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Abstract
Recommender systems often suffer from severe performance drops due to popularity dis-
tribution shift (PDS), which arises from inconsistencies in item popularity between training
and test data. Most existing methods aimed at mitigating PDS focus on reducing popularity
bias, but they usually require inaccessible information or rely on implausible assumptions.
To solve the above problem, in this work, we propose a novel framework called Invariant
Representation Learning (IRL) to PDS. Specifically, for simulating diverse popularity envi-
ronments where popular items and active users become even more popular and active, or
conversely,we apply perturbations to the user-item interactionmatrix by adjusting theweights
of popular items and active users in the matrix, without any prior assumptions or specialized
information. In different simulated popularity environments, dissimilarities in the distribu-
tion of representations for items and users occur. We further utilize contrastive learning to
minimize the dissimilarities among the representations of users and items under different sim-
ulated popularity environments, resulting in invariant representations that remain consistent
across varying popularity distributions. Extensive experiments on three real-world datasets
demonstrate that IRL outperforms state-of-the-art baselines in effectively alleviating PDS
for recommendation.
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1 Introduction

Conventional recommendation models inherently assume that training data (historical inter-
actions) and test data (future interactions) are drawn from the same distribution. However, this
assumption often proves to be incorrect in practical recommendation scenarios. The diversity
in human behaviors across demographics, regions, and time [1] results in an inconsistency
in the popularity distribution between the training and test data, referred to as the Popularity
Distribution Shift (PDS).

To illustrate the PDS, we conduct a case study using data from the KuaiRand [2] dataset,
as shown in Figure 1. The interaction data is divided into two equal portions based on
chronological order, referred to as Data1 and Data2, capturing interactions from two distinct
time periods. Leveraging Data1, we compute the popularity of each item, measured by the
number of interactions with each item. Subsequently, we categorize the item IDs into four
groups based on their popularity, labeled as Head, Mid1, Mid2, and Tail, in descending
order of popularity. Next, we compute the average popularity of each group in both Data1
and Data2. The figure highlights a significant shift in item popularity between the two time
periods, where initially popular items become less popular, while some of the long-tail items
start to gain attention.

PDS can hinder the recommendation models performance in real-world scenarios. Dur-
ing training, these models employ empirical risk minimization techniques [3] to minimize
the prediction loss over the training data distribution. Consequently, less attention has been
paid to long-tail items and inactive users [4]. This results in a minority of popular items
and active users dominating the parameter optimization process in these models, and the
model embedding latent space exhibits uneven distribution with bias towards popular items
and users [5, 6]. Particularly when utilizing graph convolution operations for feature extrac-
tion, where high-degree nodes have a substantial influence on refining nearby neighbors and
making them more similar in the representation space [5]. Although this approach enhances
prediction accuracy within the training data popularity distribution, it can hinder the optimal
performance of user preferences when applied on an online platform.

Researchers are actively investigating strategies to address the PDS issue and enhance the
generalization of recommendation models. These strategies include regularization methods
[7–10], reweighting techniques [11–13], and causal-embedding approaches [14, 15]. How-
ever, these methods share a common constraint in that they require prior knowledge of the
target popularity distribution or an assumption of an unbiased uniform distribution in the
test data. As a result, these methods can be challenging to implement in real-world scenarios
when there is limited prior knowledge available.

Recent research has explored contrastive learning and invariant learning [16–20] to main-
tain consistent representations despite changes in popularity distribution.However, traditional
contrastive learning methods can introduce noise or irrelevant information through data
augmentation. Some partially invariant learning approaches assume multiple training data
environments [17], which may not align with real-world scenarios with minimal external
environmental changes during data collection. An alternative perspective suggests separat-
ing bias factors from invariant representations [18, 19], but identifying suitable indicators for
these bias factors can be difficult or invalid. For example, [18] applies the popularity of items
as a supervisory signal to decouple invariant representations from popularity-related repre-
sentations. However, the decoupling approach might result in overlooking intrinsic excellent
features in items crucial for their popularity. To address these limitations, we propose a novel
approach that creates diverse popularity environments byperturbingdata directionally.Differ-
ent fromexistingwork [18] that solely establishes an explicit bias signal and straightforwardly

123

10 Page 2 of 17



World Wide Web (2024) 27:10

Figure 1 A motivating case from the KuaiRand [2] data illustrates how the distribution of popularity shifts in
real-world scenarios

decouples it from the feature representation, we employ contrastive learning to derive sta-
ble feature representations resistant to variations in popularity environments. Our approach
simplifies popularity bias handling and enhances the stability of representation learning.

