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Entity alignment via graph neural networks: a
component-level study
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Abstract
Entity alignment plays an essential role in the integration of knowledge graphs (KGs) as it
seeks to identify entities that refer to the same real-world objects across different KGs. Recent
research has primarily centred on embedding-based approaches. Among these approaches,
there is a growing interest in graph neural networks (GNNs) due to their ability to capture
complex relationships and incorporate node attributes within KGs. Despite the presence of
several surveys in this area, they often lack comprehensive investigations specifically target-
ing GNN-based approaches. Moreover, they tend to evaluate overall performance without
analysing the impact of individual components and methods. To bridge these gaps, this paper
presents a framework for GNN-based entity alignment that captures the key characteris-
tics of these approaches. We conduct a fine-grained analysis of individual components and
assess their influences on alignment results. Our findings highlight specific module options
that significantly affect the alignment outcomes. By carefully selecting suitable methods for
combination, even basic GNN networks can achieve competitive alignment results.
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1 Introduction

Knowledge graphs (KGs) serve as structured, graph-based representations of knowledge,
capturing real-world entities, their attributes, and the relationships between them. They
are indispensable tools, facilitating sophisticated data analysis, inference, and decision-
making processes. KGs come in various forms, including general KGs like DBpedia [1]
and YAGO [2], as well as domain-specific KGs like BioKG [3] and FoodKG [4], catering
to a wide range of applications. However, a common challenge with standalone KGs is their
incompleteness, lacking comprehensive domain coverage. To overcome this limitation, KG
integration becomes essential. By combining KGs from diverse sources, integration enables
the presentation of different perspectives and complementary information. One crucial step in
KG integration is entity alignment, which involves identifying entities across KGs that refer
to the same real-world objects. Aligning entities allows the development of advanced appli-
cations that offer a holistic view of information, enhancing the quality of knowledge-based
systems.

Recent research in entity alignment has primarily focused on embedding-based approaches.
These approaches represent entities as low-dimensional vectors, capturing semantic relat-
edness by computing distances in the vector space. Among them, graph neural networks
(GNNs) [5, 6] have gained popularity for embedding learning. GNNs effectively learn node
representations by aggregating information from neighboring nodes recursively. The under-
lying assumption behind using GNNs for entity alignment is that similar entities tend to
have similar neighborhoods, as supported by the expressiveness of GNNs in identifying iso-
morphic subgraphs, akin to the Weisfeiler-Lehman (WL) algorithms [7]. Moreover, GNNs
naturally excel at handling complex graph structures and incorporating node attributes, mak-
ing them promising for entity alignment tasks. However, the introduction of GNNs into entity
alignment has led to more intricate embedding architectures, complicating the interpretation
of an approach’s effectiveness as it becomes hard to discern whether the effectiveness is due
to the embedding itself or other components of the alignment process.

Despite several surveys on embedding-based entity alignment approaches [8–11], they
often fail to specifically examine GNN-based approaches, overlooking key characteristics
of GNNs that are crucial for entity alignment. Additionally, while these surveys assess the
overall effectiveness of the approaches, they typically overlook the impact of individual
components and methods on performance. To fill this gap, our work offers a fine-grained
analysis of individual components and their impacts. We contribute to the field by providing:

• Ageneral framework that encompasses the fundamenal components ofGNN-based entity
alignment approaches, along with a categorisation of these approaches based on the key
characteristics associated with these components.

• A comprehensive component-level experimental study conducted on representative
datasets, evaluating the impact of different components and their combinations on the
overall performance.

Our analysis reveals that certain module options have a significant impact on performance,
such as combining entity name initialisation with skip connections for embedding and
employing iterative training with CSLS as the enhanced distance metric. We demonstrate
that, by selecting suitable methods for combination, even basic GNN networks can achieve
competitive results. This study provides valuable insights into the design and optimisation of
GNN-based approaches for entity alignment, advancing the understanding and applicability
of these methods in knowledge graph integration tasks.
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The rest of the paper is organised as follows. Section 2 provides preliminaries, including
problemdefinition and a summary of relatedwork. Section 3 presents a general framework for
GNN-based entity alignment approaches. Section 4 discusses the importance of component-
level analysis and Section 5 reports analysis results. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Problem definition

We define a KG as G = (E,R,A,V, T ), where E , R, A, V and T are sets of entities,
relations, attributes, values, and triples respectively. T consists of relation triples T r and
attribute triples T a , where T r ⊆ E × R × E , and T a ⊆ E × A × V . Given two KGs,
G1 = (E1,R1,A1,V1, T1) and G2 = (E2,R2,A2,V2, T2), the goal of entity alignment is
to find aligned entities � = {(e1, e2)|e1 ∈ E1, e2 ∈ E2}, where e1 and e2 refer to the same
real-world object. In many cases, a small subset of �, i.e., pre-aligned entities, is provided
and used as training data for finding new alignments.

