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Abstract
The huge amount of graph data necessitates sampling methods to support graph-based anal-
ysis applications. Node influence is to count the influential nodes with a given node in large
graphs that has wide applications including product promotion and information diffusion
in social networks. However, existing sampling methods mainly consider node degree to
compute the node influence while ignoring the important connections in terms of groups in
which nodes participate, resulting in inaccuracy of influence estimations. To this end, this
paper proposes group sampling, called GVRW, to count the groups along with node degrees
to evaluate node influence in large graphs. Specifically, GVRW changes the way of random
walker traversing a large graph from one node to a random neighbor node of the groups to
enlarge the sampling space for the sake of characterizing the nodes and groups simultane-
ously. Furthermore, we carefully design the corresponding estimated method to employ the
samples to estimate the specific distributions of groups and node degrees to compute the
node influence. Experimental results on real-world graph datasets show that our proposed
sampling and estimating methods can accurately obtain the properties and approximate the
node influences closer to the real values than existing methods.
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1 Introduction

With the penetration of social networks, they can be employed in many fields, such as viral
marketing [2] and information diffusion [20]. Node influence is defined as the number of
nodes it affects in the graphs. It can be used in estimating the number of ultimately influenced
users when a set of users is randomly chose to promote a product. The node influence can
also be employed to estimate the influence of the whole network. Many researchers [3, 8, 29]
have studied influence of social networks in the way of finding a small set of influential nodes.
The set brings in maximum affected nodes. The existing studies mainly employ a stochastic
cascade model to search the set of nodes. With the model, greedy and heuristic algorithms
are implemented [7, 28]. These studies address the problem of maximum influence with the
whole datasets while they do not evaluate node influence in social networks. For example, in
order to recommend products, a third party selects 100 users randomly from social networks.
The existing studies can not estimate the ultimate affected users.

In this paper, we estimate the node influence from the perspective of the structures of
graphs. Nodes are influenced with each other through the edges when social networks are
modeled by graphs [17]. There are two ways in which the node influences other nodes in
a large graph. One is that it affects its neighbors. The other is that it affects other nodes
through its participated groups. We define a group in which nodes are completely connected.
Compared to the relaxed definition of community in which nodes are densely connected, the
definition of the group is rigorous. Obviously, the group is benefit to express node influence
of graphs. Figure 1 shows the ways in which the node “V” affects other nodes. In Figure 1, the
neighbors of “V” in Figure 1 are divided four groups. The node “V” influences the neighbors
of groups.

Thus, the problem of estimating node influence can be divided into the tasks of character-
izing the structures of graphs. According to the two propagating ways of a given node, two
relevant structures can be used to evaluate node influence in a graph: one is the node degree
distribution and the other is the characteristics of groups of the node. The groups of a node
are divided into two types: the maximum group which contains the largest number of nodes

Figure 1 The node “V” affects others in two ways. It can influence the neighbors showed in (a) and V1,...,V8
denote the neighbors of “V”. It also influences the neighbors of its participated groups presented in (b). In (b),
G1,...,G4 denote the groups of “V”, and GN1,...,GN9 denotes the neighbors of the groups
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and remaining ones. In this paper, the maximum group of the node is referred as the node
clique. Two properties of the groups are considered to evaluate the node influence: one is the
number of groups of the node and the other is the size of the node clique.

Due to the great volume of data, how to characterize a large graph is a challenging problem.
Worse still, the whole datasets of networks are usually unavailable to the third party. Thus,
sampling techniques [5, 10, 15, 16] are popular to estimate the structures of graphs. Most of
sampling techniques employ the way of a random walker as that: they select the next node
randomly from the neighbors of the previous sampled one. However, these techniques mainly
estimate the node degree distribution accurately while ignoring the characteristics of groups
of the node. Even if they are employed to estimate the properties of groups by using the
sampled nodes, the estimated results of the characteristics of groups are inaccurate. This is
because these techniques ignore a lot of important connectives among the neighboring nodes
when sampling and they tend to backtrack to the sampled nodes repetitively [10, 12].

In this paper, we propose a new method called group sampling to estimate node influence
of large graphs by accurately estimating the structures of both groups and individual nodes.
Differently from existing sampling techniques, group sampling chooses the next sampling
node from the neighbors of groups of node. In this way, group sampling expands the range of
selecting ranges and avoid lots of repetitive samples. Then, the samples can be employed to
estimate node influence of graphs accurately. We employ group sampling to estimate three
fundamental characteristics of graphs and then use these characteristics to estimate the node
influence of graphs. The three characteristics are described as follows.

