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Abstract
With the development of graph neural network, researchers begin to use bipartite graph
to model user-item interactions for recommendation. It is worth noting that most of graph
recommendation models represent users and items in the real-valued space, which ignore the
rich representational capacity of the non-real space. Besides, the simplicity and symmetry of
the inner product make it ineffectively capture the intricate antisymmetric relations between
users and items in interaction modeling. In this paper, based on the framework of graph
neural network, we proposeGraph Collaborative Filtering for recommendation in Complex
and Quaternion space (GCFC and GCFQ respectively). Specifically, we first use complex
embeddings or quaternion embeddings to initialize users and items. Then, the Hermitian
product (for GCFC) or Hamilton product (for GCFQ) and embedding propagation layers
are used to further enrich the embeddings of users and items. As such, we can obtain both
latent inter-dependencies and intra-dependencies between components of users and items.
Finally, we aggregate the embeddings of different propagation layers and use theHermitian or
Hamilton product with inner product to obtain the intricate antisymmetric relations between
users and items. We have carried out extensive experiments on four real-world datasets to
verify the effectiveness of GCFC and GCFQ.
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1 Introduction

As an important means to solve information overload, the recommender system has been
widely studied in industry and academia. Most of the current recommendation models are
based on collaborative filtering (CF). CF points out that similar users are interested in similar
items. Model-based CF methods often use inner product to model the similarity between
users and items, so nonlinear relations between users and items cannot be captured. With
the development of deep learning, nonlinear neural networks are introduced into model-
based CF methods [1, 2], achieving a good performance in multiple fields, such as social
recommendations [3], sequential recommendations [4] and click-through rate predictions [5].

The above model-based CF methods are basically divided into two parts: embedding
representation and interaction modeling. The purpose of embedding is to randomly initialize
users and items into low-dimensional real-valued representations. Then an interactionmodule
is devised to reconstruct the historical interactions between users and items. We can see that
the user-item interactions are only used formodel training.Actually, the user-item interactions
have rich high-order collaborative signals. If we can integrate the high-order collaborative
signals into the embedding representations, we can get better users and items embeddings.
Based on this, some studies [6, 7] constructed a bipartite graph by user-item interactions, and
used graph-related methods to capture the high-order collaborative signals between users and
items in embedding representation process.

Despite the effectiveness of above models, we argue that these models have the following
limitations. Firstly, the above models are based on real-valued operation and representations.
Compared with representations in non-real space, such as complex space and quaternion
space, real-valued representations have less representation capacity. As the most common
non-real spaces, complex and quaternion spaces have attracted the attention of scholars in
recent years, and have been widely used in different fields [8, 9]. The complex number
C = r + ai and the quaternion Q = r + ai+ bj+ ck contain a real component and multiple
imaginary components, so they have a richer representational capacity than the real number.

Secondly, the above models tend to use nonlinear neural networks in the interaction
modeling, because the simplicity of inner product makes it ineffective capture the com-
plex relationships between users and items. However, some studies have shown that the
simple inner product can better model user preferences than nonlinear neural networks [10–
12]. Therefore, the interaction modeling based on inner product is still worth studying and
exploring. In the complex space, we can make the components of complex vectors interact
with each other explicitly through theHermitian product [13] and inner product, whichmakes
it similar to the multi-view representations but exceeds the multi-view representations [14].
Similarly, Hamilton product in the quaternion space have the same advantages. Therefore,
compared with inner product in real space, Hermitian product and Hamilton product have
better modeling capability while maintaining the simplicity.

Thirdly, in the general recommendation, the user-item interactions can be modeled as
a bipartite graph, where node represents user or item, and edge represents the interaction
between user and item [15, 16]. From the perspective of bipartite graph, we can find that
users and items belong to different sets, and there is obvious antisymmetric relations between
them [14]. Neither inner product nor nonlinear neural network can model the antisymmetric
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relations between users and items in interaction modeling in above models. The Hermitian
product of complex space and Hamilton product of quaternion space are not commutative,
which makes them have great potential to capture the asymmetry in the recommendation
system.

Thanks to the excellent properties of complex and quaternion space and the advantage of
using graph to model recommendation, in this paper, based on the framework of graph neural
network, we propose Graph Collaborative Filtering for recommendation in Complex and
Quaternion space (GCFC and GCFQ). Specifically, we first use complex representations
or quaternion representations to initialize users and items, which endow users and items
representationswith a richer representational capacity. Then, based onHermitian product (for
GCFC) or Hamilton product (for GCFQ) and embedding propagation layers, we can further
enrich the embeddings of users and items.Benefiting from theHermitian orHamilton product,
we can obtain both latent inter-dependencies and intra-dependencies between components of
users and items. By embedding propagation layers, we can obtain high-order connectivities
between users and items. Finally, in interactionmodeling layer, we aggregate the embeddings
of different propagation layers and use the Hermitian or Hamilton product with inner product
to capture the intricate antisymmetric relations between users and items.We apply GCFC and
GCFQ on four real datasets, and the experimental results clearly demonstrate the superiority
and effectiveness of our proposedmodel. This paper is an extension of our previouswork [17].
In this paper, more technical and implementation details, more datasets, baselines, ablation
experiments and discussions are included.

In summary, we make the following contributions: (1) We propose to model recommen-
dation in complex and quaternion spaces from the perspective of graph. This work expands
the research of recommendation in non-real space. (2) We propose two novel graph neural
network models for recommendation in complex and quaternion spaces, GCFC and GCFQ,
respectively. Based on Hermitian or Hamilton product and embedding propagation layers,
we enrich embeddings of users and items, and capture the intricate antisymmetric relations
between users and items as well. (3) We conduct extensive experiments on four commonly
used real-world datasets. Experiment results show that GCFC and GCFQ achieve better
performance than state-of-art recommendation solutions.

