
World Wide Web (2023) 26:4153–4172
https://doi.org/10.1007/s11280-023-01215-6

Click is not equal to purchase: multi-task reinforcement
learning for multi-behavior recommendation

Huiwang Zhang1 · Pengpeng Zhao1 · Xuefeng Xian2 · Victor S. Sheng3 ·
Yongjing Hao1 · Zhiming Cui4

Received: 31 March 2023 / Revised: 21 September 2023 / Accepted: 25 September 2023 /
Published online: 20 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Reinforcement learning (RL) has achieved ideal performance in recommendation systems
(RSs) by taking care of both immediate and future rewards from users. However, the existing
RL-based recommendation methods assume that only a single type of interaction behavior
(e.g., clicking) exists between user and item, whereas practical recommendation scenarios
involve multiple types of user interaction behaviors (e.g., adding to cart, purchasing). In this
paper, we propose a Multi-Task Reinforcement Learning model for multi-behavior Recom-
mendation (MTRL4Rec), which gives different actions for users’ different behaviors with
a single agent. Specifically, we first introduce a modular network in which modules can be
shared or isolated to capture the commonalities and differences across users’ behaviors. Then
a task routing network is used to generate routes in the modular network for each behavior
task. We adopt a hierarchical reinforcement learning architecture to improve the efficiency of
MTRL4Rec. Finally, a training algorithm and a further improved training algorithm are pro-
posed for our model training. Experiments on two public datasets validated the effectiveness
of MTRL4Rec.

Keywords Recommendation system · Multi-behavior modeling · Reinforcement learning ·
Multi-task learning

1 Introduction

With the increasingly serious problem of information overload, it is difficult for users to find
the content they are interested in when faced with vast and complex information. To this

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2022
Guest Editor: Richard Chbeir, Helen Huang, Yannis Manolopoulos, Fabrizio Silvestri.

B Pengpeng Zhao
ppzhao@suda.edu.cn

B Xuefeng Xian
xianxuefeng@jssvc.edu.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01215-6&domain=pdf

4154 World Wide Web (2023) 26:4153–4172

end, recommendation systems assist users by suggesting personalized items that best fit their
needs and preferences. It is widely used in many fields, such as e-commerce [1, 2], news [3],
music [4, 5]. The deep learning (DL)-based methods have become the current mainstream
due to their capability of modeling complex user-item interactions [6–9]. For example, the
work of Hidasi et al. [10] adopts recurrent neural networks (RNNs) to model the sequence
information of user interactions. BERT4Rec [11] and S3-Rec [12] model sequence informa-
tion through self-supervised learning (SSL), for better user and item representation. Since
these DL-based methods cannot continuously update the strategies during the interactions
and maximize the expected long-term cumulative reward from users, RL-based methods
were proposed. For example, Shani et al. [13] modeled RS as a Markov decision process
(MDP) and estimated the transition probability and the Q-value table. Zheng et al. [3] pro-
posed a deep Q-network (DQN) based method which can take care of both immediate and
future rewards. Zhao et al. [14] argued that some recommended items that users skipped can
influence the recommendation performance and proposed a model considering both positive
feedback and negative feedback. Zhao et al. [15] designed a deep hierarchical reinforcement
learning model to overcome the problem of sparse feedback signals in RSs.

However, existing RL-based recommendation methods ignore the interest gap in the dif-
ferent behaviors of users. The interest gap means that users have different preferences on
different behaviors. In simple terms, a person may be interested in an item and click on it, but
never buy it. It pays off to value this difference and use several recommendation strategies.
The recommendation on the homepage should use a click-targeted strategy, andwhen placing
an order, it should be a purchase-targeted strategy. Suppose we treat each behavior as an indi-
vidual task, and build several independent models with existing methods for multi-behavior
recommendation. It costs too much and ignores the commonality between tasks since the
models are independent.

To this end, we propose a Multi-Task Reinforcement Learning for multi-behavior
Recommendation (MTRL4Rec), which gives different actions for users’ different behav-
iors with a single policy. Firstly, we use a modular network to model the commonalities and
differences between behavior tasks. The modular network consists of several Modular Units
(MoUs). Next, a task routing network is used to select routes automatically for different
behavior tasks in the modular network. It reweighs the outputs of each MoU in the modular
network for different behavior tasks. In this way, the MoUs that model commonalities of
tasks can be reused, and the MoUs that model differences of tasks can be isolated. Then,
to improve the model’s efficiency, we adopt a hierarchical reinforcement learning structure
consisting of a high-level agent and a low-level agent. The high-level agent is a category
selector which generates the category that should be recommended. In contrast, the low-level
agent recommends a specific item to users in the category selected by the high-level agent.
Additionally, we provide an off-policy training algorithm for the MTRL4Rec to train our
model. We then extend MTRL4Rec to a double deep Q-network (DDQN) reinforcement
learning algorithm for higher performance and stability. Finally, we evaluated our method
on pre-trained environment simulators, as [14]. Experiments on two datasets validate the
effectiveness of our MTRL4Rec and MTRL4Rec-DDQN.

We summarize our major contributions as follows:

• To the best of our knowledge, this is the first work to treat the multi-behaviors as multi-
tasks in an RL-based recommendation.

• We propose an MTRL4Rec model, which uses a modular network and a task routing
network to solve the multi-task problem in multi-behavior recommendation with rein-
forcement learning.

123

World Wide Web (2023) 26:4153–4172 4155

• We further extend ourMTRL4Recmethod to a DDQN reinforcement learning algorithm,
namelyMTRL4Rec-DDQN, which improves the performance and stability of the model.

• Experimental results demonstrate that users do have different preferences in different
behaviors, and our MTRL4Rec model outperforms state-of-the-art models in multi-
behavior recommendation. The experiment also verified that MTRL4Rec-DDQN has
better performance and stability.

2 Related work

In this section, we briefly review related work, including recommendation system, reinforce-
ment learning and multi-task learning.

2.1 Recommendation system

Recommendation systems help users find items that match their preferences and needs by
giving personalized recommendations. Currently, deep learning based methods have become
the mainstream of RS research. In past research on recommendation systems, He et al. [16]
proposed a neural collaborative filtering (NCF) method, which represents users and items
into low-dimensional vectors, and combines the matrix factorization (MF) model and the
multi-layer perceptron model in the hidden layer. Self-supervised graph learning (SGL) [17]
is proposed byWu et al., in which a self-supervisedmethod is used to alleviate the problem of
data sparsity. Some works model the user’s interaction history sequence to capture the user’s
dynamic preference and then predict the next item the user may be interested in. The work of
Hidasi et al. [10] adopts recurrent neural networks (RNNs) tomodel the sequence information
of user interactions. BERT4Rec [11] and S3-Rec [12] model sequence information through
self-supervised learning (SSL), for better user and item representation.

