historical behaviors and extracting diverse interests.
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SDM [21] uses a multi head attention mechanism in encoding behavior sequences to cap-
ture multiple interests of the user. SIN [22] adaptively infers user interaction interests from
a large number of interest pools and outputs multiple interest embeddings, and then uses
the attention weights of items to generate multiple interest embeddings that best match user
characteristics. ComiRec [18] is based on multi head attention based multi-interest routing
to capture multiple interests of users and introduce controllable factors to achieve diverse
recommendations. PIMI [23] models the periodic features of temporal information between
user behaviors and the interactive features between sequence items, respectively, and uses
their representations to describe users’ multiple interests. DuoRec [24] designes contrastive
regularization to reshape the distribution of sequence representations and selectes sequences
with the same target item as hard positive samples, alleviating the problem of representa-
tion degradation in multi-interest sequence recommendation tasks. UMI [25] believes that
the interests of a user are not only reflected in their historical behavior, but also inherently
regulated by the profile information. Therefore, the user profiles are introduced as a source of
multi-interest features for users. REMI [20] first mitigates the problem of easy negatives with
an ideal interest-aware hard negative sampling distribution and an approximation method to
achieve the goal at a negligible computational cost. REMI also incorporates a novel rout-
ing regularization to avoid routing collapse and further improve the modeling capacity of
multi-interest models.

2.2 Large languagemodels for recommendation

Recent years have witnessed the wide adoption of large language models (LLMs) in different
fields, especially natural language processing and computer vision. Such a trend can also be
observed in recommendation systems (RS). However, due to the huge number of items in real-
world systems, traditional RS usually takes the two-stage filtering paradigm of the matching
stage (It aims to extract a small subset of items from the extensive corpus with lightweight
models, ensuring lowcomputational costs.) and ranking (It utilitiesmore sophisticatedmodels
to rerank the retrieved items), advanced recommendation algorithms are not applied to all
items, but only a few hundred of items. [26]. Therefore, existing large language models
(LLMs) (e.g., ChatGPT) methods [27–29] focus on the sorting stage that utilities more
Sophisticated models to rerank the retrieved items. We focus on improving the effectiveness
of the matching stage, which serves as a crucial foundation for the recommendation systems.
Toour knowledge, there is currently no research on the application of theLLMsmethods in the
matching stage. But, in the experimental section, we will attempt to analyze the performance
of ChatGPT (ChatGPT 3.5-Turbo-1106 & ChatGPT 4-Turbo) in the matching stage.

2.3 Contrastive learning

Contrastive learning has been widely applied in the field of computer vision. In contrastive
learning, methods such as CPC [30, 31] and DIM [32] feed the encoding of the same image
at different scales as positive samples, while MoCo [33], SimSiam [34], CaCo [35] and
other methods use multiple image enhancements as positive samples for contrastive learning.
In the field of text information processing, some studies use different data-transforming
methods or strategies, such as dropout and mask, to change the parameters and structure
of the encoder to improve the model’s ability to perform sentence representation [36–38].
The introduction of contrastive learning in sequence recommendation systems mainly solves
the problems of sparse user-item interaction and noise. Scholars improve recommendation
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performance by designing auxiliary tasks or loss functions [39]. CBiT [40] combines the
cloze task mask and the dropout mask to generate high-quality positive samples and perform
multi-pair contrastive learning. ICLRec [39]models user intentions through clustering of item
sequences, maximizing the agreement between a view of the sequence and its corresponding
intentions to improve recommendation performance. CL4SRec [41] employs contrastive
learning to learn consistent perception enhancement representations from sequential pattern
encoding and global collaborative relationship modeling.