The rest of this paper is organized as follows: Section 2 introduces model-based col-
laborative filtering methods, graph-based recommendation and application of complex and
quaternion neural networks; Section 3 gives the necessary mathematical background about
complex and quaternion algebra; Section 4 describes two proposed graph recommendation
models GCFC and GCFQ in detail; Section 5 presents extensive experiments on four real-
world datasets to verify the effectiveness of GCFC and GCFQ; Section 6 provides a summary
and future direction of this work.

2 Related work

2.1 Model-based collaborative filteringmethods

The model-based CF methods can directly train model parameters according to downstream
tasks, so it achieves better performance. Matrix factorization (MF) [18] is the most repre-
sentative model-based CF method, which maps the ID of users and items to real-valued
embeddings, and then uses the inner product as the interaction function. In order to obtain
richer embeddings, various side information have been introduced, such as visual content,
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textual content, social network and knowledge graph (KG) [12]. In order to capture the non-
linear relationship between users and items, nonlinear neural network is introduced into the
interaction function [1, 2]. However, some studies [10–12] have shown that the simple inner
product can better model recommendation system than nonlinear neural networks. But the
symmetry and simplicity make inner product ineffectively capture the complex asymmetric
relationship between users and items. Different from above researches, we use Hermitian or
Hamilton product with inner product to model the interactions between users and items in
complex and quaternion spaces respectively. Hermitian product and Hamilton product have
better modeling capabilities to obtain intricate antisymmetric relations between users and
items while maintaining the simplicity with inner product.

2.2 Graph-based recommendation

From the perspective of graph, the interactions between users and items in the recommenda-
tion can be seen as a bipartite graph. Early work used random walks on the bipartite graph
to obtain high-order connectivities of users and items to improve the performance [19, 20].
With the development of graph neural networks (GNN) [21], more andmore researches begin
to use GNN in the recommendation field, including social recommendations [3], sequential
recommendation [22] and CTR prediction [23]. The GCMC [6] performs an embedding
propagation on the user-item graph, which does not capture the high-order connectivities.
NGCF [24] conducts multiple embedding propagation on user-item graph and concatenates
multiple representations as the final embedding. PinSAGE [7] uses GCN to process the item-
item graph to implicitly obtain high-order connectivities. For more information about the
application of GNN in recommendation, please refer to the review [25]. Although the above
work has achieved promising performance, they are all running in the real space, ignoring the
rich representational capacity of complex space and quaternion space. Therefore, we propose
to model recommender systems in complex and quaternion spaces from the perspective of
graph. This paper extends the research of recommender systems in non-real space.

2.3 Application of complex and quaternion neural networks

Due to its richer representational capacity, complex-valued deep neural network [26] has been
applied in many domains, including signal processing, computer vision and so on. Yang et
al. [27] proposed a complex transformer for sequence modeling.Wisdom et al. [28] proposed
RNN in complex space and applied it in a real-world speech task. [13, 29] used complex-
valued embeddings to model the knowledge graph to capture antisymmetric relationships.
For more application of complex neural network, please refer to the review [9].

Since real-world data is often multidimensional, we need a specific approach to consider
the relationship between different dimensions. Quaternion, as an extension of complex num-
ber, can consider up to four-dimensional information. Therefore, quaternion neural networks
have attracted the attention of researchers. Parcollet et al. [30] used quaternion convolutional
neural networks for image reconstruction. Shi et al. [31] proposed quaternion block net-
work to learn multi-modality interaction for visual question answering. Nguyen et al. [32]
employed graph neural network in quaternion space for node classification. Zhang et al. [33]
used quaternion space to model entities and relationships in knowledge graph. Tay et al. [34]
proposed quaternion transformer for many NLP tasks. For more application of quaternion
neural network, please refer to the review [8].
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As far as we know, only a few papers currently consider using complex number or quater-
nion to represent users and items in recommendations. Zhang et al. [14] directly employed
complex embedding and quaternion embedding to model recommendation on the basis of
MF. Fang et al. [35] modeled users and items in quaternion space and propagate them with
quaternion feature transformation. Tran et al. [36] used attention and RNN to model user’s
long-term and short-term preferences for sequential recommendation in quaternion space.
Inspired by the modeling of KG in quaternion space, Li et al. [37] proposed to model unified
user-item KG in quaternion space for KG-aware recommendation. The above researches
show that modeling recommendation in complex and quaternion spaces can achieve better
performance. Different from the above studies, to the best of our knowledge, we are the first
to use GNN to model user-item interaction in complex and quaternion spaces. Based on Her-
mitian or Hamilton product and embedding propagation layers, we can enrich embeddings
of users and items and capture the intricate antisymmetric relations between users and items.

3 Background of complex and quaternion algebra

In this section,wegive the necessarymathematical background about complex andquaternion
algebra. For more details, please refer to [8, 9].

Complex algebra. A complex number C , belonging to complex space C, contains a
real part and an imaginary part: C = r + ai, where r and a are real numbers and the
imaginary unit i satisfies i2 = −1. We can expand the real and imaginary parts into real-
valued vectors to obtain a complex vector. Similarly, we can obtain a complex matrix. The
Hermitian product [13] of two complex number is defined as:

〈C1,C2〉 = C1C2 = (r1 − a1i)(r2 + a2i) = (r1r2 + a1a2) + (r1a2 − r2a1)i (1)

where C1 = r1 − a1i represents the complex conjugate of C1. From above formula, we can
find the Hermitian product of two complex number is asymmetrical, that is 〈C1,C2〉 �=
〈C2,C1〉. Many operations in real space can be applied to complex number. Suppose f is
an operator in the real number space, we can use f in two complex numbers as follows:
f (C1,C2) = f (r1, r2) + f (a1, a2)i.