However, these methods cannot continuously update the strategy during the interaction
process and maximize the user’s long-term cumulative reward. Therefore, some reinforce-
ment learning based research has been proposed to solve this problem.

2.2 Reinforcement Learning

Reinforcement learning is a type of machine learning that focuses on training agents to make
decisions based on feedback from their environment. In [18], deep reinforcement learning
(DRL) is employed in making Q-learning and deep neural networks (DNNs) merge together.
The methods of past DRL can be summarized into three categories: value-based methods
(such as DQN [18], DDQN [19]), policy gradient methods (such as REINFORCE [20],
REINFORCE-wb [21]), and actor-critic methods (such as DDPG [22], SAC [23]).

Reinforcement learningbased recommendation systems (RLRSs) use reinforcement learn-
ing to continuously update the strategy during the interaction and maximize the expected
long-term cumulative reward from users [24]. Shani et al. [13] modeled the RS as an MDP
process and estimated the transition probability and the Q-value table. Zheng et al. [3] pro-
posed a DQN based method that can take care of both immediate and future reward. Zhao et
al. [14] argued that some recommended items that users skipped can influence the recommen-
dation performance and proposed a model considering both positive feedback and negative
feedback. In the course recommendation scenario, users may be interested in various courses.
For this reason, Zhang et al. [25] proposed a hierarchical reinforcement learning algorithm to

123

4156 World Wide Web (2023) 26:4153–4172

revise the user profiles, and tune the course recommendation model on the revised profiles.
Per et al. [26] built an RL-based value-aware recommendation to maximize the profit of an
RS directly. Bai et al. [27] proposed a solution tomore effectively utilize log data with model-
based RL algorithms to avoid the high interaction cost. Wang et al. [28] proposed a KERL
model for fusing knowledge graph information into an RL-based sequential recommendation
system.Hierarchical reinforcement learning (HRL) was proposed to solve more complex and
challenging RL tasks in the work of Barto and Mahadevan [29]. This is because it allows
the agent to learn different sub-policies hierarchically in a specific task to make step-by-step
decisions. Zhao et al. [15] designed a multi-goals abstraction based HRL algorithm to over-
come the problem of sparse feedback signals in recommendation systems. In the hierarchical
reinforcement learning recommendation method (HRL-Rec) designed by Xie et al. [30], the
recommendation is divided into two steps. One is to recommend a channel, and one is to
recommend specific items. However, these are all single-task methods and cannot perform
well in multi-behavior recommendation systems.

In RLRS research, building a suitable environment to evaluate methods is challenging.
There are mainly three methods for evaluation in previous work: online test, offline test, and
simulation. In the online method, the methods are evaluated while interacting with real users
and in real-time, such as [30, 31]. Obviously, this is the best way to evaluate RLRS methods.
But it may bring terrible experiences to real users. In the offlinemethods, the environment is a
static dataset from user interaction logs, as [32–34] did. This method can make full use of the
log data in history. However, it cannot fine-tune the recommendation strategy according to the
dynamic changes of the environment. In the simulation method, a user model is established,
known as a simulator. In the researches of [15, 35, 36], the proposed RLRS methods interact
with simulators for training and evaluation.

2.3 Multi-task learning

Multi-task learning (MTL) is one of the core topics ofmachine learning [37].Many researches
[38, 39] have shown that multiple objectivesmake different tasks benefit each other. Strezoski
et al. [40] use a task routing layer to generate a task-specific binary mask, which is applied
to the neural network. Liu et al. [41] adopt a shared Bidirectional Encoder Representations
from Transformers (BERT) embedding layer in multi-task scenarios. Multi-task Learning is
also a challenging problem in RL. Singh [42] proposed a method of selecting different Q-
functions for different tasks using a gatemechanism.Wilson et al. [43] proposed a hierarchical
Bayesian-based multi-task RL framework. The work of Pinto and Gupta [44] uses a shared
trunk architecture to jointly learn robot moving. Instead of directly selecting routes for each
task, a softmodularizationmethod is proposed in thework ofYang et al. [45] to softly combine
possible routes. Someworks adoptMTL to improve the recommendation performance.MOE
[46] is proposed to share some experts at the bottom and combine experts through a gating
network.Ma et al. [47] extendedMOE to utilize different gates for each task to obtain different
fusing weights in MTL. Tang et al. [48] found seesaw phenomena in MTL and proposed a
progressive layered extraction method.

However, no previous work has attempted to improve multi-behavior recommendation
using multi-task reinforcement learning. In this work, we use a multi-task reinforcement
learning framework with modular networks and task routing networks to implement the
multi-behavior recommendation.

123

World Wide Web (2023) 26:4153–4172 4157

3 Method

Wemodel recommendation tasks on different behaviors as severalMarkov decision processes
(MDPs) and leverage reinforcement learning to automatically learn the optimal recommenda-
tion strategy.Theuser is the environment,while the recommendation system that recommends
items to users is the agent. The user’s information and interaction history is the state of the
environment. According to the current state, the agent selects an action (recommends an item
to the user). The feedback from the users is seen as a reward to the agent. Then the agent is
updated according to the reward, and the following interaction starts.

We define our problem as follows When a user u interacts with the agent (i.e., the rec-
ommendation system) and has a request on task (behavior) t, the agent is going to select an
action a from the item set for this user. Then, the agent observes the user’s feedback r and
adjusts the policy for the next time recommendation.

3.1 Basic RLmodel for multi-behavior recommendation

In this subsection, we discuss two methods to implement multi-behavior recommendation
using existing RL-based recommendationmethods. As shown in Figure 1(a), each task has its
corresponding agent. Recommendation agents for different behaviors are completely inde-
pendent of each other. Figure 1(b) depicts another method. In this method, we allow the agent
to observe the state, action, and reward of other tasks to improve its performance.

