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Abstract
Concept map provides a concise structured representation of knowledge in the educational
scenario. It consists of various concepts connected by prerequisite dependencies. With the
abundance of educational resources available throughMOOCs, encyclopedias, and electronic
textbooks, extracting prerequisite dependencies and building concept maps becomes feasi-
ble. However, publicly accessible taxonomies or learning object information that can help
identify prerequisites are rare. To address this, we have constructed a comprehensive dataset
called the Australian Course Map data (AuCM), specifically tailored for training concept
maps in the IT/CS field. The dataset comprises course descriptions from 14 different Aus-
tralian universities. To identify prerequisite relationships between course concepts, we have
employed an embedding-based approach that combines the Graph Convolutional Network
(GCN) with pairwise features of concepts. We have evaluated the performance of our model
with non-neural classifiers and neural networks for extracting these prerequisite relations.
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1 Introduction

The availability and convenience of numerous online learning resources present signifi-
cant opportunities for researchers to advance educational offerings. How to recommend an
appropriate learning sequence to learners with different foundations and backgrounds from
the massive learning resources? Prerequisite relations are crucial in this context because they
outline the pedagogical dependent relations between educational units, i.e. simple and basic
content should be learned first, then complex and advanced content that builds on previous
content should be taught. They could assist decision making such as curriculum planning
for educational designers to improve course offerings and improve the overall learning expe-
rience for students by providing a clear understanding of what is expected and how the
different topics fit together. Generally, precedence dependencies are explicit within an edu-
cational institution and implicit in the Mooc and cross-university scenario. Inspired by other
application based on knowledge graph [1–3], we aim to create a concept map, which serves as
a general graph, encompassing normative and discriminative concepts taught across a wide
range of courses. In this concept map, the nodes represent these concepts, while the edges
capture the pairwise preference in the teaching sequence.

A concept map is a useful tool for educators and students as it provides an overview of the
topics covered, the sequencing of those topics, and how they relate to each other, especially
the prerequisite dependence. It can also help to identify any gaps or overlaps in the content
and can be used to plan and track the progress of a course.

For example, as shown in the lower part of Figure 1, in order to learn the concept of
“minimal spanning tree” in the course of “Data structure and algorithms”, we should have
prior knowledge of “graph” and “node”. So the concepts of “graph” and “node” are the pre-
requisites of the “minimal spanning tree”. If there are numerous directed links connecting
concepts from one course to concepts from another, we might infer that the two courses have

Figure 1 The framework of two-scale directed graphs: The higher-level graphs depict courses as nodes,
interconnected by prerequisite dependencies shown as links. On the lower-level graph, universal concepts are
represented as nodes, with pairwise preference information
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a prerequisite relationship. A directed graph with a wide range of universal concepts is essen-
tial for reasoning about course content overlap and prerequisite relationships. Through the
recovered explicit prerequisite relations between concepts, an optimal study sequence can be
recommended to students, which could cover the online courses from different universities,
such as the upper part of Figure 1. Concept maps could also advance the other educational
applications such as knowledge tracing, intelligent tutoring and students’ performance pre-
diction [4–7].

There are a few efforts aiming to extract concepts and learn prerequisite relationships from
educational data, such as courses description [8], MOOCs (Massive Open Online Courses)
[9], textbooks [10] and soon.However, there are stillmany challenges to automaticallymining
prerequisite relations among concepts. Selecting appropriate features that effectively capture
the semantic or contextual relationships between concepts can be challenging. Identifying
the most relevant and discriminating features requires careful data gathering and processing,
which can be time-consuming and non-trivial. Moreover, domain-dependent feature extrac-
tion strongly relies on domain expertise which can’t reach the fundamental generalization,
and non-optimal feature configurations could compromise classification accuracy. In this
paper, we aim to extract the prerequisite dependencies between concepts based on word
embedding. Our approach involves using word embeddings to map high-dimensional data
to a low-dimensional latent space while preserving the semantics of the original data. Fur-
thermore, we leverage graph convolutional networks (GCN) to incorporate information from
neighboring nodes and subsequently apply neural networks to predict the concept prerequi-
sites.

In summary, our work makes the following contributions:

• Proposal of a novel model for identifying concept prerequisite relations: We introduce
a unique approach that combines concept representation, graph neural networks (GCN),
and concept pairwise features. By integrating these components, our model effectively
captures contextual and structural information from course descriptions to construct an
initial concept graph. Through the utilization of GCN, we can update concept represen-
tations and extract crucial information from the constructed concept graph.

• Integration of contextual and structural information: Our approach leverages both the
textual information in course descriptions and the structural relationships between con-
cepts to enhance the accuracy of identifying prerequisite relations. By considering the
context in which concepts are mentioned and their connections within the concept graph,
our model provides a more comprehensive representation of concept relationships.

