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Abstract
Recently, fewmethods for understanding machine learning model’s outputs have been devel-
oped. SHAP and LIME are two well-known examples of these methods. They provide
individual explanations based on feature importance for each instance. While remarkable
scores have been achieved for individual explanations, understanding the model’s decisions
globally remains a complex task. Methods like LIME were extended to face this complexity
by using individual explanations. In this approach, the problem was expressed as a sub-
modular optimization problem. This algorithm is a bottom-up method aiming at providing a
global explanation. It consists of picking a group of individual explanations which illustrate
the global behavior of the model and avoid redundancy. In this paper, we propose CoSP
(Co-Selection Pick) framework that allows a global explainability of any black-box model
by selecting individual explanations based on a similarity preserving approach. Unlike sub-
modular optimization, in our method the problem is considered as a co-selection task. This
approach achieves a co-selection of instances and features over the explanations provided
by any explainer. The proposed framework is more generic given that it is possible to make
the co-selection either in supervised or unsupervised scenarios and also over explanations
provided by any local explainer. Preliminary experimental results are made to validate our
proposal.

Keywords Machine learning models · Explicability · Local explanation and global
aggregation

1 Introduction

Nowadays, a wide range of real-life applications such as computer vision [1, 2], speech
processing, natural language understanding [3], health [4], and military fields [5, 6] make use
of Machine Learning (ML) models for decision making or prediction/classification purpose.
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However, those models are often implemented as black boxes which make their predictions
difficult to understand for humans. This nature of ML-models limits their adoption and
practical applicability inmany real world domains and affect the human trust in them.Making
ML-models more explainable and transparent is currently a trending topic in data science
and artificial intelligence fields which attracts the interest of several researchers.

Explainable AI (XAI) refers to the tools, methods, and techniques that can be used to
make the behavior and predictions of ML models to be understandable to human [7]. Thus,
the higher the interpretability/explainability of a ML model, the easier it is for someone to
comprehend why certain decisions or predictions have been made.

Multiple interpretability approaches are based on additive models where the prediction is
a sum of individual marginal effects like feature contribution [8], where a value (denoting
the influence on the output) is assigned to each feature. One of the latest proposed methods
is based on mathematical Shapeley Values and was introduced by Scott et al. [9] as SHAP
(for SHapley Additive exPlanations). It relies on combining ideas from cooperative game
theory and local explanations [10]. LIME (Local InterpretableModel-agnostic Explanations),
introduced by Ribeiro et al. [11], is also one of the most famous local explainable models. It
explains individual predictions of any classifier or regressor in a faithful and intelligible way,
by approximating them locally with an interpretable model (e.g., linear models, decision
trees). However, having a global explanation of the model can be challenging as it is more
complicated to maintain a good fidelity - interpretability trade off. To this end, authors in [11]
proposed an approach, called submodular Pick which is an algorithm aiming to maximize a
coverage function of total feature importance for a set of instances. While maximizing the
coverage function is NP-Hard, authors make use of a greedy algorithmwhich adds iteratively
instances with the highest marginal coverage to the solution set, offering a constant-factor
approximation to the optimum. The selected set is the most representative, non-redundant
individual explanations of the model.

In this paper, our aim is to introduce a new approach to select individual instances (expla-
nations) to be considered for global explanation to ensure that the picked group reflects the
global behavior of the black-box model. Unlike submodular optimization proposed in [11],
we advocate to consider the problemof picking representative instances as a co-selection task.
The idea is to apply a similarity preserving co-selection approach to select a set of instances
and features on the explanations provided by any explainer. In fact, feature or instance selec-
tion has been widely considered separately in the literature to remove noise, irrelevant and
redundant features or instances in datasets [12–16]. Unfortunately, selecting features and
instances separately and sequentially is time consuming, especially when dealing with large
scale datasets. To overcome this problem, co-selection or the simultaneous selection of fea-
tures and instances is proposed making use of the duality between feature space and instance
space. In this context, several approaches have been proposed. For instance, Kuncheva et al.
[17] proposed a genetic algorithm that simultaneously select features and reference cases to
improve the performance of nearest neighbor classifiers. Derrac et al. [18] suggested an evo-
lutionarymodel based on cooperative coevolution to perform co-selection in nearest neighbor
classification. GarcíA-Pedrajas et al. [19] proposed a scalable, almost any size, method for
concurrent instance and feature selection. In another side, similarity preserving approaches
have been considered in the literature with the aim of evaluating features by their ability to
preserve locality. For instance, Zhao et al. [20] introduced a similarity preserving feature
selection framework that overcomes common weakness in handling feature redundancy. Ma
et al. [21] proposed a similarity preserving method that generate unseen visual features from
random noises concatenated with semantic descriptions. Shang et al. [22] suggested UFSRL,
a framework that used local similarity preserving for feature selection.
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Contributions

