World Wide Web (2024) 27:10
https://doi.org/10.1007/511280-024-01242-x

®

Check for
updates

Invariant representation learning to popularity distribution
shift for recommendation

Ming He' - Han Zhang' - Zihao Zhang' - Chang Liu’

Received: 25 October 2023 / Revised: 6 December 2023 / Accepted: 19 December 2023 /
Published online: 2 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Recommender systems often suffer from severe performance drops due to popularity dis-
tribution shift (PDS), which arises from inconsistencies in item popularity between training
and test data. Most existing methods aimed at mitigating PDS focus on reducing popularity
bias, but they usually require inaccessible information or rely on implausible assumptions.
To solve the above problem, in this work, we propose a novel framework called Invariant
Representation Learning (IRL) to PDS. Specifically, for simulating diverse popularity envi-
ronments where popular items and active users become even more popular and active, or
conversely, we apply perturbations to the user-item interaction matrix by adjusting the weights
of popular items and active users in the matrix, without any prior assumptions or specialized
information. In different simulated popularity environments, dissimilarities in the distribu-
tion of representations for items and users occur. We further utilize contrastive learning to
minimize the dissimilarities among the representations of users and items under different sim-
ulated popularity environments, resulting in invariant representations that remain consistent
across varying popularity distributions. Extensive experiments on three real-world datasets
demonstrate that IRL outperforms state-of-the-art baselines in effectively alleviating PDS
for recommendation.

Keywords Recommender systems - Popularity distribution shift - Invariant representation
learning - Contrastive learning

This article belongs to the Topical Collection: Special Issue on Advancing recommendation systems with
Sfoundation models
Guest Editors: Kai Zheng, Renhe Jiang, and Ryosuke Shibasaki

B4 Ming He
heming @bjut.edu.cn

Han Zhang
han1254 @emails.bjut.edu.cn

Zihao Zhang
zzh2000 @emails.bjut.edu.cn

Chang Liu
liuchang123 @emails.bjut.edu.cn

Faculty of Information Technology, Beijing University of Technology, Beijing,
Pingleyuan 100124, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-024-01242-x&domain=pdf

10 Page2of17 World Wide Web (2024) 27:10

1 Introduction

Conventional recommendation models inherently assume that training data (historical inter-
actions) and test data (future interactions) are drawn from the same distribution. However, this
assumption often proves to be incorrect in practical recommendation scenarios. The diversity
in human behaviors across demographics, regions, and time [1] results in an inconsistency
in the popularity distribution between the training and test data, referred to as the Popularity
Distribution Shift (PDS).

To illustrate the PDS, we conduct a case study using data from the KuaiRand [2] dataset,
as shown in Figure 1. The interaction data is divided into two equal portions based on
chronological order, referred to as Datal and Data2, capturing interactions from two distinct
time periods. Leveraging Datal, we compute the popularity of each item, measured by the
number of interactions with each item. Subsequently, we categorize the item IDs into four
groups based on their popularity, labeled as Head, Mid1l, Mid2, and Tail, in descending
order of popularity. Next, we compute the average popularity of each group in both Datal
and Data2. The figure highlights a significant shift in item popularity between the two time
periods, where initially popular items become less popular, while some of the long-tail items
start to gain attention.

PDS can hinder the recommendation models performance in real-world scenarios. Dur-
ing training, these models employ empirical risk minimization techniques [3] to minimize
the prediction loss over the training data distribution. Consequently, less attention has been
paid to long-tail items and inactive users [4]. This results in a minority of popular items
and active users dominating the parameter optimization process in these models, and the
model embedding latent space exhibits uneven distribution with bias towards popular items
and users [5, 6]. Particularly when utilizing graph convolution operations for feature extrac-
tion, where high-degree nodes have a substantial influence on refining nearby neighbors and
making them more similar in the representation space [5]. Although this approach enhances
prediction accuracy within the training data popularity distribution, it can hinder the optimal
performance of user preferences when applied on an online platform.

Researchers are actively investigating strategies to address the PDS issue and enhance the
generalization of recommendation models. These strategies include regularization methods
[7-10], reweighting techniques [11-13], and causal-embedding approaches [14, 15]. How-
ever, these methods share a common constraint in that they require prior knowledge of the
target popularity distribution or an assumption of an unbiased uniform distribution in the
test data. As a result, these methods can be challenging to implement in real-world scenarios
when there is limited prior knowledge available.

Recent research has explored contrastive learning and invariant learning [16—20] to main-
tain consistent representations despite changes in popularity distribution. However, traditional
contrastive learning methods can introduce noise or irrelevant information through data
augmentation. Some partially invariant learning approaches assume multiple training data
environments [17], which may not align with real-world scenarios with minimal external
environmental changes during data collection. An alternative perspective suggests separat-
ing bias factors from invariant representations [18, 19], but identifying suitable indicators for
these bias factors can be difficult or invalid. For example, [18] applies the popularity of items
as a supervisory signal to decouple invariant representations from popularity-related repre-
sentations. However, the decoupling approach might result in overlooking intrinsic excellent
features in items crucial for their popularity. To address these limitations, we propose a novel
approach that creates diverse popularity environments by perturbing data directionally. Differ-
ent from existing work [18] that solely establishes an explicit bias signal and straightforwardly

@ Springer

World Wide Web (2024) 27:10 Page3of17 10

Head~Tail distribution of time variant data

Datal distribution
Data2 distribution

Popularity
o o o
S [¢)] [o4]

o©
N

0.01

Head Mid1 Mid2 Tail
Head~Tail

Figure 1 A motivating case from the KuaiRand [2] data illustrates how the distribution of popularity shifts in
real-world scenarios

decouples it from the feature representation, we employ contrastive learning to derive sta-
ble feature representations resistant to variations in popularity environments. Our approach
simplifies popularity bias handling and enhances the stability of representation learning.