Although researchers are trying to describe users’ various interests in different ways, they
rarely consider the issue of diversity in interests. In the worst case, all interest capsules have
the samemeaning, or all itemsmay activate the same interest capsule, whichmakes it difficult
to express multiple interests. ComiRec [18] uses controllable factors to recommend diverse
user interests, but the paper also mentions that increasing diversity can lead to a decrease in
recall rates. REMI [20] observe that the interests tend to over-focus on single items in the
behavior sequence, which impacts the expressiveness of multi-interest representations. They
introduce the variance regularizer on the routing weights to eliminate sparsity and effectively
address the problem. MIRACLE [19] forces interest capsules to satisfy orthogonality, which
clearly provides each user with K unrelated interests. However, such K interests can cause
unnecessary item recommendations for users,whichgoes against our common sense that there
may be implicit correlations between interests. Therefore, it is necessary and meaningful
for multi-interest sequence recommendations to preserve implicit correlation information
while ensuring the difference between interests. We attempt to solve the above problem
through contrastive learning, which distinguishes the differences in interests through self-
supervised learning of data features and maintains the correlation information between the
representations of interests.

3 Problem formulation

AssumeU denotes a set of users, X denotes a set of items, and C is a set of categories. Each
item xi has its corresponding category ci . Given a user u ∈ U , we have his/her chronological
item interaction sequence Sux = {

xu1 , xu2 , . . . , xuN
}
and a corresponding category interaction

sequence Suc = {
cu1 , c

u
2 , . . . , c

u
N

}
, where xut ∈ X and cut ∈ C represents the item and its

category that user u interacted with at time step t , respectively. N is the maximum sequence
length. The candidate matching stage in RS aims to efficiently retrieve a subset of items the
user is likely to interact with from the huge item corpus X .

4 Method

In this section, we propose the High-level Preferences as positive examples in Contrastive
Learning for multi-interest Sequence Recommendation framework (HPCL4SR), as shown
in Figure 2. There are three parts: high-level preference interest extraction module, low-level
preference interest extraction module, and multi-interest contrastive learning module.

4.1 High-level preference interest extractionmodule

Experiments in numerous fields of contrastive learning applications have shown that selecting
good positive and negative samples is the key to the effectiveness of contrastive learning.
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Figure 2 An Overview of Multi-interest Sequential Recommendation (HPCL4SR) framework

In sequence recommendation tasks, most models use methods such as pruning sequences,
dropout, andmask to construct contrastive samples. As shown in Figure 3, the user’s historical
interaction is extremely sparse, and such operationswill not fully represent the user’s interests
and may even result in errors. A large amount of excellent work has proven that taking
side information (user profile, category, brand, description, price, position, rating, etc.) into
recommendation sequences can better capture user preference information [25, 42, 43]. In
real scenarios, item category information is the easiest to obtain and is a high-level conceptual
representation of the item. Therefore, in this paper, we will use item category information
as a contrastive sample. In fact, even though the number of categories is much smaller
than the number of items, the interaction between categories is still sparse. So the method

Figure 3 Sparsity analysis on Amazon-Clothing and Tmall-Buy datasets. The horizontal axis represents 1000
randomly selected items in the dataset, and the vertical axis represents the number of times items interact in
the dataset
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proposed in this paper does not directly take the category sequence corresponding to the
item as the user’s high-level preference, but instead models the user’s high-level preference
interest by constructing a category global graph, learningmore preference interest correlation
information from the user.

For user Category sequences Suc = {cu1 , cu2 , . . . , cuN }, we calculate the number of inter-
actions between cui and cuj . And a category global graph (A1) is constructed based on the

historical interaction category sequence {S1c , S2c , . . . , S|U |
c } of all users, where the initial

weight of the edges between the two nodes is the total number of interactions between the
two categories ai j .

However, such a category global graph (A1) still has two obvious problems: (1) By analyz-
ing the interaction frequency of categories, it was found that due to the significant difference
in the number of items contained in different categories, there is an imbalance in the inter-
action between categories, which will lead to recommendation results biased towards items
in popular categories. (2) The method of constructing a graph through sequential interaction
only considers the relationship between adjacent item categories, while ignoring the interac-
tion between non directly adjacent categories. In fact, certain categories that are not adjacent
often appear together in the user’s sequence.

In order to alleviate the imbalance of category interaction and avoid the impact of popular
items on recommendation results, the adjacency matrix is redefined as follows:

A2(i, j) = ai j√|ai + 1||a j + 1| (1)

where ai j denotes the number of interactions with category ci and category c j , ai are the
number of interactions category ci with others, and a j is similar to ai .