• Evaluation on the AuCM dataset: We introduce a newly collected dataset called AuCM,
comprising real courses from14Australian universities. This dataset allows us to evaluate
the performance of our method in a realistic educational setting. By conducting extensive
experiments on AuCM, we demonstrate the effectiveness of our model in accurately
identifying prerequisite relationships between concepts. We also verify the usability and
applicability of the dataset for concept map construction tasks.

• Comparison with baseline models: To establish the superiority of our approach, we com-
pare its performancewith baselinemodels based on theAuCMdataset and another dataset
from the USA. Through these comparisons, we provide empirical evidence showcasing
the enhanced performance and robustness of our proposed model.

This paper is structured as follows: In Section 2, we conduct a review of the relevant
literature concerning the exploration of prerequisite relationships. In Section 3, we introduce
the construction of our dataset AuCM and the statistical and semantic analytics on it. In
Section 4, we present the formulation of the problem and describe the model in detail, which
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involves constructing an initial concept map and utilizing GCN and Siamese networks for
concept fusion and prerequisite prediction. In Section 5, we conduct a comprehensive set
of experiments to evaluate the efficacy of our proposed method. Finally, in Section 6, we
summarize our research findings and outline potential avenues for future research.

2 Related work

Based on various educational resources, several efforts have been devoted to the goal of auto-
matically discovering prerequisite relations among concepts. Thesemethods can be classified
into two categories: recovery-based methods and learning-based methods.

Recovery-based methods. Recovery-based methods assume that prerequisite strength
between two courses is a cumulative effect of the prerequisite strengths of all concept pairs.
These approaches aim to recover the underlying concept graph by mapping courses to con-
cepts and identifying concept-level dependencies. Yang et al. [11] created a concept graph by
mapping courses to concepts and learning concept-level dependencies based on the optimiza-
tionmethod of adapted versions of SVMalgorithms. They can predict unobserved precedence
relationships among any courses using the induced concept network. Using a similar setting
as that of [11], Liang et al. [12] adopted amethodology that involved representing each course
using Wikipedia concepts and assigning tf-idf weights to these concepts. To optimize their
approach, they employed a variant of the soft-margin Support Vector Machine (SVM) algo-
rithm. Experiments had been done on both a synthetic data set and a real university course data
set to show their superior performance. It is important to note that recovery-based approaches
primarily focus on the dependencies between courses while neglecting semantic or structural
details among concepts. To improve the accuracy of extracting prerequisite relations, many
researchers have turned to learning-based strategies.

Learning-based methods. Learnig-based approaches leverage machine learning tech-
niques to capture the semantic and structural aspects of the relationships between concepts.
In the field of concept prerequisite relation discovery, these approaches typically involve
training prerequisite classifiers using manually created or automatically generated features.
One common source of information utilized by learning-based methods is Wikipedia. As
the largest Internet encyclopedia, Wikipedia contains a vast amount of articles covering var-
ious knowledge concepts across different subjects. Researchers have exploited the content
of Wikipedia articles and their linkage structures to extract prerequisite evidence. Liang et
al. [8] first proposed an approach based on the hypothesis that the prerequisite relation is
related to the degree to which two related concepts refer to each other in Wikipedia. They
defined a statistical function called reference distance (RefD) with the input of item fre-
quencies to calculate the presence of prerequisites. However, RefD is only applicable to
Wikipedia concepts due to its reliance on the link structure of Wikipedia. To overcome this
limitation, Pan et al. [9] proposed a method MOOC-RF by devising semantic, contextual,
and structural features based not only on Wikipedia articles but also on course videos and
video sentences from Massive Open Online Courses (MOOCs). They built a set of features
and trained 4 binary classifiers to recognize prerequisite relationships between concepts in
video transcripts. Similarly, Xiao et al. [13] utilized the frequency and position of concepts
in course descriptions, as well as the learning order between courses, to construct features
for recovering prerequisite dependencies. They combined these features with category and
clickstream information fromWikipedia and evaluated their performance using six common
classifiers. Combining the recovery-based technique from [12] and the learning-based model
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from [9], an iterative prerequisite relation learning approach was proposed by [14]. They first
extracted domain-specific concepts by a graph-based ranking method. Then concept pair
features and dependencies among learning materials were utilized to explore the prerequisite
weight matrix among concepts.

In addition to traditional binary classifiers, researchers also utilized other deep learning
models for concept map generation, such as Siamese networks and MLP. In order to infer
concept prerequisite relations using university courses and MOOC datasets, Roy et al. [15]
proposed a new supervised learning method using the pairwise-link LDA model to create
vector representations of concepts and a Siamese network to forecast unknown concept pre-
requisites. Using the same Siamese network, Jia et al. [16] proposed an approach for concept
prerequisite relation learning (CPRL). They utilized concept pairwise features inspired from
[9] and [10] and concept representation learned from a heterogeneous graph. Xiao et al. [17]
proposed an approach for mining precedence relations between lecture videos in a MOOC.
By automatically extractingmain concepts from video captions and utilizing an LSTM-based
neural network model to measure prerequisite relations among these concepts, the authors
effectively identified the precedence relations between lecture videos.