2.2 Related work

GNNs Many learning tasks involve complex relationships and dependencies within graph
data, which cannot be effectively handled by standard neural networks like convolutional
neural networks (CNNs) [12] and recurrent neural networks (RNNs) [13]. These networks
are specifically designed for Euclidean domains like images and text, making them less effec-
tive in tackling the complexities of graph-based data. To address this, graph neural networks
(GNNs) have emerged. Initially introduced in [14], GNNs learned node representations by
iteratively exchanging information with neighbours until a stable fixed point was reached.
Subsequent works on GNNs largely relax the fixed point assumption, employing stacked
graph convolutional layers to extract higher-level node representations. RepresentativeGNNs
include graph convolutional network (GCN) [15], graph attention network (GAT) [16] and
gated graph neural network (GGNN) [17]. For a detailed understanding of GNNs and tax-
onomies, interested readers can refer to recent surveys [5, 6].

Entity linking/matching Tasks similar to entity alignment have been addressed under differ-
ent names depending on fields or applications. Entity linking or entity disambiguation aims
to identify entity mentions in natural language text and map them to corresponding entries in
a KG. Previous research [18–20] has predominantly utilised contextual information, includ-
ing local contexts of entity mentions and document-level coherence of referenced entities,
for disambiguation. On the other hand, entity matching, entity resolution, or record linkage
involves matching records from different relational tables that refer to the same entities [21–
24]. When applied within the same relational table, it is referred to as deduplication. The
matching process involves comparing attribute values using specific similarity measures and
aggregating comparison results across all attributes. To reduce the number of record pairs
to compare, indexing or blocking techniques are commonly employed to filter out obvious
non-matching pairs [22].

Entity alignment on KGs Conventional approaches for mapping entities between KGs
include concept-level matching [25–27], instance-level matching [28, 29], or a combination
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of both [30], depending on whether the entities being aligned are concepts or instances.
Graph structures and entity properties, such as string representations, are commonly used for
identifying alignments. Additionally, when KGs contain richer representations like RDFS
or OWL, logic reasoning can be employed to deduce correspondences. Embedding-based
approaches are generally classified as translation-based or GNN-based. Translation-based
approaches, e.g.,[31–35], employ translational models such as TransE [36] to learn entity
embeddings, treating relations as translations between entities. In contrast, GNN-based
approaches, e.g.,[37–40], utilise GNN models for learning entity embeddings, as we will
discuss in Section 3. Several studies [8–11] have conducted empirical evaluations on rep-
resentative embedding-based approaches. These studies either introduce new benchmark
datasets for evaluation or provide new implementations of approaches using specific libraries
or toolkits developed for embedding-based entity alignment. Notably, one study [11] cate-
gorises approaches based on different settings, such aswhether additional information beyond
graph structure is used for alignment, and compares results within and across these categories.
While these studies offer valuable insights into the overall effectiveness of these approaches,
they lack a detailed analysis of individual components and their impact on performance. Our
work complements these studies by conducting a thorough analysis at the component level,
with a focus on GNN-based approaches.

3 A general framework

Many recent entity alignment approaches rely on graph neural networks (GNNs) as their
underlying learning architecture. Figure 1 presents a general framework that encompasses
GNN-based approaches, with optional components indicated by dashed lines. There are
three main modules: an embedding module (GNNs), an alignment training module, and
an alignment inference module. The embedding module and the training module jointly
constitute the embedding learning modules for entity alignment. The framework takes as
input two knowledge graphs and learns embeddings for entities. Based on these embeddings,
it generates alignments between the entities in the two graphs. If pre-aligned entities are
provided, they serve as seed alignments to guide the learning process. Furthermore, the
alignment results generated by the inference module can be leveraged to expand these seed
alignments. Table 1 provides a categorisation of representative GNN-based approaches based
on their key characteristics associated with the three modules.

Alignment 
inference

Embedding
(GNNs)

Alignment
training

Embedding learning

Seed 
alignments

KG1KG1
KG2KG2

KG1
KG2

KG1
KG2

Pre-aligned en��es New alignments

Graph info.  Embeddings

Figure 1 A GNN-based entity alignment framework
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3.1 Embedding (GNNs)

The embedding module aims to embed a KG into a vector space, representing entities as
embeddings. Different types of KG information can be used by the embedding module,
including graph structure (topological connections), relations (relation types and names),
attributes (attribute types and names), and values (entity names, descriptions and images are
considered as special cases of attributes and values and are treated differently). Among these,
graph structure is the most basic one. Accordingly, structure embedding, which focuses on
embedding the structure information of entities, forms the core part of the embeddingmodule.
Other types of information, such as relations, attributes, and values, can be incorporated into
structure embedding to provide a more comprehensive representation of entities.