• The degree distribution. The degree of a given node is defined as the number of its
neighbors. The degree distribution is one of the most common features obtained by
previous graph samplingmethods.We select it as a representative property of large graphs
as it can be used to evaluate the influenced nodes by a given node. Group sampling is
able to estimate the degree distribution in large graphs more accurately than the existing
sampling methods.

• The distribution of the number of groups related to a vertex (GRV). The distribution of
GRV in a large graph can be used to evaluate the connectivity of a node and then measure
its influence through nodes in the groups.

• The distribution of the node clique size [1]. The node clique is referred as the largest
group related to a given node [6]. Cliques are important components of large graphs [20].
By using information about the distribution of the clique size, the maximum nodes that
can be influenced by the given node can be estimated.

The degree distribution is employed to estimate the node influence from the perspective
of the direct connections of large graphs. The distributions of GRV and the node clique
size are used to estimate the node influence from the perspective of the connections in the
form of groups which reflect the indirect connections among nodes. The former is labeled
as Individual-level-influence of a node while the latter is referred as group-level-influence of
a node. Group sampling is able to obtain the above three distributions by traversing a large
graph from one node to another nodewhich has connections with the groups of the previously
sampled node. In this paper, we make four contributions as follows.

1. To our best knowledge,we are the first to try to estimate node influence from the structures
of graphs. Based on this idea, we propose a group sampling method named GVRW to
obtain samples from large graphs by re-designing the traversal paths of the randomwalker
over a large graph.
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2. In order to obtain the distributions of GRV and the node clique size, a recursive algo-
rithm is proposed to find the groups related to the node. Furthermore, to estimate three
characteristics of graphs accurately, we design weighted estimator to employ these sam-
ples for accurate estimations on the above three distributions of a large graph.

3. We make extensive experimental evaluation on four datasets using different sampling
methods. The results show that the node influence is estimatedmore accurately byGVRW
compared with the existing sampling methods. The node influence of the graphs is close
to the real values which are obtained through analyzing the whole datasets.

The rest of the paper is organized as follows. Section 2 describes preliminaries about group
sampling. Section 3 introduces the algorithm of GVRW. Section 4 presents the experimental
results in a variety of datasetswhile Section 5 introduces the relatedwork. Section 6 concludes
our work.

2 Preliminaries

In this section, we first introduce the definitions which are used in this paper. Then we
introduce the definition of node influence followed by the introduction of popular sampling
techniques. To estimate the properties accurately, we describe the frequently-used estimators
which can be used to correct the sampling biases.

2.1 Definitions

We denote a undirected and no self-loop graph as G = (V , E), where V denotes the set of
nodes and E is set of edges between nodes. The set of neighbors of node μ is defined as
NE I (μ). We define the degree of node μ as D(μ) and denote a subgraph related to node μ

as subGraph(μ) in which the node set V (μ) contains itself and all of the neighbors while its
edges set ENE I (μ) contains all of the edges(α,β) where α, β ∈ (μ, NE I (μ)). The degree
of node ν in subGraph(μ) is denoted by degS(ν). From the perspective of groups in large
graphs, we define the graph as Gg = (C, Eg), where C is the set of groups, and Eg the set of
edges between groups. If c1, c2 are two groups ofGg , there is an edge (c1, c2)∈ Eg when these
conditions: (u, v)∈ E , u ∈ c1 and v ∈ c2 are true.Nodes in large graphs usually take part in dif-
ferent groups.We define the groups related to nodeμ asGRV (μ). In this paper, we denote the
number of the groups in which nodeμ takes part as NG(μ). For a given node, the node clique
is defined as themaximumgroup of the node.We define the size ofμ′s clique as the number of
nodes in the clique denoted as si zeC(μ). For a property c of graph, let function F(c) define the
value. These three NG(μ), D(μ), si zeC(μ) can be seen as graphs’ properties. Let {α1,...,αk},
{β1,...,βk}, {γ 1,...,γ k} define the range of the functions F(NG(μ)), F(D(μ)), F(si zeC(μ)).
We propose a group sampling method to estimate distributions of three metrics denoted by
ω(C(μ))=(ω(C(μ))

1 ,...,ω(C(μ))
k ), ω(D(μ))=(ω(D(μ))

1 ,...,ω(D(μ))
k ), ω(M(μ))=(ω(M(μ))

1 ,...,ω(M(μ))
k ).

where ω
(C(μ))
k , ω

(D(μ))
k , ω

(M(μ))
k denote equations F(NG(μ)) = k, F(D(μ)) = k and

F(si zeC(μ)) = k respectively (Table 1).