While previous studies on learning-based approaches have achieved promising results in
predicting concept prerequisite relations, there are still challenges that need to be addressed in
this field. One major challenge lies in feature engineering and classifier selection, which can
introduce biases and limitations, especially when working with proprietary synthesis data.
Furthermore, in neural network settings, the complex and numerous relationships between
concepts and learning resources have not been fully exploited. This presents an opportunity
to enhance the accuracy and effectiveness of predicting concept prerequisite relations. To
address these challenges, our study proposes a novel approach that combines handcrafted
features and a Graph Convolutional Network (GCN) to improve the prediction of concept
prerequisite relations. By combining handcrafted features and GCN, our proposed approach
aims to overcome the limitations of traditional feature engineering and classifiers, while
leveraging the inherent power of neural networks to capture the intricate relationships between
concepts and learning resources.

3 AuCM dataset

The current landscape of educational concept map analysis lacks publicly available datasets
to support related research. Consequently, researchers often resort to generating private
datasets through concept and link extraction methods. However, this approach poses several
challenges. First, the data collection process can be time-consuming, requiring significant
effort and resources. Additionally, the synthesized private data may be influenced by the
researchers’ own analysis results, potentially introducing bias into the dataset. To overcome
these limitations, we built a comprehensive dataset named AuCM (Australian Courses Map
data) for learning concept maps. Specifically,We collected all possible courses for bachelor’s
degrees from 14 Australian universities in the area of IT and CS. For comparative analysis,
these universities were selected from five states including the Australian Capital Territory
(ACT) and half of the universities were from the “Group of Eight (G8)”- a prestigious group
of comprehensive research universities that are recognized as world-class institutions. Our
work on the AuCM dataset construction consisted of two steps: data scraping and data pro-
cessing. During the data scraping phase, we collected WEB pages from 1292 undergraduate
courses. Then we extracted the relevant information and organized the raw data during the
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data processing phase. To the best of our knowledge, this is the first dataset containing course
information from Australian universities. Besides, we analyzed the statistical attributes and
semantic properties based on the words and concepts retrieved from the course descriptions
and visualized them to illustrate how our dataset could be used.

3.1 Statistical analysis of AuCM

The statistics of courses from various universities of 5 states and the ACT of Australia are
listed in Table 1, which covers the total number of courses and the number of courses with
prerequisite requirements. Data comparison in Table 1 shows that universities belonging to
G8 generally offer significantly more courses than non-G8 universities in Bachelor of IT/CS
programs. Like courses of USYD and ANU are more than 100 while UTS offers 71 courses
andACUonly offers an example study planwhich has 25 courses in total. The average number
of courses in these G8 universities is 115 which corresponds to 69 of non-G8 universities.
This may be attributed to the fact that most non-G8 universities don’t offer a bachelor of CS
or CS as a major is included in the bachelor of IT.

Moreover, a majority of courses have at least one prerequisite course. Of the 14 univer-
sities, there are 811 unique IT&CS undergraduate courses, 511 courses with prerequisite
requirements, and 1475 pairs of courses with prerequisite relations. In addition, the average
number of prerequisite links per course is 1.82. Figure 2 shows the proportion of courses
with prerequisites at each university. The red line is drawn by a linear regression algorithm,
indicating that the proportion of prerequisite courses is around 75%.

Based on our statistical analysis, a comparison between universities belonging to the G8
group and those outside the G8 group revealed that G8 universities offer a greater number
of courses for a bachelor’s degree in IT/CS. We also confirmed that most courses have
prerequisite requirements providing evidence for conceptual prerequisite learning.

Table 1 IT&CS courses of 14 universities in Australia

# G8 or not University #courses #courses with
prerequisites

1 G8 Sydney University, USYD 126 52

2 The Australian National University, ANU 116 109

3 The University of Queensland, UQ 160 148

4 University of Western Australia, UWA 131 111

5 The University of Adelaide, ADELAIDE 85 68

6 Monash University, MONASH 119 44

7 University of Melbourne, UofMELB 70 59

8 Not G8 University of Technology Sydney, UTS 71 62

9 Australian Catholic University, ACU 25 16

10 Queensland University of Technology, QUT 85 63

11 Edith Cowan University, ECU 50 26

12 University of South Australia, UN 69 50

13 Deakin University, DEAKIN 126 81

14 Victoria University, VU 60 45
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Figure 2 #Courses with prerequisites vs. #courses

3.2 Semantic feature extraction and analysis

To recover the concept-level semantic features, we first collect concepts fromWikipedia and
process course descriptions by employing various traditional NLP tools, such as stop word
removal, sentence segmentation, and lemmatization. Then we match the Wikipedia concept
appearance with the course description. By using a pre-trained tokenizer from the BERT
model, we tokenize the course description and retrieved concepts respectively in order to
capture semantic characteristics. Furthermore, we employ t-SNE (t-Distributed Stochastic
Neighbor Embedding) to project the high-dimensional features onto a two-dimensional map.