To learn the correlation betweennon-adjacent categories,we adapt theMulti-hopAttention
Diffusion [44] method to aggregate information further. The attention score of multi-hop
neighbors is calculated by:

A =
∞∑

i=0

θi A
i
2 (2)

where
∑∞

i=0 θi = 1(θi > 0), θi is the attention decay factor, θi > θi+1, i is the power of the
adjacency matrix A2 which represents the farthest length of the diffusion relation path and
also represents the farthest length of the graph diffusion relation path.

Assume H (0) ∈ R|C |×d denotes the initial embedding matrix of the category, and d
represents the dimension of the node embedding. We use GCN to aggregate the features of
neighbors as a new representation of the target node, and introduce residual connections in
this process. The message-passing process is as follows:

H (l) = W (AH (l−1)) + H (l−1) (3)

where l is the number of GCN layers, W is trainable parameter matrices.
The final graph representation Ĥ ∈ R|C |×d is obtained by:

Ĥ = − 1

L

L∑

i=0

H (l) (4)

Basedon the category informationof user historical interactions, category node embedding
representation Hg is selected from the graph:

Hg = selecte(Ĥ)[n, :], n = 1, . . . , N (5)
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where, Hg ∈ RN×d , N is the sequence length of user interaction.
Finally, the user’s high-level preference interest vector Qu calculated as follows:

Qu = WHg (6)

where, Qu ∈ R
K×d , K is the number of preference interests.

4.2 Low-level preference interest extractionmodule

In sequence recommendation, positional information can explicitly reflect contextual infor-
mation between items. Therefore, in this paper, the attentionmechanism is first used to encode
sequence information:

Xi = Eemb
i + E pos

i (7)

where Eemb
i , E pos

i is the embedding of the i-th item, and the positional embedding, respec-
tively, Xi is an item embedding representation with sequence position information.

αi j = exp(Xi XT
j )

∑N
n=1 exp(Xi XT

n )
(8)

where αi j is the attention weight of item j to item i , We use neural networks to make each
item in the sequence perceive the entire contextual information.

Xi = W (Xi +
N∑

j=1

αi j X j ) (9)

In multi-interest recommendation tasks, the effectiveness of Capsule Network [45] has
been verified, so we directly draw on the above method to extract user low-level preference
interests Pu ∈ R

K×d .
Pu = CapsNet([X1, X2, . . . , XN ]) (10)

In addition, in order to enable the network model to learn the differences between items,
category can be used as a good supervised label. Specifically,we use the first layer information
of the Capsule Network as the feature Z = {z1, z2, . . . , zN } of the item, and use the fully
connected layer as the classifier. The output result Ẑ ∈ R

N×d can be represented as follows:

Ẑ = so f tmax(WZ + b) (11)

Category Sc = {c1, c2, . . . , cN } is used as a label, and the cross entropy loss function
calculates the loss of the classifier:

Lclass = −
N∑

n=1

(
cn log ẑn + (1 − cn) log

(
1 − ẑn

))
(12)

4.3 Multi-interest contrastive learningmodule

The differentiation processing between interests is the key to achieving multi-interest
sequence recommendations. Existing methods rarely consider the differences between inter-
est capsules, resulting in user sequence interest capsules having the samemeaning in extreme
cases. This paper uses a contrastive learning approach to distinguish between interests while
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preserving their implicit correlation information. The sequence information is used to repre-
sent the true interests of the user in an adaptive fusion.

We assume that the high-level preference interests of the category sequence (Qu) are
consistent with the low-level preference interests of the item sequence (Pu). We use fully
connected layers to adaptively fuse them, and obtain the final multi-interest representation
(Mu) of the user. Finally, Pu and Mu are selected as two views for contrastive learning.

Mu = W (cat[Qu, Pu]) (13)

where Mu ∈ R
K×d

Most existing contrastive learning methods are based on InfoNCE:

Lcl = − log
e(hi ·hi∗/τ)

e(hi ·hi∗/τ) + ∑
j �=i∗ e

(hi ·h j /τ)
(14)

where τ is a temperature hyperparameter, (hi , hi∗ ) is positive pair, (hi , h j �=i∗ ) is negative
pair.

