World Wide Web (2023) 26:3183-3206
https://doi.org/10.1007/5s11280-023-01182-y

®

Check for
updates

Adaptive self-propagation graph convolutional network
for recommendation

Zhuo Cai' - Guan Yuan' - Xiaobao Zhuang' - Senzhang Wang? - Shaojie Qiao> -
Mu Zhu*

Received: 22 September 2022 / Revised: 29 December 2022 / Accepted: 18 May 2023 /
Published online: 1 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Graph Convolutional Networks (GCNs) have received a lot of attention in recommender
systems due to their powerful representation learning ability on graph data. Depending on
whether to combine ego embeddings after aggregating neighbor embeddings, GCNs can
be divided into two categories: without self-propagation and with self-propagation. (1) The
GCNs without self-propagation bring the loss of inherent information (e.g., income, age)
because of discarding ego embeddings. (2) The existing GCNs with self-propagation treat
all nodes (i.e., users and items) indistinguishably, so that the distinctive and diverse charac-
teristics of users and items are overlooked. In light of these problems existed in two types
of GCNs, we propose a novel GCN model, Adaptive Self-propagation Graph Convolutional
Network (ASP-GCN), to retain inherent information and distinctive characteristics of users
and items simultaneously. We first conduct pilot experiments to prove that existing GCNs
actually suffer from the aforementioned problems. Then, we use Gumbel-Softmax trick to
generate categorical distributions for each node in each layer between two types of embed-
dings: neighborhood embeddings and hybrid embeddings. Neighborhood embeddings are the
aggregation of neighbor embeddings and hybrid embeddings consist of ego and neighborhood
embeddings. Next, user and item embeddings are updated by aggregating these two types
of embeddings proportionally according to corresponding categorical distributions. After
obtaining node embeddings in the last convolution layer, the Bayesian Personalized Ranking
loss optimized with a similarity term is used to refine the model parameters. Comprehensive
experiments are conducted on three benchmark datasets to demonstrate the effectiveness of
ASP-GCN over present state-of-the-art approaches.

Keywords Graph convolutional networks - Self-propagation - Gumbel-Softmax -
Recommender systems

B Guan Yuan
yuanguan @cumt.edu.cn

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01182-y&domain=pdf

3184 World Wide Web (2023) 26:3183-3206

1 Introduction

Graph Convolutional Networks (GCNs), which have the ability to explore the topologi-
cal information of a user-item bipartite graph, have become frequently used in recommender
systems in recent years [1-6]. Depending on whether to combine ego embeddings after aggre-
gating neighbor embeddings, GCNs can be divided into two types: without self-propagation
[3, 7] and with self-propagation [2, 8, 9].

The GCNs without self-propagation update user and item embeddings by aggregating
embeddings of their neighbors only. Taking user u for example, the updated embedding of
useruisy ieN, ﬁei, where p,,; is the normalization constant which has several versions:

TNLIIN;| (symmetric normalization), |V, | (left normalization), || (right normalization)
and other variations. A, and N; are neighbor sets of user u and item i respectively. e; is
the embedding of item i. The GCNs with self-propagation combine ego embeddings with
neighbor embeddings in the stage of embedding propagation. For instance, NGCF [9] and LR-
GCCEF [2] add self-loop in the propagation matrix, PinSage [4] concatenates ego embeddings
with neighborhood embeddings and performs feature transformation and non-linearity to
update embeddings.

These two types of GCNs both have limitations: (1) The GCNs without self-propagation
only aggregate neighbor embeddings while ignoring ego embeddings. This kind of embed-
ding propagation mechanism discards ego embeddings, leading to the loss of nodes’ inherent
information. As shown in Figure 1(a), user u1’s income is in a relatively high level. Assuming
that « had purchased some inexpensive daily requirements like a pen (i1) and a notebook
(i2). According to the principle of embedding propagation, the value of the income feature of
u1 is updated to 0.2 after performing GCN. As a result, u;’s income feature is diminished to
a low level, which is contrary to her inherent attributes. Under this circumstance, relatively

@

without self-
propagation

H
0.2
H

with self-
propagation
User-item interaction User and Summation with
graph item features left normalization

Fig.1 A toy example of target users’ embedding update process in item recommendation, where user and item
embeddings are described by a set of numerical features. (a) is the aggregation process without self-propagation
and (b) is the aggregation process with self-propagation. In this example, we use left normalization as the
coefficient of neighbor embeddings and choose summation as the combination way of ego embeddings and
neighborhood embeddings in (b)

@ Springer

World Wide Web (2023) 26:3183-3206 3185

expensive items are in a low priority for #; in recommender systems, leading to the inability
to meet the needs of target user. (2) Existing GCNs with self-propagation although combine
ego embeddings with neighbor embeddings, they adopt a uniform manner treating all nodes.
These kinds of GCNs neglect the individuality and differences of users and items. Taking
Figure 1(b) for example, u> and u3 both had read two history books (i3 and i4). As the age
feature shows, u> and u3 have a big gap about age and u3 is much older than u,. Assuming
that u3 read history books for interest and u5 just read them to finish the homework of history
lessons. However, the relative gap between u» and u3 narrows after the embedding propaga-
tion with uniform self-propagation. It obliterates the personalized differences between users
in some extent. In this case, recommender systems will pretend to recommend items with
similar styles to u» and u3, although they have different demands because of the age gap.

To tackle aforementioned issues, we propose a novel GCN model, Adaptive Self-
propagation Graph Convolutional Network (ASP-GCN). Considering the importance of
original features and the personalized properties and attributes of users and items, it’s neces-
sary to combine ego embeddings and neighborhood embeddings individually in the process
of embedding propagation. A simple method is using a weight matrix and updating this
matrix iteratively. However, the value of weight matrix is independent of ego embeddings
and neighborhood embeddings, which reduces the model interpretability and recommen-
dation performance. A solution is using a possibility vector generation module to generate
aggregation proportions according to ego and neighborhood embeddings. Gumbel-Softmax
is such a trick that can achieve this goal. Hence, ASP-GCN uses Gumbel-Softmax trick to gen-
erate categorical distributions between two types of embeddings: neighborhood embeddings
and hybrid embeddings. Hybrid embeddings consist of ego and neighborhood embeddings.
After obtaining the categorical distributions, ASP-GCN proportionally aggregates neighbor-
hood embeddings and ego embeddings in an adaptive way. This kind of propagation rule can
simultaneously retain nodes’ inherent information and capture their distinctive characteris-
tics. Note that, ASP-GCN is essentially different with some methods focusing on the residual
connection [10, 11]. ASP-GCN can capture fine-granular user properties and item attribues
layer by layer while methods focusing on residual connection only handle this in a mono-
lithic or coarse grained way. ASP-GCN uses the embeddings from the last layer for prediction
because each layer proportionally retains embeddings from previous layer, contributing to
the unnecessity of layer combination. Moreover, we optimized the Bayesian Personalized
Ranking (BPR) loss function [12] with a similarity term. Besides the role of BPR, similarity
term makes the embeddings of connected nodes close to each other and that of disconnected
nodes far to each other because connected nodes have better reflection to each other.

To summarize, the main contributions of our paper are as follows:

e We study existing GCN-based recommendation models and empirically divide them into
two categories: GCNs without self-propagation and GCNs with self-propagation. We
hold the view that both of them have corresponding limitations and we conduct a pilot
experiment to prove our idea.

e We propose a novel GCN-based model, Adaptive Self-propagation Graph Convolu-
tional Network (ASP-GCN). ASP-GCN updates node embeddings by aggregating ego
embeddings and neighborhood embeddings proportionally according to the categorical
distribution estimated by Gumbel-Softmax.

e Extensive experiments conducted on three publicly available datasets show that ASP-
GCN outperforms several state-of-the-art approaches, which verifies the effectiveness of
ASP-GCN.