The technical contributions of this paper are summarized as follows.

• Wepropose a new approach, calledCoSP, for a global explainability of black boxmachine
learning.

• The proposed approach selects individual explanations to provide global explanation for
machine learning models.

• CoSP is based on a similarity preserving co-selection approach.
• Experiments are conducted to validate the efficacy of these contributions.
• We release a performant implementation of CoSP at [23].

The original version of this work is published at WISE’22 [24]. The main changes in this
paper are presented below:

• Creating a new section (RelatedWork) that presents somemodern explainabilitymethods
proposed in the literature to further clarify the importance of interpretability of machine
learning models.

• Detailing, in the Proposed approach section, the alternative optimization procedure
applied to the objective function.

• Adding computational complexity in the Algorithm Analysis subsection.
• Conducting further experiments to validate the effectiveness of CoSP by comparing it
against four approaches including, Random, Greedy [25], Parzen [26] and LIME [11],
combined with Submodular Pick (SP) and Random Pick (RP).

Thepaper is structured as follows. Section2 introduces the relatedwork. Section3provides
a necessary background on LIMEmethod. In Section 4, we present our approach allowing for
a global explanation of black box ML models. Section 5 shows the preliminary experiments
done to validate our proposal. In Section 6, we conclude the paper and draw some research
lines for future work.

2 Related work

Interpretability of MLmodels reflects the ability to provide meaning in understandable terms
to human. It is crucial to trust the system and get insights based on its decisions. Quality of an
explanation could be improved bymaking it more Interpretable, Faithful, andmodel-agnostic
[27]. Faithfulness represents how the explanation is describing the reality of the model.
Model-agnostic methods are used for any type of model. Several explainability methods
are proposed in the literature. LIME introduced by Ribeiro et al. [11], is one of the well-
known examples. It is a framework which explains a prediction by approximating it locally
using an interpretable model. Other methods were proposed later, for instance, Burkart et al.
[28] provided a survey that presents the main explainable of supervised machine learning
methods. Lundberg et al. [29] suggested a novel explanation that improves the interpretability
of tree-based models by directly measuring local feature interaction effects. Vlahek et al.
[30] introduced an iterative approach to learning explainable features, where new features
are generated with each iteration and high quality dissimilars are selected. Dinh et al. [31]
suggested a consistent feature selection for analytic deep neural networks. Cancela et al. [32]
proposed E2E-FS, a feature selection algorithm providing both precision and explainability
in a smart way. Wang et al. [33] proposed RC-Explainer, a Reinforced Causal Explainer for
GraphNeuralNetworks.Apoweful framework that generate faithful and concise explanations
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to unseen graphs. Moritz et al. [34] introduced CoDA Nets, a powerful classifiers with a
high degree of inherent interpretability. Table 1 gives a concise overview of other existing
explainability algorithms.

3 Background on LIME

The basic idea of LIME is to replace a data instance x by its interpretable representations x ′
thanks to a mapping function �(x). For example, an image will be represented as a group of
super-pixels, a text as binary vectors indicating the presence or the absence of a word. The
interpretable representations are more easily understandable and close to human intuition.
Then, x ′ is perturbed to generate a set of new instances. The black box model is used to make
predictions of generated instances from x ′ which are weighted according to their dissimilarity
with x ′. Now, for the explanation purpose, an interpretable model, such as linear models, is
trained on weighted data to explain prediction locally (see, Algorithm 1).