However, due to a lack of decision margin, a small perturbation around the decision
boundary may lead to an incorrect decision. To overcome the problem, inspired by ArcFace
[46], we propose a new training objective for multi-interest contrastive learning by adding an
additive angular margin m between positive pair ei and ei∗ . Therefore, (14) can be rewritten
as follows:

Lcl = − log
ecos(θi,i∗+m)/τ

ecos(θi,i∗+m)/τ + ∑
j �=i∗ e

cos(θi, j)/τ
(15)

where m is additive angular margin.

θi, j = arccos

(
e�
i e j

‖ei‖ ∗ ∥∥e j
∥∥

)

(16)

To some extent, more negative samples can lead to better performance in contrastive
learning. In this paper, we set {i ∈ Mi

u , i
∗ ∈ Pi

u} or {i ∈ Pi
u , i

∗ ∈ Mi
u}, j ∈ {Pu ∪ Mu}. In

this way, for a sequence, any i will have (2K − 2) negative samples, and the contrastive loss
of multi-interest sequences recommended function is:

LmulCL = −
∑

i

log
ecos(θi,i∗+m)/τ

∑
j �=i e

cos(θi, j)/τ
(17)

4.4 Model training

For the given target item embedding y, we use an argmax operator to obtain the interest that
is the most related to the target item through (18):

mu = Mu

[
:, argmax

(
M�

u y
)]

(18)

The loss function between the predicted results of the model and the given target is :

Lrec = − log
exp(mu yT )

∑
j∈X ′ exp(mu yTj )

(19)

where X
′
is the item obtained through sampling softmax objective [47].
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The joint loss is defined as a linear combination of these three losses :

L = Lrec + λ1Lclass + λ2LmulCL (20)

where λ1 and λ2 are the hyperparameters to control the impact of different losses.

5 Experiments

5.1 Experimental settings

DatasetWe consider three real-world e-commerce datasets. The specific statistics are shown
in Table 1.

• Amazon-Clothing1. The Amazon Review Dataset is a classic data set commonly used
in recommender systems, which records product reviews.We use theClothing Shoes and
Jewelry subset in our experiment.

• Tmall-Buy2. The Tmall dataset is collected by Tmall.com, which is an online shop-
ping website. It contains users’ shopping history for about six months. We retain users’
purchase behaviors as a subset for experiments.

• Tafeng3. The Tafeng dataset collects user transaction behavior data from November
2000 to February 2001. The dataset covers everything from food and office supplies to
furniture.

Baselines We compare our model with some sequential recommendation methods.

• GRU4Rec [48].GRU4Rec is a representative recommendationmodel that first introduces
recurrent neural networks into sequence recommendation.

• MIND [16].MIND is one of the first frameworks to model users’ multiple interests based
on dynamic routing algorithms.

• ComiRec [18]. ComiRec is a representative baseline for the multi-interest recommenda-
tion. It uses two methods to represent user interests: attention mechanism and dynamic
routing.

• PIMI [23]. Considering the limitations of ComiRec, PIMI introduces the study of peri-
odicity and interactivity of item sequences, capturing both global and local item features.

• REMI [20]. REMI consists of an Interest-aware Hard Negative mining strategy and a
RoutingRegularizationmethod to solve the issues of increased easy negatives and routing
collapse during the training process.

Evaluation MetricsWe use three common accuracy metrics for performance evaluation:
Recall, Normalized Discounted Cumulative Gain(NDCG), and Hit Rate(HR). Metrics com-
putation relies on the top 20/50 recommended candidates (e.g., Recall@20). For the three
metrics, higher scores demonstrate better recommendation performance.