In this study,we propose a novel learning framework called IRL (InvariantRepresentation
Learning). IRL comprises three key modules: the Matrix Directional Perturbation (MDP)
module, the Cross-Environment Contrastive (CEC) module, and the Inter-Environment Con-
straint (IEC) module. Firstly, the MDP module identifies popular items and active users,
referred to as popular nodes, and adjusts their weights when constructing interaction matri-
ces. This leads to the creation of traditional, popularity-enhanced, and popularity-attenuated
interaction matrices. Subsequently, convolution operations are applied separately to these
matrices, generating node representations for various simulated popularity environments.
The CEC module plays a crucial role in enhancing feature consistency across different sim-
ulated popularity contexts, ultimately yielding the invariant features we aim for. Finally, the
IEC module enforces the convergence of the interaction probability distribution by using
distribution constraints. This enhances prediction accuracy and helps mitigate any adverse
effects arising from the perturbation of interaction matrices.

The key contributions of this work are as follows:
• We present a novel approach to simulate various popularity environments by applying
directional perturbation on the interaction matrix.

• We propose the IRL framework which obtains invariant feature representation through
cross-environment contrastive learning and inter-environment interaction distribution
constraints.

• We implement IRL on LightGCN [21] and conduct extensive experiments on three real-
world datasets, demonstrating its effectiveness.

2 Related work

2.1 Popularity debiasing in recommendation

Popularity bias is the phenomenon where popular items receive recommendations more fre-
quently than expected, a challenge extensively examined in recommender systems research.
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Several strategies have emerged to mitigate this bias. In one approach, researchers introduce
penalty terms to balance recommendation accuracy and coverage [7–10]. For instance, [9]
addresses missing target labels with self-training regularizers, and [7] employs intra-list
diversity as a regularization method. Another strategy adjusts the loss of training instances
using inverse propensity scores. Recent studies focus on unbiased propensity estimators like
[11] and [12] to reduce propensity score variance without relying on observed frequencies.
Counterfactual inference techniques also play a role inmitigating item popularity’s influence.
For example, [14] uses backdoor adjustment to address imbalanced item group distributions,
while [15] employs do-calculus to handle confounding popularity bias. However, many debi-
asing methods assume unrealistic access to popularity information during testing, relying on
uniform distribution or prior knowledge of test data.However, our approach does not require
such prior information or unbiased assumptions.

2.2 Invariant learning

Invariant learning techniques [22–24] assume data heterogeneity across various environ-
ments, with the goal of capturing predictive representations that remain consistent in diverse
settings. Somemethods have expanded on this by relaxing traditional invariance assumptions
[25], while others have introduced novel approaches. For example, [26] combines invariant
learning principles with the information bottleneck concept, and [27] has developed an effec-
tive weighting method to enhance invariance, leading to improved generalization in machine
learning tasks. In the realm of recommendation systems, [17] assumes the existence of differ-
ent environments and leverages the Expectation-Maximization (EM) algorithm to allocate
interactions to these environments, mitigating bias. [18] obtains invariant representations
by isolating bias factors, and it has demonstrated superior efficacy in mitigating the prob-
lem of PDS. Different from [18] that merely employs a decoupling method for separating
invariant representations, we adopt a contrastive learning method to bring representations
closer in different popularity environments and obtain invariant representations. It’s impor-
tant to know that many of these methods mentioned above often require unbiased uniform
data during training or rely on assumptions about the distribution of environments in the
training data. Additionally, the identification or definition of a bias factor is also a notably
intricate endeavor. Our approach stands out by creating diverse environmental states through
data augmentation. The innovative technique proposed in this work eliminates the need for
unbiased data during model training, concurrently avoids making unrealistic environmental
assumptions, and discards the need to identify bias factors.