By drawing scatter plots for concept/course description based on the projected 2D features,
we can see the difference in terms of semantic richness between G8 and non-G8 universities.
The comparison of course descriptions between G8 schools and non-G8 institutions is shown
in Figure 3.

The scatter plot on the left gives the distribution of words in the course descriptions, where
the blue dots are the words described in the courses of G8 universities, and the red dots belong
to the non-G8 school courses. It is clear that the blue dots are more scattered and span a larger

Figure 3 Scatter plots of projected features extracted from course descriptions/concepts in the courses from
G8 and non-G8 universities
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area, indicating that the G8 course descriptions employ more semantically rich words and
cover a broader diversity. The scatter plot on the right, which displays the distribution of
concepts, also demonstrates this. Compared to relatively dispersed blue points, the red points
cluster in some conceptual areas, showing that non-G8 courses may pay more attention to
particular concepts rather than breadth.

3.3 Concept map learning

In addition to conceptual semantic comparison among universities in Australia, our dataset
is primarily utilized to create concept maps. Concept map construction intends to extract
structured information from unstructured text and represent it as a graph, where concepts
constitute the vertices and prerequisite dependencies make up the links. An example of the
concept map is shown in Figure 4, where the vertices come from the extracted concepts, and
the links, represented by blue dotted lines, indicate the relationships between concepts based
on a simple assumption: the prerequisite relationship between two courses means that the
concepts contained in these courses have links. It is observed that the vertex “data type” at
the center of the concept graph has many connections with other vertices, indicating that the
“data type” constitutes a prerequisite for many concepts. In this study, we further proposed a
novelmodel to discover the prerequisite relationships between concepts. The proposedmodel
incorporates multiple components, including word representation, handcrafted features, and
course dependencies, within a neural network framework. The combination of these fea-
tures allows for a more comprehensive and effective approach to identifying prerequisite
relationships among concepts.

Figure 4 An example of concept map
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4 Concept map learning with graph convolutional network (CML-GCN)

Our model, which we have named “Concept Map Learning with Graph Convolutional
Network,” will be referred to as CML-GCN for brevity. The primary objective of the CML-
GCN approach is to enhance the performance of concept prerequisite learning by leveraging
the strengths of both graph convolutional networks and Siamese networks. Concept maps,
which serve to distill and represent the main concepts and their interactions within the input
corpus, are utilized in this approach. In this section, we will formally present our problem
statement and provide a detailed description of our proposed method.

4.1 Problem formulation

We formulate the generated concept map G(C, E) as a unified local graph whose nodes
represent concepts and edges represent prerequisite dependencies. Course concepts refer to
the subject knowledge taught in a particular course. These concepts are not just mentioned
but are actively discussed and taught throughout the course. Let us denote the course concept
set of D as C = {c1, c2, ..., cm} where ca is the course concept in the concept set C . E
contains the directed edge (ca, cb) if and only if concept ca is a prerequisite of concept cb .

Creating a concept map G to visualize the dependencies between concepts in a course
can be challenging without an automated approach. To address this, we first extract concept
C from course description D using information from Wikipedia. Then, we infer concept
prerequisites E using the course description and other course-related information, such as
course dependencies.

The identification of prerequisites relations can be formalized as given a course description
corpus D, its corresponding course concepts C , and the course precedence, the objective of
the study is to learn a function P : C2 → {0, 1} that takes a concept pair (ca, cb) as input,
where ca and cb belong to the set of concepts C . The function P aims to map this concept
pair to a binary class, indicating whether ca is a prerequisite concept of cb. In other words,
the function P predicts whether there exists a prerequisite relationship between concept ca
and concept cb, with the output being either 0 (indicating no prerequisite relationship) or
1 (indicating the presence of a prerequisite relationship). For convenience, we list the main
symbols used in this paper in Table 2.

Table 2 Meaning of symbols used

Symbol Meaning

D a set of course text data, and D = {d1, d2, ..., dn}
X an n-by-n matrix where each cell is the binary indicator of the prerequisite

relation between two courses, i.e., xi j = 1 means that course j is a

prerequisite of course, i , and xi j = −1 otherwise

G(C, E) a unified directed graph, called concept map

C a set of concepts extracted from D, i.e.C = {c1, c2, ..., cm }
E a m-by-m matrix, represent prerequisite relations among concepts

Set(ca) all the courses which include concept ca
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Figure 5 The framework of proposed method CML-GCN

4.2 Framework of CML-GCN

Based on the observation that most universities include an overview of a course’s topics in
its description, the proposed method aims to extract course concepts from these descriptions.
The architecture of the proposed method is depicted in Figure 5. First, all Wikipedia con-
cepts are extracted from the course descriptions using the Wikipedia API. An initial concept
graph is generated using Bag-of-words (BoW) for concept representation and handcrafted
features to construct an adjacent matrix. The concept graph is then processed using a Graph
Convolutional Network (GCN) [18] to update the concept representations. The updated con-
cept representations are then input into a Siamese network to predict prerequisite relations
between concepts.