In this study, we propose a novel learning framework called IRL (Invariant Representation
Learning). IRL comprises three key modules: the Matrix Directional Perturbation (MDP)
module, the Cross-Environment Contrastive (CEC) module, and the Inter-Environment Con-
straint (IEC) module. Firstly, the MDP module identifies popular items and active users,
referred to as popular nodes, and adjusts their weights when constructing interaction matri-
ces. This leads to the creation of traditional, popularity-enhanced, and popularity-attenuated
interaction matrices. Subsequently, convolution operations are applied separately to these
matrices, generating node representations for various simulated popularity environments.
The CEC module plays a crucial role in enhancing feature consistency across different sim-
ulated popularity contexts, ultimately yielding the invariant features we aim for. Finally, the
IEC module enforces the convergence of the interaction probability distribution by using
distribution constraints. This enhances prediction accuracy and helps mitigate any adverse
effects arising from the perturbation of interaction matrices.

The key contributions of this work are as follows:

e We present a novel approach to simulate various popularity environments by applying
directional perturbation on the interaction matrix.

e We propose the IRL framework which obtains invariant feature representation through
cross-environment contrastive learning and inter-environment interaction distribution
constraints.

e We implement IRL on LightGCN [21] and conduct extensive experiments on three real-
world datasets, demonstrating its effectiveness.

2 Related work
2.1 Popularity debiasing in recommendation

Popularity bias is the phenomenon where popular items receive recommendations more fre-
quently than expected, a challenge extensively examined in recommender systems research.

@ Springer

10 Page4of17 World Wide Web (2024) 27:10

Several strategies have emerged to mitigate this bias. In one approach, researchers introduce
penalty terms to balance recommendation accuracy and coverage [7—10]. For instance, [9]
addresses missing target labels with self-training regularizers, and [7] employs intra-list
diversity as a regularization method. Another strategy adjusts the loss of training instances
using inverse propensity scores. Recent studies focus on unbiased propensity estimators like
[11] and [12] to reduce propensity score variance without relying on observed frequencies.
Counterfactual inference techniques also play a role in mitigating item popularity’s influence.
For example, [14] uses backdoor adjustment to address imbalanced item group distributions,
while [15] employs do-calculus to handle confounding popularity bias. However, many debi-
asing methods assume unrealistic access to popularity information during testing, relying on
uniform distribution or prior knowledge of test data. However, our approach does not require
such prior information or unbiased assumptions.

2.2 Invariant learning

Invariant learning techniques [22-24] assume data heterogeneity across various environ-
ments, with the goal of capturing predictive representations that remain consistent in diverse
settings. Some methods have expanded on this by relaxing traditional invariance assumptions
[25], while others have introduced novel approaches. For example, [26] combines invariant
learning principles with the information bottleneck concept, and [27] has developed an effec-
tive weighting method to enhance invariance, leading to improved generalization in machine
learning tasks. In the realm of recommendation systems, [17] assumes the existence of differ-
ent environments and leverages the Expectation-Maximization (EM) algorithm to allocate
interactions to these environments, mitigating bias. [18] obtains invariant representations
by isolating bias factors, and it has demonstrated superior efficacy in mitigating the prob-
lem of PDS. Different from [18] that merely employs a decoupling method for separating
invariant representations, we adopt a contrastive learning method to bring representations
closer in different popularity environments and obtain invariant representations. It’s impor-
tant to know that many of these methods mentioned above often require unbiased uniform
data during training or rely on assumptions about the distribution of environments in the
training data. Additionally, the identification or definition of a bias factor is also a notably
intricate endeavor. Our approach stands out by creating diverse environmental states through
data augmentation. The innovative technique proposed in this work eliminates the need for
unbiased data during model training, concurrently avoids making unrealistic environmental
assumptions, and discards the need to identify bias factors.

2.3 Graph contrastive learning for recommendation

A promising line of recent studies has incorporated contrastive learning (CL) into graph-based
recommenders, to address the label sparsity issue with self-supervision signals. Particularly,
[28] and [29] perform data augmentation over graph structure and embeddings with random
dropout operations. However, such stochastic augmentation may drop important information,
which may make the sparsity issue of inactive users even worse. Furthermore, some recent
alternative CL-based recommenders, such as [30] and [31], design heuristic-based strategies
to construct views for embedding contrasting. Cai et al. [32] exclusively utilizes singular value
decomposition for contrastive augmentation. However, regardless of the methods used, the
data augmentation directions in these models are uncontrollable. Different from these meth-

@ Springer

World Wide Web (2024) 27:10 Page50f17 10

ods, the data augmentation mode of our proposed interaction matrix carries interpretable
semantic information, meaning that our data augmentation is controllable.

3 Methodology
3.1 Invariant presentation learning

Due to varying popularity environments, these vectors’ latent spaces exhibit different
biases [6], i.e., during training, the differences in item popularity and user activity levels
can lead to feature representation biases towards popular items or active users in a specific
popularity environment. Even worse, the commonly used graph convolution operations tend
to amplify such biases [5]. We address the model representation bias by modifying the train-
ing process. Our ultimate goal is to diminish the disparities in different latent spaces and
obtain stable invariant representations.

To illustrate this process visually, we use Figure 2. As shown, due to the graph convolution
operation, feature representations are likely to be biased toward active nodes. Therefore, user
preferences P, P>, and P3, obtained from training data in different popularity environments,
deviate from the true ideal preference P. By simulating preferences in various popularity
contexts and applying contrastive learning, all preference representations eventually converge
to acommon point. We term this point the ideal point of invariant preferences. Ultimately, all
representations move closer to this ideal point, achieving invariant representation learning.