2.3 Graph contrastive learning for recommendation

Apromising line of recent studies has incorporated contrastive learning (CL) into graph-based
recommenders, to address the label sparsity issue with self-supervision signals. Particularly,
[28] and [29] perform data augmentation over graph structure and embeddings with random
dropout operations. However, such stochastic augmentationmay drop important information,
which may make the sparsity issue of inactive users even worse. Furthermore, some recent
alternative CL-based recommenders, such as [30] and [31], design heuristic-based strategies
to construct views for embedding contrasting.Cai et al. [32] exclusively utilizes singular value
decomposition for contrastive augmentation. However, regardless of the methods used, the
data augmentation directions in these models are uncontrollable. Different from these meth-
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ods, the data augmentation mode of our proposed interaction matrix carries interpretable
semantic information, meaning that our data augmentation is controllable.

3 Methodology

3.1 Invariant presentation learning

Due to varying popularity environments, these vectors’ latent spaces exhibit different
biases [6], i.e., during training, the differences in item popularity and user activity levels
can lead to feature representation biases towards popular items or active users in a specific
popularity environment. Even worse, the commonly used graph convolution operations tend
to amplify such biases [5]. We address the model representation bias by modifying the train-
ing process. Our ultimate goal is to diminish the disparities in different latent spaces and
obtain stable invariant representations.

To illustrate this process visually, we use Figure 2. As shown, due to the graph convolution
operation, feature representations are likely to be biased toward active nodes. Therefore, user
preferences P1, P2, and P3, obtained from training data in different popularity environments,
deviate from the true ideal preference P . By simulating preferences in various popularity
contexts and applying contrastive learning, all preference representations eventually converge
to a common point. We term this point the ideal point of invariant preferences. Ultimately, all
representations move closer to this ideal point, achieving invariant representation learning.

3.2 Framework

In this section, we provide a detailed technical overview of our proposed APDS. The overall
framework is presented in Figure 3. The Matrix Directional Perturbation (MDP) module
generates traditional interaction matrices from real training data and adjusts the weights for
popular items and active users, resulting in enhanced and attenuatedmatrices. Thesematrices
are assumed to be obtained from simulated environments (as indicated by dashed lines in
Figure 3). We set the initial user and item representation embeddings as Eu ∈ R

M×d and

Figure 2 The basic idea of IRL
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Figure 3 The overall framework of IRL

Ei ∈ R
N×d , where M and N represent the number of users and items, and d represents the

embedding size. After performing graph convolution operations with different matrices, we
obtain normal user and itemvectors (eu and ei ), enhanced vectors (eenu and eeni ), and attenuated
vectors (eattu and eatti ). These vectors are then used in the Cross-Environment Contrastive
(CEC) module and Inter-Environment Constraint (IEC) module for contrastive learning,
interaction probability computation, and distribution constraint.

3.2.1 Matrix directional perturbation

In this module, we start by obtaining the interaction matrix R ∈ R
M×N , where M represents

user number and N represents item number. Each element at rowm and column n represents
the interaction number between the m-th user and the n-th item. We then transpose R to get
RT and create an (M + N ) × (M + N ) square matrix, A, by placing R in the upper-right
and RT in the lower-left corners, with all other elements set to zero. Next, we compute the

symmetrically normalized matrix D− 1
2AD− 1

2 . Here, D is a diagonal matrix with diagonal
elements representing the sum of corresponding row elements in matrix A. This normalized
matrix is then used as input for the graph convolutional layers of LightGCN.

To perturb the matrix R, we calculate the popularity of both users and items based on
their respective interaction counts, sort them in descending order of popularity, and select
the top 20% as active users and popular items. Initially, we multiply the row elements of R
corresponding to the columns of popular itemsby a factor t (where t is a hyperparameter). This
operation effectively amplifies all elements in the columns of popular items by t , resulting
in matrix R′. Similarly, we amplify the rows corresponding to active users by a factor of t ,
resulting in matrix R′′. Combining R′ and R′′T forms a new adjacency matrix Aen , same as
the process of constructingA, referred to as the enhanced matrix. We illustrate this process in
the left part of Figure 4. The method for obtaining the attenuated matrix Aatt is similar, with
the operation of multiplying by t replaced by multiplying by 1

t . We also show the process in
the right part of Figure 4.