Quaternion algebra. A quaternion Q is an extension of complex number, belonging to
quaternion spaceQ. Q contains one real part and three imaginary parts: Q = r+ai+bj+ck,
where r , a, b, and c are all real numbers and the imaginary units i, j and k satisfy: i2 = j2 =
k2 = ijk = −1; ij = k, jk = i,ki = j, ji = −k,kj = −i, ik = −j. We can expand the real
and imaginary parts into real-valued vectors to obtain a quaternion vector. Similarly, we can
obtain a quaternion matrix. The Hamilton product of two quaternion is also quaternion:

Q1 ⊗ Q2 = (r1 + a1i + b1j + c1k) ⊗ (r2 + a2i + b2j + c2k)

= (r1r2 − a1a2 − b1b2 − c1c2) + (r1a2 + a1r2 + b1c2 − c1b2)i

+ (r1b2 − a1c2 + b1r2 + c1a2)j + (r1c2 + a1b2 − b1a2 + c1r2)k (2)

From above formula, we can find that the Hamilton product is not commutative, that is
Q1 ⊗ Q2 �= Q2 ⊗ Q1. Many operations in real space can be applied to quaternion. Suppose
f is an operator in the real number space, we can use f in two quaternions as follows:
f (Q1, Q2) = f (r1, r2) + f (a1, a2)i + f (b1, b2)j + f (c1, c2)k.
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4 Methodology

In this section, we will introduce the proposed GCFC and GCFQ models in detail. Before
that, we first give the definition of the problem. Then we give an explanation of the model
overall framework. Next, we will detail each part of models.

4.1 Problem formulation

Given user set U = {u1, u2, ..., um}, item set V = {v1, v2, v3, ..., vn}, and user-item interac-
tion matrix R ∈ R

m×n , we can construct the user-item bipartite graph G = ({U,V}, A). In
user-item interaction matrix R, if there is implicit feedback between user u and item v, such
as purchasing, clicking, watching, then Ruv = 1, otherwise Ruv = 0. A ∈ R

(m+n)×(m+n) is
the adjacency matrix of the user-item graph, which is constructed from user-item interaction
matrix R:

A =
[
0(m×m) R
RT 0(n×n)

]
(3)

Our task is to learn the low-dimensional vector representations of users and items on the
bipartite graph G, design the prediction functions to calculate the probabilities of each user
engaging an item in complex and quaternion spaces, and make Top-K recommendations for
a target user based on the probability scores.

4.2 Framework overview

Since GCFC and GCFQ have similar framework, we only give the overall framework of
GCFQ as shown in Figure 1. The GCFQ is mainly composed of three parts: (1) In the
embedding layer, we randomly initialize quaternion vectors as the embeddings of users
and items. (2) In the embedding propagation layers, by continuously gathering information
from neighbors, the high-order connectivity between users and items are integrated into the
embeddings of users and items. Thanks to the Hamilton product, we can get both latent
inter-dependencies and intra-dependencies between components of users and items. (3) In

Figure 1 Overall architecture of the proposed model GCFQ
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the interaction modeling layer, we aggregate the embeddings of different propagation layers
as the final embeddings of users and items, and then use Hamilton product with inner product
to calculate the affinity score between users and items.

4.3 GCFC

4.3.1 Embedding layer

In the embedding layer, we use complex vectors as embeddings of users and items. Note
that we use real vectors to represent the real and imaginary part of complex vector, and then
use real operations to simulate complex operations [27]. So, we have two initial complex
embedding matrices HU ,(0)

C ∈ C
m×d and HV ,(0)

C ∈ C
n×d , where m and n are the number

of users and items respectively, d is the embedding size. Specifically, the initial complex
embedding of user u is hu,(0)

C = hu,(0)
C,r +hu,(0)

C,i i, where hu,(0)
C,r , hu,(0)

C,i ∈ R
d/2, i is an imaginary

unit. Similarly, the initial complex embedding of item v is hv,(0)
C = hv,(0)

C,r + hv,(0)
C,i i, where

hv,(0)
C,r , hv,(0)

C,i ∈ R
d/2. Thanks to complex embeddings, the user and item representations have

two parts with a richer representational capacity.

4.3.2 Embedding propagation layer

The user-item interaction graph contains the high-order collaborative signals [24, 38, 39].
The collaborative signals reflect the similarity between users and items. In order to integrate
the high-order collaborative signals into the embeddings of users and items, with the help
of message-passing architecture in GNN [21], we introduce embedding propagation in the
user-item graph. Specifically, the embedding propagation layer includes two steps: feature
propagation and nonlinear transformation.

Feature propagation. When user u performs feature propagation in lth layer, u aggre-
gates the message from graph neighbors Nu and itself embeddings in layer l − 1. We take
feature aggregation function in matrix form used in GCN [21]:

L = D̃− 1
2 ÃD̃− 1

2 (4)

H (l)
C = 〈L, H (l−1)

C 〉 = LH (l−1)
C,r + LH (l−1)

C,i i (5)

where A is the adjacency matrix of the user-item graph G, Ã = A + I and I is the identity
matrix; D̃ is the degree matrix of Ã; L ∈ R

(m+n)×(m+n)represents the normalized adjacency
matrix; 〈, 〉 denotes the Hermitian product; H (l−1)

C = H (l−1)
C,r + H (l−1)

C,i i is the embeddings of

users and items after l−1 step of embedding propagation and H (l−1)
C ∈ C

(m+n)×dl−1 , H (0)
C =[

HU ,(0)
C ; HV ,(0)

C

]
.