Implement Details For each dataset, we partition all users into the training, validation,
and test sets with a ratio of 8:1:1. The maximum sequence length of the Amazon-Clothing
and Tafeng datasets is set to 30, and the maximum sequence length of Tmall-Buy dataset
is 20. The user sequence whose length exceeds the maximum value is truncated, and the

1 https://nijianmo.github.io/amazon/
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
3 https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
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Table 1 Statistics of the three
datasets

Datasets Amazon-Clothing Tmall-Buy Tafeng

Users 129,827 356,795 17,590

Items 293,446 311,746 10,176

Categories 499 1,442 1,297

Interactions 3,046,500 35,012,248 674,685

Sparsity 99.99% 99.97% 99.62%

user sequence whose length is insufficient is filled with 0. We filter users/items with fewer
than 12 interactions to guarantee the length of recent sequences. All parameters are set as
follows if not otherwise noted: following [20], the learning rate is 0.001, the mini-batch size
is 128, the embedding size is set to 64, the interest number K = 4, and Adam is used as a
gradient optimizer. We analyze in detail the effects of other hyperparameters in Section 5.4
and ultimately determined their values as λ1 = 0.1, λ2 = 1, τ = 0.05, m = 10, respectively.

5.2 Performance evaluation

To demonstrate the recommendation performance of our model HPCL4SR, we compare it
with other multi-interest models. The experimental results of three datasets are presented in
Table 2. We have the following observations.

First, although the three datasets have different characteristics, HPCL4SR consistently
yields the best performance, indicating the robustness of our model. By modeling users’
diverse interests through contrastive learning, even for the Tafeng dataset with limited user
interests, we can still fully use the limited information to capture user interests and make
optimal recommendations. It proves the effectiveness of finer-grained characterization of user
persona contained in a user sequence. Overall, we model the high-level preference interests
and low-level preference interests of user sequences, and distinguish the feature represen-
tations between interests through contrastive learning, which can more finely characterize
users. Considering the meaning behind different user behaviors, that is, the real users of each
interaction project, we mine and utilize the information in the user behavior sequence to
understand users’ interests from the perspective of project usage, which helps to model users
more accurately.

Next, judging from the performance of sequential recommendation models, The perfor-
mance of PIMI, UMI, and HPCL4SR models on three datasets is superior to most models,
such as ComiRec and MIND, indicating that adding side information is beneficial for user
modeling.

Finally, on the Tafeng dataset with a small number of items (10,176), models that use
a single vector to model user interests (GRU4Rec) outperform simple multi-vector models
(MIND and ComiRec). However, the model performance is still worse than the PIMI model
using time information and the HPCL4SRmodel the category information we proposed. The
multi-interests model is better than the single interests model on the Amazon-Clothing and
Tmall-Buy datasets with many users and items. In addition, the results of the REMI model
indicate that selecting high-quality negative samples can bring surprises, but this requires
a significant time cost in screening negative samples. Overall, modeling users’ interests
from different aspects are better than using only one vector to model users’ overall inter-
ests. Because the multi-interest models can provide users with more mixed recommendation
results, thereby improving the accuracy of recommendations.
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In addition, to better demonstrate the effectiveness of our method, we supplemented the
experimental results of CL4SRec [41] and DuoRec [24] in the sequence recommendation
task. In Table 3, the experiment demonstrates the effectiveness and ingenuity of using con-
trastive learning methods, and also demonstrates that modeling users with multiple interests
in sequence recommendation tasks can improve recommendation performance.

5.3 Ablation study

In this section, we select the Amazon Clothing dataset to analyze the effectiveness of our
proposed method (HPCL4SR). Firstly, we refer to the method in HPCL4SR that only uses
item information as the base and the method that uses category as the supervised signal as
the base(w Lclass). Then, After constructing a global graph based on category to obtain user
high-level preference interest information, we further attempted three methods of integrating
high-level preference interest (Qu) and low-level preference interests (Pu): addition,multipli-
cation, and adaptive fusion, represented as HPCL4SR(w ’+’), HPCL4SR(w ’*’), HPCL4SR,
respectively. Finally, we analyze and consider the contribution of differences in interests to
multi-interest sequence recommendation. We not only attempt to replace the multi-interest
contrastive learning module with Capsule Regulation [19], denoted as HPCL4SR(w CR), but
also analyze the impact of the lack of additive angle marginm, denoted as HPCL4SR(w/om).
The experimental results on three data sets are shown in Table 4. From the table, it can be seen
that category, as a supervisory signal, improves certain performance by optimizing the rep-
resentation of items. When combined with Qu , the performance improvement is significant,
especially when using theMLPmethod. The experiment confirms that the difference between
interests is the main reason for affecting the performance of sequence recommendation, and
the contrastive learning method shows greater advantages than the Capsule Regularization
form due to its ability to distinguish the differences between interests while preserving the
correlation information between them.