Algorithm 1 Off-policy Training of Single-task RL Model for Multi-behavior Recommen-
dation
1: Initialize the parameters of single-task agents A = {A1, A2, . . .} for each tasks
2: Initialize the replay memories D = {D1, D2, . . .} for each tasks
3: for session = 1, 2, · · · , M do
4: Initialize state s0 from previous sessions
5: for step i = 1, 2, · · · , T do
6: for task t in task_list do
7: generate ati with At
8: end for
9: Observe user’s behavior as t
10: Recommend item ati to the user
11: Observe reward ri and next state st+1 from user
12: Store transition (si , a

t
i , ri , si+1) in Dt

13: Sample a mini-batch of transitions from Dt
14: Update parameters of current task agent At
15: if si+1 is terminal state then
16: break
17: end if
18: end for
19: end for

The Algorithm 1 describes the method shown in Figure 1(a) formally. The agents and
replay memories are initialized in Line 1-2. At the beginning of each session, we use the
previous session as the current state (Line 4). If a user does not have a previous session, it will
be an empty sequence. Before each interaction step, we call all single-task agents to generate

123

4158 World Wide Web (2023) 26:4153–4172

User

Agent

Replay
Memory

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Mul�-task Agent

Request, Recommend
and Feedback

Log and Update

(a) (b) (c)

Interact on
mul�-task

Figure 1 The RL Model for Multi-behavior Recommendation. (a) Recommendation agents for different
behavior tasks are completely independent of each other. Each task has its corresponding agent. (b) The tasks
are still independent of each other, but agents can observe each other. (c) One agent is responsible for all tasks.
An MTRL4Rec model, which is in this framework, is proposed in Section 3.2

recommended items for each task in task_list , which includes all recommendation targets
such as clicks, purchases, Etc. (lines 6-8). When a user requests, we give a corresponding
recommendation ati based on the user’s behavior task t . For example, when a user visits the
homepage, a click-targeted recommendation will be given (Line 9-10). And we observe the
reward ri from the user, and store this transition to the replay memory Dt (Line 11-12). Then
we sample some transitions from Dt and update the current agent At as defined in each RL
method (Line 13-14).

3.2 The proposedMTRL4Rec model

We have proposed twomethods to implement multi-behavior recommendation using existing
RL-based methods in the previous subsection. However, as mentioned in the introduction,
existingRL-basedmethods cannot capture the commonalities between tasks, and tasks cannot
benefit fromeachother. Toovercome these problems,wepropose aMulti-TaskReinforcement
Learning for multi-behavior Recommendation (MTRL4Rec). In our method, a single agent
serves multi-behavior recommendation as shown in Figure 1(c). Next, we will describe our
MTRL4Rec in detail.

Hierarchical RL Structure For higher exploration and exploitation efficiency in RL, a hier-
archical structure is adopted in our model, which consists of a high-level agent (HRA) and a
low-level agent (LRA), as shown in Figure 2.

The high-level agent is a category selector. It limits the categories in which items should
be recommended. The category information is an attribute of the item and comes from the
dataset. The input of the HRA network is a state-category-task tuple (sh, c, t). And it outputs
a score of the category QH (sh, c, t; θH). Then HRA generates the category that should be
recommended following an ε-greedy strategy according to:

cti = argmax
c

QH (shi , c, t; θH), (1)

where θH is the learnable parameter set of the HRA network. In other words, the agent
chooses the category with the highest score with a probability of 1− ε, or randomly chooses
a category with the probability ε to explore. Similarly, the LRA network outputs a score QL

123

World Wide Web (2023) 26:4153–4172 4159

 Environment

HRA

LRA

HRA

LRA

. . .

. . .

. . . HRA

LRA

. . .

Replay M
em

ory

Figure 2 The hierarchical RL framework of our model. In each step of the interaction, the HRA chooses a
category, and the LRA recommends an item in the category HRA selected

for each item with parameters θ L . And the LRA recommends specific items to users, within
the limit of the output of HRA, according to:

ati = argmax
cate(a)=cti

QL(si , a, t; θ L), (2)

where the cate() denotes the category of an item.

LRANetwork The structure of the LRA network is shown in Figure 3. It has three important
components (embedding, task routing network, andmodular network). TheHRAnetwork has
a similar structure whose action space and the state space are at the category level compared
with LRA. The illustration of the HRA network structure will be omitted to avoid repetition.

LRALRA

GRU

GRU

MoU

MoU

MoU

MoU

MoU

MoU

.

Embedding Task Rou ng
Network

Modular Network

Figure 3 LRA network. It has three critical components (embedding, modular network, and task routing
network). The modular network captures the commonalities and differences between tasks, and the task
routing network selects a route for each task

123

4160 World Wide Web (2023) 26:4153–4172

Embedding The role of this component is to process the input of the network. The one-hot
inputs (action, user, and task tag) aremapped as vectors. TwoRNNmodelswith gate recurrent
unit (GRU) are utilized. One RNN receives the user’s latest interacted item sequence s+ as
inputs and outputs the final hidden state of GRU cells. And another receives the negative item
sequence s− (items that the user skipped) as inputs and outputs the final hidden state of GRU
cells. Finally, a fully connected layer merges the action, user, and item sequences (positive
and negative) information. Task information is only used as a part of the input of the Task
Routing Network.

Modular Network To improve the performance of the model on multiple tasks, we build
a Modular Network to capture the commonalities and differences of tasks. The Modular
Network has multiple layers, and each layer has M Modular Units (MoUs), as shown in
Figure 3. In this way, MoUs that model commonalities can be reused, and MoUs that model
differences can be isolated from each other in different tasks. Each MoU has the same multi-
layer fully connected structure, as shown in Figure 4.

Task RoutingNetwork The role of the task routing network is to control the route of different
tasks in the modular network. It chooses different paths for different tasks in the Modular
Network by controllingwhichMoUs are activated. In addition to the current state, the input of
the task routing network also contains the current task, which is not considered in themodular
network. It is also amulti-layer structure with one layer less than themodular network. Figure
4 depicts how the task routing network controls the weight of each MoU. Each layer of the
task routing network outputs a weight matrix Wl and a hidden state Hl . We formally define
this process as (3).

(Wl , Hl) = T Rl(s, t, Hl−1), (3)

where s is the current state embedding, t is the current task embedding, and Hl−1 is the
hidden state of the last layer. We set H0 as a zero vector. The weight matrix reweighs the
outputs of each MoU in the modular network for different tasks. The input of an MoU in the
modular network can be calculated according to

Xl+1,k = softmax(Wl,k)Yl , 1 ≤ k ≤ M, (4)

whereWl,k is a column vector inWl for the k-th MoU in layer l, and Yl is the output of MoUs
in the l-th layer of the modular network.

Off-policy Training Algorithm In the MTRL4Rec method, both HRA and LRA adopt the
DQN architecture. Here we will illustrate how to utilize the DQN-based algorithm to train
our MTRL4Rec model.