2.2 Node influence

Different social networks can be ordered according to their node influences that provide
valuable information for product marketing. For example, the market promoter should decide
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Table 1 The definitions used in
this paper

G = (V , E) Graph G

|V | Number of nodes in G

|E | Number of edges in G

NE I (μ) Set of neighbors of the node μ

D(μ) Degree of the node μ

NG(μ) The number of μ′s groups
GRN (μ) μ′s groups
si zeC(μ) Number of the members in C(μ)

ω(k) The distribution of a property k

B Sampling budget

which social network (i.e., Facebook or Twitter) is a better choice in face of selecting 100
users randomly to promote the produce. Node influence is defined as the mean influential
number of users through a random user which can be used to order the influence of social
networks.

Existing methods study the node influence from two types. The first type of existing
methods is to aim at finding a subset of users to maximize the spread of influence [28] while
the second type of existing usually use the degree distribution to estimate the node influence
of social networks [21]. They do not consider structural diversity which plays important
role in social networks. Structural diversity aims at describing the the connected components
among the neighbors of the individual users. Therefore, the structural characteristics of social
networks in the form of cliques (groups), can be used to order node influence of social
networks. In this paper, we not only obtain the three characteristics of large graphs, but also
get the node influence which are denoted by I F . Let FV Mean denotes the mean number of
groups related to a node in a large graph, and it is defined as follows:

FV Mean =
|V |∑

μ=1

ω(F(NG(μ))) × F(NG(μ))

Let FMean denotes the mean scale of the clique related to a node in a large graph, and it is
defined as follows:

FMean =
|V |∑

μ=1

ω(F(si zeC(μ))) × F(si zeC(μ))

And then we measure I F by computing the maximum number of nodes that a node can
influence through the function expressed ad I F = FMean × FV Mean. Figure 2 describes
three example graphs which have different structural properties. Table 2 presents the node
influence estimated by different methods. Table 2 shows that the node influences of the three
graphs in Figure 2 have similar values when using the existing methods of maximizing the
spread of each users and employing the existing methods based on degree distributions.
However, the methods of using the structural characteristics can efficiently discriminate the
node influences of the three graphs with significantly different structures.
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Figure 2 Different structures of graphs. a and b have the same nodes but with different number of edges. b
and c have the same average degree of the nodes but with different number of nodes while they have different
connections among neighboring nodes

2.3 Graph sampling

Existing studies mainly use the sampling techniques [16, 18] to estimate the structural prop-
erties of large graphs. These techniques are the variants of simple random walk (SRW) and
Metropolis-Hastings random walk (MHRW) described below.

Simple random walk (SRW): The process of SRW works as that: a node is randomly
selected, and then the next node is randomly selected from the neighbors from the previously
sampled node iteratively. The process doesn’t stop until it satisfies the sampling restrictions.
The process of SRW can be seen as a Markov chain and its transition possibility p is defined
as bellow.

PSRW
(μ,ν) =

{
1

D(μ)
if ν is the neighbor of μ,

0 otherwise.

The existing studies [13] have found that the process of SRW converges to a static proba-
bility as π = D(μ)

2|E | , where μ ∈ V . Thus, SRW shows biases to nodes with high degrees [4].
As the traversal paths of SRW are formed by the node pairs of nodes and their neighbors, the
process of SRW can not take the groups of nodes into consideration and thus it will result in
inaccurate estimations on the structural properties of groups in large graphs.

Metropolis-Hastings random walk (MHRW): The sampling process of MHRW is
described as follows: First, an initial node is selected randomly i.e., (μ) and the state of
the node is recorded, i.e., μ(t); Second, a node (ω) is randomly selected from the the neigh-
bors of the previously sampled node ν and the state of the node is recorded (i.e., ω(t)); Third,
a transition probability P(μ(t), ω(t)) is to determine from which the sampling process can

Table 2 Ordering influence of
the graphs in Figure 2

aveMaxInflu aveDegInflu IF

a 1.08152 0.833 3.333

b 1.096365 3 7.58

c 1.14955 3 6.24

‘aveMaxInflu’ represents the first type of existing methods of maximiz-
ing the spread of each users. ‘aveDegInflu’ is the second type of existing
methods to order influence of different graphs while ‘IF’ method uses
the structural characteristics to order the node influences

123

18 Page 6 of 18



World Wide Web (2024) 27:18

select the next node from the neighbors ofμ orω. The latter two steps are iteratively executed
until the MHRW process satisfies the sampling budget. Similar to SRW, MHRW can also be
seen as a Markov chain. P(μ(t), ω(t)) is defined as follows:

PMHRW
(μ(t),ω(t)) =

{
1

D(μ)
· min(1, D(μ)

D(ω)
) if ω �= μ,

1 − ∑
θ �=μ PMHRW

(μ,θ) if ω = μ.