Algorithm 1 Sparse linear explanations LIME.
Require: Classifier f , Number of samples N
Require: Instance x , and its interpretable version x ′
Require: Similarity kernel πx , Lengths of explanation K
1: Z ←− {}
2: for ( i ∈ {1, 2, 3, ..., N })
3: z′i ←− sample-around(x ′)
4: Z ←− Z ∪ 〈z′i , f (zi ), πx (zi )〉
5: end for
6: w ←− K -Lasso(Z , K ), z′i as features, f (z) as target
7: return w

3.1 LIME: fidelity-interpretability trade-off

Authors in [11] define an explanation as a model g ∈ G, where G is a class of potentially
interpretablemodels (e.g., linearmodels, decision trees). Let�(g)be ameasure of complexity
(as opposed to interpretability) of the explanation g. For example, for linearmodels�(g)may
be the number of non-zero weights. The model being explained is denoted by f : Rd −→ R.
Let now πx defines a locality around x and L( f ; g; x) be a measure of how unfaithful g is
in approximating f in the locality πx . The explanation produced by LIME is then obtained
by the following minimization problem [11]:

ξ(x) = argmin
g∈G

L( f ; g;πx ) + �(g) (1)

3.2 Explaining global behavior

LIME explains a single prediction locally. Then, it picks K explanations which must be
representative to show to the user. The Submodular Pick is used to choose instances to be
inspected for global understanding. The quality of selected instances is critical to get insights
from the model in a reasonable time (see, Algorithm 2). Let X (with |X| = n) be the set
of instances to explain, Algorithm 2 calculates W ∈ R

n×d ′
an explanation matrix using
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each individual explanation given by Algorithm 1. Then, it computes (I j ) global feature
importance for each column j in W , such that the highest importance score is given to
the feature explaining an important number of different instances. Submodular Pick aims
then at finding the set of instances V , |V | < B that scores the highest coverage, defined as
the function which calculates total importance of features in at least one instance. Finally,
greedy algorithm is used to build V by adding the instance with highest marginal coverage
gain.

Algorithm 2 Submodular Pick (SP).
1: Require: Instances X, Budget B
2: for (all xi in X )
3: Wi ←− explain(xi , x

′
i ) {Using LIME}

4: end for
5: for j ∈ 1...d ′ do

6: I j ←−
√∑n

i=1 |Wi j | {Compute the feature importance}

7: end for
8: V ←− {}
9: while|V | < B
10: V ←− V

⋃
argmaxi c(V

⋃{i},W, I )
11: end while
12: return

4 Proposed approach

The approach we propose in this paper consists of two sequential phases (see Figure 1).
The first is to use LIME (without loss of generality, any other explainer can be used) to
obtain the explanations of the predictions for the test data. While the second phase focuses
on global explainability by co-selecting the most important test instances and features. Thus,
we provide a global understanding of the black-box model.

4.1 Notation

Table 2 summarizes the significant notations used in this paper. Let E be an explanation
matrix of n instances and m features. The l2,1-norm of E is:

‖ E ‖2,1=
m∑
i=1

‖ Ei ‖2=
m∑
i=1

√√√√
n∑
j=1

E2
i j (2)

and its Frobenius norm (l2,2) is:

‖ E ‖F=
(

m∑
i=1

‖ Ei ‖22
)

=
⎛
⎝

m∑
i=1

⎛
⎝

n∑
j=1

E2
i j

⎞
⎠

⎞
⎠

1/2

(3)

4.2 Explanation space

Let f be a black boxmodel, andX a test dataset of n instances and�(X) = X′ its interpretable
representation in R

p . First, to obtain an individual explanation of the prediction made by f
for each instance xi we use LIME by fitting a linear model on a generated dataset around x ′

i ,
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Figure 1 The proposed framework for a global explanation using a co-selection of features and instances