First, we randomly initialize the HRA network parameters θH and the LRA network
parameters θ L and create an empty replay memory D. At the beginning of a session, we set
the initial state s0 as the user’s information. Before each interaction step i , we call the HRA to
generate different item categories {ct1i , ct2i , . . .} according to (1) for different behavior tasks
{t1, t2, . . .}. Then we call the LRA to generate different items {at1i , at2i , . . .} for each task
according to (2). At the time-stamp t , we give the corresponding recommendation ati and
observe the feedback from the user. If the user interacted with the item, we set the current
reward ri = 1, add ati to the positive item sequence s+ and generate the next state si+1.
Otherwise, we set the current reward ri = 0 and add ati to the negative item sequence s−.

123

World Wide Web (2023) 26:4153–4172 4161

Task Rou�ng
Network

MoU
MoUMoU

MoUMoU

MoUMoU

Figure 4 The structure of Modular Unit(MoU). EachMoU has the same multi-layer fully connected structure.
The weight of MoU is controlled by the task routing network

Then the transition 〈si , t, ati , ri , si+1〉 will be stored to the replay memory D. We sample a
mini-batch of transitions 〈s, t, a, r , s′〉 from D , and update the HRA network parameters
θH and the LRA network parameters θ L . The LRA network has the loss function:

LossL(θ L) = Es,a,r ,s′,t (yL − QL(s, a, t; θ L))2, (5)

where yL is the target for the current iteration, as in (6):

yL =
{

r terminal s′
r + γ max

a′ QL(s′, a′, t; θ L) otherwise (6)

The hyper-parameter γ is a discount factor that controls the weight of future reward. Equa-
tion 5 can be minimized according to:

∇θ L LossL(θ L) = Es,a,r ,s′,t [(yL − QL(s, a, t; θ L))

∇θ L QL(s, a, t; θ L)]. (7)

Similarly, the HRA ignores specific items and generates candidate categories for each behav-
ior task. The state of HRA, sh , is generated from s. It ignores the specific item information
and keeps the category information. The HRA network has the loss function:

LossH (θH) = Esh ,cate(a),r ,s′h , t(yH − QH (sh, cate(a), t; θH))2, (8)

where yH is calculated from (9):

yH =
{

r terminal s′
r + γ max

c
QL(s′h, c, t; θH) otherwise. (9)

The HRA network parameters θH can be updated according to:

∇θH LossH (θH) = Esh ,cate(a),r ,s′h ,t [(yH − QH (sh, cate(a), t; θH))

∇θH QH (sh, cate(a), t; θH)]. (10)

Formally, Algorithm 2 describes the process of off-policy training for our MTRL4Rec
model.

123

4162 World Wide Web (2023) 26:4153–4172

Algorithm 2 Off-policy Training of Multi-task Reinforcement Learning Model for Multi-
behavior Recommendation
1: Initialize the HRA network parameters θH and the LRA network parameters θ L

2: Initialize the replay memory D
3: for session = 1, 2, ..., M do
4: Initialize state s0 from previous sessions
5: for step i = 1, 2, ..., T do
6: for task t in task_list do
7: generate cti according to (1)
8: generate item ati according to (2)
9: end for
10: Observe user’s behavior as t
11: Recommend item ati to the user
12: Observe reward ri and next state si+1 from user
13: Store transition 〈si , t, ati , ri , si+1〉 in D
14: Sample a mini-batch of transitions 〈s, t, a, r , s′〉 from D
15: Update the LRA network parameters θ L based of (7)
16: Update the HRA network parameters θH based of (10)
17: if si+1 is terminal state then
18: break
19: end if
20: end for
21: end for

A Further Improved Algorithm: MTRL4Rec-DDQN The value function update target con-
tains maximization operation (6), (9). In this process, a behavior is selected through a
maximization operation and evaluated maximally. This makes the output of the value func-
tion greater than the real value. And this error will be enlarged as the number of behaviors
increases. The result is that DQN-based reinforcement learning algorithms have the defect
of overestimation.

To this end, we further improve and propose an off-policy update algorithm based on
DDQN [19]. Compared with DQN, DDQN is more stable because it adopts a dual network
structure and delayed update, effectively solving the problem of overestimating Q-value.
DDQN adopts two different value functions to realize the selection and evaluation of actions.
The neural network structures corresponding to these two value functions are consistent. It
can also be understood that there are two sets of network parameters, θ and θ−.

First, the online network is used for action selection with θ , consistent with the previous
DQN-based method.

a∗ = argmax
a

Q(s′, a; θ) (11)

Then use the target network with parameters θ− to evaluate the Q-value of this action, for
the update target calculation:

y = r + γ Q(s′, a∗; θ−). (12)

Then we have:
y = r + γ Q(s′, argmax

a
Q(s′, a; θ); θ−). (13)

Specific to ourmulti-task reinforcement learning approach, randomly initialize the param-
eters θH and θ L of theHRAandLRAnetworks, and create an empty replaymemory D. Create
target network parameters θH− = θH and θ L− = θ L . At the beginning of each session, set
the initial state s0 to the user profile and the user’s previous session. Before each interaction
step i , we still call the HRA to generate different item categories ct1i , ct2i , . . . for different

123

World Wide Web (2023) 26:4153–4172 4163

behavior tasks t1, t2, . . . , according to (1). Then we call the LRA to generate specific items
at1i , at2i , . . . for each task according to the (2). When a user initiates a request on an action t ,
we provide the corresponding recommendation ati and observe the user feedback. If the user
interacts with the item, we set the current reward ri = 1, add ati to the positive feedback item
sequence s+ and generate the next state si+1. Otherwise, we set the current reward ri = 0
and add ati to the negative feedback sequence s−. Then, the transition 〈si , t, ati , ri , si+1〉 will
be stored into replay memory D. So far, it is similar to the DQN-based method. Then, we
sample a batch of transitions 〈s, t, a, r , s′〉 from the replay memory D randomly. The loss
function still has the formulas 5 and 8. The difference is the update manner of targets yL and
yL in the loss functions. Similar to (11), the HRA selects an action (a category) according
with θH :

c∗ = argmax
c

QH (s′h, c, t; θH). (14)

Use θH− to evaluate the action c∗ and calculate its update target:

yH =
{

r terminal s′
r + γ QH (s′h, c∗, t; θH−) otherwise.

(15)

We can calculate the update target of LRA parameters according to the following:

yL =
{

r terminal s′
r + γ QL(s′, a∗, t; θ L−) otherwise,

(16)

where a∗ = argmaxcate(a′)=c∗ QL(s′, a′, t; θ L). Then, update θH and θ L according to (8)
and (5). After eachC times of updating operations on θH and θ L , update θH− and θ L− once,
set θH− = θH , θ L− = θ L .