The method of MHRW converges to π = 1
|V | [5]. Compared with SRW, MHRW is an

unbiased sampling method. Since MHRW can backtrack to the one node that has just been
traversed, it leads to many repetitive samples.

2.4 Estimators and error metric

Suppose we denote the number of samples as B. We consider the property of a node as pro
and the range of the property is {α1,...,αk}. We set weights for the sample node (i.e., μ) as
w(μ). Then, Horvitz-Thompson estimator is usually used to estimate the distribution of pro
through the following equation:

ω̃k = 1

W

∑|B|
μ=1

1(F(pro(μ) = αk)

w(μ)

where W = ∑|B|
μ=1

1
w(μ)

, μ ∈ V .
For evaluating the estimation accuracy, we define error metric (NMSE) as bellow:

NMSE(ω̃k) =
√
E[(ω̃k − ωk)2]

ωk

In this equation, ω̃k is the estimated value through sampling methods while ωk is the true
value.

3 Group sampling

3.1 Algorithm of FGroup

To estimate the distribution of group numbers connected to vertexes, we should first discover
the groups connected to a node. In general, a node in OSNs participates in more than one
group depending on its social relationship which are connected through edges in large graphs.
In this paper, we consider the minimum group is made up of two nodes which are connected
with each other. We exclude the isolated nodes because it has no connectivity for spreading
its influence.We adopt a recursive algorithm to discover groups of a node in this paper. Given
a node, i.e.,μ and NE I (μ)={μ1,...,μk}, where k is the number ofμ′s neighbors. The groups
of a node can be discovered from the connections among neighboring nodes by a recursive
algorithm: we first order the neighboring nodes in descending order according to the number
of nodes which they have connections with the nodes to be sorted; Then, wemark the nodes in
the order using a bitmap as that: if a neighbor has been discovered to participate a clique, we
store a bit of ‘1’ in the corresponding position in the bitmap; Otherwise, a bit of ‘0’ is stored.
Thus, if the corresponding position of a node in the bitmap stores ‘0’, its maximum clique
among the neighboring nodes are found and the corresponding positions of the nodes in the
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Algorithm 1 Algorithm of FGroup.
Require: the vertex μ and subG(μ);
Ensure: the groups GRN (μ);
1: i ← 0;
2: k ← f indNei(μ);
3: C(μ) ← addToGroup(μ);
4: while i <k do
5: if f lag(μi ) = f alse then
6: C(μi ) ← addToGroup(μi );
7: f lag(μi ) ← true;
8: NE I (μi ) ← f indNei(subG(subG(μ)))

9: GRN (μi ) ← FGroup(μi , NE I (μi )) ∪ C(μi );
10: end if
11: i←i+1;
12: end while
13: GRN (μ) = GRN (μ1) ∪ GRN (μ2)... ∪ GRN (μk );

clique store the bits of ‘1’. The process is recursively executed until all the corresponding
positions of the nodes in the bitmap are filled with the bits of ‘1’. We denote these cliques as
μ′s groups. The algorithm is depicted in the Algorithm 1.

Time and space complexity We assume that the computation complexity of the operation
on justifying whether the two nodes μi and μ j (i, j = 1, ..., k) in a subgraph are connected
is O(1). Then finding all of the groups connected to the vertex is O(K ) in the best case if
subGraph(μ) is a group. The worst case is O(K × K ) when the neighbors of the vertex μ

has no other neighbors except the vertex μ in subGraph(μ). The costs for finding groups
related to a vertex are acceptable for modern computation ability.