Table 2 Summary of symbols
and notations

Symbol Definition

n Number of instances

m Number of features

h Dimesion of the low dimensional space

E ∈ R
n×m Explanation matrix

A∈ R
n×n Pairwise similarity matrix over E

R ∈ R
n×h Instance coefficient matrix

W ∈ R
m×h Feature coefficient matrix

Z∈ R
n×h Eigen-decomposition of A

‖ . ‖F ; ‖ . ‖2,1 Matrix norms
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the interpretable representation of xi . Thus, for each instance xi , we obtain an explanation
of length k (k < p). It is worthy to note that the length is a parameter set by the user and
corresponds to the number of features retained. Once the individual explanations have been
obtained, we construct an explanation space represented by E ∈ R

n×m , where the dimension
m of the explanations space corresponds to the union of the k features of each explanation.
We illustrate this step with the following example:

Example Let X′ be the interpretable representation of 3 instances in R500, and k = 3 be the
length of the explanation desired for these three instances. By performing LIME algorithm
on X′, we obtain 3 explanations of length 3:

ei =

⎧
⎪⎨
⎪⎩

e1 = {( f1, 0.5), ( f25, 0.9), ( f4, 0.1)}
e2 = {( f17, 0.2), ( f6, 0.3), ( f78, 0.4)}
e3 = {( f500, 0.8), ( f25, 0.7), ( f1, 0.25)}

(4)

where e1, e2, and e3 are the explanations of x ′
1, x

′
2 and x ′

3 respectively. Thus, the matrix
E ∈ R

3×7 can be seen as the concatenation of all the explanations and the union of the set of
features obtained by each explanation. Note that the dimension m here is equal to 7.

4.3 Global explicability by co-selection

Understanding the model’s decisions globally remains a complex task. In fact, some
approaches like LIME were extended to face this complexity by only picking a group of
individual explanations. In this paper, we advocate a method allowing global explainability
by co-selecting the most important instances and features over the explanations provided by
any explainer. The idea is to find a residual matrix R and a transformation matrixW, which
transforms high-dimensional explanations data E to low dimensional data EW, to maximize
the global similarity between E and EW. After the optimal W and R have been obtained,
the original features and instances are ranked, based on the �2,1-norm values of the rows of
R and W, and the top features and instance are selected accordingly.

4.4 Co-selection pick (CoSP)

To perform a co-selection of instances and features on the explanations matrix, we must
minimize the following problem as pointed out in [49]:

min
W,R

‖ EW − RT − Z ‖2F +λ ‖ W ‖2,1 +β ‖ R ‖2,1 (5)

Where:

• Z is the eigen-decomposition of the pairwise similarity matrix, A, computed over the
explanation matrix E. Note that the similarity matrix A can be calculated in supervised
fashion (e.g. adjacency matrix, fully binary matrix) if the labels of test instances are
available, or in unsupervised mode as follows:

Ai j = e− ‖ei−e j ‖2
2δ2 (6)

• R = WT ET −ZT −
., is a residualmatrix and
 is a randommatrix, usually assumed to
be multi-dimensional normal distribution [50]. Note that the matrixR is a good indicator
of outliers and less important and irrelevant instances in a dataset according to [51, 52].
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• λ and β are regularization parameters, used to control the sparsity of W and R respec-
tively; and δ is a parameter for the RBF kernel used to compute the matrix A in the
unsupervised mode in (6).

The first term of the objective in (5) exploits the E structure by preserving the pairwise
explanations similarity while the second and third terms are used to perform feature selection
and instance selection, respectively.

Optimization

In order to minimize (5), we adopt an alternating optimization over W and R as in[49], by
solving two reduced minimization problems :

Problem 1 Minimizing (5) by fixing R to compute W (for feature selection). To solve this
problem, we consider the lagrangian function of (5):

LW = trace(WT ET EW − 2WTET (RT + Z)) + λ ‖ W ‖2,1 . (7)

Then, we calculate the derivative of LW w.r.t W:

∂LW

∂W
= 2ET EW − 2ET (RT + Z) + 2λDWW. (8)

Where DW is a (m × m) diagonal matrix with the i th element equal to 1
2‖W(i,:)‖2 . Subse-

quently, we set the derivative to zero to updateW:

W = (ETE + λDW)−1 ET (RT + Z) (9)

Problem 2 Minimizing (5) by fixingW to compute the solution forR (for explanation selec-
tion). To solve this problem, we consider the Lagrangian function of (5):

LR = trace(RTR − 2RT (EW − Z)) + β ‖ R ‖2,1 . (10)

Then, we calculate the derivative of LR w.r.t R:

∂LR

∂R
= 2RT − 2(EW − Z) + 2βDRRT . (11)

Where DR is a (n × n) diagonal matrix with the i th element equal to 1
2‖RT (i,:)‖2 .