Nonlinear transformation. After obtaining information from neighbors, we perform
feature transformation in formula (6) and nonlinear activation in formula (7):

H (l)
C = 〈H (l)

C ,W (l)
C 〉

=
(
H (l)
C,r − H (l)

C,i i
) (

W (l)
C,r + W (l)

C,i i
)
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=
(
H (l)
C,rW

(l)
C,r + H (l)

C,iW
(l)
C,i

)
+

(
H (l)
C,rW

(l)
C,i − H (l)

C,iW
(l)
C,r

)
i (6)

H (l)
C = σ

(
H (l)
C

)
= σ

(
H (l)
C,r

)
+ σ

(
H (l)
C,i

)
i (7)

whereW (l)
C = W (l)

C,r +W (l)
C,i i is the trainable complex weight matrix andW (l)

C ∈ C
(dl−1/2)×dl ;

σ(x) is a nonlinear activation function. From above formula, we can find thatW (l)
C,r andW

(l)
C,i

are shared by the real and an imaginary parts of H (l)
C in Hermitian product. Weight sharing

enables the model to obtain both latent inter-dependencies and intra-dependencies between
the components of user and item, leading to a higher expressive model.

4.3.3 Interaction modeling layer

After L layers, we will obtain L + 1 representations at different layers for user u and item

v:
{
hu,(0)
C , hu,(1)

C , . . . , hu,(L)
C

}
,
{
hv,(0)
C , hv,(1)

C , . . . , hv,(L)
C

}
. We take the mean of L + 1 rep-

resentations to get the final representation huC and hv
C for user and item. For example, the

calculation formula for huC is as follows:

huC = mean
(
hu,(0)
C , hu,(1)

C , . . . hu,(L)
C

)

= mean
(
hu,(0)
C,r , . . . , hu,(L)

C,r

)
+ mean

(
hu,(0)
C,i , . . . , hu,(L)

C,i

)
i (8)

Then we use the Hermitian product to model the interaction between users and items:

rC = 〈
huC , hv

C

〉
= (

huC,r − huC,i i
) (
hv
C,r + hv

C,i i
)

= (
huC,r · hv

C,r + huC,i · hv
C,i

) + (
huC,r · hv

C,i − huC,i · hv
C,r

)
i (9)

where “·” denotes dot product. Through Hermitian product, we can further obtain inter-
dependencies between components of user and item. In addition, Hermitian product is
asymmetrical, which well captures the asymmetric relationship between user and item.
Finally we take mean of all components of rC as the prediction score:

ŷuv = (
rC,r + rC,i

)
/2 (10)

4.4 GCFQ

4.4.1 Embedding layer

In the embedding layer,we use quaternion vectors as the embeddings of users and items. Thus,
we have two initial quaternion embedding matrices HU ,(0)

Q ∈ Q
m×d and HV ,(0)

Q ∈ Q
n×d .

Specifically, the initial quaternion embedding of user u is hu,(0)
Q = hu,(0)

Q,r +hu,(0)
Q,i i+hu,(0)

Q, j j+
hu,(0)
Q,k k, where hu,(0)

Q,r , hu,(0)
Q,i , hu,(0)

Q, j , hu,(0)
Q,k ∈ R

d/4, i, j,k are imaginary units. Similarly, the

initial quaternion embedding of item v is hv,(0)
Q = hv,(0)

Q,r + hv,(0)
Q,i i+ hv,(0)

Q, j j+ hv,(0)
Q,k k, where

hv,(0)
Q,r , hv,(0)

Q,i , hv,(0)
Q, j , hv,(0)

Q,k ∈ R
d/4. Using quaternion embeddings, the user and item repre-

sentations have four parts with a richer representational capacity.
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4.4.2 Embedding propagation layer

References to GCFCmodel above, we provide thematrix form of the embedding propagation
layer in GCFQ. The embedding propagation consists of two steps: feature propagation and
nonlinear transformation.

Feature propagation. We take feature aggregation function in matrix form used in
GCN [21]:

H (l)
Q = L ⊗ H (l−1)

Q = LH (l−1)
Q,r + LH (l−1)

Q,i i + LH (l−1)
Q, j j + LH (l−1)

Q,k k (11)

where L represents the normalized adjacency matrix; ⊗ denotes the Hamilton product;
H (l−1)
Q = H (l−1)

Q,r + H (l−1)
Q,i i + H (l−1)

Q, j j + H (l−1)
Q,k k is the embedding of users and items after

l − 1 step of embedding propagation and H (l−1)
Q ∈ Q

(m+n)×dl−1 , H (0)
Q =

[
HU ,(0)
Q ; HV ,(0)

Q

]
.