@ Springer

3186 World Wide Web (2023) 26:3183-3206

2 Related work

In this section, we introduce the related work of two relevant technologies used in our work:
Graph Convolutional Networks (GCNs) for recommendation and Gumbel-Softmax used to
generate categorical distributions.

2.1 GCNs for recommendation

Graph Convolutional Networks (GCNs) generalize traditional Convolutional Neural Net-
works (CNNs) from Euclidean space to graph domain. GCNs have been widely used in node
classification [13-15], link prediction [16—-19], traffic flow forecasting [20-23] and other
fields due to the remarkable capacity of GCNs in learning graph representations. In rec-
ommender systems, interactions between users and items can also be represented as graph
structures, leading to the boost of GCNss in this field.

According to the domain that the convolution operations were applied on, existing GCN-
based approaches can be divided into two categories: spectral GCNs [24-27] and spatial
GCNs [3, 9, 28, 29]. Spectral GCNs perform convolution operations on the spectral domain
to refine eigenvectors. They are computationally expensive because of the consumptive oper-
ations like Laplacian eigen-decomposition [27] and Chebyshev polynomials [24]. To tackle
this problem, spatial GCNs have been proposed, which refine node (users and items) embed-
dings by aggregating neighbor embeddings, GC-MC [1] applies graph convolutional network
on recommender systems to exploit information from user-item interaction graph structure.
However, it stacks only one convolution layer, which means that only the first-order connec-
tivities can be captured. This kind of graph structure is insufficient to model the high-order
similarities of users and items, leading to the loss of useful information. To solve this prob-
lem, recent studies shine a light on stacking multiple convolution layers to exploit high-hop
similarities of users and items from user-item interaction graph [2, 3, 9, 30, 31]. NGCF [9]
and PinSage [4] propose to use multi-layer graph structure to capture high-order collab-
orative filtering signals to update user and item embeddings. Despite success, the feature
transformation and non-linearity operations involved in the convolution process lead to the
rise of time and space consumption. To tackle this problem, LR-GCCF [2] removes the non-
linearity operation. Making a further step, LightGCN [3] removes feature transformation and
non-linearity simultaneously, considering these two operations are not only consumptive but
also make model difficult to train.

Since ASP-GCN belongs to the domain of spatial GCNs, we compare ASP-GCN with GC-
MC, PinSage, NGCF, LR-GCCF and LightGCN from the following perspectives: (1) whether
uses feature transformation; (2) whether uses non-linearity; (3) whether uses a residual net-
work structure to make prediction; (4) whether has self-propagation. The comparison details
are shown in Table 1.

Table 1 The comparison between ASP-GCN and other state-of-the-art GCN-based methods

GC-MC PinSage NGCF LR-GCCF LightGCN ASP-GCN

Feature Transformation (6] (0] (0] (6] X (0]
Non-linearity

Residual Prediction

)

(6] (6] X X
(6] (6] (6] (6]
(6] (6] (6] X

o x O

Self-propagation

@ Springer

World Wide Web (2023) 26:3183-3206 3187

2.2 Gumbel-Softmax

The Gumbel-max trick [32-35] provides a view to generate a one-hot vector over a cate-
gorical distribution, which can be used to select features. However, the argmax operation
involved is non-differentiable so that the gradient flow is not allowed for Gumbel-max. For
this reason, Gumbel-max’s application in neural networks is limited. To this end, Gumbel-
Softmax [36, 37] is proposed to handle the non-differentiability problem. Gumbel-Softmax
distribution is a continuous distribution over the simplex distribution that appropriates the cat-
egorical distribution via reparameterization trick. It has been widely used in learning optimal
categorical distributions. One such application is network architecture search (NAS) [38—
42]. In these methods, Gumbel-Softmax is used to generate optimal distributions between
several pre-defined operations so that to optimize the neural architecture. Another example
is graph sparsification [43, 44], in which Gumbel-Softmax is utilized to judge whether an
edge is preserved in the sparsified graph. By doing this, the time and space complexity of
Graph-based methods can be reduced and the model robustness can be improved. Moreover,
Kong et al. [45] explore to investigate which of the linear and non-linear propagation is
better in recommender system. Hence, it utilizes Gumbel-Softmax to generate categorical
distributions between two modes of nodes in the propagation stage: the linear and non-linear
characteristics.

3 Motivation

To demonstrate the motivation of our research, we conduct a pilot experiment to verify the
innovation rationality of ASP-GCN. Specifically, we design two variants based on Light GCN
and compare the performances of the three methods.

e LightGCN, which is a typical GCN-based method without self-propagation in the
embedding propagation stage. The convolution operation (a.k.a, propagation rule) is:

ig\:[u mei (taking user u for example), where NV, and ; are neighbor sets of user
u and item i; e; is embedding of item i.
e LightGCN-s, which adds uniform self-propagation in the embedding propagation stage.
. . . . 1]
The convolution operation (a.k.a, propagation rule) is: mean(e,, igfu NN ile,).

Because of the self-propagation mechanism, we only use the user and item embeddings
from the last convolution layer to estimate user preferences over items.

e LightGCN-ws, which adds weighted self-propagation in the embedding propagation
stage. The convolution operation (a.k.a, propagation rule) is: wi e, +w> ig\:/u W e,
where w; and w; are trainable weights processed by softmax function. Here, we also use
the user and item embeddings from the last convolution layer to estimate user preferences
over items.

For these three methods, we maintain the same value for each hyperparameter. Specifi-
cally, the embedding size is fixed to 16 and the number of layers is set to 3. Besides, other
hyperparameters (e.g., learning rate, regularization coefficient, dropout ratio) are all set to
the same values. We report the performances of these three methods on Gowalla and Yelp
datasets in Figure 2.

As shown in Figure 2, LightGCN-s has similar tendency with Light GCN in terms of train-
ing loss, but has higher testing Recall and NDCG values on both Gowalla and Yelp datasets.

@ Springer

3188 World Wide Web (2023) 26:3183-3206

G5 Goxjva?ll'fl _— G5 Gowa‘lll:a\‘ - - Gowalla
0.100- " ’ any
f = 0234 4 g 020 =
0.095 a ‘ o v LightGCN
S ‘ y] 0221 v/ g LightGCN-s
(®)0.090- ® T LightGCN-ws
= / O 0214 =
Soes, / Q =i
2) 2 £ 0.10 \
[f Z 020 S
00807 . LightGCN /- LightGCN = SN
0075] ¢ —— LightGCN-s 019 . —— LightGCN-s 0054
«— LightGCN-ws +— LightGCN-ws
0.070 ————— 018 s 000 +—
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
epoch epoch epoch
0.080 Yelp 0.13 Yelp 0.3 Yelp
0.075- ; 4 .
0.12- . \ :
/ i f L " LightGCN
S 0.070+ S S é’ 024 | L%ghtGCN-S
® 0111 g LightGCN-ws
= 0.065+ @) 2
131 Q i k=)
o A 0.10 .8 9
& 0060 Z S o1 Mg
] LightGCN - LightGCN &= :
0055 = LightGCN-s 0099/« LightGCN-s
+— LightGCN-ws © —+— LightGCN-ws
0.050 : ‘ : : 0.08 , : : : 00—
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
epoch epoch epoch

Fig.2 Training curves (testing Recall, NDCG and training loss) of LightGCN and its two variants on Gowalla
and Yelp datasets

It indicates that self-propagation plays positive effect in embedding propagation stage, which
can improve recommendation performance to some extent. Further, Light GCN-ws consis-
tently outperforms LightGCN and LightGCN-s in terms of testing Recall and NDCG on two
datasets significantly. Besides, as can be seen, Light GCN-ws accelerates the convergence
speed of GCNs to a great extent. From these evidences, we can infer that both GCNs with-
out self-propagation and GCNs with a uniform self-propagation manner are insufficient to
model user preferences and provide satisfying recommendation. The propagation rule with
weighted self-propagation is an effective and efficient way compared with the aforementioned
two kinds of GCNs.