Subsequently, we set the derivative to zero to update B:

R = (EW − Z)T ((I + βDR)−1)T (12)

Where I is a (n × n) identity matrix. All of the above developments are summarized on
Algorithm 3.
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Algorithm 3 Co-Selection pick (CoSP).
1: Require: Instances X, Budget B and L, hyper-parameters: λ, β, δ, h.
2: for (all xi in X )
3: ei ←− explain(xi , x

′
i ) {Using LIME}

4: end for
5: Build the explanations matrix E (see Figure 2).
6: Calculate A {according to (6) for unsupervised mode or as adjacency matrix for supervised mode}.
7: Eigen-decomposition of A such as A = ZZT .
8: Initialize DW and DR as identity matrices.
9: repeat
10: Update W by (ETE + λDW )−1ET (RT + Z)

11: Update R by (EW − Z)T ((I + βDR))−1)T

12: Update DR and DW.
13: until Convergence
14: Rank the features according to‖ W( j, :) ‖2 in descending order, and the instances according to‖ R(:, i) ‖2

in ascending order.
15: Pick the top B instances and the top L features.

4.5 Algorithm analysis

In the Algorithm 3, the final user expects a selection of B instances (e.g., explanations) and
L features which are most relevant to provide global explanation of the model. In order to
achieve this, CoSP requires four hyper-parameters λ, β , δ and h that will be used later on
to build the set of chosen instances and features. Firstly, we build the explanations matrix E
using any explainer, in our case we use LIME. Secondly, we compute the similarity matrixA
either in supervised mode (as adjacency matrix or a binary matrix) or in an unsupervised way
according to the availability of the labels of the test instances X. Then, we eigen-decompse
A to find Z. From line 9 to line 13 W and R are updated until convergence according to
(9) and (12). Following the alternate optimization, we rank the instances and the features
according to R and W respectively. So, the higher the norm of ‖ R(:, j) ‖2, the more the
j th explanation is not representative, while the higher the norm ‖ W(i, :) ‖2, the more the
i th feature is important. The computational complexity of Algorithm 3 is presented by the
following lemma.

Lemma CoSP is computed in time of O (nmh + m3 + n3 + nm2 + n2h).

Proof The time complexity of CoSP essentially depends on the rule of (9) as well as the rule
of (12). These two rules are for updating the two matricesW and R which consists of some
matrixmultiplication and inversion operations at each iteration. Specifically, the computation
of the derivative w.r.t W requires O (nmh + nm2 + m3). The derivative w.r.t R needs O
(nmh + n2h + n3).

Figure 2 Explanation matrix E (this matrix is given as input for CoSP Algorithm 3)
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5 Experiments

In this section, we conduct some experiments to validate our framework on some known
sentiment datasets.

5.1 Datasets and comparedmethods

We use a binary sentimental classification dataset. Sentimental analysis is the task of ana-
lyzing people’s opinions, reviews, and comments presented as textual data. It gives intuition
about different points of view and feedback by detecting relevant words used to express
specific sentiments [53]. Today, companies rely on sentimental analysis to improve their
strategy. People’s opinions are collected from different sources like Facebook, Tweets, prod-
uct reviews and processed in order to understand customer’s needs and improve marketing
plans. When the sentiment is divided into positive and negative ones, it is called binary
sentimental analysis which is the most common type and the one used in our case. While
multi-class sentiment analysis classifies text into groups of possible labels. We use multi-
Domain Sentiment Dataset1, which contains multiple domains reviews (books and dvd) from
Amazon.com, where for each type of product there are hundred of thousands of collected
reviews. Then, we use an experiment introduced in [11] which aims to evaluate if explana-
tions could help a simulated user to recognize the best model from a group of models having
the same accuracy on validation set. In order to do this, a new dataset will be generated
by adding 10 artificial features to the train and validation set from original public dataset
(reviews). For the train examples, each of those features appears in 10% of instances in one
class and in 20% of the other class. In the test examples, an artificial feature appears in 10 %
of examples in both classes. This represents the case of having spurious correlations in the
data introduced by non informative features.