Nonlinear transformation. After obtaining the information from neighbors, we per-
form feature transformation in formula (12) and nonlinear activation in formula (13):

H (l)
Q = H (l)

Q ⊗ W (l)
Q

=
(
H (l)
Q,rW

(l)
Q,r − H (l)

Q,iW
(l)
Q,i − H (l)

Q, jW
(l)
Q, j − H (l)

Q,kW
(l)
Q,k

)

+
(
H (l)
Q,rW

(l)
Q,i + H (l)

Q,iW
(l)
Q,r + H (l)

Q, jW
(l)
Q,k − H (l)

Q,kW
(l)
Q, j

)
i

+
(
H (l)
Q,rW

(l)
Q, j − H (l)

Q,iW
(l)
Q,k + H (l)

Q, jW
(l)
Q,r + H (l)

Q,kW
(l)
Q,i

)
j

+
(
H (l)
Q,rW

(l)
Q,k + H (l)

Q,iW
(l)
Q, j − H (l)

Q, jW
(l)
Q,i + H (l)

Q,kW
(l)
Q,r

)
k (12)

H (l)
Q = σ

(
H (l)
Q

)
= σ

(
H (l)
Q,r

)
+ σ

(
H (l)
Q,i

)
i + σ

(
H (l)
Q, j

)
j + σ

(
H (l)
Q,k

)
k (13)

whereW (l)
Q = W (l)

Q,r +W (l)
Q,i i+W (l)

Q, j j+W (l)
Q,kk is the trainable quaternion weight matrix and

W (l)
Q ∈ Q

(dl−1/4)×dl ; σ(x) is a nonlinear activation function. From above formulas, we can

find thatW (l)
Q,r ,W

(l)
Q,i ,W

(l)
Q, j ,W

(l)
Q,k are shared by the real and three imaginary parts of H (l)

Q in
Hamilton product. Weight sharing enables the model to obtain both latent inter-dependencies
and intra-dependencies between components of user and item, leading to a higher expressive
model.

4.4.3 Interaction modeling layer

After L layers, we will obtain L + 1 representations at different layers for user u and item

v:
{
hu,(0)
Q , hu,(1)

Q , . . . , hu,(L)
Q

}
,
{
hv,(0)
Q , hv,(1)

Q , . . . , hv,(L)
Q

}
. We take the mean of L + 1 rep-

resentations to get the final representation huQ and hv
Q for user and item. Then we use the

Hamilton product to model the interaction between users and items:

rQ = huQ ⊗ hv
Q

=
(
huQ,r · hv

Q,r − huQ,i · hv
Q,i − huQ, j · hv

Q, j − huQ,k · hv
Q,k

)

+
(
huQ,r .h

v
Q,i + huQ,i · hv

Q,r + huQ, j · hv
Q,k − huQ,k · hv

Q, j

)
i
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+
(
huQ,r .h

v
Q, j − huQ,i · hv

Q,k + huQ, j · hv
Q,r + huQ,k · hv

Q,i

)
j

+
(
huQ,r .h

v
Q,k + huQ,i · hv

Q, j − huQ, j · hv
Q,i + huQ,k · hv

Q,r

)
k (14)

where “·” denotes dot product. Through Hamilton product, we can further obtain the inter-
dependencies between the components of user and item. In addition, Hamilton product
is asymmetrical, which well captures the asymmetric relationship between user and item.
Finally we take mean of all components of rQ as the prediction score:

ŷui = (
rQ,r + rQ,i + rQ, j + rQ,k

)
/4 (15)

4.5 Model training

This work mainly focuses on the top-K recommendation task, and we optimize the model
using Bayesian Personalized Ranking (BPR) loss function [18]. Specifically, BPR loss func-
tion is formulated as:

Loss =
∑

(u,i, j)∈T
− ln σ

(
ŷui − ŷu j

) + λ‖�‖22 (16)

where T = {(u, i, j) | (u, i) ∈ R+, (u, j) ∈ R−} is training dataset with observed interac-
tions set R+ and the unobserved interactions set R−; σ(x) is sigmoid function; ŷui and ŷu j
are the learned prediction score; λ is the L2 regularization coefficient; � denotes trainable
parameters, including HU ,(0)

C/Q , HV ,(0)
C/Q ,W (l)

C/Q .

5 Experiments

In this section, we conduct extensive experiments over four real-world datasets to verify
the effectiveness of proposed models GCFC and GCFQ. We first give detailed experimental
settings. Then we give model performance, hyper-parameter studies and model analysis.

5.1 Experimental settings

5.1.1 Datasets

We conduct experiments on four widely used benchmark datasets [12], including Amazon-
Cloth, Amazon-Music, Amazon-Electronic and Book-Crossing. Information about these
datasets is shown in Table 1. Amazon-Cloth, Amazon-Music and Amazon-Electronic are
datasets that users rate items on Amazon, respectively corresponding to three categories:
clothing, digital music and electronics. For each user, we take score greater than 3 as positive
feedback. For the Amazon datasets, we respectively use 5-core setting, 10-core setting and
5-core setting [24] to ensure the quality of the data. Book-Crossing is the dataset of user
ratings about books. For each user, we take score greater than 0 as positive feedback and use
10-core setting to ensure the quality of data.
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Table 1 Datasets statistics Dataset #User #Item #Interactions Density

Amazon-Cloth 4,810 3,368 31,122 0.0019

Amazon-Music 3,765 2,663 43,190 0.0043

Amazon-Electronic 9,279 6,065 158,979 0.0028

Book-Crossing 6,754 13,670 374,325 0.0040

5.1.2 Baselines

We choose some representative baselines to perform comparison experiments. These models
not only include MF, MLP, NeuMF, DMF, GCMC, PinSage, NGCF in real space, but also
CCF and QCF in non-real space. Since this work focuses on general recommendation, we do
not use sequential recommendation model [36] and KG aware recommendation model [37]
in non-real space as baselines. The brief introduction to the above-mentioned baselines is as
follows:

• MF [18]: This model randomly initializes embeddings of users and items, and then uses
the inner product to predict the affinity score.

• MLP and NeuMF [1]: MLP uses nonlinear neural network to model interaction. Based
on MF and MLP, NeuMF uses deep neural networks and inner product jointly to predict
the affinity score between user and item.

• DMF [2]: This model uses ratings as feature of user and item, maps the feature by
nonlinear neural network, and predicts the affinity score between user and item by cosine
similarity.