5.4 Hyper-parameter study

λ1 and λ2 are hyperparameters of the joint loss function during the training process,
whichdirectly affect the optimizationofmodel parameters.We selectedλ1 ∈ {0.01, 0.05, 0.1,
0.5, 1}, λ2 ∈ {0.01, 0.1, 1, 5, 10}, and conducted experiments on three datasets using
NDCG@50 as the evaluation metric. As shown in the left side of Figure 4, we can see
that the best performance is achieved when λ1 = 0.1. This matches our intuition since using
category as the supervisory signal for items is effective, but excessive weight can cause rec-
ommendation loss and reduce model performance. As shown in the right side of Figure 4, an
increase in the weight λ2 of the comparison loss can help distinguish the differences between
multiple interests, but if λ2 is too large, it can also mask the recommendation loss and reduce
the model’s recommendation task ability. Therefore, a reasonable value λ2 = 1 is needed.

Table 3 Model comparison
results on Amazon-Clothing
datasets with purely contrastive
learning-based sequence
recommendation method (%)

Metric CL4SRec DuoRec HPCL4SR

R@20 11.06 12.17 12.8135

R@50 12.11 13.43 13.9153

NDCG@20 9.7 10.52 18.4271

NDCG@50 9.91 10.78 19.2631
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Table 4 Ablation study on Amazon-Clothing dataset

Amazon-Clothing
@20 @50
Recall NDCG Hit Rate Recall NDCG Hit Rate

base 11.4263 14.8396 20.4735 12.8437 15.3571 24.6158

base(w Lclass ) 11.5174 14.9467 20.9148 12.9166 15.7637 25.1097

HPCL4SR(w ’+’) 11.8457 15.3918 21.5617 13.2094 16.8463 25.9168

HPCL4SR(w ’*’) 11.8704 15.3493 21.6869 13.2275 17.1951 26.2942

HPCL4SR(w CR) 12.2387 16.0857 22.7928 13.5469 18.3674 27.0805

HPCL4SR(w/o m) 12.4064 17.6431 23.0348 13.6918 18.8762 27.1506

HPCL4SR 12.8135 18.4271 23.4534 13.9153 19.2631 27.5961

The temperature τ and angular marginm in the multi-interest contrastive learning module
affect its effectiveness. For τ , we carry out an experiment with τ varying from 0.01 to 0.1
with an interval of 0.01. The results are shown in the left side of Figure 5. On Amazon-
Clothing and Tmall-Buy datasets, the performance is best when τ = 0.05, and on the Tafeng
dataset, the result is best when τ = 0.03 (however, the performance difference between it
and τ = 0.05 is small). Taking all factors into consideration, we chose τ = 0.05 for all our
experiments. Form, as shown in the right side of Figure 5, we selectedm ∈ {0, 5, 10, 15, 20}.
Although the performance is best on the Tmall-Buy dataset when m = 15, it is best on the
other two datasets when m = 10. Therefore, we set m = 10 during the experiment.

5.5 Case study

We analyze the proposed model’s effectiveness in solving the multi-interest recommendation
problem by showing the model’s recommendation results. Because the Amazon-Clothing
dataset contains detailed information such as items and item categories, while the Tmall-Buy
only gives the data number, we use the item to represent the recommendation results of the
datasets.

Figure 6 shows the recommendation results of the proposed HPCL4SRmodel for a certain
user behavior sequence. It can be seen from the figure that the user is more interested in baby
boy suits and boy socks, but the PIMI model only recommends items related to men and
women and does not learn the interests of the two demand sides of baby boys and boys. The

Figure 4 Study on balance parameter λ1 and λ2. We show NDCG@50 on three datasets
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Figure 5 Study on balance parameter τ and m. We show NDCG@50 on three datasets

HPCL4SRmodels both high-level and low-level preference interests of users, and diversifies
the interests to recommend the “baby suit” and “socks” that users want. Moreover, in the
list of recommended items given by the HPCL4SR model, the “baby suit” item that the user
actually interacts with ranks higher. That is, the ranking quality of the list of recommended
items provided by the model is higher. In addition, the HPCL4SR model not only learns the
interests of boys but also captures the preferences of boys, and at the same time, learns other
categories such as socks and shoes.

