
World Wide Web (2023) 26:3915–3943
https://doi.org/10.1007/s11280-023-01214-7

Securing recommender system via cooperative training

Qingyang Wang1,2 · Chenwang Wu1,2 · Defu Lian1,2 · Enhong Chen1,2

Received: 31 March 2023 / Revised: 11 September 2023 / Accepted: 17 September 2023 /
Published online: 4 October 2023

Abstract
Recommender systems are often susceptible to well-crafted fake profiles, leading to
biased recommendations. Among existing defense methods, data-processing-based meth-
ods inevitably exclude normal samples, while model-based methods struggle to enjoy both
generalization and robustness. To this end, we suggest integrating data processing and the
robust model to propose a general framework, Triple Cooperative Defense (TCD), which
employs three cooperative models that mutually enhance data and thereby improve recom-
mendation robustness. Furthermore, Considering that existing attacks struggle to balance
bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems
and introduce an efficient attack strategy, Co-training Attack (Co-Attack), which coopera-
tively optimizes the attack optimization and model training, considering the bi-level setting
while maintaining attack efficiency. Moreover, we reveal a potential reason for the insuffi-
cient threat of existing attacks is their default assumption of optimizing attacks in undefended
scenarios. This overly optimistic setting limits the potential of attacks. Consequently, we put
forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack
and TCD as a game-theoretic process, thoroughly exploring CoAttack’s attack potential in
the cooperative training of attack and defense. Extensive experiments on three real datasets
demonstrate TCD’s superiority in enhancing model robustness. Additionally, we verify that
the two proposed attack strategies significantly outperform existing attacks, with game-based
GCoAttack posing a greater poisoning threat than CoAttack.

Keywords Recommender systems · Model robustness · Poisoning attacks

Qingyang Wang and Chenwang Wu contributed equally to this work.

B Defu Lian
liandefu@ustc.edu.cn

Qingyang Wang
greensun@mail.ustc.edu.cn

Chenwang Wu
wcw1996@mail.ustc.edu.cn

Enhong Chen
cheneh@ustc.edu.cn

1 School of Data Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei,
Anhui, China

2 State Key Laboratory of Cognitive Intelligence, 96 Jinzhai Road, Hefei, Anhui, China

123

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01214-7&domain=pdf

3916 World Wide Web (2023) 26:3915–3943

1 Introduction

In recent years, we have witnessed explosive growth in the amount of available informa-
tion due to the rapid development of Internet technology. To cope with this massive data,
“recommender system” [1] has become a popular tool for quickly and effectively obtain-
ing valuable information, gaining extensive attention in academia and industry. They mine
the content that the user is interested in from a large amount of data by using information
such as user behavior and item characteristics and presenting it to the user in a list [2].
Benefiting their effectiveness and commercial background, they are widely used across var-
ious industries such as geographic recommendation [3], e-commerce [4], and audio-visual
entertainment [4].

However, recommender systems also face severe security challenges while providing
convenience for our lives. This is because collaborative filtering, which is adopted in many
recommender systems and recommends items based on user profile information, is vulnerable
to fake user profiles. Several studies [5–7] have demonstrated that recommender systems,
especially those in the sales and rating domains, are systematically affected by user ratings
within the system. This interference can impact users’ purchase behavior and the system’s
recommendation outcomes [4]. Furthermore, it is worth emphasizing even if attackers do
not know the algorithm or implementation details used by the recommendation system,
only using small-scale misleading data can also have obvious interference effects on the
normal recommendation behavior of the system (e.g., in 2002, after receiving a complaint,
Amazon found that when a website recommends a Christian classic, another irrelevant book
will be recommended simultaneously, which is caused by malicious users using deceptive
means [8]).

Existing defense strategies against poisoning attacks in recommendations are mainly
divided into (1) data-processing-based defense, which involves studying the features of poi-
soning profiles, removing fake profiles, and refining datasets before recommender system
training. However, these methods may delete normal data to achieve high recall, leading
to biased recommendations. (2) Model-based defense aims to enhance the recommenda-
tion algorithm’s robustness even if fake data exists. Adversarial training [9] is an effective
model-based defense method that maximizes recommendation error while minimizing the
model’s empirical risk by adding adversarial perturbations to the model parameters, eventu-
ally building robust models in adversarial games.While adversarial training can significantly
improve the system’s robustness, controlling the strength of adversarial noise is challenging,
leading to reduced recommendation generalization. Moreover, recent research [10] suggests
that adversarial training with perturbations added to model parameters may not resist poi-
soning attacks effectively. Thus, it is crucial to integrate both methods while leveraging their
strengths and avoiding weaknesses.

Considering the shortcomings mentioned above, we propose a novel defense method,
Triple Cooperative Defense (TCD), to enhance the robustness of recommender systems by
integrating data processing and model robustness boosting. In TCD, three recommenda-
tion models are used for cooperative training. Specifically, in each round of training, the
high-confidence prediction ratings of any two models are used as auxiliary training data
for the remaining model. The three models cooperatively improve recommendation robust-
ness. Our strategy is based on the following considerations. In the recommender system,
extremely sparse user-item interactions (indicating less training data) are difficult to support
good model training, leading to models easily misled by malicious profiles. Besides, recent
work [10] also emphasizes that the model’s robustness requires more real data. Therefore,

123

World Wide Web (2023) 26:3915–3943 3917

we reasonably use cheap pseudo-labels (predicted ratings), whose reliability is guaranteed
by the rating’s confidence. To obtain high confidence ratings, we based on prior knowledge
that ratings predicted to be consistent by most models are more credible. More model votes
can lead to more reliable pseudo-labels, but at the cost of increased computation. Therefore,
we compromise and suggest training with three models and any two models’ consistent pre-
diction ratings as auxiliary training data for the third model. Model robustness is improved
in data augmentation and co-training of the three models. Notably, we do not cull the data or
modify the individual model structure, which can overcome the shortcomings of the existing
defense methods discussed above.

Additionally, we investigate poisoning attacks in recommender systems. Existing attacks
can be categorized into heuristic-based and optimization-based attacks [11]. Heuristic-based
attacks, such as Average attack [12] and Bandwagon attack [13], design fake users based on
the feature that similar users have similar interests in recommendations. However, they do not
formally analyze specific recommendationmodels and cannot cover all recommendation pat-
terns, resulting in insufficient attack performance. Consequently, model-based attacks have
emerged. These methods target specific recommender systems, design optimization objec-
tive functions for fake profile generation, and use the projected gradient ascent to optimize
the attack model, including visually-aware recommender systems [14], sequence-based rec-
ommender systems [15], federated recommender systems [16], graph-based recommender
systems [17]. Nevertheless, most of them assume the invariance of default parameters and do
not consider the bi-level setting of poisoning attacks, that is, the optimization of poisoned data
is accompanied by changes in model parameters. As a result, the optimized attack models
they obtain are not optimal, reducing the destructive power of the attacks.

In response to these issues, Huang et al. [18] proposed a poisoning attack that integrates
model training and attack optimization. It constructs a poisoning model to simulate a target
recommender system and updates the poisoning model based on the attack objectives, allow-
ing it to approximate the state of the victim recommendation model after training. Although
it considers bi-level optimization of poisoning and demonstrates satisfactory performance,
it also has some shortcomings: (1) Low efficiency. It generates only one fake profile at a
time, with each user requiring a complete recommendation training process. This means that
poisoning n′ users necessitates training the model n′ times. This extremely time-consuming
generation strategy limits its practicability on large-scale datasets. (2) Non-global optimal.
It adopts a greedy strategy to optimize poisoning profiles one at a time, which means that
when optimizing the n-th user, the first n − 1 users remain fixed. Such constraint limits the
search space and makes the algorithm prone to being trapped in local optima.

Inspired by them and considering the above mentioned deficiencies, we propose an effi-
cient attack, Co-training Attack (CoAttack). We also combine attack optimization and model
training for cooperative training, but the difference is that our optimization is based on all
candidate poisoning data. This design can well solve their limitations: (1) the optimization
based on all poisoned data only needs one complete recommendation training, which is effi-
cient; (2) such optimization strategy can search in the complete feasible space, which is more
helpful in finding the global optimal solution. Specifically, in CoAttack, we first initialize
poisoning profiles and inject them into the target model. Then we pre-train the recommen-
dation model based on the standard recommendation loss to ensure its ability to learn user
preferences accurately. Third, we combine attack loss and recommendation loss for training,
striving to approximate the attack model to the target model after poisoning. Finally, we
choose the items with high predicted scores in the optimized model as filler items.

In addition, it is widely acknowledged that the dynamics of attack and defense in recom-
mender systems resemble an ongoing arms race, where a previously effective attack strategy

123

3918 World Wide Web (2023) 26:3915–3943

eventually becomes ineffective due to evolving defense mechanisms. One possible reason
for the failure of attacks lies in the assumption that the target model remains defenseless and
unoptimized, which is often overly optimistic. To this end, we frame the interaction between
attack and defense as a strategic game and train them in a coordinated manner. In this paper,
we combine our proposed Triple Cooperative Defense (TCD) and CoAttack methodologies
to introduce a novel approach called Game-based Co-training Attack (GCoAttack). In each
round of attack optimization, GCoAttack first enhances recommendation robustness through
TCD, then fine-tunes poisoning profiles using the robust recommendation model, and ulti-
mately seeks to maximize attack performance within the context of this zero-sum game.

Except for the contributions in the preliminary work [19] on triple cooperative defense,
we further deliver the following contributions:

• We develop an effective poisoning attackmethod, CoAttack, which could efficiently gen-
erate malicious poisoning profiles by combining attack optimization and model training
for cooperative training.

• We reveal the importance of games in the robust recommendation and propose GCoAt-
tack. It further explores the attack potential of CoAttack through the cooperative training
of CoAttack and TCD.

• Extensive experiments on three different datasets demonstrate the effectiveness of
CoAttack (cooperative training between attack optimization and model training) and
GCoAttack (cooperative training between attack and defense) over the state-of-the-art
methods.

The rest of the paper is organized as follows: Section 2 introduces related work. Section 3
describes the threat model for recommendation poisoning. Sections 4 and 5 respectively
present the proposed defense strategy TCD and two cooperative training attacks, CoAttack
and GCoAttack. Section 6 provides a comprehensive experimental comparison and analysis.
The final Section 7 summarizes our work and looks forward to the future.