Although effective, LightGCN-ws just resorts to a simple way to aggregate neighbor
embedding and ego embedding in a weighted way. It uses the trainable weights to determine
the proportion between neighbor embedding and ego embedding. By doing so, it can mitigate
the problem of both GCNs without self-propagation and uniform self-propagation. However,
the weights are independent to the user and item embeddings, leading to the high randomness
of the proportion in practice, which also limits the recommendation performance to some
extent. Therefore, it is urged to take user and item embeddings into account to estimate the
proportion between neighbor embedding and ego embedding using an adaptive way. This
inspires us to design ASP-GCN.

@ Springer

World Wide Web (2023) 26:3183-3206 3189

4 Methodology

In this section, we first present the overall workflow of ASP-GCN. Then, we illustrate how
to use Gumbel-Softmax trick to generate the categorical distributions between two types
of embeddings: neighborhood embeddings and hybrid embeddings. Next, we introduce the
multi-layer convolution operations of ASP-GCN, which are used to update user and item
embeddings. Finally, optimized BPR loss function used to refine model parameters is demon-
strated. The overall workflow of ASP-GCN is shown in Figure 3.

4.1 Category distribution generation module

In some existing GCN-based methods, the embeddings involved in embedding aggregation
procedure are only neighbor embeddings, while ego embeddings are ignored. For example,
the graph convolution operation (a.k.a., propagation rule) in LightGCN is defined as (taking

user u for example):
1
ey =" el $h)

S INTNG

“N” denotes that there are only neighbor embeddings used in the update stage. efo) is the
initial embedding of item i and e,(ll) is the updated embedding of user u. N, and N; are the
neighbor sets of user # and item i.

This kind of GCNs discard ego embeddings while aggregating neighbor embeddings,
leading to the loss of inherent information of users and items. Considering the impor-
tance of original features, some other GCN-based methods combine ego embeddings when
updating embeddings of target node. For instance, NGCF [9] adds self-loop in the propaga-
tion matrix and PinSage [4] concatenates ego embeddings after neighborhood aggregation.
Although ego embeddings are involved in these methods, they adopt a uniform way to han-
dle these two types of embeddings. Specifically, LR-GCCF’s propagation rule for user u is

Aggregation without
self-propagation

user-item
bipartite graph

Aggregation with
self-propagation

Fig.3 The overall workflow of ASP-GCN. The upper part is the neighborhood embeddings generation process.
The lower part is the hybrid embeddings generation process. The middle part is the adaptive aggregation
process, in which neighborhood embeddings and hybrid embeddings aggregated proportionally

@ Springer

3190 World Wide Web (2023) 26:3183-3206

(\]T\e“ + > I Il‘ _|ei)W [2], where W is the trainable feature transformation matrix.
u iEM, u i

The proportions between ego embeddings and neighbor embeddings are determined by the
neighbor numbers of target node and its neighbor node. In other words, once the graph
structure is fixed, the proportions between ego embeddings and neighbor embeddings are
fixed in the embedding aggregation stage. PinSage updates the embedding of target node
by concatenating ego embedding and aggregated neighbor embeddings: o ((e,|lex;,) W). It
makes ego embeddings and neighborhood embeddings share the same rule in the embedding
propagation process. These kinds of methods treat ego embeddings and neighbor embed-
dings in a uniform way, while neglecting the different rules of ego embedding and neighbor
embedding in the embedding update stage for each node. To tackle the aforementioned prob-
lems, we design another kind of convolution operation that combines ego embeddings and
neighborhood embeddings:

1 0)
ey =e + > ———ef @

“H” denotes that there are both neighbor embeddings and ego embeddings used in the
update stage. After obtaining two kinds of update signals for user u# as shown in Egs. 1 and 2,
it is necessary to estimate the proportion of each of them in the process of embedding aggre-
gation. Once obtaining corresponding proportions of each kind of update signal for each user
and item, the ego embeddings and neighbor embeddings can be aggregated proportionally.
By doing so, the problems illustrated before can be mitigated. To achieve this goal, one simple
method is assign two weights for each user and item to represent the aggregation proportion
of each kind of update signal in the embedding update process. In other words, model initial
a weight matrix and refine this weight matrix to learn the proportions. However, this kind
of processing is not optimal because the weights are independent of ego embeddings and
neighbor embeddings. This brings a large randomness to the model, which would reduce the
model interpretability and further limit the recommendation performance. Gumbel-Softmax
trick is good solution to handle this problem, which can generate a categorical distribution
according to the provided ego and neighbor embeddings. Hence, in ASP-GCN, Gumbel-
Softmax trick is resorted to generate a categorical distribution between [ei,l)]y and [e,(f) 1y
adaptively:

exp((log Ty k + gu,k)/r)

>l exp((log . + 8u.j)/7)

where « x is the k-th element of user u’s categorical distribution. g, 1, - - -, gu,|| are indepen-
dently identical distribution (i.i.d) samples drawn from Gumbel(0,1) distribution, which can
be sampled via inverse transform sampling as: g, x = —log(—log(a)), a ~ Uniform(0, 1).
T is the temperature factor of Gumbel-softmax. m, is a two dimension vector, in which

3

Oy k =

7,1 and 7, > are the class possibilities of [ei,l)] N and[ef,l) 1u respectively. w1 and 7, > are
deduced by a multi-layer perceptron (MLP):

{nu,l = 02(01([eV 1y W1 + b)) W2 + b)) @
Tup = 02(01([eP1, Wi + b1)Wo + by)

where W; € R4 xd' W, e RY*1 and b € R! xd' by € R'™! are trainable weight matrixes
and biases. o7 (+) and o2 (-) are the SELU [46] and Sigmoid functions respectively.

It’s worth noting that we use SELU as the activation function of the first layer of MLP,
In the second layer of MLP, we use Sigmoid instead of SELU as the output of MLP to

@ Springer

World Wide Web (2023) 26:3183-3206 3191

generate a possibility. It is because the output of SE LU is not a possibility. SE LU is proved
to have a better performance than tanh, ReLU and LeakyReLU for two reasons: a) it can
achieve internal normalization which converges faster than external normalization; b) it can
avoid the problem of gradient vanishing and gradient explosion. The definition of SELU is
as:

SELU(x):y{x if x>0

ner—0ifx<0’)

where y and 5 are hyperparameters, predefined as 1.67326 and 1.05070 respectively.

4.2 Adaptive self-propagation

Intuitively, the interacted items can directly reflect a user’s preference; analogously, the users
that observed an item can be modeled to describe item features. According to this natural
principle, it is necessary to aggregate neighbor embeddings to update the embeddings of
target nodes (shown in Eq. 2). Meanwhile, considering the importance of original features
users and items, we design another propagation rule which considers ego embeddings and
neighbor embeddings simultaneously (shown in Eq. 2). Besides, Gumbel-Softmax trick is
utilized to generate categorical distributions between neighborhood embeddings and hybrid
embeddings. After obtaining the categorical distributions generated by Gumbel-Softmax, the
embeddings are propagated by performing these two types of propagation rules proportion-
ally. By doing this, the node embedding can be propagated to the node itself, which is called
self-propagation.

We first introduce the first-order embedding propagation of ASP-GCN that aggregates
embeddings of the first-order neighbors, and then generalize it to multiple convolution layers.