3.2 Algorithm of GVRW

Since SRW, MHRW and their variants donot take the group structures into consideration
during the sampling process, we propose a sampling method, called GVRW (Group-related-
Vertex Random Walk), to traverse a large graph to estimate the distributions of GRVs, the
sizes of the maximum node cliques and vertex degrees in OSNs. In other words, GVRW
can simultaneously obtain node properties and groups structures in large graphs. GVRW
employs the groups of nodes as the traversal units. GVRW transits from one node (i.e., μ) to
another node (i.e., ν) in case that there are major differences betweenG(μ) andG(ν) to avoid
repeated sample. Specifically, GVRW transits from one node μ to another node ν through
the neighbors ofGRN (μ). Take Figure 3 for example. The black nodes denote V ′s subgraph
which is comprised of three groups related to node V , labeled as T 1, while the nodes in
white color are the neighbors of GRN (V ). The next sample is selected randomly from the
neighbors of the nodes in white color, labeled as T 2. Compared to SRW which transits from
one node to its neighbor node, GVRW enlarges the number of possible choices for selecting
the next sample. Furthermore, we employ the idea of non-backtracking sampling for GVRW
to sample large graphs, meaning that the previous sample will not be sampled again in the
next sampling process. The process of GVRW is described as follows:

1. Initialize a node (i.e., μ) randomly;
2. Employ the algorithm of FGroup to obtain all of the groups related to the node GRV (μ)

and record the numbers of groups in GRN (μ) denoted by NG(μ);
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Figure 3 Example of GVRW including three groups related to node ‘V’ and the sampling spaces colored
white for the next sampling node

3. Collect all of the neighbors denoted by NE I (GRN (μ) of the nodes in GRV (μ) which
has not previously visited before and then we select the next sampled node randomly
from NE I (GRV (μ).

4. Step 2 and 3 are executed recursively until the sampling budget is satisfied.

3.3 Estimator of GVRW

The process of GVRW is equivalent to a random walk traversing a graph in the form of
GGRV described in Section 2.1. Furthermore, the process of GVRW can be considered as
a markov chain with its transition probability matrix P = P(GRV (μ),GRV (ν)). We set
m(μ)=

∑
ω∈NE I (μ)(D(ω)− SubD(ω)), where SubD(ω) denotes the number of edges which

appear in GRV (μ). The transition probability P is defined as follows.

P(GRV (μ),GRV (ν)) =
{

1
m(μ)

if ν ∈ NE I (GRV (μ)),

0 otherwise.

According to the knowledge ofmarkov chain, the sampling process ofGVRWconverges to
πGV RW (μ) = m(μ)∑

ν∈V m(ν)
. However, in the real application, it is complicated to computem(μ)

because it is computed by the total degrees of the nodes in subGraph(μ) subtracting the
number of the edges of each node in subGraph(μ). Instead, we employ the value of NG(μ)

for the substitution. We employ the equation described below to estimate the distribution of
a estimated structure in a large graph denoted by Cμ.

ω̃k = 1

SUM

B∑

v=1

1F(Cν = k))

NG(ν)

where B is the number of total samples and SUM = ∑B
ν=1

1
NG(ν)

.

Theorem 1 If the graph G is non-bipartite and connected, then ω̃k is an asymptotically
unbiased estimator of ωk .
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Proof We use the LEMMA 7.2 metioned in [18], we have

lim
B→∞

1

B

B∑

ν=1

1(F(Cν = k))

NG(ν)

a.s.−−→ 1
∑i=|V |

i=1 NG(i)

∑

∀μ∈V

1(F(Cν = k))

NG(μ)
· πGV RW (ν)

Suppose a group (i.e., Ci ) is selected from a graph (i.e., G) with the probability p(c) =
1

totalG , and totalG = ∑i=|V |
i=1 NG(i). The mean number of nodes of a group is denoted by

vmean, the probability that we select a sample from the nodes in a group is described as
p(i) = 1

vmean . The number of the groups that one node (i.e.,ν) participates in is denoted
by NG(μ). Thus, the probability we sample node μ from the groups can be described as
p(μ) = NG(μ) · p(c) · p(i). Then we have

1

totalG

∑

∀μ∈V

1(F(Cν = k))

NG(μ)
· πGV RW (ν)

= 1

totalG

∑

∀μ∈V

1(F(Cν = k))

NG(μ)
· NG(μ)

totalG · vmean

= 1

totalG
· 1

|V |
∑

∀μ∈V
1(F(Cν = k) = k)

= 1
∑i=|V |

i=1 NG(i)
· ωk

Meanwhile, we use the Theorem 4.1 mentioned in [15] and also used in [18], we have

lim
B→∞

1

B

B∑

ν=1

1

NG(ν)

a.s.−−→ 1
∑i=|V |

i=1 NG(i)

Thus,

ω̃k = 1

SUM

B∑

v=1

1(F(Cv = k))

NG(v)

a.s.−−→
∑i=|V |

i=1 NG(i)

B

B∑

v=1

1(F(Cv = k))

NG(v)

a.s.−−→ ωk


�
Therefore, GVRW employs Theorem 1 to accurately estimate the characteristics of large

graphs. The pseudo-code of GVRW sampling and estimating a large graph is depicted in
Algorithm 2.