4.3 Initial concept map generation

In order to construct the initial concept graph, we first extract concepts from course
descriptions using Wikipedia API and then represent the concepts in our corpus utilizing
a straightforward method of Bag-of-words (BoW). To construct the adjacency matrix A,
pairwise features for concepts are extracted according to textual and structural information
from course descriptions which provide important clues to infer prerequisite relations among
concepts. The edges of matrix A are generated through the combination of various features
using a weighted average.

Based on our analysis, we have noticed variations in the depth and complexity of concepts
and vocabulary used in course descriptions between G8 and non-G8 universities. Moreover,
we have identified that both core units and course pre-chains play a significant role in uncov-
ering prerequisite connections. As a result, we have put forward three specific characteristics
that utilize the influence of core units, courses from prestigious institutions, and course pre-
chains on the conceptual prerequisites. These features can also be applied to other datasets
that possess similar attributes.

Core Course Indicator. Core courses are typically foundational courses that are required
for a particular degree or program, and often serve as a basis for more advanced coursework.
Follow-up courses are professional-related courses or elective courses, usually depending
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on these core units. Based on this observation, we use Core(ca) =
∑

di∈Set(ca ) Core(di )

|Set(ca)| to
denote the extent to which the concept ca belongs to the core course, where Core(di ) is a
binary indicator which indicates whether di belongs to core units. So the feature is defined
as: Core f (ca, cb) = Core(cb) − Core(ca) When the Core(cb) is bigger which means
most courses containing concept cb are core units, while Core(ca) is smaller represents less
courses containing concept ca are core units, so concept ca may depend on core-like concept
cb.

Elite School Course Indicator. This feature captures the influence of courses offered
by elite or highly-regarded schools on the prerequisite relationship between other courses.
Elite schools are often associated with higher-quality instruction, resources, and prestige. In
addition,we proved that course concepts fromG8universities are semantically richer and tend
to be more advanced than non-G8 ones based on our AuCM dataset, and as such, courses
offered by these schools may depend on more basic units in the conceptual prerequisite
relationship. We use Fam(di ) to indicate whether the course is from a famous university,
which refers to G8 university in AuCM. Fam(ca) is used to represent the probability of ca
belonging to courses from famous universities as follows:

Fam(ca) =
∑

di∈Set(ca) Fam(di )

|Set(ca)| . (1)

Therefore the feature is defined as:

Fam f (ca, cb) = Fam(ca) − Fam(cb). (2)

Prerequisite Depth Distance. Pre-chains are often used to ensure that students have the
necessary foundational knowledge before moving on to more advanced coursework which
has a significant influence on the conceptual prerequisite relationship. This feature aims to
measure the depth of the prerequisite chain of a course, which is intended to reflect the level of
complexity of the course. Concepts from high-complexity courses tend to be more advanced
and usually depend on low-complexity course concepts. We use Dep(di ) to represent the
prerequisite depth of course di , so the prerequisite depth of a concept can be defined as the
average of the prerequisite depth of all courses that contain the concept.

Dep(ca) =
∑

di∈Set(ca) Dep(di )

|Set(ca)| . (3)

The feature is denoted as the “Prerequisite Depth distance” between two concepts, ca and
cb, and is formally defined as follows:

Pd f (ca, cb) = Dep(ca) − Dep(cb). (4)

This feature could capture the complexity of concepts through a common prerequisite tran-
sition pattern of multi-hop prerequisite relationships.

Contextual information contained in course descriptions also plays a crucial role in deduc-
ing prerequisite relationships among concepts. This can be achieved through the analysis of
various factors such as the frequency of co-occurrence of concepts, and their relative order of
appearance [13]. By analyzing such information, two features have been proposed as follows.

Concept Co-occurrence. This feature is based on the occurrence frequency of two con-
cepts in one course which can be defined as Ca(ca, cb). Set(ca) means all the courses which
include concept ca . Ca(ca, cb) = |Set(ca)∩Set(cb)||Set(ca)| Ca(ca, cb) represents the probability that
cb appears in the course description where ca appears. When a new concept is introduced, the
background informationwill also bementioned. SowhenCa(ca, cb) is bigger andCa(cb, ca)
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is smaller, it indicates that the concept ca is commonly found in courses that also contain
the concept cb. On the other hand, Ca(cb, ca) being smaller suggests that there are relatively
fewer course descriptions that include concept ca while covering concept cb.This implies
that concept ca is more likely to rely on concept cb, as it is frequently encountered in courses
that discuss or teach concept cb.

The feature is defined as the difference of Ca between two concepts, as follows:

Ca f (ca, cb) = Ca(ca, cb) − Ca(cb, ca). (5)

Concept Order. This feature depends on the order in which concepts are presented in
the course description. order(ca ← cb) represents all the courses in which the position
of concept cb first appears before the first position of concept ca . Therefore, Co(ca, cb) is
defined to measure how many courses with concept cb precedes concept ca : Co(ca, cb) =
|order(ca←cb)||Set(ca)∩Set(cb)| . So the feature is defined as follows:

Cof (ca, cb) = Co(ca, cb) − Co(cb, ca). (6)

These features illustrate the prerequisite relationships of concepts within the course using
the frequency of concept co-occurrence and the order of concepts in the course description.