As observed from Table 1, all approaches use graph structure for embedding. Many
approaches also incorporate relation types or entity names. On the other hand, attributes and
values are explored to varying degrees. While GCN_Align, HMAN, EVA and MCLEA use
attribute types, AttrGNN uses both attribute types and values. Additionally, HMAN incor-
porates entity descriptions, EVA and MCLEA leverage images, and ICLEA uses relation
names in addition to relation types, entity names, and descriptions. To learn from different
information types, separate channels can be employed. For instance, AttrGNN uses four
channels for learning representations of graph structure, entity name, literal attribute, and
digital attribute, respectively. Alternatively, certain information like entity names or relations
can be incorporated directly into structure embedding, as we will discuss. In terms of struc-
ture embedding, existing approaches differ in, among other things, how they initialise entity
representations, how they aggregate neighbours’ information and how they obtain the final
entity representations.

Entity initialisation While some approaches like AliNet and MRAEA initialise entities
randomly, others such as HGCN and SelfKG initialise entities with specific feature vectors.
In the latter case, entity names are commonly used to derive the initial features of entities, often
by leveraging pre-trained languagemodels. ICLEAgoes a step further by incorporating entity
descriptions. It obtains an entity’s initial embedding by concatenating its name embedding
and description embedding to create a comprehensive representation.

Neighbourhood aggregation A key feature of GNN-based embedding is that an entity’s
representation is updated by recursively aggregating the entity’s neighbourhood information.
At each GNN layer, the following updates are typically performed [41]:

ml+1
ei ← Aggregate({hle j ,∀e j ∈ Nei }) (1)

hl+1
ei ← σ(Wlml+1

ei ) (2)

where hlei represents the embedding of ei at layer l, Nei the set of immediate neighbors of

ei (including ei ), ml+1
ei the aggregated representation of Nei , W

l the transformation matrix,
and σ(·) an activation function. Equation 1 is responsible for aggregating information from
immediate neighbours, while Equation 2 is for transformation (typically non-linear) of the
aggregated information. GCN andGAT are two basic GNNmodels, and their main difference
is in the way they aggregate neighbours’ information. While GCN performs neighborhood
aggregation by normalised mean pooling [15]:

hl+1
ei = σ

( ∑
e j∈Nei

1√
dei de j

Wlhle j

)
(3)
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where dei represents the degree of ei , GAT accomplishes aggregation through attentional
weighted summation [16]:

hl+1
ei = σ

( ∑
e j∈Nei

ali jW
lhle j

)
(4)

ali j = exp(LeakyReLu(�vT [Wlhlei ‖Wlhle j ]))∑
ek∈Nei

exp(LeakyReLu(vT [Wlhlei ‖Wlhlek ]))
(5)

where ali j is the attention coefficient at layer l, �v is the weight vector, ·T represents trans-
position and ‖ is the concatenation operation. In practice, GAT often employs multi-head
attention to stabilise the learning process, by using K independent attention mechanisms,
where K represents the number of attention heads, and merging their outputs through con-
catenation or averaging. Table 1 shows that all approaches are based on GCN, or GAT, or
their variants or hybrids for neighbourhood aggregation. Note that some approaches, e.g.,
MRAEA and KE-GCN, include in the aggregation not only neighbouring entities, but also
neighbouring relations, to make entity representations relation-aware.

Skip connection Stacking multiple GNN layers enables each entity to aggregate more infor-
mation from further reaches of the graph. This, however, could also cause noisy information
to propagate through layers. To mitigate this issue, some approaches, such as AliNet and
RDGCN, use skip connections to bypass some layers and feed the output of one layer as the
input to the next layers (instead of only the next layer). One commonly used skip connection
method is concatenation, which is often accomplished by concatenating the outputs of all
layers. As a result, final representations of entities involve their respective representations
at all layers, instead of only the final layer. Another commonly used method is highway
networks [42], which introduces gates at each layer and sums the output of a layer with its
input with gating weights:

g(hlei ) = σ(Wlhlei + bl)

hl+1
ei = g(hlei ) · hl+1

ei + (1 − g(hlei )) · hlei (6)

By using skip connections, entity representations are made more robust and more (neural
network) structure-aware.