• GCMC [6]: This model uses graph auto-encoder to generate user and item embeddings
for recommendation.

• PinSage [7]: This model uses GraphSAGE to generate item embeddings on the item-
item graph. In this paper, we directly use GraphSAGE on user-item interaction graph for
recommendation task.

• NGCF [24]: This model proposes to perform multiple embedding propagation on the
user-item interaction graph to capture the collaborative signals between users and items.

• CCF and QCF [14]: These two models use complex representation and quaternion
representation as the embeddings of users and items on the basis of MF.

5.1.3 Parameter settings and evaluation setup

For all baselines, batch size is set to 1024, embedding dimensionality is set to 64, adam
optimizer [40] is used to optimize all models, Xavier initializer is used to initialize the model
parameters, and the loss function is BPR loss. For other hyperparameters, we refer to the
original paper of baselines. Note that, the dimensionality of complex embeddings of users
and items is 64 for GCFC, which means that each component of complex embedding is a
vector with size 64/2 = 32 as we mentioned in Section 4.3. Similarly, each component of
quaternion embedding is a vectorwith size 64/4 = 16 forGCFQ. In order to obtain high-order
connectivity between users and items, the number of embedding propagation layer of GCFC
and GCFQ is searched in {1, 2, 3, 4}. Finally, for all baselines, Bayesian HyperOpt [12]
is used to perform hyper-parameter optimization on learning rate and coefficients of L2

regularization term w.r.t. NDCG@20 on each dataset for 30 trails.
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In the experiment, we randomly select 80% of the historical interactions between users
and items as the training set, 10% as the validation set, and 10% as the test set. All models are
trained on the training set, and the optimalmodel parameters are obtained on the validation set.
The evaluation metrics use the twomost common ranking metrics Recall@K and NDCG@K
by the all-ranking protocol [38]. The above process is executed 10 times and the final average
result is presented.

5.2 Overall performance comparison

The comparison results of all models are shown in Tables 2 and 3 with the best result
hightlighted in bold. We can draw the following conclusions:

• GCFQ performs best in all datasets, which shows the effectiveness of using graph neural
network to model recommendation in quaternion space. Compared with GCFC, GCFQ
uses quaternion embeddings, which have four components and enhance the representa-
tional capacity of model. Thus, GCFQ performs better than GCFC. On Amazon-Cloth
and Amazon-Electronic datasets, GCFC gets similar performance to GCMC, PinSage
andNGCF.OnAmazon-Music andBook-Crossing datasets, GCFC achieves the best per-
formance except for GCFQ, which indicates that the GCFC is more suitable for dataset
with higher density and shows the potential of modeling recommendation in complex
space.

• Compared with the models MF, MLP, NeuMF and DMF in real space, the models (CCF,
QCF,GCFC,GCFQ) in the non-real space can achievebetter performance.This is because
the non-real embeddings have the rich representational capacity and Hamilton product
and Hermitian product can capture the intricate antisymmetric relation between users
and items. In addition, in most cases, MF, CCF and QCF performe better than MLP
and NeuMF models using nonlinear neural networks, demonstrating the effectiveness of
using inner product to model interaction between users and items, which is consistent
with previous studies [10–12].

• Compared with MF, CCF and QCF, the models that use bipartite graphs to model the
interactions between users and items (NGCF, GCFC, GCFQ, etc.) can achieve better

Table 2 Performance of all methods on Amazon-Cloth and Amazon-Music datasets

Amazon-Cloth Amazon-Music
Recall@K NDCG@K Recall@K NDCG@K

Model K=20 K=30 K=20 K=30 K=20 K=30 K=20 K=30

MF 0.0760 0.0903 0.0327 0.0358 0.1352 0.1718 0.0592 0.0681

MLP 0.0324 0.0404 0.0152 0.0169 0.1141 0.1502 0.0495 0.0581

NeuMF 0.0384 0.0466 0.0153 0.0171 0.0885 0.1184 0.0408 0.0480

DMF 0.0729 0.0861 0.0311 0.0339 0.1383 0.1712 0.0581 0.0674

GCMC 0.0686 0.0883 0.0321 0.0363 0.1388 0.1770 0.0591 0.0682

PinSage 0.0709 0.0878 0.0356 0.0393 0.1429 0.1801 0.0647 0.0736

NGCF 0.0878 0.1021 0.0363 0.0390 0.1402 0.1760 0.0635 0.0722

CCF 0.0702 0.0896 0.0298 0.0339 0.1442 0.1816 0.0647 0.0737

QCF 0.0874 0.1058 0.0397 0.0436 0.1449 0.1868 0.0658 0.0749

GCFC 0.0815 0.0962 0.0393 0.0425 0.1541 0.1934 0.0666 0.0759

GCFQ 0.0881 0.1074 0.0405 0.0437 0.1553 0.1973 0.0678 0.0778
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Table 3 Performance of all methods on Amazon-Electronic and Book-Crossing datasets