First-order propagation. The basic idea of ASP-GCN is to aggregate ego embeddings
and neighbor embeddings proportionally. Specifically, we perform the propagation rules as
shown in Eqgs. 1 and 2 proportionally according to the categorical distributions estimated by
the categorical distribution generation module. So, the first-order propagation rule (taking
user u for example) in ASP-GCN is:

1 1
o =l et

(1) (0) 1) (0)
+a, (e, +)
u 1 l§ /714” u,2 l;f: /7”

6
—ae® + @ +a) Y e ©

P «/W—Mun

1) ,(0) § : (0)
- au 2e + /7
ieNy "”

© (0)

) and e; (D

where e, are initial embeddings of user u and item i; e,

embedding from the first layer. [« ; i , a)] is the categorical distribution of user « in the first

layer. To note that, the categorical dlstrlbutlon generation module should be operated in each
layer for each node. It is because embedding propagation process in different convolution
layers involves different nodes, making it inappropriate to perform categorical distribution

is user u’s updated

@ Springer

3192 World Wide Web (2023) 26:3183-3206

generation module only once for all layers. Operating categorical distribution generation
module in each layer for each node is beneficial to capture finer-grained user preferences and
item attributes.

What mentioned above is the embedding update process of a single node. To show the
holistic process of embedding update and facilitate the implementation, we provide the matrix
form of embedding propagation of ASP-GCN:

EV =« PAEQ + o« (E® + AE®) = «"E® + AE©, %

where E© ¢ RIUIHIZD*d ang D ¢ RIUIFIZD®d gre the initial embedding matrix and
updated embedding matrix of all users and items in the first layer respectively. d is the

embedding size [ocgl) € RUHIFIZD>1, ctg]) € RUUIHIZDx1Y s the categorical distributions for

all users and items in the first layer. A= D_% AD_% is the symmetric normalized adjacency
matrix, where D is diagonal degree matrix and A € RUUIFHIDx(UIHIZD ig the adjacency
matrix. Single layer graph convolutional network updates user and item embeddings by
aggregating first-order neighbors’ embeddings. It captures the direct connectivities of users
and items to model users’ preferences and items’ attributes. This can be seen as the first-order
similarity.

High-order propagation. However, aggregating the embeddings of first-hop neighbors is
insufficient to capture complex collaborative information implied in the user-item interaction
graph. To exploit the high-order similarity of users and items, we stack multiple convolution
layers to aggregate the embeddings of high-order neighbors. The recurrence formula is as:

EO =aPED L AED 1=1,2,... L, ®)

E® and E¢D are embedding matrixes of all users and items in layer / and (I — 1)
respectively. By implementing the multi-layer matrix-form propagation rule, we can update
all user and item embeddings for each convolution layer in an efficient way.

4.3 Prediction

After L layers’ embedding propagation, user and item embeddings from each layer can be
obtained. Most existing GCN-based methods adopt residual connection to get the final embed-
dings of users and items. Taking user u for example, NGCF concatenates the embeddings
from each layer: el(lo) |- ||e,(,L); LightGCN uses the average of embeddings from each layer
as the final embeddings: L%rl Zf:o e,(f). Different from these methods, ASP-GCN regards
the embeddings from the last layer as the final embeddings. It is because the embeddings
from previous layer are proportionally retains in current layer, contributes to the unneces-
sity of layer combination. If ASP-GCN also adopts a residual connection manner, the ego
embeddings would occupy too much proportion in the final embeddings, which would lead
to the deterioration of the representation ability of user and item embeddings. Therefore,
ASP-GCN regards the user and item embeddings from the last layer as the final embeddings.
Taking user u# and item i for example, the final embeddings are:

e =elD) ef = eEL) ©)

After getting the final embeddings, we conduct inner product operation to estimate the
preference score of user u over item i:

Sui =€ @e’ (10)

@ Springer

World Wide Web (2023) 26:3183-3206 3193

In this work, we only use inner product to compute the preference score of users over
target items. The inner product operation is proved to be efficient yet simple. Some other
operations can also be performed to replace inner product, such as neural network [47]. We
leave it to the future work since it is not the focus of our work.

4.4 Model optimization

To refine model parameters, we employ the pairwise BPR loss [12], which has been widely
used in recommender systems. The BPR loss function is written as:

Lgpr=— Y oG+ —Fui)+ O3, (1)

(u,i*,i=)eO

where O = {(u,iT,i7)|(u,i") € RT, (u,i”) € R} is the pairwise training data, R
denotes the positive user-item pair set (observed interactions) and R~ denotes the negative
user-item pair set (unobserved interactions). o (+) is the sigmoid function and ® denotes all
model parameters. 3, ;+ and ¥, ;- represent the preference scores of user u over item i + and
i~ respectively. A is the coefficient to control the strength of regularization term. BPR loss
assumes that positive items (namely the observed items) can better reflect user preference
than negative items (namely the unobserved items). Hence, it assigns higher predicted value
to the positive items than to the negative items. The regularization term is used to avoid
overfitting.

In addition to the regularization term, we add a similarity term. The similarity term makes
the embeddings of connected nodes close to each other and that of disconnected nodes far
to each other because connected nodes have better reflects to each other. The similarity loss
function is as follows:

Ls=— Y (s(ej ef)—se.er) (12)
(u,it,i=)eO

where s (-, -) is cosine similarity function. e;; is the final embedding of user u. e}, and e} are
final embeddings of item i T and i ~ respectively. The goal of similarity term is to enlarge the
gap between the similarity of positive interactions and negative interactions. But if we use
s(ey, er) — s(ey, i) as the similarity term, the gradient would refine the model weights
into areverse direction, in which the similarity gap between positive and negative interactions
would be narrowed. Considering this, it’s natural to add a negative operation in the similarity
term. Finally, we combine the BPR loss and similarity loss in a multi-task learning way:

L = Lppr + BLs (13)

where B is the coefficient to control the strength of similarity term. By introducing the
similarity term to the loss function, the overall loss function can guide the model to refine the
model parameter to cater to the two tasks simultaneously. We think this kind of combination
practice has a certain degree of universality. The similarity term can be combined with not
only BPR loss, but also many other loss functions such as Binary Cross-Entropy Loss [47]
and Square Loss [48, 49] with a small adjustment. Besides, this kind of practice can also be
performed in many other fields, including node classification and link prediction.

@ Springer

3194 World Wide Web (2023) 26:3183-3206

4.5 Time complexity analysis

Assuming that the number of convolution layer is L and the dimension of MLP is
R%*d1 and R <!, The main operation of ASP-GCN is matrix multiplication and cate-
gorical distribution generation. The time complexity of categorical distribution generation is
O(ZII‘:0 (U] + |Z)(d + 1)d"), where |U| + |Z| is the number of all nodes (users and items)
and d, d’ are the dimensions of node embedding and the first hidden layer of MLP. The time
complexity of matrix multiplication is O (3" |R*|d), where |R*| denotes the number of
nonzero entities the adjacent matrix. Therefore, the overall time complexity of ASP-GCN is
O(X g IR*Id + (U] + 1T + D).

4.6 Model analysis

Relation with NGCF. NGCF [9] is a neural graph collaborative filtering model, which
exploits user-item graph structure by propagating embeddings on it. NGCF adds self-loop
in the adjacent matrix (i.e., A,y = 1, where v is the index of a user or an item), so that ego
embedding can be propagated to node itself in the embedding propagation process. How-
ever, it’s insufficient because ego embedding only occupies a very small proportion in the
embedding update procedure. Meanwhile, once the graph structure is fixed, the proportions
of ego embeddings and neighbor embeddings are fixed during the process of embedding
propagation. ASP-GCN adopts an adaptive self-propagation mechanism, in which ego and
neighbor embeddings can be aggregated proportionally according to the categorical dis-
tributions generated by Gumbel-Softmax trick. By doing so, ASP-GCN can mitigate the
problem of NGCF: the individual difference of user properties and item attributes is not fully
captured.