3.2 Framework

In this section, we provide a detailed technical overview of our proposed APDS. The overall
framework is presented in Figure 3. The Matrix Directional Perturbation (MDP) module
generates traditional interaction matrices from real training data and adjusts the weights for
popular items and active users, resulting in enhanced and attenuated matrices. These matrices
are assumed to be obtained from simulated environments (as indicated by dashed lines in
Figure 3). We set the initial user and item representation embeddings as E, € RM*? and

Popularity Popularity

environment | environment 1

A\

Contrastive
Learning

O’ﬁ

jX@)

Py

Figure 2 The basic idea of IRL

@ Springer

10 Page6of 17 World Wide Web (2024) 27:10

Details of contrastive learning

Simulated environment 1 MDP CEC Loss
o e el Contrastive learning
Popular items 1
and active users o
i e e / Contrastive learning Lcl
—_— Enhanced matrix

f ™ |
I eatt att Contrastive learning
@ a

Train data tornalinatix ® Inner productl
en en
distribution Graph convolution layers - € Distribution constraint ['c f
Popular items m
and active users [L1 ® Inner product2
e ® ey, e;
Distribution constraint
Attenuated matrix ® N —>O Inner product3 L
eatt eatt dc
u i
Simulated environment 2 e IEC

Details of distribution constraint

Figure 3 The overall framework of IRL

E; e RN xd \where M and N represent the number of users and items, and d represents the
embedding size. After performing graph convolution operations with different matrices, we
obtain normal user and item vectors (e, and e;), enhanced vectors (e{" and e{"), and attenuated

vectors (e4"" and e;” "). These vectors are then used in the Cross-Environment Contrastive
(CEC) module and Inter-Environment Constraint (IEC) module for contrastive learning,

interaction probability computation, and distribution constraint.

3.2.1 Matrix directional perturbation

In this module, we start by obtaining the interaction matrix R € R¥*N where M represents
user number and N represents item number. Each element at row m and column n represents
the interaction number between the m-th user and the n-th item. We then transpose R to get
R and create an (M + N) x (M + N) square matrix, A, by placing R in the upper-right
and R7 in the lower-left corners, with all other elements set to zero. Next, we compute the
symmetrically normalized matrix D IAD 2. Here, D is a diagonal matrix with diagonal
elements representing the sum of corresponding row elements in matrix A. This normalized
matrix is then used as input for the graph convolutional layers of LightGCN.

To perturb the matrix R, we calculate the popularity of both users and items based on
their respective interaction counts, sort them in descending order of popularity, and select
the top 20% as active users and popular items. Initially, we multiply the row elements of R
corresponding to the columns of popular items by a factor # (where ¢ is a hyperparameter). This
operation effectively amplifies all elements in the columns of popular items by ¢, resulting
in matrix R’. Similarly, we amplify the rows corresponding to active users by a factor of ¢,
resulting in matrix R”. Combining R’ and R”7 forms a new adjacency matrix A®", same as
the process of constructing A, referred to as the enhanced matrix. We illustrate this process in
the left part of Figure 4. The method for obtaining the attenuated matrix A%! is similar, with
the operation of multiplying by ¢ replaced by multiplying by % We also show the process in
the right part of Figure 4.

3.2.2 Cross-environment contrastive

After obtaining different matrices, we have completed the step of introducing artificial data
augmentation to simulate changes in the popularity environment. The different interaction

@ Springer

World Wide Web (2024) 27:10 Page70f17 10

sgs

“
-+

\!
1

.—-f—-v -1
e

Enhanced & i

i ! i
(- | P
T i 3 : : | Attenuated‘ -r-t- 1 :
matrix LI A B 1 | matrix |
Aen] (] | Aatt [
R - { -
o R’ | R’
L !
i
~ Matrix | ~. Matrix
transpose N o i transpose N x 1
L, ; ;
BT f'%\
1 : i i
_____________ == e L B —_—————p =l
£ \ 0 T ! 5 1o % 11 1]
________ - —---1-—:—— M ————————— ¢ EECR— . |
1 1
1! i : 1
(=) 1 P |
R R R” R
The process of obtaining the enhanced matrix. The process of obtaining the attenuated matrix.

Figure 4 The process of obtaining the enhanced and attenuated matrix

matrices obtained in MDP module can be regarded as interaction information collected from
various environments, Specifically, as depicted in Figure 3, these environments correspond
to simulated environment 1 and simulated environment 2. In environment 1, popular items
become even more popular, while in environment 2, popular items become less popular.

We employ a contrastive learning approach to obtain genuine invariant representations
to reduce the distances between representations from different environments. The distances
between different representations are calculated using InfoNCE [33] loss:

Ll] - Z (fen(zlhzlyB)+f€}’l(zl7zuaB)+fatt(zlhzl76)+fall(zl9ZM98)) (1)
(u,i)eB

£h = " fau® 2" B) + fau @, 2" B)),)
(u,i)eB
function f,, (-, -, -) and fu(:, -, -) in the above equation is defned as:
exp(2] 2 /)
> s o 2 /T)

fs(2u, 2i, B) = —log 3

where B represents a batch of user and item IDs, and z represents the result obtained after
applying L normalization to the vectors, e.g., z; = 7 is the hyperparameter.