The off-policy training process of the DDQN-based MTRL4Rec model (MTRL4Rec-
DDQN) is formally described in the Algorithm 3.

4 Experiment

In this section, we conduct a series of experiments with the two public datasets to evaluate
the effectiveness of our proposed MTRL4Rec. We mainly focus on four research questions
(RQs):

• RQ1: How do the proposed MTRL4Rec and MTRL4Rec-DDQN perform compared to
baselines?

• RQ2: How do the components in MTRL4Rec contribute to performance?
• RQ3: Can MTRL4Rec and MTRL4Rec-DDQN achieve better performance in the inter-
action with the online environment?

• RQ4: How do the key hyper-parameters affect the model performance?

4.1 Datasets

We select two public datasets for experiments to evaluate our MTRL4Rec and MTRL4Rec-
DDQN recommendation performance.

123

4164 World Wide Web (2023) 26:4153–4172

Algorithm 3 Off-policy Training of Multi-task Reinforcement Learning Model for Multi-
behavior Recommendation (MTRL4Rec-DDQN)

1: Initialize the HRA network parameters θH and the LRA network parameters θ L

2: Initialize the HRA target network parameters θH− = θH and the LRA target network parameters θ L− =
θ L

3: Initialize the replay memory D
4: for session = 1, 2, ..., M do
5: Initialize state s0 from previous sessions
6: for step i = 1, 2, ..., T do
7: for task t in task_list do
8: generate cti according to (1)
9: generate item ati according to (2)
10: end for
11: Observe user’s behavior as t
12: Recommend item ati to the user
13: Observe reward ri and next state si+1 from user
14: Store transition 〈si , t, ati , ri , si+1〉 in D
15: Sample a mini-batch of transitions 〈s, t, a, r , s′〉 from D
16: Calculate update target yH and yL according to (15) and (16)
17: Update the LRA network parameters θ L based of (7)
18: Update the HRA network parameters θH based of (10)
19: Every C steps, set θ L− = θ L , θH− = θH

20: if si+1 is terminal state then
21: break
22: end if
23: end for
24: end for

Tmall 1 is a dataset of user behaviors fromTmall for recommendation problemswith implicit
feedback offered by Alibaba. This dataset randomly selects users’ behavior logs, including
clicking, purchasing, adding items into the shopping cart, and item favoring, duringNovember
25 to December 03, 2017. It has a total of 100,150,807 interaction logs. Its organization is
very similar to MovieLens-20M.

Another dataset is Tianchi2 from the Tianchi competition. It is sampled from the
Taobao application and has a similar structure as the Tmall dataset. Compared with Tmall,
Tianchi contains side information about users and items, and is smaller, with 12,256,906
interaction logs.

Since the data on item favouring is too sparse, in the following experiment, we choose
clicking, purchasing, and adding items into the shopping cart as three different behavior tasks
and discard the data on item favoring.

4.2 Baselines

We compare our MTRL4Rec and MTRL4Rec-DDQN with two types of baselines. The
first is the state-of-the-art RL-based recommendation methods to demonstrate the overall
performance of our MTRL4Rec. We use the method in Algorithm 1 to implement the multi-
behavior recommendation for comparison. The second type is the variants of ourMTRL4Rec

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=46

123

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=46

World Wide Web (2023) 26:4153–4172 4165

model to show its ablation performance. In detail, we compare our MTRL4Rec method with
the following baselines:

• DQN [49]: This is a fundamental reinforcement learning method with a deep Q-network.
We use an independent deep Q-network for each task. This baseline helps us establish a
reference point to verify the performance of the multi-task models.

• DEERS [14]: This baseline adopts a classical DQN framework and considers both pos-
itive feedback and negative feedback. And a pairwise regularization term is used to
maximize the difference of Q-values between positive items and negative items.

• HRL: This is a baseline with a hierarchical reinforcement learning structure like [15, 30].
For fairness, both the high-level agent and the low-level agent adopt the DQN framework.
This is a representative RL-based recommendation method. This baseline also helps us
evaluate the performance improvement achieved by introducing a hierarchical structure
to the recommendation.

• X+MT: We add task tags to the state to adapt existing methods to the multi-behavior
recommendation. The baseline HRL+MT (MTRL4Rec w/o M) is also a variant of our
model whose modular network is replaced by fully connected layers. It allows us to
evaluate the impact of our proposed modular network.

• MTRL4Rec w/o R: In this variant, we removed the routing network and set the MoUs’
weights in the modular network equal. This enables us to evaluate the influence of task-
specific routing and understand the significance of the routing network in our proposed
MTRL4Rec model.

• MTRL4Recw/oH: This variant is designed to evaluate the importance of the hierarchical
reinforcement learning (HRL) structure in our model. In this case, the HRA is removed,
and the users interact with the LRA directly.

4.3 Simulator

Due to the difficulty and huge cost of A/B tests, we train our method and RL-based baselines
on a simulated environment as [14, 15]. The simulated environment is trained on users’ logs.
The simulator is a deep neural network. It outputs a one-hot vector that predicts the immediate
feedback for a state-action pair 〈s, a〉 for every behavior task t . We tested the simulator on
users’ logs (not the data for training), and experimental results suggest that the simulated
online environment can predict immediate feedback accurately and simulate the real online
environment. This enables us to train and test our model on it. To get closer to reality, we let
the simulator randomly requests on different behavior tasks according to the distribution of
different behaviors in the dataset.

Moreover, the user randomly terminates the session with a probability of 1 − pi in each
step. If the user interactedwith the last recommended item ai−1, we set pi as 1. Otherwise, we
set pi as pi−1dp , where dp is a patience discount factor, a hyper-parameter between 0− 1. If
the agent cannot recommend satisfactory items to users, the users may terminate the session
earlier.