Timeand space complexity In the process ofGVRW,we require a dynamic array to preserve
the neighbors of subGraph(μ). If the number of the neighbors of subGraph(μ) is K ,
then the dynamic array will consume O(K ) spaces. If the time complexity for finding the
neighbors of a node is set as O(1), the total time complexity for finding all the neighbors
of subGraph(μ) is O(K ). Combined with the Algorithm FGroup, the time complexity of
GVRW is O(K ) in the best case while the worst case is O(K ×K ). GVRW is to obtain three

123

18 Page 10 of 18



World Wide Web (2024) 27:18

Algorithm 2 Algorithm of GVRW.
Require: B and μ0 ∈ E ;
Ensure: GRV (μ1),GRV (μ2), ...,GRV (μn);
1: i ← 0;
2: while i < B do
3: GRV (μi ) ← FGroup(μi );
4: m ← the number of groups related to μi ;
5: k ← the features of μi ;
6: w(μi ) ← w(μi ) + 1

m ;

7: totalW ← totalW + 1
m ;

8: μi ← hasV isi ted;
9: neiG(μi ) ← neighbors(GRN (μi ));
10: i←i+1;
11: μi ← randomSelect(neiG(μi ));
12: end while
13: ω(1(F(chara(μ) = k))) ← w(μi )

totalW

distributions of a vertex by discovering the connections among neighbors of the vertex. First,
in practice, real-world networks follow skewed degree distributions such that the network
containsmany low-degree vertices andvery fewhigh-degree vertices. Thus, formanyvertices,
the specific value of K is small. Second, GVRW is a sampling method which just deals with a
very proportion of vertices to obtain the distributions of the networks. Third, we can leverage
the state-of-the-art techniques [1] to reduce the time complexity.

4 Evaluation

This section describes simulation experiments based on realworld graphs which are depicted
in Table 3 to examine efficiencies of GVRW.The descriptions about the datasets are described
below. The dataset of DBLP makes record about the lists of research papers in computer
science. In DBLP, every author is considered as a node and if two authors publish at least
one paper together, the two authors form an edge. The graph of amazon0601 is collected by
crawlingAmazonwebsite. In amazon0601, a product represents a node and an edge is formed
if a product is frequently co-purchased with another product. Youtube is a social network
about video-sharing. In Youtube, a user is seen as a node. The two users can be connected
as an edge because of common interests or characteristics. The network ofWikiTalk is a free
encyclopedia written collaboratively by volunteers around the world. The pages inWikiTalk
can bemodified by the users of the network. Every user can be seen as a node. There is an edge
between two users μ and ν if the user μ has at least once modified the page which is edited
by the user ν. We conduct experiments on the four datasets while ignoring the directions of
edges.

Table 3 Summary of Graph
Data-sets, where dmax is the
value of the maximum degree in
the graph and dmin is the value of
the minimum degree

Graph |V | |E | dmax dmin

DBLP [23] 317,080 1,049,866 343 1

amazon0601 [11] 403,394 3,387,388 2752 1

Youtube [23] 1,134,890 2,987,624 28754 1

WikiTalk [23] 2,394,385 5,021,410 100032 1
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Evaluationmethods We use the sophisticated samplingmethods including SRW , MHRW
and FS to evaluate GV RW . All the methods are implemented in C to sample large graph
datasets described in Table 3.

• RWM is the usage of SRW (simple randomwalk) to estimate the graphs from the proper-
ties of nodes and groups. Simple random walk uses a strategy of traversing a large graph
from one node to its random neighbor node [15, 19]. RWM does not change the key step
of SRW while using the algorithm of finding the groups of the sampled nodes to obtain
the group properties for estimating the node influences.

• MHM is a variant of MHRW (Metropolis-Hastings random walk). Similar to RWM,
we modify metropolis-Hastings random walk to obtain the properties of both nodes and
groups. MHRW transits a large graph from one node to its random neighbor with a
random walker which has a probability of staying on the just sampled node to sample
its neighbor again. During the sampling process, MHM uses Algorithm 1 to obtain the
group properties of graphs for estimating the node influences.