- Hell\z

3.2.3 Inter-environment constraint

The next step involves calculating the inner products between user and item embeddings
under different environments separately:
yii=e,e,)
Vo = el Tef", ®)
Vs = et e, ©)

We employ the Bayesian Personalized Ranking (BPR) loss [3], which is a pairwise loss that
encourages the prediction of an observed entry to be higher than its unobserved counterparts:

L= 3 =0y = Vi) 7

te{n,e,a}l

@ Springer

10 Page8of17 World Wide Web (2024) 27:10

where i,,0, represents a randomly sampled item that the user has not interacted with and o
represents a sigmoid function.

Finally, in order to prevent the model’s predictions from deviating excessively from the true
distribution, we introduce Kullback-Leibler Divergence to estimate distribution constraints
on these three dot products:

Lyl =KL(sg(o(yp), 0 (v)) + KL(sg(o (v), 0 (54) (®)

where the sg is a stop gradient operator.

Algorithm 1 The overall training process of IRL.

Input: user-item interaction graph G, interaction matrix R € RM*N where M is the number of users and N
is the number of items, embedding size d, and the number of layers / in the convolutional layer;

Output: user embeddings E;, and item embeddings E;;

1: function LIGHTGCN(R [, Rp)

% EO (‘é) e ROH+N)xd
i

0M><N R]
RT ONXM
for eachi € [1,/] do
) 1 1.
EY) « (D"2AD2)E(-D
end for .
E<« 1)3 E®

i=1
8: return E[: M], E[M :]
9: end function
10: // Model training
11: Statistically obtain popular items 1,0 and active users Upop;

Ao) « RM+N)X(M+N)

N kW

12: Multiply the rows corresponding to U, in R by to obtain R
13: Multiply the columns corresponding to I,op in R by 7 to obtain R"’"H;
14: Multiply the rows corresponding to Uop in R by % to obtain R4 /;

15: Multiply the columns corresponding to I 5o, in R by % to obtain R4’ //;

16: while IRL not converge do

17: Busers Bitem Bi,em,mg < Sample a mini-batch of data;

18: B < (Buser, Bitem);

19: // Obtain the complete vector representations under different environments
20: E,,E; < LIGHTGCN(R, R);

21 E¢"E" < LIGHTGCN(R®" , R"");

22 E¢',E% « LIGHTGCN(R®" R%!");
23: Calculate the C(,»f according to (9);

24: Calculate the £ according to (10);

25: Calculate the £, according to (11);

26: Update IRL by minimizing the loss in (12).
27: end while

3.3 Model train and inference

During the training process, the model takes a batch of input data, including user IDs, item
IDs for positive samples (representing user interactions), and sampled negative item IDs
(indicating items with which users have never interacted). These are denoted as Byser, Birem
and Bizem,,, » respectively. We combine user IDs and item IDs into a single data batch, referred
to as Bjprer, and define Bpp, as a batch containing user IDs, item IDs, and negative item

@ Springer

World Wide Web (2024) 27:10 Page90of17 10

IDs. Subsequently, the CL loss, BPR loss, and the distribution constraint loss are calculated
separately:

T o
(“»i»ineg)EBhpr
Binter Binter
Co=a-cBmer 4 p. LB (10)
Lie= Y. Ly (11)
(u,i)€Binter

The final loss of the model is:
L=Lct+Ley+y Lac. (12)

The overall training process of IRL is shown in Algorithm 1.

During inference, given a user u and an item i, we index the corresponding vectors from
the entire embeddings after convolutional operations. We obtain the interaction prediction
score directly through a dot product operation and then rank them in descending order.

4 Experiments

In this section, we seek to address the following research inquiries:

e RQ1: How does IRL perform compared with other debiasing strategies and popularity
generalization baselines?

e RQ2: How does the hyperparameter ¢, which controls the environment simulation, affect
the model performance?

e RQ3: How do the different components affect the model performance?

e RQ4: How to evaluate if the model has learned invariant representations?

4.1 Experimental settings
4.1.1 Datasets

We perform experiments on three real-world datasets: Yahoo! R3 [34], Coat [35], and
KuaiRand [2]. Both the Coat and Yahoo! R3 datasets consist of two components: a biased
dataset of regular user interactions and an unbiased uniform dataset obtained through a
randomized trial. In this trial, users engaged with randomly selected items. The KuaiRand
dataset consists of two temporal segments of data. The first segment includes interactions
collected from April 8th to April 21st, 2022, under a standard recommendation strategy. The
second segment encompasses interactions gathered from April 22nd to May 8th, 2022, with
two types of data collected under both the standard recommendation strategy and a random
intervention recommendation strategy. We refer to these three datasets as kuai-1, kuai-2, and
kuai-random, respectively.

For Coat and Yahoo! R3, user-item feedback is in the form of ratings ranging from 1 to 5
stars. Ratings equal to or greater than 4 are categorized as positive feedback, while the rest
are considered negative feedback. In the case of KuaiRand, positive samples are determined
based on the “IsClick" signal provided by the platform. During training, we label the dataset
consisting of kuai-1 and kuai-2 as Kuai-time (indicating that this dataset is designed to

@ Springer

10 Page 100f 17 World Wide Web (2024) 27:10

assess the model’s effectiveness in handling popularity shifts caused by temporal changes),
and we refer to the dataset consisting of kuai-1, kuai-2, and kuai-random as Kuai-random.
The statistical information is outlined in Table 1.

To demonstrate the model’s ability to learn invariant preferences and alleviate the impact
of PDS, we conduct experiments on three datasets with unbiased test sets: Yahoo! R3, Coat,
and Kuai-random (utilizing kuai-1 and kuai-2 as the training set and kuai-random as the test
set). To further emphasize the model’s effectiveness in alleviating PDS in the real world, we
conduct experiments on Kuai-time, that is, using kuai-1 as the training set and kuai-2 as the
test set.