4.4 Concept fusionmodule

Graph Convolutional Network (GCN) is a type of neural network that can be used for graph-
based data, such as a concept graph. Prior research has confirmed that GCN can effectively
model complex transition patterns among nodes [18–21]. In this paper, we utilize GCN to
capture the sequence of prerequisite transitions occurring between concepts. It applies a con-
volutional operation to the node feature vectors in the graph which combines information
from neighboring nodes to update the feature vector of each node. After the convolutional
operation, the GCN aggregates information from all the nodes in the graph to generate a new
feature vector for each concept. This aggregation step enables the GCN to consider the global
structure of the graph when updating the feature vectors. In the context of Graph Convolu-
tional Networks (GCN), the goal is to learn the node representations H = {h1, h2, ..hn} in the
hidden layers, given the node representation X and the adjacency matrix A. These updated
feature vectors can be used as improved representations of the concepts, capturing both their
local and global structure in the graph. The updated node representations produced by a
GCN can be used as features in downstream tasks, such as predicting prerequisite relations
between concepts. By incorporating information about the relationships between concepts,
the GCN can produce more accurate representations of each node, which in turn can lead to
more accurate predictions of prerequisite relations.

4.5 Prerequisite relation learning

After acquiring of final concept representations, a Siamese network is employed to determine
whether there is a prerequisite relation between concept ci and concept c j . As seen inFigure 6,
concept representations are input into two feed-forward networks with shared weights. The
outputs are then joined together for classification. The general process can be described as
follows:

ci = ReLU (Ws · hLci + bs) (7)

p(ci , c j ) = σ(WT [ci; cj; ci − cj; ci ⊗ cj] + b), (8)

where hLci is the output of the GCN for concept ci in the L-th layer, σ is the sigmoid function,
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Figure 6 The Siamese network

⊗ and - are the element-wise multiplication and subtraction operators, and [·; ·] represents
the concatenation of vectors. Finally, the cross entropy function is used:

Lc = 1

|T |
∑

(ci ,c j )∈T
−[yi j log(p(ci , c j )) + (1 − yi j ) log(1 − p(ci , c j ))] (9)

5 Experiments

To showcase the effectiveness and superiority of the proposed method, the study conducted
extensive experiments and comparative analysis using two datasets: AuCM (Australian
Course Map Data) and a university dataset from the USA.

5.1 Dataset

We used our dataset AuCM including course information and the corresponding course
prerequisite dependencies. Unlike other datasets, most of which are established according
to the curriculum of American universities, our dataset AuCM included course information
from 14 Australian universities in the fields of Information Technology (IT) and Computer
Science (CS). To the best of our knowledge, this is the first dataset consisting of Australian
educational data for concept map generation. After removing duplicated courses and courses
with identical codes, AuCM comprises a total of 738 distinct courses. Additionally, there
are 1267 pairs of courses within AuCM that are related through precedence relationships. A
total of 224 concepts were extracted using Wikipedia API, and 504 pairs of concepts were
annotated as having prerequisite relations based on the extension of concept prerequisites in
the dataset introduced in [12]. The dataset from [12] was also included in our analysis for
comparative purposes. This dataset consists of 654 courses from 11 American universities,
referred to as the “USA courses dataset”, with a total of 861 pairs of courses that have
precedence relationships. After removing duplicate concepts, we obtained a total of 290
unique concepts. Among these concepts, 681 pairs have a prerequisite relation.
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5.2 Baselines

In the results of our experiment, we conducted an analysis and comparison of our proposed
method with several typical concept prerequisite relations prediction baselines.

Binary Classifiers In the approach described in [9], binary classifiers were employed for
the task at hand. Specifically, classifiers such as Naive Bayes (NB), Support Vector Machine
(SVM), Logistic Regression (LR), and Random Forest (RF) were utilized. Among these
classifiers, SVM and RF were selected based on their superior performance compared to the
other two. To evaluate the effectiveness of the proposed model, a comparison was conducted
between the model and these binary classifiers (SVM and RF).

MLP Siamese We also compared our CML-GCN model with typical neural network
settings. We implemented a baseline Siamese neural network architecture to compare against
our approach. The baseline network consisted of two identical neural networks, each with
a single hidden layer. We used our proposed 5 features as the input feature vector of each
concept for Siamese Network. The Siamese layers were followed by a final fully connected
layer. We used a rectified linear unit (ReLU) activation function in each layer of the network,
and the output is a binary similarity score as the prerequisite probability of concepts.