Amazon-Electronic Book-Crossing
Recall@K NDCG@K Recall@K NDCG@K

Model K=20 K=30 K=20 K=30 K=20 K=30 K=20 K=30

MF 0.0301 0.0387 0.0125 0.0144 0.0020 0.0024 0.0009 0.0010

MLP 0.0276 0.0378 0.0113 0.0136 0.0021 0.0024 0.0010 0.0011

NeuMF 0.0339 0.0444 0.0142 0.0165 0.0017 0.0021 0.0008 0.0009

DMF 0.0282 0.0348 0.0138 0.0153 0.0024 0.0030 0.0012 0.0013

GCMC 0.0423 0.0559 0.0184 0.0214 0.0027 0.0033 0.0014 0.0015

PinSage 0.0458 0.0587 0.0197 0.0225 0.0025 0.0030 0.0014 0.0015

NGCF 0.0436 0.0555 0.0186 0.0212 0.0024 0.0030 0.0013 0.0014

CCF 0.0309 0.0402 0.0143 0.0164 0.0026 0.0031 0.0011 0.0013

QCF 0.0455 0.0578 0.0197 0.0225 0.0028 0.0034 0.0014 0.0015

GCFC 0.0450 0.0581 0.0193 0.0222 0.0033 0.0039 0.0016 0.0018

GCFQ 0.0471 0.0592 0.0205 0.0233 0.0034 0.0041 0.0018 0.0020

performance. The user-item interaction graph contains the high-order collaborative
signals, which reflect the similarity between users and items. By performing message-
passing on the bipartite graph, the high-order collaborative signals can be integrated into
the embedings of users and items.

• We attribute the excellent performance of GCFQ (GCFC) to the following reasons: (1)
thanks to the quaternion (complex) representations, the embeddings of user and item
have a richer representational capacity, (2) through Hamilton (Hermitian) product and
embedding propagation layers, we can obtain both latent inter- and intra- dependencies
between components of users and items, (3) Hamilton (Hermitian) product with inner
product can capture the intricate antisymmetric relation between users and items.

5.3 Hyper-parameter studies

5.3.1 Number of embedding propagation layer

In this section, we explore the influence of embedding propagation layer numbers on GCFC
and GCFQ. We search layer numbers in {1, 2, 3, 4} for GCFC and GCFQ on four datasests.
The experimental results are shown in Figures 2 and 3, and we can draw the following
conclusions: (1) For the datasets Amazon-Cloth and Amazon-Music, the best number of
layer is 1 for GCFC and GCFQ. This is because the Amazon-Cloth and Amazon-Music
datasets are small, and one embedding propagation layer enables the node to obtain enough
information from one-hop neighbors. (2) For the dataset Amazon-Electronic, the best number
of layers is 3 forGCFCand 1 forGCFQ.Amazon-Electronic hasmore interaction information
than Amazon-Cloth and Amazon-Music. Therefore, GCFC needs 3 layers to enhance the
representation ability of model. Compared with GCFC, GCFQ has stronger modeling ability,
so it only needs 1 layer for Amazon-Electronic. (3) The Book-Crossing is the largest in the
four datasets and has more abundant interaction information. Therefore, GCFC and GCFQ
need 3 and 4 embedding propagation layers respectively.
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(a) Amazon-Cloth (b) Amazon-Music

(c) Amazon-Elec tronic (d) Book-Crossing

Figure 2 Effect of number of embedding propagation layer on GCFC

5.3.2 Effect of embedding dimensionality

In order to study the impact of embedding dimensionality on models, we search the embed-
ding dimensionality in {16, 32, 64, 128, 256} for GCFC and GCFQ on four datasests. The

(a) Amazon-Cloth (b) Amazon-Music

(c) Amazon-Electronic (d) Book-Crossing

Figure 3 Effect of number of embedding propagation layer on GCFQ
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experimental results are shown in Figures 4 and 5. From the figures, we can find that
for Amazon-Cloth, Amazon-Music and Amazon-Electronic datasets, the best embedding
dimensionality is 64. Higher dimensionality will lead to overfitting. For Book-Crossing, per-
formance is improved as the dimensionality increase. This is because Book-Crossing has
more interaction information than other three datasets, and requires a higher embedding
dimensionality to represent users and items.

5.4 Model analysis

5.4.1 Space and time complexity analysis

For GCFC, it can be found from formulas (6) and (7) that we introduces embedding matrix
H (l)
C ∈ C

(m+n)×dl and trainable complex weight matrix W (l)
C ∈ C

(dl−1/2)×dl in layer l. We
can find the space complexity of GCFC at each layer is O(m+n+dl−1/2)×dl , wherem and
n are the number of users and items respectively; dl−1 and dl are the embedding size at layer
l − 1 and l; dl−1 and dl are smaller than m and n. Similarly, the space complexity of GCFQ
at each layer is O(m + n + dl−1/4) × dl . The proposed GCFC and GCFQ can be regarded
as the expansion of NGCF in complex and quaternion spaces, so the space complexity of
NGCF at each layer is about O(m + n + dl−1) × dl , which shows GCFC and GCFQ have
similar space complexity with NGCF.

In terms of GCFC and GCFQ, the difference in time complexity mainly lies in nonlinear
transformation. For GCFC, it can be found from formulas (6) and (7) that thematrix operation
has computational complexity O((m + n)× (dl−1 + 2)× dl ) in nonlinear transformation for
layer l. Similarly, the time complexity of GCFQ is O((m + n) × (dl−1 + 4) × dl ). The time
complexity of NGCF is about O((m+n)×(dl−1+1)×dl ). For NGCF, GCFC andGCFQ, the
time complexity difference is caused by inter-dependencies and intra-dependencies between
components of users and items. From Section 5.2 we can see that in some cases GCFC

(a) Amazon-Cloth (b) Amazon-Music

(c) Amazon-Electronic (d) Book-Crossing

Figure 4 Effect of embedding dimensionality on GCFC and GCFQ with Recall@20
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(a) Amazon-Cloth (b) Amazon-Music

(c) Amazon-Electronic (d) Book-Crossing

Figure 5 Effect of embedding dimensionality on GCFC and GCFQ with NDCG@20

achieves the best performance except for GCFQ. Therefore, if there is a requirement for the
time of model, GCFC is a good choice compared with GCFQ.