4.4 Offline Test (RQ1 and RQ2)

In the offline test, we re-rank the items from users’ logs in the test set, according to items’ Q-
values output by the models. The target items will be ranked at the top of the ranked new list
if a method works well. For the hierarchical RL algorithm, we use their LRA to re-rank these

123

4166 World Wide Web (2023) 26:4153–4172

Table 1 Performance comparisons among different models

Methods Tmall Tianchi
HR NDCG HR NDCG HR NDCG HR NDCG
@5 @10 @5 @10

DQN 0.2718 0.1630 0.5363 0.2448 0.3150 0.1863 0.5965 0.2706

0.2812 0.1666 0.5286 0.2458 0.3279 0.1990 0.6257 0.2830

0.2947 0.1783 0.5376 0.2549 0.3302 0.2026 0.6032 0.2822

DQN+MT 0.2718 0.1609 0.5238 0.2384 0.3268 0.1940 0.5787 0.2711

0.2746 0.1642 0.5286 0.2460 0.3279 0.1954 0.6175 0.2808

0.2871 0.1740 0.5384 0.2463 0.3333 0.2070 0.6063 0.2887

DEERS 0.2714 0.1623 0.5318 0.2419 0.3248 0.1913 0.5768 0.2667

0.2840 0.1692 0.5239 0.2447 0.3251 0.2044 0.5929 0.2937

0.2796 0.1646 0.5225 0.2416 0.3238 0.1971 0.6063 0.2856

HRL 0.2784 0.1648 0.5290 0.2428 0.3248 0.2025 0.5906 0.2859

0.2812 0.1663 0.5361 0.2458 0.3497 0.2118 0.6093 0.2925

0.2913 0.1763 0.5451 0.2565 0.3556 0.2067 0.6222 0.2909

HRL+MT (MTRL4Rec w/o M) 0.2746 0.1629 0.5297 0.2436 0.3287 0.2036 0.6004 0.2813

0.2826 0.1690 0.5380 0.2464 0.3361 0.2077 0.6230 0.2909

0.2963 0.1768 0.5668 0.2625 0.3492 0.2183 0.6349 0.2923

MTRL4Rec w/o R 0.2812 0.1699 0.5349 0.2510 0.3425 0.2052 0.6201 0.2896

0.2793 0.1678 0.5239 0.2450 0.3770 0.2270 0.6230 0.3015

0.2796 0.1682 0.5384 0.2496 0.4000 0.2518 0.6667 0.3240

MTRL4Rec w/o H 0.2714 0.1590 0.5189 0.2372 0.3150 0.1870 0.5965 0.2670

0.2666 0.1546 0.5206 0.2352 0.3087 0.1850 0.5656 0.2630

0.3097 0.1859 0.5434 0.2603 0.3111 0.1907 0.5810 0.2740

MTRL4Rec 0.3034 0.1824 0.5554 0.2623 0.3543 0.2230 0.6201 0.3011

0.3079 0.1886 0.5515 0.2659 0.4153 0.2622 0.6803 0.3466

0.3222 0.2028 0.5701 0.2811 0.4159 0.2559 0.6857 0.3331

MTRL4Rec - DDQN 0.3179 0.1894 0.5738 0.2717 0.3609 0.2178 0.6204 0.2956

0.3177 0.1930 0.5656 0.2706 0.3855 0.2361 0.6529 0.3081

0.3289 0.2066 0.5676 0.2837 0.4254 0.2671 0.7048 0.3575

We evaluate our model and baselines on two public datasets. There are three lines for each method, corre-
sponding to performance on three behavior tasks (clicking, purchasing, and adding items to shopping cart).
Our experimental results show that our model outperforms most baseline methods on different tasks. The
underlines indicate the performance metrics in which MTRL4Rec-DDQN is better than MTRL4Rec

items. We select Hit Ratio@K (HR@K) and Normalized Discounted Cumulative Gain@K
(NDCG@K) [50] as metrics to measure the performance of methods, where K ∈ {5, 10}.
The modular network has 6 layers in total, and each layer consists of 4 MoUs (M = 4). The
learning rate in reinforcement learning is set to 0.01. Additionally, for the simulator we set
the patience discount factor pd to an appropriate 0.98. The experimental results are shown
in Table 1.

We can find the following five points:

• Comparing the performance difference between X and X+MT, we find that X+MT shows
better performances on some behaviors. This proves that recommendation tasks with
different behaviors can benefit each other. However, the improvement is not significant

123

World Wide Web (2023) 26:4153–4172 4167

Figure 5 Online Test Comparison - Session Length. Data is smoothed by a sliding window

since the X+MTs cannot well model the commonalities and differences of different
behavior tasks of users.

• Our MTRL4Rec method outperforms all the baselines on all tasks. It can better cap-
ture the similarities and differences between users’ different behaviors. Our MTRL4Rec
demonstrates outstanding capability in a multi-behavior recommendation scenario.

• TheMTRL4Rec-DDQNmethodwe further proposed can achieve excellent performance.
The underlines in Table 1 indicate the greater performance metrics of MTRL4Rec-
DDQN than MTRL4Rec. The overall performance of MTRL4Rec-DDQN is better than
MTRL4Rec. The reason is that the DDQN-based algorithm can effectively avoid the
overestimation of Q-values. It makes the model converge faster and perform better.

• The ablation tests (experiment on variants of MTRL4Rec) demonstrate that our model’s
hierarchical structure, modular network, and routing network are all meaningful for
multi-behavior recommendation.

• On sparse behaviors, our MTRL4Rec method achieves larger performance gains. The
reason is that the task on sparse behavior canbenefit fromother tasks, andourMTRL4Rec,
with a modular network and a task routing network, has a better ability to capture the
features of sparse behaviors.

4.5 Online Test (RQ3)

We do the online test in the simulated online environment. Due to limited space, we compare
our methods, MTRL4Rec and MTRL4Rec-DDQN, with the best baseline in the previous
offline test, HRL.

In the online test, we choose SessionLength and AverageReward as metrics to measure
the performance of methods. SessionLength refers to the number of interactions between the
agent and the environment in a session. Longer session length demonstrates that the model
works better. This is because when the agent cannot recommend satisfactory items to the
user, the user may have a greater probability of terminating the current session due to the
patience mechanism. The second metric, AverageReward, is the average reward per step in
a session, which is calculated according to TotalReward/SessionLength. TotalReward is the
total accumulated reward obtained by the agent in the current session. It depicts the proportion
of positive feedback the agent received after each action.

123

4168 World Wide Web (2023) 26:4153–4172

Figure 6 Online Test Comparison - Average Reward. Data is smoothed by a sliding window

Figures 5 and 6 show the online test results. Due to the instability of reinforcement learning
at the beginning of a training, we make comparisons starting from session 100. For more
intuition, the data in Figures 5 and 6 is smoothed by a sliding window as:

data′
i = avg([datai−k+1, . . . , datai]). (17)

Here we set k = 30.
We can find that the SessionLength of MTRL4Rec and MTRL4Rec-DDQN is greater

than HRL, indirectly showing that they bring better customer satisfaction. In addition, our
new MTRL4Rec-DDQN reaches a higher level earlier than MTRL4Rec. This proves that
MTRL4Rec-DDQNhas higher training efficiency and training stability. After several training
sessions, MTRL4Rec and MTRL4Rec-DDQN reach the same high level of SessionLength.