4.1.2 Evaluation metrics

We employ the all-ranking strategy, which involves ranking all items, excluding the positive
ones in the training set, by the CF model for each user. To assess the quality of the recom-
mendations, we utilize two commonly used metrics: Recall@ K, and Normalized Discounted
Cumulative Gain (NDCG@K), with K set by default to 20.

NDCG@K measures the quality of recommendation through discounted importance
based on position.

I1Z,, <K
DCG,@K = Y e (Z";“—])
() Dreyy 108G + D)

1 DCG,@K
NDCG@K = — Z e
U] =~ IDCG,@K

in these expressions, I DCG, @ K represents the ideal discounted cumulative gain for user u
at position K. U refers to the group of users, D, represents the test data, and z,, ,, indicates
the position of item v in the recommended ranking list for user u.

Recall@ K measures how many items recommended to user will be interacted.

2 (u0)eDyey | Cuw = K)
| Dy,

test

Recall, @K =

1
Recall @K = H Z Recall, @K,
ueld

where D

v ¢ 1s the set of all interactions of the user u in test data Dy, .

4.1.3 Baselines
We compare our method, IRL, with the following state-of-the-art baseline methods. All of

these methods are constructed on the LightGCN framework and are designed to address
popularity debiasing or popularity domain generalization.

Table 1 Dataset statistics

Coat Yahoo! R3 kuai-1 kuai-2 kuai-random
#Users 290 14,382 26,210 25,877 27,285
#Items 295 1,000 16,637 15,193 21,946
#Interactions 2,776 129,748 1,141,112 295,497 1,186,059

@ Springer

World Wide Web (2024) 27:10

Page110f17 10

LightGCN [21]: A simplified graph-based recommendation model that prioritizes user-
item interactions for enhanced efficiency.

sam+reg [8]: This methodology encompasses two crucial components, with one focus-
ing on addressing distribution imbalances and the other dedicated to reducing biased
correlations between predicted user-item relevance and item popularity.

IPS-CN [13]: Building upon IPS, which addresses popularity bias by re-weighting each
training instance according to item popularity, [IPC-CN enhances this approach through
the inclusion of normalization techniques aimed at achieving reduced variance.

CausE [36]: This approach utilizes a small unbiased dataset to simulate the training
process under a completely random recommendation policy.

MACR [37]: This method incorporates popularity bias into the causal impact of item
popularity on prediction scores by employing two modules to capture item popularity
and user conformity effects, influencing the ultimate predictions.

CD?AN [38]: This model uses Pearson correlation to separate item properties from item
popularity and introduces unexposed items to align popularity distributions between hot
and long-tail items.

s-DRO [39]: This model improves the Distributionally Robust Optimization (DRO)
framework by adding real-time streaming optimization to reduce the impact of popu-
larity bias on ERM.

InvCF [18]: This method disentangles user preferences from item popularity, obtaining
unbiased preference representations without relying on predefined popularity distribu-

tions.

4.2 Performance comparison (RQ1)

All baseline models can be divided into two categories: The Popularity Generalization meth-
ods (CD?AN, sDRO, InvCF) and the Popularity Debiasing methods (sam+reg, IPS-CN,
CausE, MACR). Table 2 summarizes the best results of all the models on all benchmark
datasets. The results obtained on unbiased test sets, gathered using random exposure strate-
gies in Yahoo! R3, Coat, and Kuai-random, illustrate whether the models can capture users’

Table 2 The performance comparison on Yahoo! R3, Coat, and KuaiRand datasets

Dataset Yahoo! R3 Coat Kuai-time Kuai-random

N Recall NDCG Recall NDCG Recall NDCG Recall NDCG
LightGCN [21] 0.1478 0.0686 0.2658 0.1574 0.1002 0.0932 0.0019 0.0043
sam+rg [8] 0.1498 0.0693 02659 0.1569 0.1211 0.1025 0.0014 0.0060
IPS-CN [13] 0.1331 0.0612 02474 0.1771 0.0935 0.1108 0.0024 0.0055
CauseE [36] 0.1490 0.0693 02479 0.1689 0.1357 0.0954 0.0018 0.0047
MACR [37] 0.1499 0.0691 0.0939 0.0584 0.1178 0.117 0.0026 0.0052
sDRO [39] 0.1426 0.0660 02415 0.1790 0.1264 0.0998 0.0021 0.0045
CDZAN [38] 0.1397 0.0638 02245 0.1708 0.1093 0.1086 0.0013 0.0059
InvCF [18] 0.1515 0.0718 0.2686 0.1819 0.1462 0.1196 0.0024 0.0060
IRL (ours) 0.1617 0.0788 0.2885 0.1906 0.1541 0.1275 0.0027 0.0063
Imp.% 6.76% 9.75% 7.44% 4.80% 5.42% 6.63% 3.84% 3.98%

The best results are highlighted in bold while the second best ones are underlined

@ Springer

10 Page120of 17 World Wide Web (2024) 27:10

Recall & KL Divergence

0.30 A
. Recall mmm KL Divergence rL2

Recall
T T
o o
N o
KL Divergence

T
S
N

- 0.0

Coat Yahoo! R3 Kuai-time Kuai-random
Dataset

Figure5 The relationship between KL divergence of popularity distribution across different data training sets
and test sets and the Recall values

latent and invariant preferences. Meanwhile, in real-world applications, the popularity distri-
bution dynamically changes over time. Therefore, we establish the Kuai-time dataset based
on temporal variations to showcase the model’s performance when dealing with popularity
shifts in real deployment environments. From Table 2, we can ascertain that IRL outperforms
the baseline models in all datasets, signifying that learning from invariant representations can
substantially improve recommendation performance.