2 Related work

2.1 Poisoning attacks in recommender systems

Many issues about security and privacy have been studied in recommender systems. These
researches have revealed vulnerabilities in recommender systems [20, 21], prompting the
development of a dedicated toolkit for assessing their robustness [22]. Earlier attacks injected
malicious profiles manually generated with little knowledge about the recommender system,
so it could not achieve satisfactory attack performance, e.g., random attack [12] and aver-
age attack [12]. To overcome this limitation, recent attacks have been optimized for specific
classes ofRSs, such asmatrix-factorization-based [6], neighborhood-based [23], graph-based
[17], deep-learning-based [18], and visual-awareness-based RSs [14]. The training of these
model-based recommendation algorithms usually used backpropagation [24, 25], so pertur-
bations were added along the gradient direction to perform the attack [6, 17, 26, 27]. For
example, Nguyen et al. [11] studied poisoning attacks onGNN-based recommenders and pro-
posed a solution involving surrogating a recommendation model and generating fake users
and user-item interactions while preserving correlations. Inspired by the GAN’s application
[28] in the recommendation, some works [7, 29] used GAN to generate real-like fake ratings
to bypass the detection. To address traditional GAN’s inability to evaluate attacking dam-
age, Wu et al. [5] drew inspiration from TripleGAN [30] and introduced an attack module

123

World Wide Web (2023) 26:3915–3943 3919

that conducts triple adversarial learning to generate malicious users. Advancements in deep
learning have led Huang et al. [18] to propose a poison attack on DL-based RSs. The attack
involves injecting fake users with carefully crafted ratings into the targeted model and can be
defined as an optimization problem that can be efficiently resolved by incorporating heuristic
rules. The attack model remains practical even when attackers have limited access to only
a small portion of user-item interactions. With the development of optimization algorithms,
many works focused on attacking specific types of recommender systems and turned attacks
into optimization problems of deciding appropriate rating scores for users [6, 12, 17, 31, 32].
Moreover, some works [33, 34] treated the items’ ratings as actions and used reinforcement
learning to generate real-like fake ratings. Such optimization-based methods have strong
attack performance, so defense is needed to mitigate the harm of attack.

2.2 Defense against poisoning attacks

According to the defense objective, a defense can be (i) reactive attack detection [35] or (ii)
proactive robust model construction, which will be listed below.

Reactive attack detection Many works have been developed to detect shilling attacks [21,
36–38], and such methods can be roughly classified into supervised classification methods
and unsupervised clustering methods. The majority of work on supervised classification
methods begins with feature engineering and then turns to the development of algorithms.
For example,Yang et al. [36] utilized three carefully crafted features derived fromuser profiles
for identifying attack profiles, which are themaximum,minimum, and average ratings of filler
size. Besides, many researchers used KNN, C4.5, and SVM [13]to supervise the statistical
attributes to detect attacks. In most practical recommendation systems, due to the small
number of labeled users and the lack of prior knowledge, unsupervised learning [39, 40] and
semi-supervised learning [41] were used to detect attacks. Unsupervised clustering methods
usually aim to group individuals into groups and then eliminate suspicious ones. For example,
adversarial sample detection techniques utilize machine learning methods, such as principal
component analysis (PCA) [42], to extract content features to identify adversarial samples.
However, to pursue high recall, these methods inevitably delete normal data, which leads to
biased recommendations. Conversely, for our proposed TCD to enrich high-confidence data
rather than remove outliers, it can avoid cleaning normal data and train a more accurate and
robust model.

Proactive robust recommendation Athalye et al. [43] proposed defenses based on gradient
masking to produce models containing smoother gradients that hinder optimization-based
attack algorithms fromfinding thewrong directions in space [44].More recently, manyworks
[20, 45–49] have focused on adversarial training. Assuming that each instance may be the
target of attacks [44], adversarial training adds perturbations to the inputs or model param-
eters that force the model to learn fragile perturbations. Although adversarial training can
significantly improve the robustness of recommender systems, it is difficult to control the
strength of adversarial data, reducing the generalization of the recommendation. Instead, our
proposed TCD does not require the addition of sensitive noise and is trained cooperatively to
facilitate generalization, as we will demonstrate in Section 4. In addition, many researchers
have also improved the robustness of models by altering the way matrix factorization is per-
formed. Hidano and Kiyomoto [50] propose a defensive strategy that utilizes trim learning
to enhance the resilience of matrix factorization against data poisoning. This approach lever-
ages the statistical difference between normal and fake users to protect against malicious

123

3920 World Wide Web (2023) 26:3915–3943

manipulation of the data. Zhang et al. [51] proposed a robust collaborative filtering method
incorporating non-negative matrix factorization (NMF) with R1-norm. While in [52], the
authors have designed a robust matrix factorization model based on kernel mapping and
kernel distance.

3 Threat model

In this section, we formally define poisoning attacks in recommendation scenarios from three
aspects: attack goal, attack knowledge, and attack capability. For ease of reading, we list key
notations in Table 1 to provide a quick reference guide.

3.1 Attack goal

Different shilling attacks may have different intents, but the eventual goal of an attacker
may be one of several alternatives. We can divide the attack intents into push attacks, nuke
attacks, and random vandalism [21]. The push attack (nuke attack) typically aims to increase
(decrease) the popularity of the target item. For randomvandalism, the attacker combines push
attacks and nuke attacks to maximize the recommendation error, making users stop trusting
the recommendationmodel and finally stop using it.Wemainly focus on push attacks because
nuke attacks can be achieved by increasing the popularity of non-target items until the target
item is not in the user’s recommendation list [31], which in a sense, is equivalent to push
attacks. In addition, random vandalism can be seen as a hybrid of push and nuke attacks.

3.2 Attack knowledge

According to the attacker’s knowledge, attacks can be divided into high-knowledge attacks,
partial-knowledge attacks, and low-knowledge attacks [21]. Among them, high-knowledge
attacks require the attackers to know detailed knowledge of the target recommender system,
such as the algorithmused, specific parameter settings, and even the user’s historical behavior.
In a partial-knowledge setting, only part of the user interaction records can be obtained. In
addition, the attacker only knows the algorithm of the target model, but the specific training

Table 1 Summary of key notation

Notation Definition

n The number of users in the recommender system

n′ The number of poisoning users to the recommender system

m The number of items in the recommender system

m′ The maximum number of interactive items per poisoning user

D The whole dataset, where each sample (u, I , Ru,i) denotes that the user us rating on item i is Ru,i

D′ The poisoning data in D

DU The no rating samples of dataset D

DL The training (labeled) data in D

Dc The initial poisoning data in the proposed attacks

DP The generated poisoning data in the proposed attacks

123

World Wide Web (2023) 26:3915–3943 3921

details and model parameters are unknown to the attacker. Low-knowledge attacks further
relax knowledge, and the attacker does not even know the algorithm used by the target model.

In our work, we study the partial-knowledge attack, and low-knowledge attacks will be
our future work. Notably, partial-knowledge attacks are operational for attackers. This is
because many companies may disclose their recommendation algorithms, such as Amazon
[53] and Netflix [54]. Besides, the partial data disclosed by users can be easily obtained
through Web crawlers and other means. In partial-knowledge settings, since the parameters
of the target model are unknown, based on the partial data obtained, the attacker trains a
local simulator using the same algorithm as the target model but with parameters defined by
the attacker. Once the local simulator is trained, the partial-knowledge attack is transferred
into a high-knowledge attack for the attacker. Accordingly, the attacker can generate fake
users based on the local simulator and inject them into the target model to execute the attack.
It needs to be emphasized that benefiting from this transformation, we will introduce our
methods based on the high-knowledge attack setting for convenience, but the experiment is
indeed based on the partial-knowledge setting.

3.3 Attack capability

Themore poisoned data the attacker injects into the recommender system, themore significant
the attack performancewill be. However, more poisoning data is impractical andwill increase
the risk of being detected by defense mechanisms [55]. In addition, for each fake profile, the
more items the attacker interacts with, the more likely to be detected as an anomaly. Based
on the above considerations, we limit the number of poisoning profiles and the number of
interacting items (filler items) in each profile. Assuming that there are n users and m items
in the recommender system, we limit the attacker to registering a maximum of n′ malicious
users and m′ interactive items per user, and n′ � n, m′ � m. We will analyze the different
capabilities of attackers in the experiments.

4 Triple cooperative defense

In existing work, data-processing-based defense inevitably removes normal data to achieve
high recall rates, while the model-based defense is difficult to enjoy both robustness and
generalization [56]. Therefore, it is crucial to design a defense algorithm that maximizes
their strengths and circumvents their weaknesses. Recent studies [35] demonstrated that
robust models require more labeled data [10]. Besides, the recommender system is extremely
sparse. That is, there is little interactive information about users and items, making a small
amount of normal data difficult to support good model training so that it may be misled easily
by malicious data and produce biased recommendations. This finding makes us reasonably
believe that the vulnerability of the recommendation system is largely due to the lack of data.
However, since it takes a lot of manpower and material resources to get labeled data, using a
small number of “expensive” labeled data is a huge waste of data resources. Considering the
above reasons,we constructively propose adding “cheap” pseudo ratingswith high confidence
to improve the recommendation robustness.

Unfortunately, in the implicit recommendation system concerned in our work, it is chal-
lenging to obtain high confidence pseudo scores. This is because the output of recommender
systems is prediction scores, not confidence, unlike other areas of machine learning(e.g., in
the image field, the output is the prediction probability). So we develop Triple Cooperative

123

3922 World Wide Web (2023) 26:3915–3943

Defense (TCD), which uses three models and takes the prediction consistency ratings of
any two models as the high confidence pseudo ratings of the remaining model. The recom-
mendation robustness is improved through mutual cooperation among the three. Notably,
although more models with majority votes are more beneficial to obtaining high-confidence
data, the model training is positively related to the number of models. Therefore, we made a
compromise, and we found that the performance of the three models is satisfactory and the
training delay is tolerable. The framework is shown in Figure 1. Now we provide details of
the proposed TCD for defending against poisoning attacks.