The AverageRewards obtained by MTRL4Rec and MTRL4Rec-DDQN are greater than
the baselines. Furthermore, they increase faster in the training. At the same time,MTRL4Rec-
DDQN gets a better average reward thanMTRL4Rec. This means that the addition of DDQN
can indeed help the model to achieve greater improvement.

4.6 Parameter Analysis (RQ4)

Our method has two key parameters: the discount factor γ controls the weight of future
reward, and M is the number of MoU in a layer of modular networks. To study the impact

dra
weR

noisseS
dra

weR
noisseS Se

ss
io

n
Re

w
ar

d
Se

ss
io

n
Re

w
ar

d

Figure 7 Results of parameter analysis

123

World Wide Web (2023) 26:4153–4172 4169

of these parameters, we investigate how the proposed framework works with the changes of
one parameter while fixing other parameters.

Figure 7 shows the parameter sensitivity of our model to γ and M . The metric to measure
the performance is the average cumulative reward in a number of consecutive sessions. The
performance of MTRL4Rec achieves the peak when γ = 0.2. In other words, considering
future reward indeed improves the performance of the model. However, it is less important
than the current reward. A small γ also appears in other RL-based RS studies [3, 30].

In terms of the parametric analysis of M , MTRL4Rec has the best performance when
M = 4. We analyze that the modular network with a small M does not have enough MoUs
to capture the commonalities and differences between users’ behaviors. When M is too
large, there may be redundant and similar MoUs, which reduce the model performance. In
future work, we may build a mechanism to force MoUs in the modular network to have low
similarity to further improve the performance.

5 Conclusion

In this paper, we proposed a Multi-Task Reinforcement Learning model for multi-behavior
Recommendation (MTRL4Rec), which gives different actions for users’ different behav-
iors with a single policy. We treated the recommendation for different behaviors to users as
different tasks and built a multi-task reinforcement learning based recommendation model.
We use a modular network to capture the commonalities and differences between users’
behaviors, and use a task routing network to generate routes in the modular network for each
behavior task. Our MTRL4Rec model adopts a hierarchical structure for higher exploration
and exploitation efficiency. An off-policy training algorithm and its further improved algo-
rithm (MTRL4Rec-DDQN) are proposed. We demonstrate the effectiveness of the proposed
MTRL4Rec and MTRL4Rec-DDQN in real-world e-commerce datasets and validate the
importance of multi-task reinforcement learning for multi-behavior recommendation.

In future work, we can combine more RL frameworks (such as DDPG, SAC) with
MTRL4Rec, and build a mechanism that forces MoUs to have low similarity to improve
performance further. Moreover, self-supervised methods may improve the quality of embed-
dings in the model for better performance.

Acknowledgements This research was partially supported by the NSFC (62376180, 62176175), the major
project of natural science research in Universities of Jiangsu Province (21KJA520004), Suzhou Science and
Technology Development Program (SYC2022139), the Priority Academic Program Development of Jiangsu
HigherEducation Institutions and theExploratorySelf-selectedProject of theStateKeyLaboratory of Software
Development Environment.

Author Contributions Huiwang Zhang: Conceptualization, Methodology, Writing - Original Draft Pengpeng
Zhao: Conceptualization, Methodology, Writing - Review & Editing Xuefeng Xian: Writing - Review &
Editing Victor S. Sheng: Writing - Review & Editing Yongjing Hao: Conceptualization, Review & Editing
Zhiming Cui: Writing - Review & Editing

Funding This research was partially supported by the NSFC (62376180, 62176175), the major project of
natural science research in Universities of Jiangsu Province (21KJA520004), Suzhou Science and Technol-
ogy Development Program (SYC2022139), the Priority Academic Program Development of Jiangsu Higher
Education Institutions and the Exploratory Self-selected Project of the State Key Laboratory of Software
Development Environment.

Availability of data and materials All the datasets are public available, and the links are attached in the
footnotes.

123

4170 World Wide Web (2023) 26:4153–4172

Declarations

Ethical Approval Not Applicable

Competing Interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Cai, Q., Filos-Ratsikas, A., Tang, P., Zhang, Y.: Reinforcement mechanism design for e-commerce. In:
WWW, pp. 1339–1348 (2018)

2. Takanobu, R., Zhuang, T., Huang, M., Feng, J., Tang, H., Zheng, B.: Aggregating e-commerce search
results from heterogeneous sources via hierarchical reinforcement learning. In: WWW, pp. 1771–1781
(2019)

3. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z.: DRN: A deep reinforcement
learning framework for news recommendation. In: WWW, pp. 167–176 (2018)

4. van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: NIPS,
pp. 2643–2651 (2013)

5. Hong, D., Li, Y., Dong, Q.: Nonintrusive-sensing and reinforcementlearning based adaptive personalized
music recommendation. In: SIGIR, pp. 1721–1724 (2020)

6. Zhao, J., Zhao, P., Zhao, L., Liu, Y., Sheng,V.S., Zhou,X.: Variational self-attention network for sequential
recommendation. In: ICDE, pp. 1559–1570 (2021)

7. Xu, C., Feng, J., Zhao, P., Zhuang, F., Wang, D., Liu, Y., Sheng, V.S.: Long- and short-term self-attention
network for sequential recommendation. Neurocomputing 423, 580–589 (2021)

8. Liu, J., Zhao, P., Zhuang, F., Liu, Y., Sheng, V.S., Xu, J., Zhou, X., Xiong, H.: Exploiting aesthetic
preference in deep cross networks for crossdomain recommendation. In: WWW, pp. 2768–2774 (2020)

9. Xiao, K., Ye, Z., Zhang, L., Zhou, W., Ge, Y., Deng, Y.: Multi-user mobile sequential recommendation
for route optimization. TKDD 14(5), 52–15228 (2020)

10. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommenda-
tions. In: CIKM, pp. 843–852 (2018)

11. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential recommendation with
bidirectional encoder representations from transformer. In: CIKM, pp. 1441–1450 (2019)

12. Zhou, K., Wang, H., Zhao, W.X., Zhu, Y., Wang, S., Zhang, F., Wang, Z., Wen, J.: S3-rec: Self-supervised
learning for sequential recommendation with mutual information maximization. In: CIKM, pp. 1893–
1902 (2020)

13. Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. J. Mach. Learn. Res. 6,
1265–1295 (2005)

14. Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., Yin, D.: Recommendations with negative feedback via
pairwise deep reinforcement learning. In: KDD, pp. 1040–1048 (2018)