3.2 Alignment training

Given entity embeddings of two KGs, the training module aims to unify them into the
same vector space so that aligned entities can be identified. As shown in Table 1, most
approaches are supervised, that is, they rely on the supervision provided by pre-aligned
entities. In supervised approaches (e.g., GCN-Align and GMNN), pre-aligned entities are
used as labelled data to guide the training process, which pulls aligned entities close in
the space. As pre-aligned entities are often limited, some approaches (e.g., MRAEA and
EVA) also explore unlabelled data in training. These approaches are referred to as semi-
supervised approaches. A common strategy is to iteratively label likely entity pairs from the
alignment results generated by the inference module as the training data. The decision on
which entity pairs are considered likely differs. In MRAEA, RREA, and Dual-AMN, two
entities in the results are newly aligned if and only if they are mutual nearest neighbours.
In EVA and MCLEA, a similar decision is made but enities are required to remain mutual
nearest neighbours after a probation phase.
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With pre-aligned or newly aligned entities as seed alignments, embeddings of entities are
trained by minimising a loss function. The most commonly used loss function is the triplet
loss:

L =
∑

(ei ,e j )∈S

∑

(e′
i ,e

′
j )∈S ′

max(0, d(ei , e j ) − d(e′
i , e

′
j ) + γ ) (7)

where S is the set of positive pairs (seed alignments), S ′ is the set of negative pairs, d(·)
is a distance function (e.g., Manhattan distance) and γ > 0 is a margin hyper-parameter.
Negative pairs are obtained by corrupting positive pairs, i.e., replacing entities in positive pairs
with negative samples. Two strategies are generally used for generating negative samples:
uniform samplingwhere negative samples are randomly selected from all entities, and nearest
sampling where negative samples are selected from the positive sample’s nearest neighbours.
With the triplet loss, positive pairs are expected to have smaller distances than negative pairs,
and also, a margin is expected to exist between the distances of positive and negative pairs.

Several other loss functions are also used for (semi-)supervised training. AliNet uses the
contrastive alignment loss instead of the triplet loss to ensure that positive pairs have abso-
lutely small distances. GM-Align formulates entity alignment as a graph matching problem
and uses the cross entropy (CE) loss tomaximise thematching probability of seed alignments.
Dual-AMN uses the normalised hard sample mining(NHSM) loss to tackle the inefficiency
issue in nearest sampling and leverages the LogSumExp operation [43] for generating high-
quality negative samples. EVA employs a Neighbourhood Component Analysis (NCA) [44]
based loss tomitigate the hubness problem in the embedding space.MCLEAuses intra-modal
contrastive loss (ICL) and inter-modal algnment loss (IAL) for modelling both intra-modal
and inter-modal interactions.

In addition to supervised and semi-supervised approaches, there are unsupervised
approaches that do not require labelled entity pairs to align entities. SelfKG and ICLEA
are two such approaches. While SelfKG focuses only on pushing negative pairs away than
pulling positive pairs close, ICLEA emphasises both with the support of cross KG interaction
through pseudo-aligned entity pairs. Both approaches adapt the noise contrastive estimation
(NCS) loss for self-supervised settings and sample negative pairs from the same KGs (called
self-negative sampling). Note that while certain approaches like MRAEA and EVA claim
to support unsupervised training, they actually dependent on preprocessing to create initial
alignments based on similarities of entity names or images. Since their embedding modules
still require supervision, we classify them as (semi-)supervised in this paper.

3.3 Alignment inference

Given entity embeddings in the same space, the inference module aims to find alignments
between two KGs. Without loss of generality, we refer to one KG as the source and the
other as the target, and the inference module is to determine the most likely target entity
for each source entity. The most common strategy used for inference is nearest neighbor
(NN) search. For each source entity, NN search calculates the entity’s distances to all target
entities and then chooses the nearest target entity as the alignment. Commonly used distance
measures include the Mahatten distance (L1), the Euclidean distance (L2) and the cosine
similarity. Some approaches, e.g., AliNet and RREA, additionally employ cross-domain
similarity local scaling (CSLS) [45] as an improved measure, to normalise the distance
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between a source entity and a target entity based on the density of their neighbours. Suppose
the cosine similarity is used, we have:

CSLS(ei , e j ) = 2 cos(ei , e j ) − 1

m

∑

e′
i∈N (ei )

cos(ei , e
′
i )

− 1

m

∑

e′
j∈N (e j )

cos(e′
j , e j ) (8)

where N (ei ) is the set of m nearest neighbors of ei in the embedding space. As GM-Align
aims to solve a graph matching problem for entity alignment, the matching probability is
used as the distance measure, and the target entity with the highest matching probability is
chosen as the alignment.

However, NN search fails to consider the interdependency between different alignment
decisions. As such, a source entity may be aligned to a target entity that is more likely to
be the alignment of another source entity based on their distance. To address this, CEA
and RAGA formulate alignment inference as the stable matching (SM) problem and solve
it by using the deferred acceptance algorithm [46]: the input of the algorithm is a matrix
where rows represent source entities, columns represent target entities and entries represent
preferences calculated based on a distance measure, and the output is a set of alignments
where no pairs of entities prefer each other than their current aligned ones. RNM instead
explores the interactions between entity alignments and relation alignments and employs an
iterative matching (IM) strategy for inference, which iteratively updates the distance between
two entities based on the mapping properties of the connected relations.