Simultaneously, we observe that as the degree of popularity shift between the training and
test datasets increases, there is a noticeable decrease in the model’s performance. As depicted
in Figure 5, we calculate the Kullback-Leibler (KL) divergence of the popularity distribution
of items between the training and test sets of various datasets. It is evident that on the Coat
dataset, the KL divergence is minimal, and the model performs optimally. With an increase
in KL divergence, there is a substantial decline in the model’s Recall values (Figure 6).

Additionally, due to the model’s matrix perturbation pre-processing, training efficiency
maintains a linear relationship with LightGCN. This accelerates training, tuning, and deploy-
ment. In contrast, the baseline model, particularly suboptimal InvCF, requires extensive
negative sample sampling for contrastive learning during training. This approach can be

%103 Recall & Similarity
275 4 —O- Recall [-0:40
= Similarity
I 0.35
2.70 1 I 0.30
I 0.25
2,651 2
g L0208
2 E
2.60 Fo.1s
I 0.10
2,55+
[0.05
2.50 I 0.00
4 9 24 34 39
Epoch

Figure 6 The relationship between model performance and similarity in vector representations

@ Springer

World Wide Web (2024) 27:10 Page130f17 10

E::);EV?,CI;F iamnfl (I:lzslf of one epoch Yahoo! R3 Kuai-time Kuai-random
InvCF 6.9s 78.9s 82.6s
IRL 0.7s 6.8s 7.5s
Imp.% 89.85% 91.38% 90.92%

costly on larger graphs and introduce noisy signals [40]. Experiments on a server with 1
NVIDIA GeForce RTX 4090 GPU recorded the average time for our model and InvCF to
complete one training epoch on various datasets, detailed in Table 3. Training time for the
Coat dataset is excluded due to its small size.

4.3 Hyperparameter sensitivity (RQ2)

In Section 3, we have explained the perturbation of the interaction matrix by the hyperparam-
eter ¢ to introduce variations in the popularity environment. Utilizing contrastive learning,
we mitigate the sensitivity of embeddings to popularity, ultimately achieving invariant rep-
resentations for users and items. Adjusting various ¢ values (with other parameters modified
during the experiments), we document the model’s evaluation results on Recall@20 and
NDCG @20, presenting a summary in Figure 7. Figure 7(a) and (b) document the evaluation
results of different metrics on the Yahoo! R3, Coat, and Kuai-time datasets. Owing to sig-
nificant differences in the model’s performance on the Kuai-random dataset compared to the
preceding three datasets, we separately display the results of the two evaluation metrics for
the Kuai-random dataset in Figure 7(c).

Figure 7 illustrates that the majority of the model’s evaluation metrics across various
datasets attain their optimal values at # = 4. A minority of results exhibit variations; for
example, on the Coat dataset, the model attains the optimal Recall@20 value att = 5, while
on the Kuai-random dataset, it simultaneously achieves optimal NDCG @20 values att = 3
and ¢+ = 4. For overall optimal model performance, we fix t = 4 in subsequent experi-
ments. Additionally, the line chart intuitively demonstrates that the model’s performance
initially improves with increased perturbation strength. However, excessive perturbation in
the popularity environment leads to a gradual decrease in the model’s performance. Exces-
sive perturbation may result in a significant deviation from the real environment, causing the
model embeddings to shift towards an unrealistic vector distribution.

0.300 — ———— _

0275 L ~o—_ | 0187 0.006 D/D_G\E'\D\E1
T - I

0.250 4 016 - Yahoo! R3

Coat 0.005

.225 -0 ! i-
0.225 o z:z:o R3 0.14 —&— Kuai-time Recall@20

0.200 -0~ NDCG@20
—— Kuaitime | 012 A/a/ﬁ\nléa\ﬁ 0.004 @

0.175
0.150 4 7% 0.10 0.003 4
0.125 4 00815 ———O0—O0— o 0—0/0_\0\0,—-—0
2 3 a4 5 6 7 2 3 i s 6 7 2 3 a5 s 7
t t t
(a) Recall@20 Comparison (b) NDCG@20 Comparison (c) Kuai-random Comparison

Figure 7 Model evaluation metrics under different hyperparameter ¢ values

@ Springer

10 Page 140f 17 World Wide Web (2024) 27:10

Table 4 The results of ablation experiments for IRL on different datasets

Yahoo! R3/Recall Coat/Recall

w/o cl w/o dc w/o cl w/o dc
0.154614-39% 0.159041.66% 0.27314533% 0.286510-69%
Kuai-time/Recall Kuai-random/Recall

w/o cl w/o dc w/o cl w/o dc
0.141448.24% 0.1495 +2:98% 0.0026 +3-70% 0.0026 +3-70%
Yahoo! R3/NDCG Coat/NDCG

w/o cl w/o dc w/o cl w/o dc

0.0720 18-62% 0.0755 14-18% 0.1678 ¥11.9% 0.1799 ¥3-61%
Kuai-time/NDCG Kuai-random/NDCG

w/o cl w/o dc w/o cl w/o dc

0.1167 18.47% 0.1237 12.98% 0.0061 13.17% 0.0061 13.17%

The red arrows and their corresponding data represent the extent of the model’s performance degradation when
the corresponding module is missing

4.4 Ablation study (RQ3)

We conduct ablation studies to analyze the effects of MDP, CEC, and IEC.