Let D denotes the dataset, DL denotes the rating samples of D, where each sample
(u, i, Ru,i) denotes that the user u’s rating on item i is Ru,i , and DU denotes the no rating
samples of D, where each sample is like (u, i). The goal of the recommendation system h is to
predict the accurate rating R̂u,i = h(u, i) of each sample (u, i) ∈ DU . In TCD, we extend to
three models and denote them as h0, h1, and h2, respectively. For any model, if the predicted
ratings of the other two models are consistent, we have reason to believe that the predicted
ratings are high-confident and reliable to be added to the training set to address the difficulty
of measuring rating confidence. For instance, if h0 and h1 agree on the labeling R̂u,i of (u, i)
in DU , then (u, i, R̂u,i) will be put into the training set for h2 as auxiliary training data. It is
obvious that in such a scheme, if the prediction of h0 and h1 on (u, i) is correct, then h2 will
receive a new sample with high confidence for further training. Besides, the predicted ratings
are floating points, making judging based on the consistent rating impractical. So we define
a projection function �(·) to project continuous ratings onto reasonable discrete ratings. In
this way, only when two models give the same rating on (u, i) after projection, we take the
rating as the pseudo label and put (u, i,�(ĥ j (u, i))) into the h2’s training set D(2)

L .
One explanation for recommendation fragility is that the poisoned data deviates severely

from the real data and the sparse (less) real datamakes themodel learning easy to be dominated
by fake data [7]. So intuitively, the augmentation strategy of TCD contributes to magnifying
the influence of real profiles and relatively weakening the harm of false profiles.

The algorithm of TCD is shown in Algorithm 1. Each model is pre-trained from lines 1 to
5. Then, for each round of training for each model, an unlabeled prediction will be labeled if
any twomodels agree on the labeling, and these pseudo labelswith high confidencewill be put
into the third model’s training dataset to reduce the harm that poisoning data do to the model,
as shown in lines 7 through 15. After the training, we can perform the recommendation task

Figure 1 The framework of TCD. For model hi ’s training in each round, a the other two models use the
same collaborative training; b the ratings predicted the same by the other two models are taken as consistent
samples; c model hi is trained on labeled samples DL and consistent samples

123

World Wide Web (2023) 26:3915–3943 3923

Algorithm 1 Triple cooperative defense.
Input: The epochs of training T , the epochs of pre-training Tpre , three models h1(u, i), h2(u, i), h3(u, i),
labeled data DL , unlabeled data DU , projection function �(x).
1: for Tpre epochs do
2: for j ∈ [0, 1, 2] do
3: Train h j based on the training set DL .
4: end for
5: end for
6: for T − Tpre epochs do
7: for j ∈ [0, 1, 2] do
8: D(j)

L ← DL
9: for every (u, i) ∈ DU do
10: if �(ĥ(j+1)mod3(u, i)) = �(ĥ(j+2)mod3(u, i)) then

11: D(j)
L ← D(j)

L ∪ {(u, i,�(ĥ(j+1)mod3(u, i)))}
12: end if
13: end for
14: Train h j based on training set D(j)

L
15: end for
16: end for

using any model. In our work, we choose h0 by default. Since the structure of each model
isunchanged, the proposed strategy does not have inference delay, which is of more concern
to practical applications.

It isworth noting that in the pre-training phase,we used the same dataset DL for allmodels.
Theoretically,wemust choose different training subsets to ensure themodel’s diversity. This is
necessary for other domains, such as the computer version, because the number of parameters
in a classifier is independent of the number of samples. However, in recommender systems
with extremely sparse data, selecting a subset means that many users are cold-start users,
and the parameters of these users cannot be trained, which directly leads to unsatisfactory
recommendation performance. Therefore, all label data are selected for pre-training, while
different pseudo-labels guarantee the models’ diversity in collaborative training.

5 Cooperative training attack

In comparison to heuristic attacks, optimization-based poisoning attacks constitute a more
efficacious approach for adapting to a broader spectrum of recommendation patterns [5].
However, existing work ignores the bi-level setting of poisoning attacks, which limits the
attack performance. In light of this, we revisit poisoning attacks (Section 5.1) and propose
CoAttack (Section 5.2), a model that fosters the cooperative optimization of both the model
and the attack, as well as GCoAttack (Section 5.3), which further boosts attack by the coop-
erative optimization of attack and defense mechanisms.

5.1 Poisoning attack: a bi-level optimization problem

Despite researchers’ efforts to study optimization-based poisoning attacks, a thorny challenge
remains unsolved, namely the Bi-level optimization problem:

min
R′ Latk

(
R, θ ′) , (1)

123

3924 World Wide Web (2023) 26:3915–3943

subject to
θ ′ = argmin

θ
Ltrain

(
R ∪ R′, θ

)
. (2)

Here R ∈ R
n×m is the currently observed rating matrix, where Ru,i is the rating given

by user u to item j , R′ ∈ R
n′×m is the rating matrix of fake users that we need to solve; θ

(θ ′) represents the parameters of the recommendation model. Latk is the attacking objective
function, andLtrain is the standard training loss (e.g., cross-entropy loss). For the push attack
studied in the paper, we define Latk as follows:

Latk =
∑

u∈U
max

{
min
i∈Lu

log h(u, i) − log h(u, t),−κ

}
, (3)

whereU is the original user set, Lu is the recommendation list for user u, t is the target item
to be promoted, and κ is a positive threshold to make sure that the target item’s prediction
rating is larger than the k-th recommended items. The use of the log operator lessens the
dominance effect [18]. Intuitively, if mini∈Lu log h(u, i) − log h(u, t), then the target item t
will be in the top-k recommendation list. Moreover, the target item t tends to hold a higher
rank when the loss Latk gets smaller.

However, in a bi-level situation, the model must be retrained after exposure to poisoning
attacks. Therefore, the current θ solution is only an approximation of the optimal solution.
Previous works [18, 26] have proposed to alternately optimize (1) and (2) to approximate the
attacking loss better. However, optimizing (2) is a time-consuming retraining process, which
may not be suitable for large-scale recommender systems. Therefore, it is indeed important
to efficiently optimize the problem.

5.2 Co-training attack

An intuitive approach would entail retraining the model (2) for every optimization iteration
(1). However, the number of attack optimization instances is equivalent to the number of
model retraining, which is computationally infeasible. To this end, Huang et al. [18] proposed
an attack methodology that combines model training and attack optimization. This method
fuses attack loss with model training loss, aiming to make the optimized model approximate
the ultimate poisoned recommender system, and then the optimized fake profiles are the final
poisoning profiles. Taking into account the dynamic changes in model parameters during
the poisoning optimization process, this attack circumvents the need for retraining at every
optimization step by jointly optimizing the bi-level problem’s inner and outer objectives ((1)
and (2)).

Nevertheless, it is not without limitations. Firstly, although it obviates the need for model
retraining in tandem with the number of optimization, its strategy of generating one user at a
time makes the number of model retraining the same as the number of fake users, resulting
in time-consuming processes when generating a substantial quantity of fake users. Secondly,
this greedy strategy for generating fake users constrains the search space (E.g., when opti-
mizing the n-th user, the first n − 1 users remain fixed), making it challenging to obtain
optimal profiles. In response to these limitations, we propose a boosted methodology called
Co-training Attack (CoAttack). In CoAttack, we still jointly train the attack optimization
and model training; however, the distinction lies in the optimization targeting all candidate
poisoning data. This design reduces the number of model training from n′ to 1 and enables
us to search within the entirety of the feasible space, which is more conducive to identifying
global optima.

123

World Wide Web (2023) 26:3915–3943 3925

Figure 2 The framework of CoAttack. a poisoned data initialization and injection. b Pre-train attack model
on Ltrain . c Train attack model on Ltrain + Latk . d Select these items with the highest m ratings in h(u) as
u’s filler items

As shown in Figure 2, CoAttack comprises four stages: (1). Poisoning data initialization.
We initiate all poisoning profiles by randomly sampling from the distribution of real user
ratings, and these profiles will be merged with the real profiles for training. (2). Pre-training
stage.We train on datamixedwith poisoned data using the standard recommendation training
lossLtrain . After several training epochs, we ensure that the resulting recommendationmodel
possesses the capacity to learn user preferences. Notably, if there were no training stage, the
poisoning optimization would be based on a random model, which would be nonsensical.
(3) Attack optimization. We incorporate the attacking loss Latk into the training loss Ltrain

for joint training. Our optimization objective is as follows:

min
R′,θ

Latk(R, θ) + Ltrain(R ∪ R′, θ). (4)

Throughout this training process, the model increasingly approximates the attack goal,
ultimately culminating in the ideal poisoned model. (4). Fake profile generation. We greedily
select the m′ items with the highest ratings from the optimized poisoning users as their
selected items. Since the optimized ratings are floating-point, we also project these selected
item ratings onto reasonable discrete ratings, which serve as final ratings for these items.

The specific algorithm flow is shown in Algorithm 2. Initially, the distribution of real
ratings is used to initialize poisoning data Dc, which is then combined with original data D
to create the mixed dataset D′, as outlined in lines 1 to 2. Secondly, the model h is pre-trained
on the training loss Ltrain (lines 3 to 5). Thirdly, we train on the combined loss Ltrain +Latk

for the remaining rounds of attack training (lines 6 through 8). Once joint optimization is

123

3926 World Wide Web (2023) 26:3915–3943

Algorithm 2 Co-training attack.
Input: The epochs of training T , the epochs of pre-training Tpre , recommendation model h(·), original data
D, initial poisoning data Dc , projection function �(x).
1: Initialize Dc according to the distribution of real ratings.
2: D′ = D ∪ Dc .
3: for Tpre epochs do
4: Train model h based on the dataset D′, training loss Ltrain .
5: end for
6: for T − Tpre epochs do
7: Train model h based on the dataset D′, training loss Ltrain + Latk .
8: end for
9: Dp = {}.
10: for each user u ∈ Dc do
11: Get predicted rating vector h(u) ∈ R

m for user u.
12: Choose these items with the highest m′ ratings in h(u) as filler items, and project these ratings to

reasonable discrete ratings, denoting as R̂u .
13: Dp = Dp ∪ {R̂u}.
14: end for
15: return poisoning profiles Dp .

complete, we select the top-m′ ratings for each poisoning user and project them to reasonable
discrete ratings as the final poisoning profile, as shown in lines 9 through 14.