3.2.2 Cross-environment contrastive

After obtaining different matrices, we have completed the step of introducing artificial data
augmentation to simulate changes in the popularity environment. The different interaction
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Figure 4 The process of obtaining the enhanced and attenuated matrix

matrices obtained in MDP module can be regarded as interaction information collected from
various environments, Specifically, as depicted in Figure 3, these environments correspond
to simulated environment 1 and simulated environment 2. In environment 1, popular items
become even more popular, while in environment 2, popular items become less popular.

We employ a contrastive learning approach to obtain genuine invariant representations
to reduce the distances between representations from different environments. The distances
between different representations are calculated using InfoNCE [33] loss:

LB
cl1 =

∑

(u,i)∈B
( fen(zu, zi ,B) + fen(zi , zu,B) + fatt (zu, zi ,B) + fatt (zi , zu,B)), (1)

LB
cl2 =

∑

(u,i)∈B
( fatt (zenu , zatti ,B) + fatt (zeni , zattu ,B)), (2)

function fen(·, ·, ·) and fatt (·, ·, ·) in the above equation is defned as:

fs(zu, zi ,B) = − log
exp(z�

u z
s
i /τ)

∑
_, j∈B exp(z�

u z
s
j/τ)

, (3)

where B represents a batch of user and item IDs, and z represents the result obtained after
applying L2 normalization to the vectors, e.g., zi = ei||ei ||2 , τ is the hyperparameter.

3.2.3 Inter-environment constraint

The next step involves calculating the inner products between user and item embeddings
under different environments separately:

ynu,i = e�
u ei , (4)

yeu,i = eenu
�eeni , (5)

yau,i = eattu
�eatti . (6)

We employ theBayesian PersonalizedRanking (BPR) loss [3],which is a pairwise loss that
encourages the prediction of an observed entry to be higher than its unobserved counterparts:

Lu,i,ineg
c f =

∑

t∈{n,e,a}
− ln σ(ytu,i − ytu,ineg ), (7)
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where ineg represents a randomly sampled item that the user has not interacted with and σ

represents a sigmoid function.
Finally, in order to prevent themodel’s predictions fromdeviating excessively from the true

distribution, we introduce Kullback-Leibler Divergence to estimate distribution constraints
on these three dot products:

Lu,i
dc = K L(sg(σ (ynu,i )), σ (yeu,i )) + K L(sg(σ (ynu,i )), σ (yau,i )) (8)

where the sg is a stop gradient operator.

Algorithm 1 The overall training process of IRL.

Input: user-item interaction graph G, interaction matrix R ∈ R
M×N , where M is the number of users and N

is the number of items, embedding size d, and the number of layers l in the convolutional layer;
Output: user embeddings Eu and item embeddings Ei ;
1: function LightGCN(R1,R2)

2: E(0) ←
(
Eu
Ei

)
∈ R

(M+N )×d

3: A ←
(
0M×N R1
RT
2 0N×M

)
∈ R

(M+N )×(M+N )

4: for each i ∈ [1, l] do
5: E(i) ← (D− 1

2 AD− 1
2 )E(i−1)

6: end for

7: E ← 1
l

l∑
i=1

E(i)

8: return E[: M],E[M :]
9: end function
10: // Model training
11: Statistically obtain popular items Ipop and active users Upop ;

12: Multiply the rows corresponding to Upop in R by t to obtain Ren′
;

13: Multiply the columns corresponding to Ipop in R by t to obtain Ren′′
;

14: Multiply the rows corresponding to Upop in R by 1
t to obtain Ratt ′ ;

15: Multiply the columns corresponding to Ipop in R by 1
t to obtain Ratt ′′ ;