Furthermore, we train pairs of classifiers until their validation accuracy is within 0.1% of
each other. However, their test accuracy should differ by at least 5% which will make one
classifier better than the other. Then, we explain global behaviors of both classifiers using
our proposed approach CoSP.

We compare CoSP against Random, Greedy [25], Parzen [26] and LIME approches [11]
combined with Submodular Pick (SP) and Random Pick (RP). In the following, we briefly
describe each approach.

• Random randomly chooses the features as an explanation.
• Greedy removes features highly contributing to the predicted class until the prediction
changes.

• Parzen uses parzen windows to globally approximate the classifier
• Lime explains the classifier predictions by approximating it locally with an interpretable
model.

In the experiment, the explanations were obtained with the above four local explainability
techniques. Then, the global explainability approaches CoSP, SP or RP were used to select
the relevant instances.

1 https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Figure 3 Accuracy of picking the correct classifier over two datasets Books and DVDs

5.2 Experimental setting

Tovalidate our approach,we use the same experimental setting introduced in [54] by selecting
top five important features per class chosen as most relevant ones to be considered for the
classification task. Global approach is validated if it selects distinguishing features. Four
hyper-parameters necessary for CoSP have been set as follows: λ ≈ 2.11, β ≈ 61.79 ,
δ = 1 and h = 17000 (which stands for the number of features selected by CoSP). Parallely,
the parameters configuration of compared methods is as follows: K = 10 words in each
explanation and B = 10 instances.

5.3 Evaluation and results

In this section, we present the main results of our experiments. Figures 3, 4, 5 and 6 show
the experimental results over two datasets, Books and DVDs. We summarize the main obser-
vations of the experimental results in the following points.

Figure 4 Top 5 features per class picked by CoSP global approach for review’s binary classification on books
dataset
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Figure 5 Top 5 features per class picked by CoSP global approach for review’s binary classification on DVDs
dataset

• In terms of Accuracy, the LIME combined with either Co-Selection Pick (CoSP) or
Submodular Pick (SP-LIME) outperforms other comparison algorithms. It means that
the explanations provided by LIME are faithful to the models (see Figure 6).

• Regardless of the choice of the explainers, CoSP is significantly better than SP or RP,
across the two data sets, followed by SP-LIME (see Figures 3 and 6).

• CoSP further improves the user’s ability to select the best classifier comparing with the
SP or RP (see Figures 3 and 6).

• From Figures 4 and 5, the displayed perception contains words that are meaningful in
order to judge the type of comment. Features are aligned with human intuition and words
with no representative meaning like stop words were not selected. Also, noisy features
labeled with prefix “FAKE” added to the dataset were not deemed important.

Figure 6 Accuracy of human subject in choosing between two models, using books dataset. The four method
are combined with CoSP or Submodular (SP) selections
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6 Conclusion

In this paper, we presented CoSP, a generic framework aiming to select individual instances
in order to provide global explanation for machine learning models. We used Co-selection
based on similarity as foundation to build global understanding of the black box internal logic
over any local explainer. Furthermore, we conducted some experiments showing that CoSP
offers representative insights. This study is a another step towards understanding machine
learningmodels globally. For future work, wewould like to explore thismethod in the context
of time series data, as it is a challenging to find representative illustration for this type of
data. The approach we proposed is independent of the type of data, since it is based on
the explanations provided by a local explainer. Concerning time series, the local explainer
must be capable of processing this type of data. This involves in particular the choice of an
efficient representation of the time series. In the case of LIME, it is necessary to find a vector
representation of the series to be able to apply LASSO and have the explanations. Among
the applications on which we want to apply our approach, there is the detection of contextual
anomalies in time series. The idea is then not only to detect abnormal segments in a time
series but to explain why such a segment was detected as abnormal.
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