Table 5 shows the Top-20 recommendation results of the PIMI and HPCL4SR models on
the randomly selecteduser behavior numbered68079 in theTmall-Buydataset.As canbe seen
from the table, the HPCL4SR model correctly predicts the items that two users interact with
(the number is bold). Compared with the PIMI model, item ID 31744 in the recommendation

Figure 6 A case study on Amazon-Clothing dataset
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Table 5 A case study on Tmall-Buy dataset

Item ID

User Interaction Sequence 96 → 2231 → 7885 → 109 → 1373 → 1373 → 9748 → 9956

Label 674 → 31477 → 4067

Recommended 15104, 9956, 23972, 518, 4039, 14666, 109, 7885, 5421, 4877, 208, 206,
2931,

Items of PIMI 9748, 4820, 10614, 789, 31477, 7600, 797

Recommended 12097, 4067, 9956, 134, 15991, 28140, 4877, 19128, 7600, 31477, 7184,

Items of HPCL4SR 9393, 9748, 34005, 10614, 696, 2071, 4820, 4948, 1021

result list given by the HPCL4SR model ranks higher. Therefore, the HPCL4SR model
exceeds the performance of the PIMI model.

5.6 vs. LLMs

In order to compare the recommendation ability of HPCL4SR and large-scale language
models in the matching stage, we use two prompt methods and have ChatGPT (ChatGPT
3.5-Turbo-1106 & ChatGPT 4-Turbo) provide recommended items based on user interaction
information. The first method is to input user historical interaction information and prompt
ChatGP to generate 50 items of interest to the user. The second method is to input user
interaction history information and input the user’s next real item aswell as randomly selected
items, prompting ChatGPT to select items that the user may be interested in from the existing
50 items based on interaction history. The experimental details and results are shown in the
Table 6. It can be seen that The performance of ChatGPT 4-Turbo is better than that of

Table 6 The result of recommendation compared with LLMs

Prompt model Amazon-Clothing

You are a recommender system now: ChatGPT 3.5-Turbo-1106 HR@50 = 4.3

Input: Here is the purchase Item

history of a user: {User History item}.

Based on this history, please ChatGPT 4-Turbo HR@50 = 7.0

recommend the user prefer items next.

Answer a sequence must contain 50 Item.

You are a recommender system now: ChatGPT 3.5-Turbo-1106 HR@50 = 17.0

Input: Here is the purchase Item

history of a user: {User History item}.

Based on this history, please ChatGPT 4-Turbo HR@50 = 23.0

recommend the user prefer items from

Candidate Item. Answer a selected

sequence must contain 20 Item.

Fine-tuning T5-small HR@50 = 22.68

/ HPCL4SR HR@50 = 29.6
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ChatGPT 3.5-Turbo-1106, but the results of both far lower than our model and even many
existing models. This indicates that the current general LLMs still cannot be well applied to
specific task domains [26, 49]. In addition, although T5-small [50] is much lower in model
parameters than ChatGPT, we found that the large language model can further improve the
performance of recommendation systems through fine-tuning, but it still cannot meet the
model we have carefully designed for sequence recommendation. However, the expressive
power of the large model will be enlightening for our next work.

6 Conclusion

In this paper, we propose a novel framework named HPCL4SR for multi-interest sequence
recommendation. In order to achieve the representation of multiple user interests, HPCL4SR
uses contrastive learning methods to differentiate interests, while preserving their correla-
tion information, which is more in line with user behavior in real scenarios. We verify the
effectiveness of the proposed method through experiments on three datasets. Additionally,
we compare the recommendation ability of our approach in a task-specific domain with
LLMs (ChatGPT 3.5-Turbo-1106 & ChatGPT 4-Turbo), further showcasing the superior-
ity of HPCL4SR in multi-interest sequential recommendation. In the future, we consider
enhancing the interpretability of recommendation tasks based on multi-interest recommen-
dation models.
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