16: while IRL not converge do
17: Buser ,Bi tem ,Bi temneg ← Sample a mini-batch of data;
18: B ← (Buser ,Bi tem );
19: // Obtain the complete vector representations under different environments
20: Eu ,Ei ← LightGCN(R,R);
21: Een

u ,Een
i ← LightGCN(Ren′

,Ren′′
);

22: Eatt
u ,Eatt

i ← LightGCN(Ratt ′ ,Ratt ′′ );
23: Calculate the Lc f according to (9);
24: Calculate the Lcl according to (10);
25: Calculate the Ldc according to (11);
26: Update IRL by minimizing the loss in (12).
27: end while

3.3 Model train and inference

During the training process, the model takes a batch of input data, including user IDs, item
IDs for positive samples (representing user interactions), and sampled negative item IDs
(indicating items with which users have never interacted). These are denoted as Buser , Bi tem ,
andBi temneg , respectively.We combine user IDs and item IDs into a single data batch, referred
to as Binter , and define Bbpr as a batch containing user IDs, item IDs, and negative item

123

10 Page 8 of 17



World Wide Web (2024) 27:10

IDs. Subsequently, the CL loss, BPR loss, and the distribution constraint loss are calculated
separately:

Lc f =
∑

(u,i,ineg)∈Bbpr

Lu,i,ineg
c f , (9)

Lcl = α · LBinter
cl1

+ β · LBinter
cl2

, (10)

Ldc =
∑

(u,i)∈Binter

Lu,i
dc . (11)

The final loss of the model is:

L = Lc f + Lcl + γ · Ldc. (12)

The overall training process of IRL is shown in Algorithm 1.
During inference, given a user u and an item i , we index the corresponding vectors from

the entire embeddings after convolutional operations. We obtain the interaction prediction
score directly through a dot product operation and then rank them in descending order.

4 Experiments

In this section, we seek to address the following research inquiries:

• RQ1: How does IRL perform compared with other debiasing strategies and popularity
generalization baselines?

• RQ2:How does the hyperparameter t , which controls the environment simulation, affect
the model performance?

• RQ3: How do the different components affect the model performance?
• RQ4: How to evaluate if the model has learned invariant representations?

4.1 Experimental settings

4.1.1 Datasets

We perform experiments on three real-world datasets: Yahoo! R3 [34], Coat [35], and
KuaiRand [2]. Both the Coat and Yahoo! R3 datasets consist of two components: a biased
dataset of regular user interactions and an unbiased uniform dataset obtained through a
randomized trial. In this trial, users engaged with randomly selected items. The KuaiRand
dataset consists of two temporal segments of data. The first segment includes interactions
collected from April 8th to April 21st, 2022, under a standard recommendation strategy. The
second segment encompasses interactions gathered from April 22nd to May 8th, 2022, with
two types of data collected under both the standard recommendation strategy and a random
intervention recommendation strategy. We refer to these three datasets as kuai-1, kuai-2, and
kuai-random, respectively.

For Coat and Yahoo! R3, user-item feedback is in the form of ratings ranging from 1 to 5
stars. Ratings equal to or greater than 4 are categorized as positive feedback, while the rest
are considered negative feedback. In the case of KuaiRand, positive samples are determined
based on the “IsClick" signal provided by the platform. During training, we label the dataset
consisting of kuai-1 and kuai-2 as Kuai-time (indicating that this dataset is designed to
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assess the model’s effectiveness in handling popularity shifts caused by temporal changes),
and we refer to the dataset consisting of kuai-1, kuai-2, and kuai-random as Kuai-random.
The statistical information is outlined in Table 1.

To demonstrate the model’s ability to learn invariant preferences and alleviate the impact
of PDS, we conduct experiments on three datasets with unbiased test sets: Yahoo! R3, Coat,
and Kuai-random (utilizing kuai-1 and kuai-2 as the training set and kuai-random as the test
set). To further emphasize the model’s effectiveness in alleviating PDS in the real world, we
conduct experiments on Kuai-time, that is, using kuai-1 as the training set and kuai-2 as the
test set.