5.3 Game-based co-training attack

Furthermore, we acknowledge that within the realm of recommender system security, attack
anddefense inherently constitute an arms race. Effective attacks inevitably become ineffective
in subsequent defense. This requires us to revisit attacks. Through a summary of existing
attacks, we find that existing attacks are all optimized based on primitive models without
any defensive measures. This attack optimized in an overly optimistic environment may be
a potential reason for limiting its ability. To address this issue, we characterize the attack-
defense dynamic as a game process and conduct joint training among them accordingly.
Accordingly, this paper further combines the robust training strategy TCD and the attack
strategy CoAttack to propose a Game-based Co-training Attack (GCoAttack).

To better understand the dynamics of this game, we can envision it as a competition
between two players: the attacker and the recommender system’s defense mechanism. The
attacker’s goal is to inject poisoning profiles, tricking the recommender system into promoting
specific target items to a larger audience.Meanwhile, the defensemechanism aims to develop
a robust recommendation model that accurately captures users’ genuine preferences. This
situation can be viewed as a mutually competitive zero-sum game, where the success of one
side comes at the expense of the other. Consequently, we can expect that attacks conceived
in this challenging environment will exhibit the highest attack potential.

In the GCoAttack framework, we have two key players: the attacker, represented by CoAt-
tack, and the defender, which corresponds to TCD. As previously discussed, TCD aims to
bolster recommendation system robustness by collaboratively training three models. In con-
trast, CoAttack focuses on efficient attacks by cooperatively training the attacker and the
model, essentially creating a zero-sum game dynamic between them. Here’s how GCoAt-
tack operates: Initially, we initialize the poisoned users and pre-train the three TCD models
using standard recommendation loss Ltrain . In each round of attack optimization, TCD
generates high-confidence pseudo-labels, contributing to training and enhancing robustness.

123

World Wide Web (2023) 26:3915–3943 3927

Algorithm 3 Game-based co-training attack.
Input: The epochs of training T , the epochs of pre-training Tpre , three models h1(u, i), h2(u, i), h3(u, i),
labeled data DL , unlabeled data DU , initial poisoning data Dc , projection function�(x)
1: Initialize Dc according to the distribution of real ratings.
2: D′ = DL ∪ DU ∪ Dc .
3: for Tpre epochs do
4: for j ∈ [0, 1, 2] do
5: Train h j based on the dataset D′, training loss Ltrain .
6: end for
7: end for
8: for T − Tpre epochs do
9: for j ∈ [0, 1, 2] do
10: D(j)

L ← DL .
11: for every (u, i) ∈ DU do
12: if �(ĥ(j+1)mod3(u, i)) = �(ĥ(j+2)mod3(u, i)) then

13: D(j)
L ← D(j)

L ∪ {(u, i,�(ĥ(j+1)mod3(u, i)))}
14: end if
15: end for
16: Train h j based on dataset D(j)

L ∪ D′, training loss Ltrain + Latk .
17: end for
18: end for
19: Dp = {}.
20: for each user u ∈ Dc do
21: Get predicted rating vector h0(u) ∈ R

m for user u.
22: Choose these items with the highest m′ ratings in h(u) as filler items, and project these ratings to

reasonable discrete ratings, denoting as R̂u .
23: Dp = Dp ∪ {R̂u}.
24: end for
25: return poisoning profiles Dp .

Subsequently, CoAttack optimizes the fake users based on augmented data, considering both
attack loss and training loss simultaneously. CoAttack, in essence, attempts to breach TCD’s
defenses within this alternating optimization process. It strives to identify the optimal attack
strategy to maximize attack potential. The framework is shown in Figure 3.

The detailed algorithm of GCoAttack is shown in Algorithm 3.We initialize the poisoning
data Dc and inject them into the recommender system from lines 1 to 2. During the pre-
training phase, each model is trained based on the standard loss Ltrain . Subsequently, for

Figure 3 The framework of GCoAttack. a Pre-train three models on the dataset mixed initial poisoning data.
b Cooperative train TCD and CoAttack. c Choose these items with the highest m ratings in h0(u) as u’s filler
items

123

3928 World Wide Web (2023) 26:3915–3943

Table 2 Statistics of datasets Dataset Users Items Ratings Sparsity

FilmTrust 796 2011 30880 98.07

ML-100K 943 1682 100000 93.70

ML-1M 6040 3706 1000209 95.53

each round of attack optimization, high-confidence pseudo-labels are generated for every
model and injected into the dataset, as illustrated in lines 10-14. GCoAttack then optimizes
the attack based on the loss Ltrain + Latk using the augmented dataset, as depicted in line
16. Upon the completion of attack optimization, the final poisoning users are selected using
a greedy strategy similar to CoAttack, as shown in lines 20-24. It is worth noting that, in our
experiments, we discovered that the attacking quality derived from any model hi is relatively
equivalent; thus, by default, we opt for model h0.

6 Experiment

6.1 Experimental settings

6.1.1 Datasets

We use three real-world datasets commonly used in the security studies [29, 57] of
the recommender system, including FilmTrust1, ML-100K2 (MovieLens-100K), and ML-
1M3(MovieLens-1M). ML-100K includes 943 users who have rated 1,682 movies for
100,000 ratings. ML-1M comprises 6,040 users who have rated 3,706 movies about one
million times. For FilmTrust, the same pretreatment as [7] is used to filter cold-start users
who seriously affect the recommender system (the rating number is less than 15), leaving 796
users with trust ratings for 2011 movies. Table 2 lists the detailed statistics of these datasets.
All ratings are from 1 to 5, and we normalized them to [0, 1] in the experiments. For each
dataset, we randomly select a positive sample from each user for testing, and the rest are used
as the training set and verification set in a 9:1 ratio.

6.1.2 Attack methods

Here we use the following attacks for robustness validation:

• Random attack [12]: This attack assigns the maximum rating to the target item and rates
selected items according to the normal distribution of all user ratings at random.

• Average attack [12]: The only difference from Random Attack is that the non-target
selected item is randomly rated with the normal rating distribution of items.

• AUSH attack [7]: This attack uses GAN to generate fake users to carry out attacks
imperceptibly and assigns the highest rating to the target item.

1 https://www.librec.net/datasets/flmtrust.zip
2 https://grouplens.org/datasets/movielens
3 https://grouplens.org/datasets/movielens

123

https://www.librec.net/datasets/flmtrust.zip
https://grouplens.org/datasets/movielens
https://grouplens.org/datasets/movielens

World Wide Web (2023) 26:3915–3943 3929

• PGA attack [6]: This attack builds an attack objective and uses SGD to update the
poisoned user’s ratings to optimize the objective. Finally, the first items with the largest
ratings are selected as the fake user’s filler items.

• TNA attack [26]: This attack selects a subset of the most influential users in the dataset
and optimizes the rating gap between the target item and top-K items in the user subset.
Here we use S-TNA.

• DL attack [18]: The attack problem of non-convex integer programming is solved by
multiple approximations, and traditional training and poisoning training are combined
to generate fake users. Notably, CoAttack is inspired by it, and we will compare them in
Seciton 6.2.1 to verify the effectiveness of the proposed attack.

In the context of the partial-knowledge attacks examined in this paper, the attacker lever-
ages captured partial data to reconstruct a local simulator that closely resembles the target
model. Subsequently, the attacker employs this local simulator as a white-box resource for
conducting attacks. The transferability of these attacks ensures their potential harm.

6.1.3 Defense methods

We compare the proposed TCD with the following robust algorithms:

• Adversarial Training(AT) [25]: In each training step, it first uses SGD to optimize the
inner objective to generate small perturbations, adds them to the parameters, and then
performs training.

• Random Adversarial Training(RAT) [25]: In each training step, it first uses the trun-
cated normal distribution N (0, 0.01) to generate small perturbations, adds them to the
parameters, and then performs training.

These methods face a trade-off between generalization and robustness. Greater noise
improves robustness but significantly reduces generalization. As a compromise, we’ve set
the maximum noise value to 0.03.

6.1.4 Evaluation metric

We first use HR (Hit Ratio), just like [10], which calculates the proportion of test items
that appear in the user’s top-K recommendation list. Setting a large K helps make apparent
comparisons between defense methods and collaborative filtering is often used for candidate
selection in practical recommendations, so it is more instructive to select a larger K to
ensure a high recall [45], and we set K to 50 in the experiments. Besides, we use robustness
improvement RI = 1 − (HRdef ense − HRorgin)/(HRattack − HRorgin) defined in [10].
A value closer to 1 indicates better robustness. Finally, we introduce the Rank Shift metric,
which quantifies the difference between the rank of the targeted item before and after the
attack. A larger deviation from0 signifies amore significant impact of the attack. Our reported
results are based on the averages from 30 repeated independent experiments.We also conduct
paired t-tests when necessary to assess statistical significance.

6.1.5 Parameters setting

We concern with the MF-based collaborative filtering method, and we set the latent factor
dimension d to 128, the batch size to 2048, and the regularization parameter to 0.005. During
the training phase, the model undergoes training for 40 epochs, utilizing the Adam optimizer

123

3930 World Wide Web (2023) 26:3915–3943

for optimization. The final model selection is based on achieving the smallest Mean Squared
Error (MSE). For the partial-knowledge attack studied in ourwork, unless otherwise specified,
we set the data obtained by the attacker as 40%, the attack size as 3%, and the number of
filler items as the average number of real users. Importantly, this is not in conflict with the
condition where m′ << m, as the average number of user ratings is significantly smaller
than the total number of items in the dataset, e.g., the number of filler items in Yelp is 38,
which is far less than the total number of 25,602 items.

For the proposed TCD, the pre-training epoch T pre is set to 1, 4, and 2 in FilmTrust,
ML-100K, and ML-1M, respectively. For the number of pseudo-labels used, for the smaller
FilmTrust and ML-100K, we use all high-confidence pseudo-labels, while for the larger
ML-1M, we randomly select 20% for model training efficiency (comparison of other ratios
can be found in Section 6.3.4). For the proposed CoAttack and GCoAttack, the pre-training
epoch Tpre is set to 1, and the threshold κ is set to 0.2. Besides, the ratio of high-confidence
pseudo-labels is set to 100%, 100%, and 20%, similar to TCD.

For the target items of attacks, we learn two types: (1) random items: randomly selected
from all items, and (2) unpopular items: randomly selected from items with the number of
ratings less than 5. For both types of items, we choose 5 items as target items. If you wish
to access the source code for our work, it is available at the following URL: https://github.
com/greensun0830/Cotraining-Attack.