CPRL Concept prerequisite relation learning (CPRL) is a method under weakly supervi-
sion that achieves advanced outcomes. It utilized R-GCN to update the node representation
of a heterogeneous graph and pairwise features for optimization. In accordance with numer-
ous methodologies, we predominantly employed F-score (F1) to assess the performance of
CML-GCN in comparison to all the baseline methods. Additionally, we compared precision
(P) and recall (R) against other techniques.

5.3 Experimental settings and performance

We divided the concept prerequisite pairs into training and testing groups to evaluate our
method’s performance. The proportions were established as 80% and 20%.

To tackle the issue of imbalance, we employed an oversampling technique that increased
the number of positive examples threefold, in order to acquire more training examples. In
addition, we generated an equivalent number of negative instances by randomly selecting
pairs of concepts from the list of concepts that did not belong to the original positive pairs. By
doing so, we aimed to obtain more training examples and ensure a balanced training set that
adequately represents both positive and negative classes. Regarding GCN, we established
the number of GCN layers as L=2, with the embedding size for the first convolution layer
set to 128 and for the second convolution layer set to 64. We conducted experiments with
alternative configurations and discovered that minor adjustments did not significantly affect
the outcomes.

Table 3 provides a comparison of the outcomes of various methods on AuCM and USA
course datasets. The table shows the overall performance comparison of different methods
in terms of precision, recall, and F1 score with a primary focus on the F1 score as it provides
a balanced assessment of precision and recall. Our findings demonstrate that the proposed
method almost outperforms all the other baseline methods on both datasets consistently. Our
model, CML-GCN, consistently outperforms all other baseline methods on both datasets,
as indicated by the F1 score. Specifically, we have observed a significant improvement in
the F1 score of CML-GCN on the AuCM dataset compared to the best-performing baseline,
surpassing the MLP Siamese model by 20.45%. Although the recall is similar to the CPRL
model, the precision of CML-GCN demonstrates an improvement of 8.14% compared to
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Table 3 Overall performance comparison in terms of Precision, Recall, and F-scores

Dataset Metric SVM RF MLP Siamese CPRL CML-GCN

AuCM Precision 0.566 0.713 0.774 0.558 0.837

Recall 0.615 0.692 0.679 0.898 0.895

F1 0.590 0.702 0.714 0.689 0.860

USA Courses Precision 0.723 0.774 0.853 0.689 0.765

Recall 0.656 0.702 0.548 0.760 0.849

F1 0.687 0.736 0.662 0.723 0.803

the MLP Siamese method. These compelling findings are visually represented in Figure 7,
showcasing the superiority of CML-GCN in detecting prerequisite relations.

Furthermore, when considering the USA courses dataset, our proposed method achieves
an F1 score and recall that outperform the best baselines, namely CPRL and RF methods, by
9.1% and 11.7%, respectively. These results further reinforce the exceptional performance
of our approach in effectively identifying prerequisite relations in both the AuCM and USA
datasets.

The remarkable performance of CML-GCN can be attributed to its ability to leverage
the power of graph convolutional networks (GCN) in capturing the complex relationships
between concepts. By integrating concept representation, GCN, and concept pairwise fea-
tures, our model effectively exploits the contextual and structural information present in the
course descriptions, resulting in superior performance compared to other methods.

In conclusion, our extensive experimentation and evaluation demonstrate that our proposed
method, CML-GCN, outperforms the baselinemethods on both theAuCMandUSAdatasets,
providing accurate and reliable detection of prerequisite relations. These findings validate
the effectiveness and superiority of our approach in concept map construction and showcase
its potential for various educational applications.

5.4 Feature contribution analysis

To gain insight into the significance of each feature in our approach, an ablation study was
conducted on the performance of the model based on AuCM. Specifically, each feature was

Figure 7 Overall performance comparison on AuCM and USA datasets
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selectively removed from the model, and the resulting effect on the model’s performance was
evaluated. The goal was to assess how much each feature contributes to the effectiveness of
the model. The evaluation results, as shown in Table 4, indicate the impact of ignoring each
feature on the precision, recall, and F1-score of the model.

Among the features, Feature Coref, which compares the extent to which a concept belongs
to a core course, was found to be particularly important in detecting prerequisite relations.
Ignoring this feature resulted in a 5.4%decrease in the F1-score. This implies that considering
the coreness of a concept in relation to the course it belongs to is crucial for the accurate
prediction of prerequisites. Feature Cof, which captures the appearance orders of concepts,
had the most significant impact on precision, leading to a 4.0% decrease in the F1-score
when ignored. This highlights the importance of identifying the order in which concepts
appear when determining prerequisite relationships. The model heavily relies on this feature
to achieve higher precision in predicting prerequisites.

On the other hand, Feature Caf, which deals with the co-occurrence of concepts within the
same course, had a relatively lower importance level compared to the other features. Ignoring
this feature resulted in a 0.8%decrease in the F1 score. This suggests that while co-occurrence
can be informative in some cases, there are many instances where two concepts may appear
together in a course without having a prerequisite relationship. Hence, this feature has a lesser
impact on the overall performance of the model.