15. Zhao, D., Zhang, L., Zhang, B., Zheng, L., Bao, Y., Yan, W.: Mahrl: Multi-goals abstraction based deep
hierarchical reinforcement learning for recommendations. In: SIGIR, pp. 871–880 (2020)

16. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp.
173–182 (2017)

17. Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X.: Selfsupervised graph learning for recom-
mendation. In: SIGIR, pp. 726–735 (2021)

18. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,Wierstra, D., Riedmiller,M.A.: Playing
atari with deep reinforcement learning. CoRR abs/1312.5602 (2013)

19. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: AAAI, pp.
2094–2100 (2016)

20. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 229–256 (1992)

21. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. IEEE Trans. Neural Networks 9(5),
1054–1054 (1998)

22. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous
control with deep reinforcement learning. In: ICLR (Poster) (2016)

123

World Wide Web (2023) 26:4153–4172 4171

23. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In: ICML. Proceedings of machine learning research, vol. 80,
pp. 1856–1865 (2018)

24. Afsar, M.M., Crump, T., Far, B.H.: Reinforcement learning based recommender systems: A survey. ACM
Comput. Surv. 55(7), 145–114538 (2023)

25. Zhang, J., Hao, B., Chen, B., Li, C., Chen, H., Sun, J.: Hierarchical reinforcement learning for course
recommendation in moocs. In: AAAI, pp. 435–442 (2019)

26. Pei, C., Yang, X., Cui, Q., Lin, X., Sun, F., Jiang, P., Ou, W., Zhang, Y.: Value-aware recommendation
based on reinforcement profit maximization. In: WWW, pp. 3123–3129 (2019)

27. Bai, X., Guan, J., Wang, H.: A model-based reinforcement learning with adversarial training for online
recommendation. NeurIPS, 10734–10745 (2019)

28. Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.: KERL: A knowledge-guided reinforcement
learning model for sequential recommendation. In: SIGIR, pp. 209–218 (2020)

29. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discret. Event Dyn.
Syst. 13(1–2), 41–77 (2003)

30. Xie, R., Zhang, S., Wang, R., Xia, F., Lin, L.: Hierarchical reinforcement learning for integrated recom-
mendation. In: AAAI, pp. 4521–4528 (2021)

31. Chen, M., Chang, B., Xu, C., Chi, E.H.: User response models to improve a REINFORCE recommender
system. In: WSDM, pp. 121–129 (2021)

32. Xin,X.,Karatzoglou,A.,Arapakis, I., Jose, J.M.: Self-supervised reinforcement learning for recommender
systems. In: SIGIR, pp. 931–940 (2020)

33. Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.X.: KERL: A knowledge-guided reinforcement
learning model for sequential recommendation. In: SIGIR, pp. 209–218 (2020)

34. Gao,C.,Xu,K., Zhou,K., Li, L.,Wang,X.,Yuan,B., Zhao, P.:Valuepenalizedq-learning for recommender
systems. In: SIGIR, pp. 2008–2012 (2022)

35. Deng, Y., Li, Y., Sun, F., Ding, B., Lam, W.: Unified conversational recommendation policy learning via
graph-based reinforcement learning. In: SIGIR, pp. 1431–1441 (2021)

36. Zhao, X., Xia, L., Zou, L., Liu, H., Yin, D., Tang, J.: Whole-chain recommendations. In: CIKM, pp.
1883–1891 (2020)

37. Caruana, R.: Multitask learning. Machine learning 28(1), 41–75 (1997)
38. Pinto, L., Gupta, A.: Learning to push by grasping: Using multiple tasks for effective learning. In: ICRA,

pp. 2161–2168 (2017)
39. Crawshaw, M.: Multi-task learning with deep neural networks: A survey. CoRR abs/2009.09796 (2020)
40. Strezoski, G., vanNoord, N.,Worring,M.:Many task learningwith task routing. In: ICCV, pp. 1375–1384

(2019)
41. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language understanding.

In: ACL (1), pp. 4487–4496 (2019)
42. Singh, S.P.: Transfer of learning by composing solutions of elemental sequential tasks. Mach. Learn. 8,

323–339 (1992)
43. Wilson, A., Fern, A., Ray, S., Tadepalli, P.: Multi-task reinforcement learning: a hierarchical bayesian

approach. In: ICML, vol. 227, pp. 1015–1022 (2007)
44. Pinto, L., Gupta, A.: Learning to push by grasping: Using multiple tasks for effective learning. In: ICRA,

pp. 2161–2168 (2017)
45. Yang, R., Xu, H., Wu, Y., Wang, X.: Multi-task reinforcement learning with soft modularization. NeurIPS

(2020)
46. Jacobs, R.A., Jordan,M.I., Nowlan, S.J., Hinton,G.E.:Adaptivemixtures of local experts. Neural Comput.

3(1), 79–87 (1991)
47. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning

with multi-gate mixture-of-experts. In: KDD, pp. 1930–1939 (2018)
48. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): A novel multi-task learning

(MTL) model for personalized recommendations. In: RecSys, pp. 269–278 (2020)
49. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,Wierstra, D., Riedmiller,M.A.: Playing

atari with deep reinforcement learning. CoRR abs/1312.5602 (2013)
50. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst.

20(4), 422–446 (2002)

123

4172 World Wide Web (2023) 26:4153–4172

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Huiwang Zhang1 · Pengpeng Zhao1 · Xuefeng Xian2 · Victor S. Sheng3 ·
Yongjing Hao1 · Zhiming Cui4

Huiwang Zhang
hwzhangcs@stu.suda.edu.cn

Victor S. Sheng
Victor.Sheng@ttu.edu

Yongjing Hao
yjhaozb@stu.suda.edu.cn

Zhiming Cui
zmcui@mail.usts.edu.cn

1 School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, China
2 Suzhou Vocational University, Suzhou, Jiangsu, China
3 Texas Tech University, Lubbock, Texas, USA
4 SuZhou University of Science and Technology, Suzhou, Jiangsu, China

123

	Click is not equal to purchase: multi-task reinforcement learning for multi-behavior recommendation
	Abstract
	1 Introduction
	2 Related work
	2.1 Recommendation system
	2.2 Reinforcement Learning
	2.3 Multi-task learning

	3 Method
	3.1 Basic RL model for multi-behavior recommendation
	3.2 The proposed MTRL4Rec model

	4 Experiment
	4.1 Datasets
	4.2 Baselines
	4.3 Simulator
	4.4 Offline Test (RQ1 and RQ2)
	4.5 Online Test (RQ3)
	4.6 Parameter Analysis (RQ4)

	5 Conclusion
	Acknowledgements
	References