Relation with LightGCN. LightGCN [3] removes the feature transformation matrix
and non-linear activation function in the embedding propagation process, considering these
two operations are burdensome and even make model hard to train. However, ego embed-
dings are not involved in the embedding propagation process of LightGCN, resulting in
the loss of inherent information of users and items. Although LightGCN adopts a resid-
ual connection mechanism to combine embeddings from each layer, the connection is
in a layer-wise manner, which means that the difference of different nodes are not dis-
tinguished. ASP-GCN generates categorical distributions for each user or item to update
its embedding, which pays special attention to the distinction between different users or
items.

Relation with DGCF. DGCF [50] is a disentangled graph collaborative filtering model,
which pays attention to the finer-grained user intents. However, DGCF is similar with Light-
GCN essentially since they are all GCNs without self-propagation. Although DGCF yields
disentangled representations for users and items, the operations of DGCF are time consump-
tive, which limits its generalization. ASP-GCN is essentially different from DGCF. DGCF
learns the finer granularity of user intents by dividing user and item embeddings into several
intents-aware trunks, and the update process of each trunk is independent. ASP-GCN gener-
ates individual categorical distributions for users and items to guide the process of embedding
propagation, which does not increase too much time and space consumption for model, so
that own a higher generalization.

@ Springer

World Wide Web (2023) 26:3183-3206 3195

Table 2 Statistics of datasets

Datasets #user #item #interactions Sparsity1
Gowalla 18,737 32,510 741,906 99.878%
Yelp 30,887 18,995 745,197 99.873%
Movielens-100K 943 1,682 100,000 93.695%

IThe ratio of elements without interaction history to the whole matrix
space

5 Experimental analysis

In this section, we conduct extensive experiments on three benchmark datasets to evaluate
ASP-GCN and answer the following research questions:

e RQ1: Does ASP-GCN has a better performance compared with present state-of-the-art
methods?

e RQ2: Is adaptive self-propagation mechanism of ASP-GCN effective?

e RQ3: How does ASP-GCN perform under different aggregation mechanisms?

e RQ4: Why we regard the embeddings from the last layer as the final embeddings to
conduct prediction?

e RQS5: How different hyper parameters (including temperature factor 7, the coefficient 8
of similarity term and model depth L) affect the result of ASP-GCN?

5.1 Datasets and evaluation metrics

We use three publicly available datasets: Gowalla, Yelp, Movielens-100K to conduct our
experiments and the statistics of them are shown in Table 2.

To evaluate the Top-N recommendation, we select Precision@N, Recall@ N, HR@N
and NDCF@N as the evaluation metrics. The calculation formulas are as follows:

1 S..nNT,
Recall@ N = o Z U’NTiul, (14)
| | ueld | u|
1 S, NNT,
Precision@N = — Z M (15)
|Z/[| ueld N

Recall@ N x Precision@N
FI@N =2 x — (16)
Recall@ N + Precision@N

1 N 1SN (p) N T(p))
NDCG@N = — . 17
22 (17)

it pmt Zucloga(p 1)

where S, y is the set of top N items recommended to user « and 7}, is the ground-truth item
set of user u in the testing set. S, y(p) denotes the item set of p-th element in S, n. I(-)
is an indicator function, that equals to 1 if the set is not empty, otherwise 0. Z,, is the ideal
discount cumulative gain so that a perfect recommended list obtains NDCG,,=1.

@ Springer

3196 World Wide Web (2023) 26:3183-3206

5.2 Baselines

e BPR-MF [12]: BPR-MF is a matrix factorization model optimized by Bayesian Person-
alized Ranking (BPR) loss, which exploits the user-item interactions to compute the loss
and refine model parameters.

e GMF [47]: GMF is a generalized matrix factorization recommendation model, which
uses a linear kernel to calculate users’ preference over items.

e MLP [47]: MLP is a Multi-Layer Perceptron based model, which uses a non-linear kernel
to estimate users’ preference over items.

e NCF [47]: NCF is the combination of GMF and MLP, which can simultaneously capture
the linear and non-linear feature of users and items.

e GC-MC [1]: GC-MC is a GCN-based model, which stacks only one convolution layer
to update node embeddings by aggregating the embeddings of first-order neighbors.

e PinSage [4]: PinSage is the implement of GraphSage in large Web-scale recommender
systems.

e NGCF [9]: NGCF is a GCN-based collaborative model, that stacks multiple convolution
layer to update user and item embeddings. It additionally encodes the interactions of
target node and neighbor node, compared with convolutional GCNGs.

e LR-GCCF [2]: LR-GCCF is a linear GCN-based collaborative filtering model, whose
embedding propagation is linear. It only uses feature transformation and removes the
non-linearity in the aggregation stage.

e LightGCN [41]: LightGCN is a simplifying and powering GCN model that removes
feature transformation and non-linearity simultaneously. It improves the recommendation
performance, while reducing the memory and time consumption.

e DGCF [50]: DGCEF is a disentangled graph collaborative filtering method, which pay
special attention to user-item relationships at the finer granularity of user intents. It
disentangles user intents and yield disentangled representations so as to improve the
robustness and interpretability of recommendation model.

e SGL [51]: SGL is the implement of self-supervised learning on user-item interaction
graph with the aim of improving the accuracy and robustness of GCNs for recommenda-
tion. We select Edge Dropout (SGL-ED) and Random Walk (SGL-RW) as the competitive
models since they generally show better performance.

e CIGCN [52]: CIGCN is an embedding disentanglement model, which designs a channel
independent graph convolutional network to disentangle user and item embeddings. It
assigns different dimension of embeddings with different importance to update embed-
ding dimension independently. To notice, we don’t use the item-item relations since there
are no item-item relation data in the datasets we used.

5.3 Experimental environment and parameter settings

Experimental environment: ASP-GCN is implemented using pytorch framework and speed
up by a NVIDIA 2080Ti GPU.

Parameter settings: For the sake of fairness, the embedding sizes of all methods are fixed
to 64. For all multi-layer GCN-based methods, we search the layer numberin {1, 2, 3,4, 5} for
the best performance and the size of each layer is set to 64. The batch size is selected in range
{256, 512, 1024, 2048} and the learning rate is searched in {10’5,10’4,10’3,10’2,10’1,
1} to tune the convergence speed. The temperature factor 7 is selected in range {1, 5, 10,
50, 100}. Moreover, the coefficient of similarity term and regularization term is searched in

@ Springer

World Wide Web (2023) 26:3183-3206 3197

range {0.01, 0.05, 1} and {10’5,10’4,10’3,10’2,10’1} respectively. Meanwhile, we use a
dropout strategy for all models and search it in {0.1, 0.2, ..., 0.8}. For every methods, one
negative sample is selected to match each positive sample. Xavier [53] and Adam [54] are
used to initialize and optimize the model parameters of ASP-GCN respectively.

5.4 Performance comparison (RQ1)

From the results shown in Tables 3, 4 and 5 (The boldfaced values mean the best performance
in each column, and the underlined values indicate the best performance of baselines), we
have the following observations:

e ASP-GCN has the best recommendation performance over other present baselines on
both three datasets, which indicates the effectiveness of ASP-GCN proposed in this
paper. By generating categorical distributions between neighborhood embeddings and
hybrid embeddings and aggregating these two kinds of update signals according to the
generated categorical distribution, ASP-GCN can benefit the GCN model for retaining
nodes’ (users’ and items’) inherent information and capturing the users’ personalized
needs.

e BPR has poor performance on Gowalla and Yelp datasets consistently. It samples the
user-item interactions to calculate the loss and then refine user and item embeddings
using backward propagation. This indicates that simply perform inner product between
users and items is insufficient.

o GCN-based methods (GC-MC, PinSage, NGCF, LR-GCCF, LightGCN, DGCF, CIGCN)
have better performance than BPR, GMF, MLP and NCF. They use graph convolutional
network to exploit high-order connectivities of users and items. In particular, GC-MC’s
performance is worse than multi-layer based methods such as LR-GCCF and LightGCN.
This is because GC-MC stacks only one convolution layer, which can only exploit the
first-order connectivities and fails to capture the high-order similarity of users or items.