Overall, the ablation study demonstrates that all the proposed features are useful in pre-
dicting prerequisite relations. Feature Coref and Feature Cof are particularly important, while
Feature Caf has a relatively lower significance level. These findings provide valuable insights
into the contribution of each feature and help in understanding the effectiveness of the model
in predicting prerequisite relationships.

5.5 Effect of data size

In this section, we analyze the performance metrics of CML-GCN using various data sizes
to check the stability and resilience of our model. Specifically, we randomly select 20% to
80% of the original AuCM dataset and USA dataset as our new datasets to train our model.

CML-GCN exhibits a degradation in performance with a decrease in training data size
on both datasets, as indicated in Figure 8. In the case of the AuCM dataset, reducing the
training data size from 80% to 40% results in only a marginal decline in performance. This
decline is characterized by minimal fluctuation, indicating a stable and consistent decrease
in performance. This indicates that AuCM dataset may contain sufficient and representative
information, allowing the model to generalize well even with a smaller training subset. For
the USA dataset, the performance of CML-GCN gradually decreases with a little fluctuation

Table 4 Feature contribution
analysis

Feature Precision Recall F1

CML-GCN 0.837 0.895 0.860

-Coref 0.798 0.812 0.806 (-5.4%)

-Famf 0.836 0.882 0.845 (-1.5%)

-Pdf 0.814 0.895 0.847 (-1.3%)

-Caf 0.830 0.867 0.852 (-0.8%)

-Cof 0.797 0.831 0.811 (-4.9%)
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Figure 8 Performance w.r.t data size on AuCM dataset and USA dataset

as the data size drops from 80% to 20%. Despite the decrease in performance with a smaller
training data size, CML-GCN still outperforms the best baseline MLP Siamese in terms of
Precision and F1 Score on AuCM dataset which achieves a 2.84% higher Precision and an
8.96% higher F1 Score. This is possibly due to the fact that our model makes use of an
initial concept map and a GCN network, which effectively employ information gathered
from related concepts and the concept map’s structure to classify prerequisite relationships
across concepts more efficiently.

5.6 Case study

In order to further assess the effectiveness of our CML-GCN model, we performed a case
study where we compared the concept prerequisite relations obtained from the ground truth
with those learned by our CML-GCN model and a baseline model called MLP Siamese,
which removes the GCN component. Specifically, we randomly selected five positive and
five negative instances from the ground truth labels in the AuCM dataset. Subsequently, we
obtained the corresponding concept prerequisite relations learned by our CML-GCN model
and the MLP Siamese baseline. Table 5 displays the results of the comparison between
concept prerequisite relations of ground truth (GT) and learned from both models, where a
value of 1 indicates that concept a is a prerequisite of concept b.

The comparison in Table 5 demonstrates that both the CML-GCN andMLP Siamesemod-
els are able to learn the prerequisite relations between concepts in the majority of instances.
The results obtained from the MLP Siamese model indicate that it performs less effectively
compared to the CML-GCNmodel as it can accurately learn the concept prerequisite relation
labels for three out of five positive concept pairs, while the CML-GCNmodel correctly learns
four pairs. This proves that the GCN part in the CMLmodel plays a crucial role in integrating
semantic information from other concepts and the structural information of the initial con-
cept map, which also can be seen from the negative instances. This integration of information
significantly contributes to the enhancement of concept prerequisite relation classification
accuracy. Hence, our proposed CML-GCNmodel successfully classifies concept prerequisite
relations.
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Table 5 The comparison of concept prerequisite relations from annotated labels and learned by the CML-GCN
and MLP Siamese models on AuCM dataset

Concepta Conceptb GT CML-GCN MLP Siamese

computer program logic program 1 1 1

algorithm computer graphic 1 1 1

discrete mathematics graph theory 1 1 1

geometry computer vision 1 1 0

asymptotic analysis analysis of algorithm 1 0 0

information theory computer science 0 0 0

synchronization recursion 0 0 0

system program pushdown automaton 0 0 1

python program language memory management 0 0 0

boundary value problem computer animation 0 0 0

6 Conclusion

Weconducted a study to automatically determine prerequisite relationships between concepts
extracted from courses description. We clearly defined the issue and proposed a number
of practical features, including contextual, structural, and semantic features to construct
the initial concept graph. To further enhance the quality of concept representations, Graph
Convolutional Network (GCN) was used to aggregate neighbor information as it allowed for
the incorporation of contextual and structural information into the representations, resulting
in more accurate and informative semantic concept representations. We utilized a Siamese
network tomake predictions about prerequisite relationships between concepts. The approach
was able to effectively identify relationships between concepts and gain insights into the
hierarchical structure of courses. The effectiveness of the suggestedmodel has been validated
by experimental results on our AuCM dataset from IT/CS domains of Australian universities
and USA courses dataset.

Promising potential directions include looking into how deep learning models can be used
to automatically learn useful features for better prerequisite learning and how to use these
prerequisite relations on other applications, such as students’ performance prediction.
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