4 Discussion

Comparing approaches in their entirety is a common practice, but it can pose challenges in
achieving a fair and meaningful evaluation of their performance. One significant factor is
the diversity in the types of graph information used as input features within their embedding
modules. As shown in Table 1, some approaches solely consider topological connections
and relation types from relation triples, while others explore additional information, such as
attributes or relation names. Incorporating more information during the embedding process
can potentially improve entity representations, leading to better alignment results.

Furthermore, the methods used in embedding, training, and inference modules can vary
across approaches, even when the input graph information remains the same. These methods
are not necessarily specific to any one approach and can be applied universally. For example,
instead of initialising entity embeddings randomly, the embedding module might use word
embeddings derived from entity names for more informed initialisation. Training strategies
can range from unsupervised to supervised, depending on the availability of labelled data.
Training can also be conducted in a single pass or through iterative processes.Additionally, the
inferencemodule, which operates independently from embedding and trainingmodules, may
offer options for employing different distance metrics and search strategies while keeping the
embedding and alignment modules unchanged. Each decision made regarding these modules
can significantly impact the alignment results.

While existing studies offer insights into the overall effectiveness of entity alignment
approaches through direct comparisons on benchmark datasets, a comprehensive under-
standing of their strengths and weaknesses necessitates examining individual components.
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Specifically, it is crucial to investigate how the methods employed within each component
influence the overall performance. By dissecting and evaluating these components indi-
vidually, we can gain unique insights into their contributions, fostering opportunities for
innovation and optimisation. Although there are ablation studies for individual approaches,
they tend to focus only on the methods employed within each specific approach and lack
a systematic analysis that goes beyond these methods. A comprehensive analysis would
not only explore the methods within each approach but also consider alternative methods
that have the potential to enhance the overall performance. This level of analysis will offer
flexibility and adaptability to researchers and practitioners. By experimenting with differ-
ent combinations of methods and components, they can tailor their approach to the specific
needs and characteristics of the datasets they are working with. This adaptability enables
the exploration of various techniques, leading to a better understanding of their impact on
the overall performance. It promotes the discovery of novel combinations and fine-tuned
strategies, enhancing the effectiveness and efficiency of entity alignment approaches.

However, conducting such an analysis for each approach, let alone comparing between
approaches to identify specific components or methods contributing to superior performance,
would be infeasible. Nevertheless, it is possible to focus on representative methods within
each component and evaluate the effects of individual methods and potential combinations,
as demonstrated in the next section.

5 Comparative analysis

5.1 Experiment settings

Datasets We conduct our analysis using two representative datasets: DBP15K [32] and
SRPRS [65]. DBP15K is a widely used dataset for entity alignment, consisting of three
subsets sampled fromDBPedia: DBPZH-EN (Chinese-English), DBPJA-EN (Japanese-English)
and DBPFR-EN (French-English). Each subset contains 15,000 pre-aligned entity pairs, which
are used for training and testing. SRPRS is another dataset sampled from DBPedia andWiki-
data. Compared to DBP15K, SRPRS is sparser and has much fewer relations and triples.
We specifically use two cross-lingual subsets of SRPRS: SRPRSEN-FR (English-French) and
SRPRSEN-DE (English-German). Similar to DBP15K, each subset of SRPRS also contains
15,000 pre-aligned enity pairs. Table 2 provides the statistics of these datasets, where ‘avg.
deg.’ denotes the average number of relation triples in which an entity is involved. Following
the conventions of existing studies, in our experiments, we use 30% of the pre-aligned entity
pairs for training and 70% of them for testing.

Evaluation metrics We report our results using standard evaluation metrics, specifically
H@k (where k = 1, 10). The H@k metric measures the percentage of correctly aligned
entities among the top-k nearest target entities, with H@1 representing the accuracy of align-
ment results. Higher H@k values indicate better performance. Additionally, we employ the
mean reciprocal rank (MRR), which evaluates alignment results by averaging the reciprocal
ranks of correctly aligned entities. Both the H@k andMRRmetrics assess alignment quality
by considering the position or rank of correct matches. Due to space constraints, we omit
the MRR results in this paper. To ensure reliable and robust measurements, we report the
performance based on the average of five independent runs.
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Table 2 Dataset statistics Dataset KG |E | |R| |T r | avg. deg.