• FS (Frontier sampling) is proposed to accurately estimate large graphs in face of dis-
connected or loosely connected components while exhibiting the strengths of regular
randomwalks. Similar to RWM andMHM, FS also uses Algorithm 1 to obtain the group
properties of sampling nodes for estimating the node influences.

• GVRW (Group-related-Vertex Random Walk) is our proposed sampling method in this
paper to estimate properties of nodes and groups for evaluating the node influences of
large graphs accurately. RWM, MHM, and FS are used as baselines for evaluating the
efficiency of GVRW.

4.1 Node degree distribution

Node degree distribution is one of the most important characteristics in large graphs. We
use GVRW to evaluate the node degree distributions over com-youtube and wiki-Talk
and we compare it with RWM, MHM and FS which aim at obtaining node properties
of large graphs. Figure 4(a) and (c) show that GVRW estimated the node degree dis-
tributions approximately to the real values on com-youtube and wiki-talk with budgets
B = (0.001|S|, 0.005|S|, 0.01|S|). Figure 4(b) and (d) show that GVRW can increase the
estimation accuracieswith the increase of the sampling budgets. Figure 5 presents thatGVRW
shows smaller biases than other methods with the same sampling budget B = 0.01|S| in con-
trast to the existing three samplingmethods ofRWM,MHM, andFS. The experimental results
confirm that GVRW is able to estimate the properties of nodes in large graphs.

Figure 4 Estimated degree distribution and its NMSE with GVRW
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Figure 5 Estimated erroes of node degree distributions with different methods with B=0.01|S|

4.2 GRV distribution

We evaluate the performance of GVRW over com-dblp and amazon0601 to estimate the
distributions of GRVs denoted by ω = (ω1, ..., ωk). Figure 6(a) and (c) show GVRW can
estimate the distributions of GRVs accurately with the different sampling budgets labeled
as B = (0.001|S|, 0.005|S|, 0.01|S|) where |S| denotes the number of items of the total
sampling space. Figure 6(b) and (d) show that GCRW exhibits the smaller estimated NMSE
with different budgets B = (0.001|S|, 0.005|S|, 0.01|S|) and the larger number of samples
obtained by GVRWhas a smaller estimation error. We compare the methods of RWM,MHM
and FS with GVRW showed in Figure 7 with the budget B = 0.01|S|. We find that in these
four graphs, GVRW shows almost 10 times more accurate than the other three methods
which present large estimated errors in estimating the GRV of graphs. From the Figure 7, we
can infer that many nodes in these graphs take part in more than one group. If we know the
properties of groups, we can easily obtain the differences between these groups. Thus, we
can infer some nodes information which they can not offer in OSNs. These information can
be used to many application such as recommending friends or products effectively.

4.3 Node clique size distribution

The cliques of nodes are the most important groups in graphs which can be used in wide
applications of community detection and information spread. We employ GVRW to estimate
the distributions of node cliques over two datasets: DBLP and WikiTalk. Figure 8(a) and (c)
show the estimated distributions which are near to the real values with different sampling
budgets as B = (0.001|S|, 0.005|S|, 0.01|S|). Figure 8(b) and (d) describe the estimated
NMSE over the two datasets with different sampling budgets. Since the estimated values
are near to the real values and thus the values of estimated NMSE are smaller than one as
shown in Figure 8(b) and (d). Figure 9 presents the comparisons of the four methods when
estimating the distributions of node cliques with the same budget B = 0.01|S|. Figure 9
shows that GVRW is able to estimate the distributions of node cliques more accurately than
RWM, MHM, and FS. This is because the sampling space of each sampling step of RWM,

Figure 6 Estimated GRV distributions and the estimated errors with different sampling budgets
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Figure 7 Estimated errors of the GRV distributions with different methods with B=0.01|S|

MHM, and FS is formed by the neighbors of one node, resulting in that the sampling processes
have a large chance of trapping in the local subgraphs. Instead, GVRW enlarges the sampling
space by considering the neighbors of nodes in the groups of a node as the possible selection
of the next sample.