6.2 Result analysis regarding attack

6.2.1 Performance comparison

This section compares the proposed attacks with the existing state-of-the-art attack methods.
Table 3 illustrates HR@50 of target items under varying degrees of attack knowledge. Firstly,
the proposed attacks (CoAttack and GCoAttack) significantly outperform the baselines in
most scenarios, such as attacking unpopular items on FilmTrust, where the average attack
improvement reaches an astounding 258%. This demonstrates the rationality of considering
bi-level optimization in poisoning attacks. Secondly, it can be observed that as the attack
knowledge increases, the performance of various attacks exhibits an upward trend. This is
expected, as the attackers can better understand the true data distribution and tailor their
poisoning efforts for more users. Lastly, model-based optimization attacks (e.g., TNA, DL)
are superior to heuristic attacks (e.g., Average attack, Random attack). This validates our
earlier discussion that heuristic attack methods, which solely rely on generating fake profiles
based on general experience, cannot adapt to all recommendation patterns and therefore fail to
achieve satisfactory attack performance. Even these heuristic attacks reduce the exposure rate
of target items, which emphasizes the significance of studying optimization-based attacks.

In addition, we conduct a comparative analysis of the proposed CoAttack, and GCoAttack
with DL (CoAttack is inspired by it) to further verify the effectiveness of our designs. Firstly,
the comparison between CoAttack and DL in Table 3 shows that the attack performance
of CoAttack using all poison user optimization is significantly improved compared to DL
using single user optimization. This validates that the larger search space in CoAttack facili-
tates the discovery of optimal poisoning profiles. Secondly, when comparing CoAttack with
GCoAttack, we notice a further improvement in attack performance, underscoring the impor-
tance of optimizing attacks in game-based settings. That is, more stringent environments give
rise to more potent attacks. In addition, to compare the three models more intuitively, we
plot the shifting distribution of recommended ranking of the target items after the attack, as

123

https://github.com/greensun0830/Cotraining-Attack
https://github.com/greensun0830/Cotraining-Attack

World Wide Web (2023) 26:3915–3943 3931

Ta
bl
e
3

A
tta

ck
pe
rf
or
m
an
ce

(H
R
@
50

)
un

de
r
di
ff
er
en
ta
tta

ck
kn

ow
le
dg

e-
co
st

D
at
as
et

R
an
do
m

ite
m
s

U
np
op
ul
ar

ite
m
s

A
tta
ck

O
ri
gi
n

A
tta
ck

kn
ow

le
dg
e-
co
st

O
ri
gi
n

A
tta
ck

kn
ow

le
dg
e-
co
st

0.
2

0.
4

0.
6

0.
8

1
0.
2

0.
4

0.
6

0.
8

1

Fi
lm

tr
us
t

A
ve
ra
ge

0.
20

65
0.
11

65
0.
12

10
0.
13

50
0.
14

61
0.
14

31
0.
00

00
0.
00

28
0.
00

20
0.
00

24
0.
00

20
0.
00

29

R
an
do

m
0.
20

65
0.
15

96
0.
15

11
0.
14

91
0.
14

49
0.
15

64
0.
00

00
0.
00

46
0.
00

29
0.
00

30
0.
00

26
0.
00

36

A
U
SH

0.
20

65
0.
14

73
0.
18

07
0.
29

44
0.
35

97
0.
36

68
0.
00

00
0.
03

84
0.
03

63
0.
06

17
0.
05

62
0.
09

21

PG
A

0.
20

65
0.
11

06
0.
12

50
0.
14

53
0.
17

53
0.
18

17
0.
00

00
0.
00

19
0.
00

19
0.
00

51
0.
00

39
0.
01

02

T
N
A

0.
20

65
0.
72

99
0.
68

26
0.
57

36
0.
66

19
0.
47

62
0.
00

00
0.
51

26
0.
66

02
0.
34

23
0.
17

28
0.
09

96

D
L

0.
20

65
0.
38

25
0.
51

87
0.
57

87
0.
60

01
0.
54

12
0.
00

00
0.
04

07
0.
06

03
0.
08

12
0.
06

11
0.
10

37

C
oA

tta
ck

0.
20

65
0.
56

78
0.
64

43
0.
73

34
0.
56

46
0.
73

83
0.
00

00
0.
11

17
0.
44

29
0.
44

30
0.
35

21
0.
31

40

G
C
oA

tta
ck

0.
20

65
0.
81

15
0.
85

78
0.
88

14
0.
88

18
0.
88

43
0.
00

00
0.
74

05
0.
72

63
0.
83

46
0.
78

30
0.
87

11

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
00

K
A
ve
ra
ge

0.
05

35
0.
13

73
0.
20

45
0.
26

91
0.
27

64
0.
26

69
0.
00

00
0.
03

89
0.
20

98
0.
68

32
0.
61

44
0.
59

17

R
an
do

m
0.
05

35
0.
08

60
0.
11

27
0.
11

16
0.
12

03
0.
12

91
0.
00

00
0.
12

62
0.
13

41
0.
21

38
0.
14

07
0.
18

84

A
U
SH

0.
05

35
0.
19

46
0.
33

36
0.
38

29
0.
39

28
0.
38

01
0.
00

00
0.
05

39
0.
28

18
0.
79

97
0.
83

10
0.
87

43

PG
A

0.
05

35
0.
22

41
0.
20

43
0.
16

42
0.
19

30
0.
18

12
0.
00

00
0.
38

94
0.
41

53
0.
39

72
0.
34

42
0.
29

32

T
N
A

0.
05

35
0.
15

74
0.
34

50
0.
34

52
0.
31

55
0.
34

85
0.
00

00
0.
78

72
0.
41

46
0.
74

62
0.
73

83
0.
71

71

D
L

0.
05

35
0.
25

43
0.
39

52
0.
36

37
0.
40

42
0.
45

34
0.
00

00
0.
92

23
0.
82

99
0.
87

28
0.
83

09
0.
90

94

C
oA

tta
ck

0.
05

35
0.
33

08
0.
42

80
0.
47

07
0.
43

27
0.
48

69
0.
00

00
0.
92

60
0.
89

76
0.
94

07
0.
85

92
0.
89

69

G
C
oA

tta
ck

0.
05

35
0.
35

51
0.
50

08
0.
58

34
0.
59

78
0.
59

25
0.
00

00
0.
99

03
0.
98

74
0.
98

98
0.
99

06
0.
98

84

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

123

3932 World Wide Web (2023) 26:3915–3943

Ta
bl
e
3

co
nt
in
ue
d

D
at
as
et

R
an
do
m

ite
m
s

U
np
op
ul
ar

ite
m
s

A
tta
ck

O
ri
gi
n

A
tta
ck

kn
ow

le
dg
e-
co
st

O
ri
gi
n

A
tta
ck

kn
ow

le
dg
e-
co
st

M
L
-1
M

A
ve
ra
ge

0.
00

00
0.
20

52
0.
27

29
0.
31

23
0.
31

19
0.
33

92
0.
00

00
0.
93

17
0.
94

90
0.
95

11
0.
95

57
0.
95

36

R
an
do

m
0.
00

00
0.
06

09
0.
06

94
0.
06

87
0.
06

26
0.
07

25
0.
00

00
0.
77

31
0.
77

99
0.
76

31
0.
74

72
0.
79

34

A
U
SH

0.
00

00
0.
22

55
0.
31

71
0.
33

04
0.
36

32
0.
37

53
0.
00

00
0.
97

68
0.
98

05
0.
97

61
0.
98

19
0.
98

63

PG
A

0.
00

00
0.
09

86
0.
11

50
0.
10

03
0.
05

15
0.
04

46
0.
00

00
0.
96

93
0.
95

15
0.
94

03
0.
92

60
0.
92

97

T
N
A

0.
00

00
0.
06

65
0.
29

13
0.
32

88
0.
32

74
0.
32

83
0.
00

00
0.
92

67
0.
94

89
0.
95

35
0.
96

06
0.
95

54

D
L

0.
00

00
0.
22

36
0.
24

75
0.
27

64
0.
27

48
0.
26

80
0.
00

00
0.
98

10
0.
97

36
0.
96

62
0.
97

54
0.
96

50

C
oA

tta
ck

0.
00

00
0.
22

61
0.
24

78
0.
24

36
0.
22

63
0.
23

44
0.
00

00
0.
98

13
0.
98

98
0.
99

18
0.
99

02
0.
99

51

G
C
oA

tta
ck

0.
00

00
0.
26

62
0.
30

02
0.
32

93
0.
33

59
0.
33

56
0.
00

00
0.
99

81
0.
99

78
0.
99

80
0.
99

79
0.
99

75

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

*,
**
,a
nd

**
*
in
di
ca
te

th
at

th
e
im

pr
ov
em

en
ts
ov
er

th
e
be
st
ba
se
lin

e
ar
e
st
at
is
tic
al
ly

si
gn
ifi
ca
nt

fo
r
p

<
0.
05

,
p

<
0.
01

,a
nd

p
<

0.
00
1,

re
sp
ec
tiv

el
y.
B
ol
d
in
di
ca
te
s
th
e
be
st

pe
rf
or
m
an
ce
,a
nd

un
de
rl
in
e
in
di
ca
te
s
th
e
se
co
nd

be
st
on

e

123

World Wide Web (2023) 26:3915–3943 3933

Figure 4 Rank shift distribution of target items (unpopular items). The greater the rank shift, the more harmful
the attack

depicted in Figure 4. A larger rank shift signifies superior attack performance. It is apparent
that the performance of the three methods progressively improves, further corroborating the
rationality of employing cooperative training based on all fake profiles (i.e., CoAttack) and
game-theoretic cooperative training (i.e., GCoAttack).

6.2.2 Performance under different attack sizes

Theoretically, any recommendation system is inherently susceptible to adversarial manipula-
tion without constraining the number of poisoning profiles. Nonetheless, increased poisoning
data entails a heightened probability of detection. Considering these, we investigate attack
performance under various poisoning sizes, as illustrated in Figures 5 and 6. Firstly, as
anticipated, the intensity of the attack is positively correlated with the number of poisoning
instances. Secondly, under different amounts of poison data settings, CoAttack consistently
outperforms DL, while GCoAttack surpasses CoAttack. It further substantiates the effective-
ness of the two devised attack strategies from the sensitivity to attack size perspective.