Through experimentation, we have determined that setting t = 4 during matrix perturba-
tion yields the best performance across all datasets. Therefore, in all ablation experiments,
we maintain ¢ in the MDP module at the default value of 4, while adjusting the other hyperpa-
rameters («, B, ¥, and 7) to suit each specific dataset. To investigate the roles of CEC and IEC,
we individually disable CEC and IEC by setting « = f = 0 and y = 0. The experimental
results conducted without contrastive learning (i.e., w/o cl) and distribution constraints (i.e.,
w/o dc) are summarized in Table 4.

Table 4 demonstrates that the exclusion of the cross-environment contrastive learning
module (CEC) leads to a significant decline in performance. This highlights the crucial role
of cross-environment contrastive learning in the training process and reaffirms the founda-
tional concept of invariant representation learning. Furthermore, the distribution constraint
on interactions guarantees that the model’s predictions stay within a realistic and plausi-
ble range, mitigating potential deviations brought about by the incorporation of contrastive
learning.

User Embeddings User Embeddings User Embeddings User Embeddings
Users Users Users Users
Users_en Users_en Users_en Users_en
Users_att Users_att Users_att Users_att
epoch 4 epoch 24 epoch 34 epoch 39

Figure 8 The distribution of user embedding vectors changing with training epochs

@ Springer

World Wide Web (2024) 27:10 Page150f17 10

4.5 Case study (RQ4)

In this section, we use the Kuai-random dataset as an example. In the training process, every 5
epochs (starting from epoch 0), we assess the model’s performance on the test dataset to deter-
mine whether to save the current model state. The model attains its peak performance during
the 39th epoch. Following the completion of training, we assess and document the model’s
performance across various epochs and visualize the embedding distribution information.

During training, interaction matrices, in conjunction with graph convolutional layers,
transform the initial user and item vectors into their final representations. After passing
through multiple convolutional layers, we obtain user embeddings tailored to various simu-
lated environments: red for enhanced popularity, blue for reduced popularity, and yellow for
the real environment (Figure 8). As training advances, vector distributions shift from disper-
sion to convergence. By the 39th round, they distinctly deviate from the 4th round, indicating
the convergence of feature representations during training, moving towards invariance. We
sample user representations, calculate cosine similarity, and present the average similarity
between vectors at each round, along with model Recall values (Figure 6). As vectors from
different environments converge, the model’s performance gradually improves.

5 Conclusion

In this paper, our newly proposed IRL framework perturbs the interaction matrix to simu-
late diverse popularity environments. Subsequently, convolution operations are applied to
derive user and item representations under various environmental conditions. These repre-
sentations then undergo contrastive learning to achieve invariant representations, effectively
mitigating the negative impact of PDS caused by changes in popularity distribution. Exten-
sive experiments have consistently demonstrated the effectiveness of our IRL, surpassing
other baseline methods. In our future research, we plan to explore automated methods for
determining enhancement and attenuation coefficients in matrix perturbation, with the aim
of further enhancing our recommendation system.

Author Contributions Supervision, M.H.; Writing-original draft, H.Z; Writing-review & editing, Z.Z. and
C.L.

Funding Not applicable.

Availability of Data and Materials All datasets used in this study are publicly available.
Declaration

Competing interest The authors declare no competing interests.

Ethics approval Not applicable.

References

1. He, Y., Wang, Z., Cui, P, Zou, H., Zhang, Y., Cui, Q., Jiang, Y.: Causpref: causal preference learning for
out-of-distribution recommendation. In: Proceedings of the ACM Web Conference 2022, pp. 410421
(2022)

@ Springer

10

Page 16 of 17 World Wide Web (2024) 27:10

2.

20.

21.

22.

23.
. Liu, J., Hu, Z., Cui, P, Li, B., Shen, Z.: Heterogeneous risk minimization. In: International Conference

25.

Gao, C,, Li, S, Zhang, Y., Chen, J., Li, B., Lei, W,, Jiang, P., He, X.: Kuairand: an unbiased sequential
recommendation dataset with randomly exposed videos. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 3953-3957 (2022)

. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from

implicit feedback. arXiv:1205.2618 (2012)

. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a

survey and future directions. ACM Trans. Inf. Syst. 41(3), 1-39 (2023)

. Chen, J., Wu, J,, Chen, J., Xin, X,, Li, Y., He, X.: How graph convolutions amplify popularity bias for

recommendation? arXiv:2305.14886 (2023)

. Hong, Y., Yuan, X., Li, X.: Dcl4rec: an effective debiased contrastive learning framework for long-tail

sequential recommendation. Available at SSRN 4558746

. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommen-

dation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 42-46 (2017)

. Boratto, L., Fenu, G., Marras, M.: Connecting user and item perspectives in popularity debiasing for

collaborative recommendation. Inf. Process. Manag. 58(1), 102387 (2021)

. Chen, Z., Xiao, R., Li, C., Ye, G., Sun, H., Deng, H.: Esam: discriminative domain adaptation with non-

displayed items to improve long-tail performance. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 579-588 (2020)

. Zhu, Z., He, Y., Zhao, X., Zhang, Y., Wang, J., Caverlee, J.: Popularity-opportunity bias in collaborative

filtering. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining,
pp. 85-93 (2021)

. Chen, J., Dong, H., Qiu, Y., He, X., Xin, X., Chen, L., Lin, G., Yang, K.: Autodebias: learning to debias

for recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 21-30 (2021)

. Ding, S., Wu, P, Feng, F., Wang, Y., He, X., Liao, Y., Zhang, Y.: Addressing unmeasured confounder

for recommendation with sensitivity analysis. In: Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 305-315 (2022)

. Gruson, A., Chandar, P., Charbuillet, C., McInerney, J., Hansen, S., Tardieu, D., Carterette, B.: Offline

evaluation to make decisions about playlistrecommendation algorithms. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp. 420-428 (2019)