4.1.2 Evaluation metrics

We employ the all-ranking strategy, which involves ranking all items, excluding the positive
ones in the training set, by the CF model for each user. To assess the quality of the recom-
mendations, we utilize two commonly used metrics: Recall@K , and Normalized Discounted
Cumulative Gain (NDCG@K ), with K set by default to 20.

NDCG@K measures the quality of recommendation through discounted importance
based on position.

DCGu@K =
∑

(u,v)∈Dtest

I (ẑu,v ≤ K )

log(ẑu,v + 1)

NDCG@K = 1

|U |
∑

u∈U

DCGu@K

I DCGu@K
,

in these expressions, I DCGu@K represents the ideal discounted cumulative gain for user u
at position K . U refers to the group of users, Dtest represents the test data, and zu,v indicates
the position of item v in the recommended ranking list for user u.

Recall@K measures how many items recommended to user will be interacted.

Recallu@K =
∑

(u,v)∈Dtest
I (ẑu,v ≤ K )

|Du
test |

Recall@K = 1

|U |
∑

u∈U
Recallu@K ,

where Du
test is the set of all interactions of the user u in test data Dtest .

4.1.3 Baselines

We compare our method, IRL, with the following state-of-the-art baseline methods. All of
these methods are constructed on the LightGCN framework and are designed to address
popularity debiasing or popularity domain generalization.

Table 1 Dataset statistics

Coat Yahoo! R3 kuai-1 kuai-2 kuai-random

#Users 290 14,382 26,210 25,877 27,285

#Items 295 1,000 16,637 15,193 21,946

#Interactions 2,776 129,748 1,141,112 295,497 1,186,059
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• LightGCN [21]: A simplified graph-based recommendation model that prioritizes user-
item interactions for enhanced efficiency.

• sam+reg [8]: This methodology encompasses two crucial components, with one focus-
ing on addressing distribution imbalances and the other dedicated to reducing biased
correlations between predicted user-item relevance and item popularity.

• IPS-CN [13]: Building upon IPS, which addresses popularity bias by re-weighting each
training instance according to item popularity, IPC-CN enhances this approach through
the inclusion of normalization techniques aimed at achieving reduced variance.

• CausE [36]: This approach utilizes a small unbiased dataset to simulate the training
process under a completely random recommendation policy.

• MACR [37]: This method incorporates popularity bias into the causal impact of item
popularity on prediction scores by employing two modules to capture item popularity
and user conformity effects, influencing the ultimate predictions.

• CD2AN [38]: This model uses Pearson correlation to separate item properties from item
popularity and introduces unexposed items to align popularity distributions between hot
and long-tail items.

• s-DRO [39]: This model improves the Distributionally Robust Optimization (DRO)
framework by adding real-time streaming optimization to reduce the impact of popu-
larity bias on ERM.

• InvCF [18]: This method disentangles user preferences from item popularity, obtaining
unbiased preference representations without relying on predefined popularity distribu-
tions.

4.2 Performance comparison (RQ1)

All baseline models can be divided into two categories: The Popularity Generalization meth-
ods (CD2AN, sDRO, InvCF) and the Popularity Debiasing methods (sam+reg, IPS-CN,
CausE, MACR). Table 2 summarizes the best results of all the models on all benchmark
datasets. The results obtained on unbiased test sets, gathered using random exposure strate-
gies in Yahoo! R3, Coat, and Kuai-random, illustrate whether the models can capture users’