5.4.2 Representational capacity of non-real embedding

The proposed GCFC and GCFQ can be regarded as the expansion of NGCF in complex and
quaternion spaces. NGCF employs real representations as the embeddings of users and items.
GCFC and GCFQ use complex representations and quaternion representations respectively
as embeddings. In order to verify the representational capacity of non-real embedding, we
compare the performance of GCFC and GCFQ with NGCF in different embedding dimen-
sion. From the Figures 4 and 5, we can find that: (1) For the dataset Amazon-Cloth, GCFQ
and GCFC are better than NGCF before the best embedding dimension 64. As the dimension
increases, the performance of three models decreases, and GCFQ and GCFC decrease faster.
This is because the Amazon-Cloth dataset is smaller, and the overfitting of GCFQ and GCFC
ismore serious with the improvement of dimension. This also shows that themodeling ability
of GCFQ and GCFC is stronger than NGCF. (2) For the datasets Amazon-Music, Amazon-
Electronic andBook-Crossing, as embedding dimension increases, the performance ofGCFQ
and GCFC are always better than NGCF. This is because complex and quaternion embed-
dings have one real component andmultiple imaginary components. Thanks toHermitian and
Hamilton products, we can obtain both latent inter- and intra- dependencies between compo-
nents of embeddings. Therefore, compared with real embeddings, complex and quaternion
embeddings have a better representational capacity.

5.4.3 Effect of Hermitian and Hamilton products in interaction modeling layer

Compared with the inner product, Hermitian and Hamilton products enable the components
of embeddings of user and item to interact with each other, which endows them with better
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modeling capabilitywhilemaintaining the simplicity. In addition, theHermitian andHamilton
products are inherently asymmetrical, which enables them to capture the asymmetry in the
recommendation. In order to verify the effectiveness of Hermitian and Hamilton products,
we propose two variants of model: Model-in and Model-sys. Model-in replaces Hermitian
or Hamilton product in interaction modeling layer with inner product. Model-sys redefines
the prediction function in models. Specifically, when calculating the products between user
and item in formulas (9) and (14), we redefine the products in GCFC-sys and GCFQ-sys as
follows:

rC = (
〈
huC , hv

C

〉 + 〈
hv
C , huC

〉
)/2 (17)

rQ = (huQ ⊗ hv
Q + hv

Q ⊗ huQ)/2 (18)

Through above formula, we can eliminate the influence of asymmetry property of Hermitian
product and Hamilton product on the model.

We conduct experiments on four datasets with metrics Recall@20 and NDCG@20, and
the experimental results are shown in Table 4, from which we can draw the following con-
clusions: (1) Eliminating the Hermitian and Hamilton products in interaction modeling layer
reduces the performance of model. This is because both latent inter-dependencies and intra-
dependencies between the components of embeddings of user and item can be obtained
through Hermitian and Hamilton products. The inner product only models the interaction of
the corresponding components between user and item. Therefore, compared with Hermitian
or Hamilton product, the inner product has a weaker modeling ability. (2) Eliminating the
asymmetry of Hermitian and Hamilton products reduces the performance of model. In the
recommendation system, users and items belong to different sets, and there is obvious asym-
metry between them. If this asymmetry is not considered, the performance of the model will
decrease. From Table 1, we can see that the asymmetry of the dataset Book-Crossing is very
strong, and there are more than twice as many items as users. So, compared with the other
two datasets, the performance of GCFC-sys and GCFQ-sys drop more in Book-Crossing.

6 Conclusion and future work

In this paper, we apply graph neural network to recommendation in complex and quaternion
spaces, and propose two specific models GCFC and GCFQ respectively. These two models
respectively employ complex and quaternion embeddings to represent users and items. Then
based on Hermitian product (for GCFC) or Hamilton product (for GCFQ) and embedding

Table 4 Effect of Hermitian and Hamilton products on GCFC and GCFQ

Amazon-Cloth Amazon-Music Amazon-Electronic Book-Crossing
Model Recall NDCG Recall NDCG Recall NDCG Recall NDCG

GCFC 0.0815 0.0393 0.1541 0.0666 0.0450 0.0193 0.0033 0.0016

GCFC-in 0.0807 0.0390 0.1535 0.0663 0.0435 0.0190 0.0029 0.0015

GCFC-sys 0.0802 0.0392 0.1514 0.0660 0.0439 0.0192 0.0030 0.0015

GCFQ 0.0881 0.0405 0.1553 0.0678 0.0471 0.0205 0.0034 0.0018

GCFQ-in 0.0820 0.0401 0.1551 0.0673 0.0413 0.0174 0.0029 0.0015

GCFQ-sys 0.0808 0.0346 0.1500 0.0663 0.0433 0.0186 0.0028 0.0014
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propagation layers, we can obtain the intricate relations between users and items. Finally, in
interaction modeling layer, we aggregate the embedding representations of different propa-
gation layers and use Hermitian or Hamilton product with inner product to obtain the final
prediction score between users and items. Extensive experimental results on four widely used
datasets show the effectiveness of GCFC and GCFQ.

In the future work, we can further explore from many aspects. For example, for other
recommendation scenarios, such as social recommendation, POI recommendation and inter-
active recommendation, we can model user and item on complex and quaternion spaces to
further improve performance. In addition, many studies model recommendation scenarios as
heterogeneous information networks. How to apply complex and quaternion space to hetero-
geneous information networks and reduce the time of model is a worthy research direction.
Furthermore, in addition to complex and quaternion spaces, other non-real spaces, such as
octonion space, are also worthy of exploration on how to apply them in recommendation
scenarios. Finally, when we take text and image about user and item into account, how to
model multimodal information and user item interaction in complex and quaternion spaces
is a challenging direction.
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