. Wang, W, Feng, F., He, X., Wang, X., Chua, T.-S.: Deconfounded recommendation for alleviating bias

amplification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1717-1725 (2021)

. Zhang, Y., Feng, F., He, X., Wei, T., Song, C., Ling, G., Zhang, Y.: Causal intervention for leveraging

popularity bias in recommendation. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 11-20 (2021)

. Yu, J., Xia, X., Chen, T., Cui, L., Hung, N.Q.V., Yin, H.: Xsimgcl: towards extremely simple graph

contrastive learning for recommendation. IEEE Trans. Knowl, Data Eng (2023)

. Wang, Z., He, Y., Liu, J., Zou, W., Yu, P.S., Cui, P.: Invariant preference learning for general debiasing in

recommendation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1969-1978 (2022)

. Zhang, A., Zheng, J., Wang, X., Yuan, Y., Chua, T.-S.: Invariant collaborative filtering to popularity

distribution shift. In: Proceedings of the ACM Web Conference 2023, pp. 1240-1251 (2023)

. Wang, W., Lin, X., Wang, L., Feng, F., Ma, Y., Chua, T.-S.: Causal disentangled recommendation against

user preference shifts. ACM Trans. Inf, Syst (2023)

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Le Priol, R., Courville, A.:
Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine
Learning, pp. 5815-5826, PMLR (2021)

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph con-
volution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 639-648 (2020)

Arjovsky, M., Bottou, L., Gulrajani, 1., Lopez-Paz, D.: Invariant risk minimization. arXiv:1907.02893
(2019)

Biihlmann, P.: Invariance, causality and robustness (2020)

on Machine Learning, pp. 6804-6814, PMLR (2021)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Confer-
ence on Machine Learning, pp. 1180-1189, PMLR (2015)

@ Springer

http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/2305.14886
http://arxiv.org/abs/1907.02893

World Wide Web (2024) 27:10 Page170f17 10

26. Ahuja, K., Caballero, E., Zhang, D., Gagnon-Audet, J.-C., Bengio, Y., Mitliagkas, I., Rish, I.: Invariance
principle meets information bottleneck for out-of-distribution generalization. Adv. Neural Inf. Process.
Syst. 34, 3438-3450 (2021)

27. Liu, E.Z., Haghgoo, B., Chen, A.S., Raghunathan, A., Koh, P.W., Sagawa, S., Liang, P., Finn, C.: Just
train twice: improving group robustness without training group information. In: International Conference
on Machine Learning, pp. 6781-6792, PMLR (2021)

28. Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X.: Self-supervised graph learning for
recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 726735 (2021)

29. Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., Nguyen, Q.V.H.: Are graph augmentations necessary? simple
graph contrastive learning for recommendation. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1294-1303 (2022)

30. Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., Huang, J.: Hypergraph contrastive collaborative filtering.
In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 70-79 (2022)

31. Lin,Z., Tian, C.,Hou, Y., Zhao, W.X.: Improving graph collaborative filtering with neighborhood-enriched
contrastive learning. In: Proceedings of the ACM Web Conference 2022, pp. 2320-2329 (2022)

32. Cai, X., Huang, C., Xia, L., Ren, X.: Lightgcl: simple yet effective graph contrastive learning for recom-
mendation. arXiv:2302.08191 (2023)

33. Oord, A.vd. Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding.
arXiv:1807.03748 (2018)

34. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random missing data. In:
Proceedings of the Third ACM Conference on Recommender Systems, pp. 5—-12 (2009)

35. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments:
Debiasing learning and evaluation. In: International Conference on Machine Learning, pp. 1670-1679,
PMLR (2016)

36. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: Proceedings of the 12th ACM Con-
ference on Recommender Systems, pp. 104-112 (2018)

37. Wei, T, Feng, F,, Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual reasoning for eliminating
popularity bias in recommender system. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1791-1800 (2021)

38. Chen, Z., Wu,J., Li, C., Chen, J., Xiao, R., Zhao, B.: Co-training disentangled domain adaptation network
for leveraging popularity bias in recommenders. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 60-69 (2022)

39. Wen, H., Yi, X., Yao, T., Tang, J., Hong, L., Chi, E.H.: Distributionally-robust recommendations for
improving worst-case user experience. In: Proceedings of the ACM Web Conference 2022, pp. 3606—
3610 (2022)

40. Zhou, X.,Zhou, H., Liu, Y., Zeng, Z.,Miao, C., Wang, P., You, Y., Jiang, F.: Bootstrap latent representations
for multi-modal recommendation. In: Proceedings of the ACM Web Conference 2023, pp. 845-854 (2023)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://arxiv.org/abs/2302.08191
http://arxiv.org/abs/1807.03748

	Invariant representation learning to popularity distribution shift for recommendation
	Abstract
	1 Introduction
	2 Related work
	2.1 Popularity debiasing in recommendation
	2.2 Invariant learning
	2.3 Graph contrastive learning for recommendation

	3 Methodology
	3.1 Invariant presentation learning
	3.2 Framework
	3.2.1 Matrix directional perturbation
	3.2.2 Cross-environment contrastive
	3.2.3 Inter-environment constraint

	3.3 Model train and inference

	4 Experiments
	4.1 Experimental settings
	4.1.1 Datasets
	4.1.2 Evaluation metrics
	4.1.3 Baselines

	4.2 Performance comparison (RQ1)
	4.3 Hyperparameter sensitivity (RQ2)
	4.4 Ablation study (RQ3)
	4.5 Case study (RQ4)

	5 Conclusion
	References