DBPZH-EN Chinese 19,388 1,701 70,414 7.25

English 19,572 1,323 95,142 9.71

DBPJA-EN Japanese 19,814 1,299 77,214 7.79

English 19,780 1,153 93,484 9.44

DBPFR-EN French 19,661 903 105,998 10.77

English 19,993 1,208 115,722 11.56

SRPRSEN-DE English 15,000 222 38,363 5.11

German 15,000 120 37,377 4.98

SRPRSEN-FR English 15,000 221 36,508 4.86

French 15,000 177 33,532 4.47

Methodologies and implementation datails To gain insights into the impact of individual
components on alignment performance, we conduct component-level comparisons. In these
comparisons, we vary one component while keeping the other components fixed. To represent
each module, we select representative methods and organise our experiments accordingly. In
addition, we assess the performance of selected combinations of components. Throughout
the evaluation process, we fix the neighbourhood aggregation methods to be GCN or GAT,
conducting the same sets of experiments for each method. This allows us to observe how
changes in one ormore components affect the performance of these twobasicGNNmodels for
entity alignment. To maintain consistency with existing approaches, we fix the loss function
to be the triplet loss, which is commonly employed by various alignment methods. Table 3
presents the evaluated representative methods, with the default choices being underlined.
These choices provide a solid foundation for our evaluation, allowing us to examine and
compare the performance of different combinations in a systematic manner.

We adopt a typical network configuration for entity alignment, consisting of 2 layers with
a dimension of 300 for each layer. We employ the Adam optimiser [66] and train our models
for up to 2000 epochs. Negative samples are updated every 10 epochs. For each combination
of neighbourhood aggregation and skip connection options, we tune the following parameters
to find their optimal values: the learning rate in {0.0005, 0.001, 0.005, 0.01}, the margin for
the triplet loss in {1.0, 2.0, 3.0, 4.0}, the dropout rate in {0.1, 0.2, 0.3, 0.4}, the number of
negative samples in{15, 20, 25, 30, 35} and the number of attention heads (GAT) in {1, 2}.

For entity initialisation, we use Glorot initialisation [67] to generate random embeddings
for entities. Alternatively, when entities are initialised with names, we utilise pre-trained
fasttext embeddings [68, 69] as name embeddings. Following typical implementations, for
DBP15K, we employ Google Translate to translate entity names to English and then use
the pretrained wiki word vectors1 to derive embeddings; for SRPRS, we directly use entity
names without translation and derive the embeddings via aligned word vectors2. For semi-
supervision, we implement the bi-direction iterative method [52] and set the maximum
iteration number to 3. Nearest sampling is limited to the training data, while uniform sam-
pling involves selecting samples from all entities. To facilitate stable matching, we utilise the

1 https://fasttext.cc/docs/en/pretrained-vectors.html
2 http://fasttext.cc/docs/en/aligned-vectors.html
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Table 3 Component-level
experiments: options and default
choices (underlined)

Structure embedding Entity initialisation: random, entity
name embedding

Neighbourhood aggregation: GCN,
GAT

Skip connection: none, concatenation,
highway gates

Alignment training Training strategy: supervision,
semi-supervision

Cost function: triplet loss

Negative sampling: uniform, nearest

Alignment inference Inference strategy:
nearest neighbour(NN), stable
matching(SM)

Distance Measure: Manhattan(L1),
Euclidean(L2), cosine

CSLS: no, yes

deferred acceptance algorithm [46]. When employing the CSLS method, we fix the number
of nearest neighbors, denoted as ‘m’ in the CSLS computation (Equation 8), to 1. We find
that larger values do not significantly improve performance. All experiments are conducted
on a workstation with 2 Intel(R) Xeon(R) Gold 5118 CPUs, 128GB memory and a Nvidia
Quadro P5000 GPU. The code and parameter settings are available online3.

5.2 Results and analyses

Experiment 1: effect of structure embedding options. Table 4 shows the performance of
different entity initialisation, neighbourhood aggregation, and skip connection strategies. On
the DBP15K dataset, initialising entity embeddings with name features leads to a significant
improvement compared to randomly initialised embeddings. The gain is more pronounced
when skip connections are also used. Take GCN for example, using name initialisation alone
leads to a gain of about 9%-13% in H@1compared to random initialisation, while combining
name initialisation and highway gates results in an even greater gain of about 27%-42% in
H@1. This enhancement can be attributed to two factors. First, name initialisation allows the
network to capture additional information about entities beyond the graph structure. Second,
skip connections ensure that the network can effectively extract relevant information from
name embeddings, while ignoring any noisy or irrelevant signals. However, we notice that
using skip connections with randomly initialised entity embeddings usually leads to inef-
fective results. This ineffectiveness likely arises from the network’s difficulty in discerning
meaningful patterns amid the noise present in random initialisations. Skip connections, in
such cases, introduce unnecessary complexities, potentially hindering the embedding per-
formance. We also find that, in general, the utilisation of highway gates leads to superior
performance compared to concatenation. As for the effect of neighbourhood aggregation
options, the difference in performance between GCN and GAT on DBP15K is not apparent.