Figure 5 Attack performance regarding random items under different attack sizes

123

3934 World Wide Web (2023) 26:3915–3943

Figure 6 Attack performance regarding unpopular items under different attack sizes

6.3 Result analysis regarding defense

6.3.1 Robustness

In this evaluation, we assess the mitigating effect of various defense methods on the hit
ratio (HR) of target items, as shown in Table 4. Here, “Origin" refers to the unperturbed
model, while “Attack" denotes the attacked victim model subjected to various attacks. First,
in most cases, the employed defense methods show a positive effect in weakening the attack’s
damage with respect to HR. Second, our proposed TCD stands out by achieving impressive
defense results, almost matching the performance of the unperturbed model. On average,
TCD reduces the impact of attacks on random items by over 88% and unpopular items by
over 82%, significantly outperforming baseline defenses. Third, when attacking FilmTrust’s
unpopular items, the performance of TCD against Random and Average is slightly inferior
compared to the defense against other attacks. In contrast, almost every performance of TCD
on ML-100k and ML-1M is better than that of baselines. We suspect that the smaller size of
the FilmTrust dataset may not adequately represent real data, making it easier for adversarial
training to identify and learn non-robust features of adversarial data. This also presents a
more formidable challenge for TCD in detecting such non-robust features.

Besides, Figure 7 shows the Rank shift distribution of target items (unpopular items)
under the TNA attack. The attack significantly promotes the target item’s rank among all
users. After applying adversarial training, the rank change caused by the attack is mitigated
but remains slight. On the contrary, TCD clearly drives the distribution of rank shift toward 0,
indicating that TCD can produce more stable recommendations in a perturbed environment.
In conclusion, these results provide strong evidence of TCD’s positive impact on enhancing
recommendation system robustness against poisoning attacks.

6.3.2 Generalization

A desirable defense should enhance robustness while preserving the model’s generalization
performance. Robustness achieved at the expense of standard generalization is meaningless.
Therefore, in this section, we evaluate the generalization of the recommendation system (i.e.,
performance on the test set) under various defense strategies, as shown in Table 5. On the one
hand, it can be seen that adding adversarial noise to themodel parameters throughAdversarial
Training (AT) reduces the model’s performance, which is consistent with existing findings
that adversarial training cannot simultaneously enjoy both robustness and generalization
[58]. On the other hand, the proposed TCD does not compromise the model’s robustness and
even improves its recommendation performance. For instance, on ML-100K, it elevates the

123

World Wide Web (2023) 26:3915–3943 3935

Ta
bl
e
4

T
he

pe
rf
or
m
an
ce

in
ta
rg
et
ite
m
s
(r
ob
us
tn
es
s)

D
at
as
et

M
et
ho
d

R
an
do
m

ite
m
s

A
ve
ra
ge

R
an
do
m

A
U
SH

PG
A

T
N
A

D
L

C
oA

tta
ck

G
C
oA

tta
ck

Fi
lm

T
ru
st

O
ri
gi
n

0.
20

65
0.
20

65
0.
20

65
0.
20

65
0.
20

65
0.
20

65
0.
20

65
0.
20

65

A
tta

ck
0.
12

10
0.
15

11
0.
17

64
0.
18

07
0.
12

50
0.
68

26
0.
64

43
0.
85

78

A
T

0.
11

19
0.
16

72
0.
17

64
0.
12

76
0.
60

88
0.
52

22
0.
60

39
0.
83

62

R
A
T

0.
11

43
0.
14

79
0.
17

73
0.
12

44
0.
68

06
0.
50

55
0.
60

32
0.
85

72

T
C
D

0.
11

88
0.
12

24
0.
23

86
0.
12

87
0.
51

25
0.
18

10
0.
16

93
0.
17

21

p-
va
lu
e

**
**

*
**

*
**

*
**

*
**

*

M
L
-1
00

K
O
ri
gi
n

0.
05

35
0.
05

35
0.
05

35
0.
05

35
0.
05

35
0.
05

35
0.
05

35
0.
05

35

A
tta

ck
0.
20

45
0.
11

27
0.
33

36
0.
20

43
0.
34

50
0.
39

52
0.
42

80
0.
50

08

A
T

0.
20

88
0.
11

57
0.
33

87
0.
22

64
0.
31

48
0.
38

55
0.
33

56
0.
47

82

R
A
T

0.
19

84
0.
11

44
0.
33

85
0.
18

46
0.
28

41
0.
39

99
0.
38

88
0.
53

33

T
C
D

0.
05

44
0.
04

95
0.
05

28
0.
05

44
0.
04

89
0.
09

42
0.
09

81
0.
10

26

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
M

O
ri
gi
n

0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00

A
tta

ck
0.
27

29
0.
06

94
0.
22

55
0.
09

86
0.
06

65
0.
22

36
0.
22

61
0.
26

62

A
T

0.
10

18
0.
04

79
0.
06

02
0.
07

00
0.
11

83
0.
15

18
0.
16

23
0.
18

41

R
A
T

0.
25

18
0.
05

90
0.
27

70
0.
11

53
0.
26

49
0.
24

27
0.
23

80
0.
29

01

T
C
D

0.
00

61
0.
00

66
0.
00

47
0.
02

58
0.
00

51
0.
08

35
0.
35

88
0.
36

62

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

123

3936 World Wide Web (2023) 26:3915–3943

Ta
bl
e
4

co
nt
in
ue
d

D
at
as
et

M
et
ho
d

U
np
op
ul
ar

ite
m
s

A
ve
ra
ge

R
an
do
m

A
U
SH

PG
A

T
N
A

D
L

C
O
A
T
K

G
C
O
A
T
K

Fi
lm

T
ru
st

O
ri
gi
n

0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00

A
tta

ck
0.
00

20
0.
00

29
0.
03

63
0.
00

19
0.
66

02
0.
06

03
0.
44

29
0.
72

63

A
T

0.
00

16
0.
00

27
0.
04

83
0.
00

20
0.
60

46
0.
09

95
0.
41

77
0.
80

51

R
A
T

0.
00

17
0.
00

27
0.
05

86
0.
00

18
0.
58

90
0.
08

00
0.
44

67
0.
77

08

T
C
D

0.
00

08
0.
00

16
0.
00

46
0.
00

07
0.
06

23
0.
01

33
0.
01

22
0.
03

62

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
00

K
O
ri
gi
n

0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00

A
tta

ck
0.
20

98
0.
13

41
0.
28

18
0.
41

53
0.
41

46
0.
82

99
0.
98

76
0.
98

74

A
T

0.
30

51
0.
15

80
0.
23

38
0.
59

53
0.
51

51
0.
88

61
0.
93

09
0.
98

20

R
A
T

0.
19

57
0.
15

22
0.
24

50
0.
44

72
0.
41

29
0.
86

45
0.
92

91
0.
98

56

T
C
D

0.
00

10
0.
00

13
0.
00

10
0.
00

15
0.
00

19
0.
00

32
0.
00

12
0.
00

69

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
M

O
ri
gi
n

0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00

A
tta

ck
0.
94

90
0.
77

99
0.
98

05
0.
95

15
0.
94

89
0.
97

36
0.
98

98
0.
99

78

A
T

0.
95

53
0.
66

98
0.
96

36
0.
94

58
0.
95

02
0.
97

29
0.
99

26
0.
99

65

R
A
T

0.
95

04
0.
74

92
0.
98

02
0.
95

23
0.
94

41
0.
97

60
0.
98

94
0.
99

78

T
C
D

0.
03

21
0.
02

58
0.
03

44
0.
03

01
0.
02

88
0.
14

44
0.
80

46
0.
86

44

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

*,
**
,a
nd

**
*
in
di
ca
te

th
at

th
e
im

pr
ov
em

en
ts
ov
er

th
e
be
st
ba
se
lin

e
ar
e
st
at
is
tic
al
ly

si
gn
ifi
ca
nt

fo
r
p

<
0.
05

,
p

<
0.
01

,
an
d
p

<
0.
00

1,
re
sp
ec
tiv

el
y.
B
ol
d
in
di
ca
te
s
th
e
be
st

pe
rf
or
m
an
ce

123

World Wide Web (2023) 26:3915–3943 3937

Figure 7 Rank shift distribution of target items (unpopular items). The smaller the rank shift, the smaller the
impact of the attack

HR@50 from 0.2364 to 0.32, demonstrating the advantage of collaborative training among
the three models.

6.3.3 Performance under different attack knowledge-cost

As verified in Section 6.2.1, as the knowledge available to the attacker increases, the damage
to the model will also be greater. In this section, we explore the robustness improvement
of TCD under different knowledge, as shown in Figure 8. First, the impact of the attacker’s
knowledge on the defensive performance is minimal, indicating that our attack possesses
universality, even if we are unaware of the specific configuration employed by the attacker.
Second, TCD consistently delivers satisfactory results against most attacks. This underscores
the potential applicability of our algorithm in real-world systems, where defenders often lack
precise knowledge of the attack algorithms used by adversaries.

Figure 8 Robustness improvement under different attack knowledge-cost

123

3938 World Wide Web (2023) 26:3915–3943

Ta
bl
e
5

T
he

pe
rf
or
m
an
ce

in
th
e
te
st
se
t(
ge
ne
ra
liz
at
io
n)