Table 3 The comparison of overall performance with baseline methods on Gowalla dataset

N 10 20
Metrics Recall Precision Fl1 NDCG Recall Precision Fl NDCG

BPR-MF 0.05818 0.04282 0.04933 0.16885 0.08806 0.03298 0.04799 0.20934

GMF 0.05996 0.04432 0.05097 0.18015 0.09202 0.03440 0.05008 0.22451
MLP 0.04592 0.03400 0.03907 0.13690 0.07374 0.02755 0.04011 0.17722
NCF 0.05738 0.04201 0.04851 0.16377 0.09020 0.03367 0.04904 0.20983

GC-MC 0.06531 0.04820 0.05547 0.18182 0.10071 0.03775 0.05492 0.22819
PinSage 0.06074 0.04471 0.05151 0.16912 0.09600 0.03576 0.05211 0.21573
NGCF 0.06488 0.04769 0.05497 0.17723 0.10128 0.03769 0.05494 0.22428
LR-GCCF 0.06450 0.04733 0.05460 0.18253 0.09915 0.03710 0.05400 0.22853
LightGCN 0.07114 0.05198 0.06007 0.19239 0.11017 0.04095 0.05971 0.24170
DGCF 0.06582 0.04848 0.05583 0.18162 0.10175 0.03789 0.05522 0.22767
SGL-ED 0.07178 0.05255 0.06068 0.19412 0.11049 0.04101 0.05982 0.24205
SGL-RW 0.07226 0.05274 0.06098 0.19530 0.11221 0.04167 0.06077 0.24594
CIGCN 0.07263 0.05302 0.06129 0.19425 0.11236 0.04163 0.06075 0.24372
ASP-GCN 0.07586 0.05547 0.06408 0.20061 0.11690 0.04341 0.06331 0.25220

@ Springer

3198

World Wide Web (2023) 26:3183-3206

Table4 The comparison of overall performance with baseline methods on Yelp dataset

1 2

yf[etrics R(v):call Precision F1 NDCG R%call Precision FI NDCG

BPR-MF 0.04074 0.02086 0.02759 0.08186 0.06985 0.01808 0.02872 0.11210
GMF 0.03316 0.01720 0.02265 0.07081 0.05589 0.01474 0.02333 0.09644
MLP 0.03091 0.01545 0.02060 0.06242 0.05420 0.01372 0.02190 0.08787
NCF 0.03328 0.01737 0.02283 0.07021 0.05696 0.01506 0.02382 0.09667
GC-MC 0.04431 0.02231 0.02968 0.08649 0.07277 0.01881 0.02989 0.11660
PinSage 0.04363 0.02221 0.02944 0.08728 0.07336 0.01887 0.03002 0.11817
NGCF 0.04577 0.02295 0.03057 0.08980 0.07630 0.01943 0.03097 0.12136
LR-GCCF 0.04349 0.02236 0.02953 0.08704 0.07183 0.01880 0.02980 0.11718
LightGCN 0.04722 0.02388 0.03172 0.09430 0.07993 0.02035 0.03244 0.12750
DGCF 0.04571 0.02323 0.03080 0.09093 0.07644 0.01968 0.03130 0.12277
SGL-ED 0.05007 0.02582 0.03407 0.09867 0.08225 0.02149 0.03408 0.13464
SGL-RW 0.05016 0.02584 0.03411 0.09902 0.08150 0.02145 0.03396 0.13440
CIGCN 0.04838 0.02439 0.03243 0.09499 0.08031 0.02043 0.03257 0.12747
ASP-GCN 0.05426 0.02736 0.03638 0.10486 0.08955 0.02297 0.03656 0.14032

e Compared with NGCF and LR-GCCF, LighGCN consistently shows better performances
on two datasets. It suggests that non-linear activation and feature transformation are
two burdensome operations for recommendation tasks. They not only rise the time and
memory consumption, but also make the model difficult to train.

e SGL outperforms LightGCN since it performs self-supervised learning on user-item
interaction graph. SGL mitigates two problems existed in the GCN-based recommenda-

Table 5 The comparison of overall performance with baseline methods on Movielens-100K dataset

gletrics 112(1)30311 Precision F1 NDCG lzi(zzcall Precision FI NDCG
BPR-MF 0.22895 0.35016 0.27687 0.52037 0.34394 0.27996 0.30867 0.62982
GMF 0.21044 0.32344 0.25498 0.52341 0.31349 0.26357 0.28637 0.64558
MLP 0.19705 0.31113 0.24129 0.50863 0.30481 0.25286 0.27642 0.63910
NCF 0.20511 0.31220 0.24757 0.52002 0.31284 0.25403 0.28038 0.64048
GC-MC 0.22317 0.34751 0.27179 0.52396 0.34207 0.27953 0.30765 0.63419
PinSage 0.21924 0.33245 0.26423 0.51015 0.33659 0.27169 0.30068 0.62551
NGCF 0.22073 0.34305 0.26862 0.51514 0.34164 0.27842 0.30681 0.63192
LR-GCCF 0.22247 0.34390 0.27017 0.50866 0.33749 0.27497 0.30304 0.61873
LightGCN 0.23271 0.35578 0.28138 0.52655 0.35534 0.28823 0.31829 0.64037
DGCF 0.23175 0.35558 0.28061 0.53092 0.34758 0.28250 0.31168 0.63677
SGL-ED 0.23334 0.35524 0.28167 0.52797 0.34782 0.28335 0.31229 0.63680
SGL-RW 0.23456 0.35790 0.28339 0.52969 0.35235 0.28616 0.31582 0.63822
CIGCN 0.23336 0.35302 0.28098 0.52503 0.34797 0.28351 0.31245 0.63433
ASP-GCN 0.23892 0.36766 0.28963 0.54537 0.36056 0.29290 0.32323 0.65433

@ Springer

World Wide Web (2023) 26:3183-3206 3199

tion model: long-tail and noisy interaction problems. By doing so, SGL can improve the
robustness of GCN-based recommendation model.

5.5 Ablation experiments
5.5.1 Effectiveness of adaptive self-propagation mechanism (RQ2)

To investigate whether the adaptive self-propagation mechanism of ASP-GCN is help-
ful to improve recommendation performance, we remove the similarity term in the loss
function (denoted by ASP-GCN-s). ASP-GCN-s is the pure adaptive self-propagation mech-
anism based GCN as compared with other GCN models. From Figure 4, we can find that
ASP-GCN-s outperforms all nine comparative methods. It verifies that the adaptive self-
propagation mechanism designed in this paper is effective. Concretely, ASP-GCN utilizes the
Gumbel-Softmax trick to generate the category distribution between neighborhood embed-
digns and hybrid embeddings, and aggregates these embeddings proportionally accordding
to the generated categorical distributions. This kind of embedding propagation mechanism

captures both ego and neighbor features, which can further improve the recommendation
performance.