4.4 Sampling costs

To obtain the three distributions of a graph, a typical sampling process acquires two sampling
sets along each sampling step, a node set containing potential samples to choose from in the
next step based on the previously sampled node and an edge set containing node connection
relationship of the node set. For the methods of GVRW, FS, MHW, and RWM, the sampling
sets of each step can be saved in memory so that it is unnecessary to occupy the network
bandwidth to collect them again when the sampled nodes are visited again. Meanwhile,
the processing time for dealing with the repetitive samples can also be saved. Figure 10(a)
and (b) show that GVRW is able to reduce the memory usage on DBLP and amazon0601.
Computation time is mainly spent on obtaining the cliques during the sampling procedures.
As it is shown in Figure 10(c) and (d), GVRW consumes a bit less processing time than
the baseline sampling methods. This is because FS, RWM and MHM are biased to sample
vertices with large degrees, meaning they should consume more time to discover the groups
of these vertices and MHM should cost extra time to determine the next residence of the
random walker.

4.5 Node influence estimation

As described in Section 2.2, the distribution of node degree is used to estimate the node
influence from the property of nodes while the distributions of GRVs, degrees and node
cliques to estimate the node influence of a large graph from the property of groups. Figure 5
confirms that GVRW is more capable of estimating the node influence more accurately than

Figure 8 Estimated clique size distributions and the estimated NMSE with GVRW
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Figure 9 Estimated errors of the clique size distributions with different methods with B=0.01|S|

the existing methods. Then, the mean GRVs and clique sizes of nodes are used to infer
the maximum influenced nodes through just a node from the perspective of its participated
groups. For example, the mean GRV in DBLP is about 2.5 while the mean clique size is about
4.9. It means every author takes part in 2.5 groups averagely while the maximum researchers
of the groups are 4.9 on average. Thus, the author registered in DBLP can influence about
12.6 authors.

We use IF-origin to denote the real values of node influences of graphs while employing
IF-GS, IF-RW, IF-MH, and IF-FS denote the node influences estimated by the sampling
methods of GVRW, RWM, MHM, and FS respectively. Figure 11 shows the estimated node
influence through different methods about the four graphs with the same budget B = 0.01|S|.
Because the sampling methods of RWM, MHM, and FS show great biases in estimating the
GRV distribution and the node clique distribution so that they show large estimated errors in
estimating the node influence. Figure 11 describes that the estimated node influences through
GVRW approximate the real values in four datasets as GVRW is able to accurately estimate
the properties of groups that nodes in graphs participate in. Therefore, GVRW can be used
to estimate node influences from the perspectives of both nodes and groups.

5 Related work

Due to the huge volume of data in social networks, random walk based sampling techniques
are popularly used for estimating the properties [14, 27, 30]. Besides the random walk based
sampling methods described in Section 2, Li et al. [12] proposed a re-weighted random
walk by redesigning the transition probability from one node to its neighbor. Xu et al. [22]
proposed a skipping randomwalk by ignoring a number of nodes with small degrees which is
benefit to accelerate the convergence of the sampling process. Zhang et al. [25, 26] proposed
the random walk based on cliques rather than nodes to estimate the properties of the social
networks. However, these existing random walk based sampling methods were designed to
obtain the properties of nodes and can be used to estimate the node influences of large graphs
from the perspective of groups.

Figure 10 Sampling costs with different methods with B=0.01|S|
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Figure 11 Node influences with different methods

On the other hand, many studies focus on node influences from the perspective of the
influence maximization which aims at finding a static set of seed nodes to influence the
most nodes over social networks. Different from using the sampling techniques to estimate
the influences from the structural properties, the existing techniques on the influence max-
imization problem carefully designed the information transmission mode by analyzing the
connectivity of nodes [9, 24]. Although Zhu et al. [30] employed the idea of a sampling
technique to study the problem of influence maximization, they still employed the idea of the
existing information transmission models while using the sampling technique to accelerate
the discover of potential nodes for spreading information. This paper proposes group sam-
pling to estimate the properties of both nodes and groups which can order the node influences
in different social networks as described in Section 2.2. Our proposed method of estimating
node influence from the perspective of groups is an important supplementary to the existing
studies.

6 Conclusions

In this paper, we propose group sampling, called GVRW, to estimate the node and group
properties for the sake of evaluating the node influences of large graphs. Specifically, we
employ GVRW to accurately obtain the distributions of node degrees, GRVs, and node
clique sizes to estimate the node influences of a large graph. Instead of traversing a large
graph from one node to its neighbor node, we change the way of the randomwalker traversing
from one node to one of the neighbors of the groups to a node. Furthermore, to improve the
estimation accuracy, we carefully design an estimator for using the sampled nodes to estimate
the properties required by computations on node influences. The experimental results on the
four real-world datasets confirm the efficiency of our proposed methods.
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