3 https://github.com/YF-SHU/EvalFramework
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On the SRPRS dataset, the overall performance is worse than on DBP15K, as entities
in SRPRS are involved in fewer relations, resulting in the network captures less contex-
tual information. However, we consistently observe that combining name intialisation with
highway gates achieves better performance than using name initialisation alone, and using
highway gates generally outperforms concatenation. Furthermore, a notable difference in
performance between GAT and GCN networks on SRPRS arises when using name features
without skip connections. GAT performs much worse than GCN, even worse than GAT with
random initialisation. We attribute this to GAT’s heightened sensitivity to the noise intro-
duced by name embeddings. Unlike GCN, which performs neighborhood aggregation based
on node degrees, GAT aggregates information using attentional weights computed through
similarity computations of embeddings. This reliance on attentional weights makes GAT
more susceptible to the noise present in name embeddings. The reason we do not observe
the same performance degradation on DBP15K is that entity names are translated to English
first, which effectively reduces noise in the embeddings.

To sum up, the effect of structure embedding options is influenced by the degree distri-
bution of datasets. Our experiments consistently demonstrate that the results on the denser
DBP15K dataset outperform those on SRPRS. Furthermore, initialising entity embeddings
with name features generally enhances performance; however, its effectiveness depends on
the network’s ability to handle noise introduced by name embeddings, and incorporating
highway gates effectively reduces noise within the network. Combining name initialisation
with highway gates consistently leads to significant performance improvements on both
DBP15K and SRPRS datasets. Conversely, when entities are randomly initialised, the use of
skip connections tends to be ineffective.

Experiment 2: effect of training options Table 5 presents the results of different negative
sampling and training strategies. As shown in the table, under supervised training, using
nearest sampling achieves better performance than using uniform sampling. Figure 2 further
illustrates the training epochs required for the GCN network to converge on both DBPZH-EN

and SRPRSEN-DE datasets. Clearly, the network with uniform sampling takes much longer
to converge compared to nearest sampling: with nearest sampling, only about 500 epochs
are needed, while with uniform sampling, the network has not yet converged even at 1500
epochs. Similar results are observed for the GAT network and other datasets.

As the training shifts from supervised to semi-supervised by labelling likely aligned entity
pairs as new training data, H@1 consistently improves on both GCN and GAT networks,
regardless of the negative sampling strategy used. Figure 3 shows the precision and recall
of the semi-supervision strategy when used with the GCN network on both DBPZH-EN and
SRPRSEN-DE datasets. Here, precision and recall respectively denote the percentages of truely
aligned pairs discovered over the total number of discovered pairs and over the total number
of truely aligned pairs. With more iteration rounds, the precision decreases, while the recall
increases, indicating that more errorneous pairs are included in the training over time. Similar
trends are observed for the GAT network and other datasets. The inclusion of errorneous pairs
potentially explains the degradation in H@10 of the GAT network as it is more sensitive to
noise in the network.

Comparing the results betweenDBP15KandSRPRS,weobserve that the effect of different
negative sampling or training strategies on performance is more apparent on DBP15K than
on SRPRS. For instance, the GCN network achieves a gain of about 8% in H@1 with semi-
supervision onDBP15K compared to supervision, while there is only about 3% improvement
on SRPRS, when nearest sampling is used. This illustrates that the degree distribution of
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Figure 2 Covergence of uniform and nearest sampling strategies

datasets also affects the quality of samples and aligned pairs discovered, leading to variations
in the impact of different strategies on different datasets.

Overall, the effect of training options is influenced by the degree distribution of datasets.
Our findings consistently demonstrate that different training options yield superior results on
the DBP15K dataset compared to the SRPRS dataset. Additionally, we find that the network
using uniform sampling exhibits slower convergence and produces inferior results compared
to the network utilising nearest sampling. This highlights that the quality of negative samples
significantly affects training efficiency and effectiveness. Moreover, the utilisation of semi-
supervision enhances alignment performance, particularly in terms of H@1. However, it is
important to note that the quality of the chosen strategy plays a crucial role in the overall
performance of semi-supervised learning.