7 GMF XY MLP EEZINCF [| GC-MC [l PinSage [] NGCF [LR-GCCF [l LightGCN [l ASP-GCN-s
0.24

0.08 0.054
023
0.07 0.048
= = 2
.22
S ® ®°
5 0.06 3 0.042 3
3 3 3 0214
&~ o~ o~
0.05 0.036 2
0201 &7
0.04 L 0.030 0.19 - .
Gowalla Movielens-100K
0.055 0.029 038
0.050
= < hone i
®o.045 " ®
= = =
b} 2 2034
% % %
5 0.040 k3] S
2 £0.019 <1
R R o032
0.035
0.030 0014 030
Gowalla Movielens-100K
020 011 055
0.18
=
®
3 0.16
Q
a
z
0.14
0.12

Gowalla Yelp Movielens-100K

Fig.4 Performance comparison of ASP-GCN-s (i.e., the variant of ASP-GCN, which removes the similarity
term of loss function) and other recommendation models

@ Springer

3200 World Wide Web (2023) 26:3183-3206

5.5.2 Impact of different aggregation mechanisms (RQ3)

In ASP-GCN, we employ proportional summation between neighborhood embeddings
and hybrid embeddings in embedding aggregation stage. To study its rationality, we also
design three variants of ASP-GCN: ASP-GCN-max (performing proportionally max pool-
ing between two types of embeddings), ASP-GCN-concat (proportionally concatenating
two types of embeddings) and ASP-GCN-mean (performing proportionally mean pooling
between two types of embeddings). From the results shown in Table 6 (The boldfaced val-
ues indicate the best performances), we can observe that the best performance in general is
ASP-GCN. On Yelp dataset, ASP-GCN-mean has a better performance than the others. But
we found that ASP-GCN-mean is hard to train and time consumptive. It is particularly obvi-
ous on Movielens-100K dataset, not only rising the time cost, but also deteriorating overall
performance.

5.5.3 Impact of layer combination (RQ4)

ASP-GCN regards the embeddings from the last layer as the final embeddings to pre-
dict preference scores of users over items. To show why we do this, we design a variant
ASP-GCNyl1.1ayer that sums embeddings from each layer as the final embeddings of users
and items. As shown in Figure 5, ASP-GCN consistently has better recommendation perfor-
mance than ASP-GCNyjj_jayer 0n both Gowalla, Yelp and Movielens-100K datasets, which
can be explained by ASP-GCN’s adaptive self-propagation mechanism. In each layer, ASP-
GCN aggregates a certain proportion of hybrid embeddings which consist of ego embeddings
and neighbor embeddings. It means that a certain proportion of embeddings from the previous
layer can be retained. Hence, it is unnecessary for ASP-GCN to perform layer combination,
which would affect the recommendation performance adversely.

5.6 Hyper-parameter analysis (RQ5)
5.6.1 Impact of temperature factor and coefficient of similarity term

The temperature factor t and the coefficient § of similarity term are two crucial hyper-
parameters of ASP-GCN. Performances of ASP-GCN under different T and 8 settings are
shown in Figure 6.

T influences the categorical distributions generation process. For low temperatures, the
categorical distributions approximate one-hot distributions. For high temperatures, the cate-
gorical distributions gradually become uniform distributions. These two extremes will lead

Table 6 Performance of 3-layer ASP-GCN with different choices of aggregation mechanisms in graph con-
volution

Gowalla Yelp Movielens-100K

Recall NDCG Recall NDCG Recall NDCG
ASP-GCN-max 0.11072 0.24311 0.08060 0.12862 0.34108 0.63511
ASP-GCN-concat 0.11521 0.24911 0.08576 0.13587 0.35511 0.65310
ASP-GCN-mean 0.11510 0.24982 0.08778 0.13831 0.29763 0.59434
ASP-GCN 0.11573 0.25033 0.08617 0.13606 0.36056 0.65433

@ Springer

World Wide Web (2023) 26:3183-3206

3201

0.12

[ASP-GCN,,
[ASP-GCN

Recall@20
°

2 3
Number of layers

bz ASP-GCN,jjyyer

[ASP-GCN

Recall@20
°
]

0.07
2 3

Number of layers

0.37
[ASP-GCN, 10

[ASP-GCN

Recall@20
°
%

0.33
2 3

Number of layers

Gowalla Yelp Movielens-100K
0.04: 0.024 0.30
[ASP-GCN, ., [ASP-GCN,, [ASP-GCN, .,
[ASP-GCN [ASP-GCN [ASP-GCN

Precision@20
°
s
2
3

2 3
Number of layers
Gowalla

0.26

Precision@20
g

2 3
Number of layers
Yelp

0.14

Precision@20
g

2 3

Number of layers
Movielens-100K

[ASP-GCN, 0y,
[ASP-GCN

NDCG@20
S
2

2 3

Number of layers
Gowalla

[ASP-GCN,, 0y,

[ASP-GCN

NDCG@20
°

2 3

Number of layers
Yelp

0.68
[ASP-GCN, .,
[ASP-GCN

2 3

Number of layers
Movielens-100K

Fig.5 Results of ASP-GCN and the variant that sums embeddings from each layer under different number of
layers on Gowalla and Yelp datasets

to two problems: (1) The first one causes the imbalance of ego embeddings and neighbor
embeddings; (2) The second one stifles the differences between nodes. Hence, as shown in
Figure 6, the Recall@20 and Precision@20 have showed a pattern that the curve increases
early then decreases later as the temperature increases.

B influences the model training process. As shown in Figure 6, Recall @20 decreases after
the increasing as S rises. As the coefficient of similarity term increases, the embeddings
of connected nodes become closer and disconnected nodes become further iteratively. It is
beneficial because connected nodes can better reflect the features of target nodes. This proves
the effectiveness of our optimized loss function. But as § increases into a relatively higher
level, Recall@20 shows a downward trend. This is because a larger proportion of similarity
term will weaken the rule of main loss (BPR), causing ASP-GCN deviate from the main goal.

5.6.2 Impact of model depth

To investigate how model depth affects the performance of ASP-GCN, we search the number
of convolution layer in the range {1, 2, ..., 7}. As summarized in Table 7 (The boldfaced
values indicate the best performances), we can have the following observation:

@ Springer

3202 World Wide Web (2023) 26:3183-3206

QTDUOISAL
2 <

=

Gowalla Movielens-100K

Fig. 6 Performance of 3-layer ASP-GCN under different temperature factors and coefficients of similarity
term

e ASP-GCN benefits from the multi-layer graph structure. In particular, the recommenda-
tion performance has consistent improvement on Movielens-100K when layer number
increases from 1 to 4, on Gowalla when layer number increases from 1 to 5 and on Yelp
when layer number increases from 1 to 6. This can be attributed to the exploitation of
high-order collaborative signals. By aggregating the embeddings of high-hop neighbors,
the high-order collaborative signals can be captured to model the high-order similarity of
users and items. Therefore, increasing the number of convolution layers can enhances the
model’s representational ability, further improving the recommendation performance.

Table 7 The performance of ASP-GCN under different number of layers

Model depth 1 2 3 4 5 6 7

Gowalla Recall@10 0.07053 0.07122 0.07499 0.07476 0.07586 0.07550 0.06256
Precision@10 0.05147 0.05234 0.05465 0.05460 0.05547 0.05516 0.04666
Fl@10 0.05951 0.06034 0.06322 0.06346 0.06408 0.06375 0.05345
NDCG@10 0.19108 0.19455 0.19919 0.19886 0.20062 0.19878 0.18274

Yelp Recall@10 0.04831 0.05062 0.05214 0.05323 0.05426 0.05521 0.05502
Precision@10 0.02566 0.02636 0.02692 0.02736 0.02773 0.02775 0.02607
Fl@10 0.03352 0.03467 0.03551 0.03614 0.03670 0.03694 0.03538

NDCG@10 0.09427 0.09863 0.10111 0.10375 0.10486 0.10671 0.10509
Movielens -100K Recall@10 0.23396 0.23956 0.23825 0.24105 0.23624 0.23003 0.22613
Precision@10 0.35695 0.36394 0.36352 0.36702 0.36108 0.35133 0.34634
Fl@10 0.28266 0.28893 0.28785 0.29099 0.28561 0.27803 0.27361
NDCG@10 0.53036 0.53947 0.54039 0.54344 0.53815 0.52758 0.52958

@ Springer

World Wide Web (2023) 26:3183-3206 3203

e When model depth increases from 5 to 7 on Gowalla, from 6 to 7 on Yelp and from 4 to 7
on Moivelens-100K, the model witnesses the deterioration. It is because the problem of
over-smoothing, which is the reason why GCNs cannot get satisfying performance when
increasing the model depth continuously. Deepening the model causes the exponential
increase of the number of nodes that involved in the embedding update process of target
nodes. Hence, these nodes smooth to each other through the process of embedding prop-
agation. This contributes to the slight discrimination of embeddings, and further limits
the recommendation performance.