Table 2 The performance comparison on Yahoo! R3, Coat, and KuaiRand datasets

Dataset Yahoo! R3 Coat Kuai-time Kuai-random

Model
Metrics

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

LightGCN [21] 0.1478 0.0686 0.2658 0.1574 0.1002 0.0932 0.0019 0.0043

sam+rg [8] 0.1498 0.0693 0.2659 0.1569 0.1211 0.1025 0.0014 0.0060

IPS-CN [13] 0.1331 0.0612 0.2474 0.1771 0.0935 0.1108 0.0024 0.0055

CauseE [36] 0.1490 0.0693 0.2479 0.1689 0.1357 0.0954 0.0018 0.0047

MACR [37] 0.1499 0.0691 0.0939 0.0584 0.1178 0.117 0.0026 0.0052

sDRO [39] 0.1426 0.0660 0.2415 0.1790 0.1264 0.0998 0.0021 0.0045

CD2AN [38] 0.1397 0.0638 0.2245 0.1708 0.1093 0.1086 0.0013 0.0059

InvCF [18] 0.1515 0.0718 0.2686 0.1819 0.1462 0.1196 0.0024 0.0060

IRL (ours) 0.1617 0.0788 0.2885 0.1906 0.1541 0.1275 0.0027 0.0063

Imp.% 6.76% 9.75% 7.44% 4.80% 5.42% 6.63% 3.84% 3.98%

The best results are highlighted in bold while the second best ones are underlined
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Figure 5 The relationship between KL divergence of popularity distribution across different data training sets
and test sets and the Recall values

latent and invariant preferences. Meanwhile, in real-world applications, the popularity distri-
bution dynamically changes over time. Therefore, we establish the Kuai-time dataset based
on temporal variations to showcase the model’s performance when dealing with popularity
shifts in real deployment environments. From Table 2, we can ascertain that IRL outperforms
the baseline models in all datasets, signifying that learning from invariant representations can
substantially improve recommendation performance.

Simultaneously, we observe that as the degree of popularity shift between the training and
test datasets increases, there is a noticeable decrease in the model’s performance. As depicted
in Figure 5, we calculate the Kullback-Leibler (KL) divergence of the popularity distribution
of items between the training and test sets of various datasets. It is evident that on the Coat
dataset, the KL divergence is minimal, and the model performs optimally. With an increase
in KL divergence, there is a substantial decline in the model’s Recall values (Figure 6).

Additionally, due to the model’s matrix perturbation pre-processing, training efficiency
maintains a linear relationship with LightGCN. This accelerates training, tuning, and deploy-
ment. In contrast, the baseline model, particularly suboptimal InvCF, requires extensive
negative sample sampling for contrastive learning during training. This approach can be

Figure 6 The relationship between model performance and similarity in vector representations
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Table 3 Time cost of one epoch
for InvCF and IRL

Yahoo! R3 Kuai-time Kuai-random

InvCF 6.9s 78.9s 82.6s

IRL 0.7s 6.8s 7.5s

Imp.% 89.85% 91.38% 90.92%

costly on larger graphs and introduce noisy signals [40]. Experiments on a server with 1
NVIDIA GeForce RTX 4090 GPU recorded the average time for our model and InvCF to
complete one training epoch on various datasets, detailed in Table 3. Training time for the
Coat dataset is excluded due to its small size.

4.3 Hyperparameter sensitivity (RQ2)

In Section 3, we have explained the perturbation of the interaction matrix by the hyperparam-
eter t to introduce variations in the popularity environment. Utilizing contrastive learning,
we mitigate the sensitivity of embeddings to popularity, ultimately achieving invariant rep-
resentations for users and items. Adjusting various t values (with other parameters modified
during the experiments), we document the model’s evaluation results on Recall@20 and
NDCG@20, presenting a summary in Figure 7. Figure 7(a) and (b) document the evaluation
results of different metrics on the Yahoo! R3, Coat, and Kuai-time datasets. Owing to sig-
nificant differences in the model’s performance on the Kuai-random dataset compared to the
preceding three datasets, we separately display the results of the two evaluation metrics for
the Kuai-random dataset in Figure 7(c).

Figure 7 illustrates that the majority of the model’s evaluation metrics across various
datasets attain their optimal values at t = 4. A minority of results exhibit variations; for
example, on the Coat dataset, the model attains the optimal Recall@20 value at t = 5, while
on the Kuai-random dataset, it simultaneously achieves optimal NDCG@20 values at t = 3
and t = 4. For overall optimal model performance, we fix t = 4 in subsequent experi-
ments. Additionally, the line chart intuitively demonstrates that the model’s performance
initially improves with increased perturbation strength. However, excessive perturbation in
the popularity environment leads to a gradual decrease in the model’s performance. Exces-
sive perturbation may result in a significant deviation from the real environment, causing the
model embeddings to shift towards an unrealistic vector distribution.