Experiment 3: effect of inference options Table 6 presents the results of different distance
metrics and inference strategies. Among L1, L2, and cosine similarity, no single metric
clearly outperforms the others across all networks or datasets. However, combining these
metrics with CSLS in nearest neighbor (NN) search consistently yields improved results.
CSLS enhances these metrics by normalising the distance between two entities based on the
density of their neighbours in the embedding space. Entities that frequently appear as nearest
neighbors of others receive more significant distance penalisation. Notably, the improvement
on DBP15K is more noticeable than on SRPRS. For example, using cosine similarity with
CSLS on DBP15K leads to about 5% improvement in H@1, while on SRPRS, only about
2% improvement is achieved. The relative ineffectivess of CSLS on SRPRS is mainly due
to sparse KGs having fewer hub entities (entities that appear more than once as nearest
neighbours) in the vector space compared to dense KGs when considering only the structural
information, as is the case here. This is confirmed by Figure 4 which displays proportions
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Figure 3 Precision and recall of the semi-supervised strategy employed
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(a) DBPZH-EN (b) SRPRSEN-DE

Figure 4 Proportions of target entities that appear 0, 1 and more times as nearest neighbours (GCN*, GAT*
represent GCN and GAT networks with entity name initialisation and highway gates in Experiment 4)

of target entities that appear 0, 1 and more times as nearest neighbours on DBPZH-EN and
SRPRSEN-DE datasets (other datasets exhibit similar results).

Furthermore, using stable matching instead of NN search further improves H@1. How-
ever, we do not observe significant improvement when CSLS is also used. Additionally, the
improvement achieved on DBP15K and on SRPRS with stable matching compared to NN
search is similar. This suggests that stable matching is less affected by the choice of distance
metric and the degree distribution of datasets. It is important to note that while stable match-
ing enhances H@1, it comes at the cost of significantly increased running time compared to
NN search. For instance, on DBP15K, without CSLS being used, NN search takes about 10s
to produce results, whereas stable matching requires about 27s.

Experiment 4: effect of selected combinationsFinally, we compare the overall performance
of two groups of combinations. In the first group,we assume no name information is available,
and entities are randomly initialised without skip connections. In the second group, we
assume entity names are available, and entities are initialised with name embeddings, while
highway gates are used. For both groups, we employ nearest sampling and cosine similarity-
based NN search, and combine these strategies with CSLS or semi-supervision. The results
are shown in Table 7. As with previous observations, incorporating name initialisation and
skip connections (highway gates) significantly improves the performance of GCN and GAT
networks compared to random initialisation and no skip connections. Using CSLS or semi-
supervision further enhances H@1, and the combination of both brings the most substantial
improvement. This is because the entity pairs labelled as new training data in each iteration
are more accurate due to the use of CSLS. Interestingly, on SRPRS, the effect of using
CSLS on performance is more evident for the second group than for the first group. Figure 4
shows that when entity names are considered, the proportions of target entities appearing only
once as nearest neighbours of source entities increase significantly, indicating better entity
embeddings are learned. By using CSLS, the proportions of both isolated and hub entities
further decrease, and this decrease is more significant than when no name information is
considered. Moreover, on SRPRS, while there is a substantial performance gap between
GCN and GAT networks when no CSLS or semi-supervision is used for the second group,
the use of these two strategies bridges the gap.

It is noteworthy that the performance of these two groups of combinations, namely the
combination of randomenity initialisation, CSLS, and semi-supervision, and the combination
of name initialisation, highway gates, CSLS, and semi-supervision, is comparable or even
superior to many existing approaches that incorporate more graph information as input or
employ more complicated embedding methods. This demonstrates that by selecting suitable
methods for combination, even basic GNN networks can achieve competitive results.
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6 Conclusion

This paper delves into the critical role of entity alignment in knowledge graph (KG) integra-
tion, focusing specifically on exploring Graph Neural Network (GNN)-based approaches.
Our investigation has led us to develop a framework that captures the essential features of
existing GNN-based entity alignment methods. Through a detailed analysis, we have shed
light on the significant impact that individual components andmethods have on performance,
highlighting specific module options that notably influence alignment results. Additionally,
we have learned that the degree distribution of the dataset plays a pivotal role in shaping
alignment outcomes.

Our research has shown that by carefully selecting suitable methods for combination,
competitive results can be achieved even with basic GNN networks. However, it’s important
to note that our analysis has limitations. We have not fully explored the impact of various
graph information types beyond graph structures and entity names. Our experiments have
revealed a performance gap between dense and sparse datasets. Recent advancements, such
as incorporating multi-modal information [56] or exploring associations between attributes
and relations [70, 71] for long-tail entity alignment, present opportunities to address this chal-
lenge. Furthermore, we have yet to explore the impact of self-supervised training strategies on
performance and their applicability. Despite these limitations, our work lays the foundation
for tailored approaches considering specific needs and dataset characteristics. Researchers
can drive the field forward by experimenting with diverse combinations of components and
methods, advancing the state-of-the-art in entity alignment, and enhancing knowledge graph
integration techniques. These efforts will open new possibilities for leveraging knowledge
graphs across diverse applications.
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