D
at
as
et

M
et
ho
d

R
an
do
m

ite
m
s

A
ve
ra
ge

R
an
do
m

A
U
SH

PG
A

T
N
A

D
L

C
oA

tta
ck

G
C
oA

tta
ck

Fi
lm

T
ru
st

O
ri
gi
n

0.
84

85
0.
84

70
0.
84

34
0.
85

33
0.
84

76
0.
84

76
0.
84

64
0.
84

72

A
tta

ck
0.
83

66
0.
83

51
0.
83

83
0.
83

60
0.
82

51
0.
83

73
0.
83

47
0.
83

25
1

A
T

0.
81

30
0.
80

76
0.
81

52
0.
80

83
0.
78

97
0.
81

09
0.
80

03
0.
79

64

R
A
T

0.
83

14
0.
83

51
0.
83

57
0.
83

35
0.
82

14
0.
83

22
0.
83

30
0.
82

99

T
C
D

0.
87

19
0.
87

20
0.
87

28
0.
87

25
0.
86

95
0.
87

24
0.
87

24
0.
87

14

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
00

K
O
ri
gi
n

0.
23

64
0.
24

78
0.
23

63
0.
23

87
0.
23

56
0.
23

34
0.
23

62
0.
23

37

A
tta

ck
0.
22

59
0.
23

68
0.
22

57
0.
22

35
0.
22

40
0.
22

76
0.
22

87
0.
22

84

A
T

0.
21

65
0.
22

54
0.
21

24
0.
20

83
0.
21

21
0.
22

04
0.
21

96
0.
21

73

R
A
T

0.
22

26
0.
23

14
0.
22

18
0.
21

93
0.
22

16
0.
22

48
0.
22

61
0.
22

58

T
C
D

0.
31

79
0.
32

22
0.
31

65
0.
32

31
0.
32

23
0.
31

31
0.
31

40
0.
30

83

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
M

O
ri
gi
n

0.
10

34
0.
10

44
0.
10

37
0.
10

37
0.
10

27
0.
10

35
0.
10

32
0.
10

28

A
tta

ck
0.
08

59
0.
10

07
0.
08

48
0.
09

61
0.
08

68
0.
09

88
0.
09

74
0.
09

91

A
T

0.
04

94
0.
09

78
0.
04

58
0.
09

09
0.
04

70
0.
10

01
0.
09

66
0.
09

69

R
A
T

0.
08

25
0.
09

97
0.
08

11
0.
09

40
0.
08

18
0.
09

87
0.
09

60
0.
09

65

T
C
D

0.
12

56
0.
12

76
0.
12

64
0.
12

55
0.
12

62
0.
12

67
0.
12

67
0.
12

38

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

123

World Wide Web (2023) 26:3915–3943 3939

Ta
bl
e
5

co
nt
in
ue
d

D
at
as
et

M
et
ho
d

U
np
op
ul
ar

ite
m
s

A
ve
ra
ge

R
an
do
m

A
U
SH

PG
A

T
N
A

D
L

C
O
A
T
K

G
C
O
A
T
K

Fi
lm

T
ru
st

O
ri
gi
n

0.
85

05
0.
84

30
0.
84

17
0.
85

18
0.
84

67
0.
84

67
0.
83

67
0.
84

64

A
tta

ck
0.
83

74
0.
83

40
0.
83

50
0.
83

94
0.
82

58
0.
83

73
0.
83

67
0.
83

29

A
T

0.
80

39
0.
80

56
0.
80

46
0.
80

77
0.
78

55
0.
80

50
0.
80

99
0.
80

12

R
A
T

0.
83

41
0.
83

27
0.
83

27
0.
83

48
0.
81

80
0.
83

49
0.
83

34
0.
82

99

T
C
D

0.
87

24
0.
87

25
0.
87

25
0.
87

21
0.
87

14
0.
87

15
0.
87

18
0.
87

22

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
00

K
O
ri
gi
n

0.
23

75
0.
25

98
0.
23

54
0.
23

90
0.
23

14
0.
23

11
0.
23

10
0.
23

65

A
tta

ck
0.
22

48
0.
23

17
0.
22

58
0.
21

54
0.
22

47
0.
22

05
0.
21

98
0.
21

63

A
T

0.
21

71
0.
22

32
0.
21

74
0.
20

75
0.
20

94
0.
21

29
0.
20

77
0.
20

88

R
A
T

0.
22

69
0.
23

01
0.
22

70
0.
21

24
0.
22

13
0.
21

68
0.
21

87
0.
21

84

T
C
D

0.
31

17
0.
31

05
0.
31

12
0.
31

79
0.
31

34
0.
31

66
0.
32

86
0.
31

32

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

M
L
-1
M

O
ri
gi
n

0.
10

26
0.
10

33
0.
10

32
0.
10

31
0.
10

46
0.
10

36
0.
10

36
0.
10

38

A
tta

ck
0.
08

36
0.
09

65
0.
08

08
0.
09

02
0.
08

70
0.
09

49
0.
09

26
0.
09

38

A
T

0.
04

41
0.
09

56
0.
03

60
0.
08

20
0.
04

50
0.
09

38
0.
09

00
0.
09

10

R
A
T

0.
08

09
0.
09

54
0.
07

43
0.
08

86
0.
08

27
0.
09

35
0.
09

15
0.
09

16

T
C
D

0.
12

63
0.
12

50
0.
12

65
0.
12

60
0.
12

69
0.
12

61
0.
12

10
0.
11

99

p-
va
lu
e

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

*,
**
,a
nd

**
*
in
di
ca
te

th
at

th
e
im

pr
ov
em

en
ts
ov
er

th
e
be
st
ba
se
lin

e
ar
e
st
at
is
tic
al
ly

si
gn
ifi
ca
nt

fo
r
p

<
0.
05

,
p

<
0.
01

,
an
d
p

<
0.
00

1,
re
sp
ec
tiv

el
y.
B
ol
d
in
di
ca
te
s
th
e
be
st

pe
rf
or
m
an
ce

123

3940 World Wide Web (2023) 26:3915–3943

Figure 9 The defense performance (unpopular items) on ML-1M under different injected pseudo-label ratios

6.3.4 Performance under different pseudo-label ratios

The training time of TCD is directly proportional to the size of the training dataset, which
means proportional to the number of injected pseudo-labels. Therefore, under the default
settings of the experiment, we tolerate all high-confidence pseudo-labels for the smaller
dataset (FilmTrust and ML-100K), while for the larger ML-1M, we only use 20% of the data
to improve the training efficiency. In this section, we analyze the impact of different pseudo-
label injection ratios on the model robustness, as shown in Figure 9. Overall, the model
robustness increases as the number of injected pseudo-labels increases. It is worth noting
that in the larger ML-1M dataset, we observe that when the injection ratio is between 20%
and 30%, the model’s robustness against attacks has already reached a satisfactory level.
This desirable property makes applying TCD to large-scale datasets in practice feasible.
Additionally, we find that in FilmTrust, the model’s robustness against AUSH decreases with
fewer pseudo-labels. We suspect that AUSH aims to generate profiles that are confusingly
similar to real profiles, which may cause the high-confidence pseudo-labels to be mixed with
false ones; that is, it may inject more fraudulent data and lead to a decline in robustness. As
the number of pseudo-labels increases, the number of trusted labels also grows, gradually
diminishing the impact of the fake data. This finding underscores the importance of studying
imperceptible attacks, which will be a focus for our future work.

7 Conclusion and outlook

In this paper, we first proposed a novel defensemethod, Triple CooperativeDefense (TCD), to
enhance recommendation robustness against poisoning attacks. TCD integrates data process-
ing and model robustness boosting by using three recommendation models for cooperative
training. The high-confidence prediction ratings of any two models are used as auxiliary
training data for the remaining model in each round of training. Second, we revisited the
poisoning attack and proposed an efficient poisoning attack, Co-training Attack (CoAttack),
which cooperatively optimizes attack objective and model training to generate malicious
poisoning profiles efficiently. Additionally, we revealed that existing attacks are usually opti-
mized based on an optimistic, defenselessmodel, which limits the attack performance. To this
end, we further proposed a more harmful attack, a Game-based Co-training Attack (GCoAt-
tack), to train the proposed TCD and CoAttack cooperatively. Extensive experiments on
three datasets demonstrate the effectiveness of the proposed methods over state-of-the-art
baselines.

In the future, we may conduct further work from two aspects: (1) Defense Enhancement:
The Triple Cooperative Defense (TCD) method introduced in this paper presents a versa-
tile framework that can be integrated with other defense strategies. We plan to explore the

123

World Wide Web (2023) 26:3915–3943 3941

application of TCD beyond recommendation systems, potentially extending its use to other
domains and fields where robustness against adversarial attacks is critical. (2) Advancements
in Attack-Defense Dynamics: In our exploration of Game-based Co-training Attack (GCoAt-
tack), we demonstrated that an attack-defense game can maximize the threat of an attack. In
the future, we aim to investigate whether such dynamic interactions can also lead to enhanced
defense capabilities. This research will delve deeper into understanding the intricate balance
between attack and defense in adversarial settings.

Acknowledgements The work was supported by grants from the National Natural Science Foundation of
China (No. 62022077).

Author contributions QingyangWang andChenwangWu contribute equally to this paper, including algorithm
implementation, experimental data collation, and paper writing. Defu Lian and Enhong Chen proofread the
manuscript. In addition, all authors reviewed the manuscript.

Funding The work was supported by grants from the National Natural Science Foundation of China (No.
62022077).

Availability of data andmaterial The source code and data are available at https://github.com/greensun0830/
Cotraining-Attack.

Declarations

Ethical approval Not applicable. I declare that this paper does not involve any human or animal studies, so no
ethical issues are involved.

Competing interests The authors declare no competing interests.

References

1. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst.
46, 109–132 (2013)

2. Himeur, Y., Sayed, A., Alsalemi, A., Bensaali, F., Amira, A., Varlamis, I., Eirinaki, M., Sardianos,
C., Dimitrakopoulos, G.: Blockchain-based recommender systems: Applications, challenges and future
opportunities. Comput. Sci. Rev. 43, 100439 (2022)

3. Lian, D., Wu, Y., Ge, Y., Xie, X., Chen, E.: Geography-aware sequential location recommendation. In:
Proceedings of KDD’20, pp. 2009–2019. (2020)

4. Chevalier, J.A., Mayzlin, D.: The effect of word of mouth on sales: Online book reviews. J. Mark. Res.
43(3), 345–354 (2006)

5. Wu, C., Lian, D., Ge, Y., Zhu, Z., Chen, E.: Triple adversarial learning for influence based poisoning
attack in recommender systems. In: Proceedings of KDD’21, pp. 1830–1840. (2021)

6. Li, B., Wang, Y., Singh, A., Vorobeychik, Y.: Data poisoning attacks on factorization-based collaborative
filtering. NIPS 29, 1885–1893 (2016)

7. Lin, C., Chen, S., Li, H., Xiao, Y., Li, Q. Lianyun and Yang: Attacking recommender systems with
augmented user profiles. In: CIKM, pp. 855–864. (2020)

8. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the accuracy of
collaborative filtering. KBS 56, 156–166 (2014)

9. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to
adversarial attacks. arXiv (2017)

10. Wu, C., Lian, D., Ge, Y., Zhu, Z., Chen, E., Yuan, S.: Fight fire with fire: Towards robust recommender
systems via adversarial poisoning training. In: SIGIR, pp. 1074–1083. (2021)

11. Nguyen Thanh, T., Quach, N.D.K., Nguyen, T.T., Huynh, T.T., Vu, V.H., Nguyen, P.L., Jo, J., Nguyen,
Q.V.H.: Poisoning GNN-based recommender systems with generative surrogate-based attacks. ACM
Trans. Inf. Syst. 41(3), 1–24 (2023)

12. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: WWW, pp. 393–402. (2004)

123

https://github.com/greensun0830/Cotraining-Attack
https://github.com/greensun0830/Cotraining-Attack

3942 World Wide Web (2023) 26:3915–3943

13. Burke, R., Mobasher, B., Williams, C., Bhaumik, R.: Classification features for attack detection in col-
laborative recommender systems. In: KDD, pp. 542–547. (2006)

14. Cohen, R., Sar Shalom, O., Jannach, D., Amir, A.: A black-box attack model for visually-aware recom-
mender systems. In: Proceedings of the 14th ACM International Conference on Web Search and Data
Mining, pp. 94–102. (2021)

15. Yue, Z., He, Z., Zeng, H., McAuley, J.: Black-box attacks on sequential recommenders via data-free
model extraction. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp. 44–54.
(2021)

16. Zhang, S., Yin, H., Chen, T., Huang, Z., Nguyen, Q.V.H., Cui, L.: Pipattack: poisoning federated recom-
mender systems for manipulating item promotion. In: Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 1415–1423. (2022)

17. Fang, M., Yang, G., Gong, N.Z., Liu, J.: Poisoning attacks to graph-based recommender systems. In:
Proceedings of the 34th Annual Computer Security Applications Conference, pp. 381–392. (2018)

18. Huang, H., Mu, J., Gong, N.Z., Li, Q., Liu, B., Xu, M.: Data poisoning attacks to deep learning based
recommender systems. http://arxiv.org/abs/2101.02644 (2021)

19. Wang,Q., Lian,D.,Wu,C., Chen, E.: Towards robust recommender systems via triple cooperative defense.
In: Web Information Systems Engineering–WISE 2022: 23rd International Conference, Biarritz, France,
November 1–3, 2022, Proceedings, pp. 564–578. Springer (2022)

20. Du, Y., Fang, M., Yi, J., Xu, C., Cheng, J., Tao, D.: Enhancing the robustness of neural collaborative
filtering systems under malicious attacks. IEEE Trans. Multimedia 21(3), 555–565 (2018)

21. Si, M., Li, Q.: Shilling attacks against collaborative recommender systems: a review. Artif. Intell. Rev.
53(1), 291–319 (2020)

22. Ovaisi, Z., Heinecke, S., Li, J., Zhang, Y., Zheleva, E., Xiong, C.: Rgrecsys: A toolkit for robustness
evaluation of recommender systems. arXiv (2022)

23. Chen, L., Xu, Y., Xie, F., Huang, M., Zheng, Z.: Data poisoning attacks on neighborhood-based recom-
mender systems. Trans. Emerg. Telecommun. Technol. 32(6), 3872 (2021)

24. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR
prediction. arXiv (2017)

25. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: WWW, pp.
173–182. (2017)

26. Fang, M., Gong, N.Z., Liu, J.: Influence function based data poisoning attacks to top-n recommender
systems. In: Proceedings of The Web Conference 2020, pp. 3019–3025. (2020)

27. Tang, J., Wen, H., Wang, K.: Revisiting adversarially learned injection attacks against recommender
systems. In: RecSys, pp. 318–327. (2020)

28. Jin, B., Lian, D., Liu, Z., Liu, Q.,Ma, J., Xie, X., Chen, E.: Sampling-decomposable generative adversarial
recommender. Adv. Neur. In. 33, 22629–22639 (2020)

29. Christakopoulou, K., Banerjee, A.: Adversarial attacks on an oblivious recommender. In: RecSys, pp.
322–330. (2019)

30. Li, C., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. Adv. Neural Inf. Proces. Syst. 30
(2017)

31. Yang, G., Gong, N.Z., Cai, Y.: Fake co-visitation injection attacks to recommender systems. In: NDSS.
(2017)

32. Oh, S., Kumar, S.: Robustness of deep recommendation systems to untargeted interaction perturbations.
arXiv (2022)

33. Fan, W., Derr, T., Zhao, X., Ma, Y., Liu, H., Wang, J., Tang, J., Li, Q.: Attacking black-box recommen-
dations via copying cross-domain user profiles. In: ICDE, pp. 1583–1594. IEEE (2021)

34. Song, J., Li, Z., Hu, Z., Wu, Y., Li, Z., Li, J., Gao, J.: PoisonRec: an adaptive data poisoning framework
for attacking black-box recommender systems. In: ICDE, pp. 157–168. IEEE (2020)

35. Deldjoo, Y., Noia, T.D., Merra, F.A.: A survey on adversarial recommender systems: from attack/defense
strategies to generative adversarial networks. CSUR 54(2), 1–38 (2021)

36. Yang, Z., Xu, L., Cai, Z., Xu, Z.: Re-scale AdaBoost for attack detection in collaborative filtering recom-
mender systems. Knowl.-Based Syst. 100, 74–88 (2016)

37. Ge, Y., Liu, S., Fu, Z., Tan, J., Li, Z., Xu, S., Li, Y., Xian, Y., Zhang, Y.: A survey on trustworthy
recommender systems. http://arxiv.org/abs/2207.12515 (2022)

38. Zhang, Y., Tan, Y., Zhang, M., Liu, Y., Chua, T.-S., Ma, S.: Catch the black sheep: unified framework
for shilling attack detection based on fraudulent action propagation. In: Twenty-fourth International Joint
Conference on Artificial Intelligence. (2015)

39. Zhang, F., Zhang, Z., Zhang, P.,Wang, S.: UD-HMM: an unsupervisedmethod for shilling attack detection
based on hidden Markov model and hierarchical clustering. Knowl.-Based Syst. 148, 146–166 (2018)

123

http://arxiv.org/abs/2101.02644
http://arxiv.org/abs/2207.12515

World Wide Web (2023) 26:3915–3943 3943

40. Zhang, Z., Kulkarni, S.R.: Detection of shilling attacks in recommender systems via spectral clustering.
In: FUSION, pp. 1–8. IEEE (2014)

41. Cao, J., Wu, Z., Mao, B., Zhang, Y.: Shilling attack detection utilizing semi-supervised learning method
for collaborative recommender system. WWW 16(5–6), 729–748 (2013)

42. Cheng, Z., Hurley, N.: Effective diverse and obfuscated attacks on model-based recommender systems.
In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 141–148. (2009)

43. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing
defenses to adversarial examples. In: ICML, pp. 274–283. PMLR (2018)

44. Machado, G.R., Silva, E., Goldschmidt, R.R.: Adversarial machine learning in image classification: a
survey toward the defender’s perspective. CSUR (1), 1–38 (2021)

45. He, X., He, Z., Du, X., Chua, T.-S.: Adversarial personalized ranking for recommendation. In: SIGIR,
pp. 355–364. (2018)

46. Li, R., Wu, X., Wang, W.: Adversarial learning to compare: self-attentive prospective customer recom-
mendation in location based social networks. In: WSDM, pp. 349–357. (2020)

47. Park, D.H., Chang, Y.: Adversarial sampling and training for semi-supervised information retrieval. In:
The World Wide Web Conference, pp. 1443–1453. (2019)

48. Tang, J., Du, X., He, X., Yuan, F., Tian, Q., Chua, T.-S.: Adversarial training towards robust multimedia
recommender system. IEEE Trans. Knowl. Data Eng. 32(5), 855–867 (2019)

49. Yue, Z., Zeng, H., Kou, Z., Shang, L., Wang, D.: Defending substitution-based profile pollution attacks
on sequential recommenders. In: Proceedings of the 16th ACM Conference on Recommender Systems,
pp. 59–70. (2022)

50. Hidano, S., Kiyomoto, S.: Recommender systems robust to data poisoning using trim learning. In: ICISSP,
pp. 721–724. (2020)

51. Zhang, F., Lu, Y., Chen, J., Liu, S., Ling, Z.: Robust collaborative filtering based on non-negative matrix
factorization and R1-norm. Knowl.-Based Syst. 118, 177–190 (2017)

52. Yu, H., Gao, R., Wang, K., Zhang, F.: A novel robust recommendation method based on kernel matrix
factorization. J. Intell. Fuzzy Syst. 32(3), 2101–2109 (2017)

53. Smith, B., Linden, G.: Two decades of recommender systems at Amazon.com. IEEE Internet Comput.
21(3), 12–18 (2017)

54. Gomez-Uribe, C.A., Hunt, N.: The Netflix recommender system: algorithms, business value, and inno-
vation. ACM Trans. Manag. Inf. Syst. (TMIS) 6(4), 1–19 (2015)

55. Wu, Z., Wang, Y., Cao, J.: A survey on shilling attack models and detection techniques for recommender
systems. Chinese Sci. Bull. 59(7), 551–560 (2014)

56. Zhang, J., Xu, X., Han, B., Niu, G., Cui, L., Sugiyama, M., Kankanhalli, M.: Attacks which do not kill
training make adversarial learning stronger. In: ICML, pp. 11278–11287. PMLR (2020)

57. Yuan, F., Yao, L., Benatallah, B.: Adversarial collaborative neural network for robust recommendation.
In: SIGIR, pp. 1065–1068. (2019)

58. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J.C., Liang, P.: Adversarial training can hurt generalization.
http://arxiv.org/abs/1906.06032 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1906.06032

	Securing recommender system via cooperative training
	Abstract
	1 Introduction
	2 Related work
	2.1 Poisoning attacks in recommender systems
	2.2 Defense against poisoning attacks

	3 Threat model
	3.1 Attack goal
	3.2 Attack knowledge
	3.3 Attack capability

	4 Triple cooperative defense
	5 Cooperative training attack
	5.1 Poisoning attack: a bi-level optimization problem
	5.2 Co-training attack
	5.3 Game-based co-training attack

	6 Experiment
	6.1 Experimental settings
	6.1.1 Datasets
	6.1.2 Attack methods
	6.1.3 Defense methods
	6.1.4 Evaluation metric
	6.1.5 Parameters setting

	6.2 Result analysis regarding attack
	6.2.1 Performance comparison
	6.2.2 Performance under different attack sizes

	6.3 Result analysis regarding defense
	6.3.1 Robustness
	6.3.2 Generalization
	6.3.3 Performance under different attack knowledge-cost
	6.3.4 Performance under different pseudo-label ratios

	7 Conclusion and outlook
	Acknowledgements
	References