Figure 7 Model evaluation metrics under different hyperparameter t values
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Table 4 The results of ablation experiments for IRL on different datasets

Yahoo! R3/Recall Coat/Recall

w/o cl w/o dc w/o cl w/o dc

0.1546↓4.39% 0.1590↓1.66% 0.2731↓5.33% 0.2865↓0.69%
Kuai-time/Recall Kuai-random/Recall

w/o cl w/o dc w/o cl w/o dc

0.1414↓8.24% 0.1495 ↓2.98% 0.0026 ↓3.70% 0.0026 ↓3.70%
Yahoo! R3/NDCG Coat/NDCG

w/o cl w/o dc w/o cl w/o dc

0.0720 ↓8.62% 0.0755 ↓4.18% 0.1678 ↓11.9% 0.1799 ↓5.61%
Kuai-time/NDCG Kuai-random/NDCG

w/o cl w/o dc w/o cl w/o dc

0.1167 ↓8.47% 0.1237 ↓2.98% 0.0061 ↓3.17% 0.0061 ↓3.17%

The red arrows and their corresponding data represent the extent of the model’s performance degradation when
the corresponding module is missing

4.4 Ablation study (RQ3)

We conduct ablation studies to analyze the effects of MDP, CEC, and IEC.
Through experimentation, we have determined that setting t = 4 during matrix perturba-

tion yields the best performance across all datasets. Therefore, in all ablation experiments,
wemaintain t in theMDPmodule at the default value of 4, while adjusting the other hyperpa-
rameters (α, β, γ , and τ ) to suit each specific dataset. To investigate the roles of CEC and IEC,
we individually disable CEC and IEC by setting α = β = 0 and γ = 0. The experimental
results conducted without contrastive learning (i.e., w/o cl) and distribution constraints (i.e.,
w/o dc) are summarized in Table 4.

Table 4 demonstrates that the exclusion of the cross-environment contrastive learning
module (CEC) leads to a significant decline in performance. This highlights the crucial role
of cross-environment contrastive learning in the training process and reaffirms the founda-
tional concept of invariant representation learning. Furthermore, the distribution constraint
on interactions guarantees that the model’s predictions stay within a realistic and plausi-
ble range, mitigating potential deviations brought about by the incorporation of contrastive
learning.

Figure 8 The distribution of user embedding vectors changing with training epochs
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4.5 Case study (RQ4)

In this section, we use the Kuai-random dataset as an example. In the training process, every 5
epochs (starting from epoch 0), we assess themodel’s performance on the test dataset to deter-
mine whether to save the current model state. The model attains its peak performance during
the 39th epoch. Following the completion of training, we assess and document the model’s
performance across various epochs and visualize the embedding distribution information.

During training, interaction matrices, in conjunction with graph convolutional layers,
transform the initial user and item vectors into their final representations. After passing
through multiple convolutional layers, we obtain user embeddings tailored to various simu-
lated environments: red for enhanced popularity, blue for reduced popularity, and yellow for
the real environment (Figure 8). As training advances, vector distributions shift from disper-
sion to convergence. By the 39th round, they distinctly deviate from the 4th round, indicating
the convergence of feature representations during training, moving towards invariance. We
sample user representations, calculate cosine similarity, and present the average similarity
between vectors at each round, along with model Recall values (Figure 6). As vectors from
different environments converge, the model’s performance gradually improves.

5 Conclusion

In this paper, our newly proposed IRL framework perturbs the interaction matrix to simu-
late diverse popularity environments. Subsequently, convolution operations are applied to
derive user and item representations under various environmental conditions. These repre-
sentations then undergo contrastive learning to achieve invariant representations, effectively
mitigating the negative impact of PDS caused by changes in popularity distribution. Exten-
sive experiments have consistently demonstrated the effectiveness of our IRL, surpassing
other baseline methods. In our future research, we plan to explore automated methods for
determining enhancement and attenuation coefficients in matrix perturbation, with the aim
of further enhancing our recommendation system.
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