6 Conclusion

In this work, we hold the view that neither discarding ego embeddings nor combining ego
embeddings in a uniform way in the process of embedding propagation is efficient to update
node embeddings (user and item embeddings). We conduct a pilot experiment to verify our
obervation. Considering this issue, we propose an Adaptive Self-propagation Graph Convo-
lutional Network (ASP-GCN) to proportionally aggregate neighbor embeddings and hybrid
embeddings composed of ego embeddings and neighborhood embeddings. Specifically, we
resort to Gumbel-Softmax trick to generate categorical distributions between aforementioned
two types of embeddings. Generated categorical distributions are used as the weight of each
type of embeddings in the representation propagation process. In back propagation stage,
we optimize BPR loss with a similarity term that forces embeddings of connected nodes
close to each other and that of disconnected nodes far to each other. Finally, comprehensive
experiments on three publicly available datasets are conducted to prove the effectiveness and
efficiency of ASP-GCN.

Acknowledgements We acknowledge the editorial committee’s support and all anonymous reviewers for their
insightful comments and suggestions, which can improve the content and presentation of this manuscript.

Author Contributions Zhuo Cai wrote the main manuscript text and designed the experiments, Guan Yuan
provided the main idea of this manuscript and organized the full text, Xiaobao Zhuang prepared Figures 1-4
and formated the references. Senzhang Wang checked the English grammar and smoothed the representation
of main text, Shaojie Qiao gave many suggestions and instructions in experiments, and Mu Zhu sorted out
experimental data. All authors have proofread and approved the final manuscript.

Funding This work was supported in part by the National Natural Science Foundation of China under Grants
71774159 and 62272066, China Postdoctoral Science Foundation under Grants 2021T140707, Jiangsu Post-
doctoral Science Foundation under Grants 2021K565C, and State Key Laboratory of NBC Protection for
Civilian under grant SKLNBC2020-23.

Availability of data and materials All datasets used in this paper are open datasets.

Declarations
Competing interests The authors declare no competing interests.
References

1. Berg, R.vd., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263 (2017)

@ Springer

http://arxiv.org/abs/1706.02263

3204 World Wide Web (2023) 26:3183-3206

20.

21.

22.

23.

24.

. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: A linear

residual graph convolutional network approach. In: Proceedings of the AAAI conference on artificial
intelligence, vol. 34, pp. 27-34. (2020)

. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying and powering graph con-

volution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pp. 639-648. (2020)

. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural

networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 974-983. (2018)

. Liu, M., Li, J,, Li, G., Pan, P.: Cross domain recommendation via bi-directional transfer graph collabo-

rative filtering networks. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 885-894. (2020)

. Wang, H., Lian, D., Zhang, Y., Qin, L., He, X., Lin, Y., Lin, X.: Binarized graph neural network. World

Wide Web 24(3), 825-848 (2021)

. Wang, L., Hu, F., Wu, S., Wang, L.: Fully hyperbolic graph convolution network for recommendation.

In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 3483-3487. (2021)

. Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., He, X.: Ultragcn: Ultra simplification of graph convolutional

networks for recommendation. In: Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 1253-1262. (2021)

. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of

the 42nd international ACM SIGIR conference on Research and development in Information Retrieval,
pp. 165-174. (2019)

. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD

international conference on knowledge discovery & data mining, pp. 338-348. (2020)

. Liu, X, Ding, J., Jin, W,, Xu, H., Ma, Y., Liu, Z., Tang, J.: Graph neural networks with adaptive residual.

Adyv. Neural Inf. Process. Syst. 34, 9720-9733 (2021)

. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from

implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016)

. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings

of the 31st International Conference on Neural Information Processing Systems, pp. 1025-1035. (2017)

. Zhuang, C.: Ma, Q.: Dual graph convolutional networks for graph-based semi-supervised classification.

In: Proceedings of the 2018 World Wide Web Conference, pp. 499-508. (2018)

. Qu, L., Zhu, H., Duan, Q., Shi, Y.: Continuous-time link prediction via temporal dependent graph neural

network. In: Proceedings of The Web Conference 2020, pp. 3026-3032. (2020)

. Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for

cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1503-1511. (2020)

. Yadati, N., Nitin, V., Nimishakavi, M., Yadav, P., Louis, A., Talukdar, P.: Nhp: Neural hypergraph link

prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1705-1714. (2020)

. Ranganathan, V., Barbosa, D.: Hoplop: multi-hop link prediction over knowledge graph embeddings.

World Wide Web 25(2), 1037-1065 (2022)

Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional
networks for traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence,
vol. 33, pp. 922-929. (2019)

Lu, B., Gan, X., Jin, H., Fu, L., Zhang, H.: Spatiotemporal adaptive gated graph convolution network for
urban traffic flow forecasting. In: Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pp. 1025-1034. (2020)

Lu,B.,Gan, X.,Jin,H., Fu, L., Wang, X., Zhang, H.: Make more connections: Urban traffic flow forecasting
with spatiotemporal adaptive gated graph convolution network. ACM Trans. Intell. Syst. Technol. (TIST)
13(2), 1-25 (2022)

Xu, M., Li, X., Wang, F., Shang, J.S., Chong, T., Cheng, W., Xu, J.: Learning to effectively model
spatial-temporal heterogeneity for traffic flow forecasting. World Wide Web 26(3), 849-865 (2023)
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast
localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 3844-3852. (2016)

@ Springer

http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1609.02907

World Wide Web (2023) 26:3183-3206 3205

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Yu, W., Qin, Z.: Graph convolutional network for recommendation with low-pass collaborative filters. In:
International Conference on Machine Learning, pp. 10936—10945. (2020)

Liao, R., Zhao, Z., Urtasun, R., Zemel, R.S.: Lanczosnet: Multi-scale deep graph convo-lutional networks.
In: 7th International Conference on Learning Representations, ICLR 2019. (2019)

Estrach, J.B., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and deep locally connected networks
on graphs. In: 2nd international conference on learning representations, ICLR, vol. 2014. (2014)

Zhu, H., Feng, F., He, X., Wang, X., Li, Y., Zheng, K., Zhang, Y.: Bilinear graph neural network with
neighbor interactions. In: Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 1452—1458. (2021)

Huang, T., Dong, Y., Ding, M., Yang, Z., Feng, W., Wang, X., Tang, J.: Mixgcf: An improved training
method for graph neural network-based recommender systems. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 665-674. (2021)

Zheng, Y., Gao, C., Chen, L., Jin, D., Li, Y.: Dgcn: Diversified recommendation with graph convolutional
networks. In: Proceedings of the Web Conference 2021, pp. 401-412. (2021)

Liu, E, Cheng, Z., Zhu, L., Gao, Z., Nie, L.: Interest-aware message-passing gcn for recommendation.
In: Proceedings of the Web Conference 2021, pp. 1296-1305. (2021)

Huijben, I.A., Kool, W., Paulus, M.B., Van Sloun, R.J.: A review of the gumbel-max trick and its extensions
for discrete stochasticity in machine learning. IEEE Trans. Pattern. Anal. Mach. Intell. 45(2), 1353-1371
(2022)

Maddison, C.J., Tarlow, D., Minka, T.: A* sampling. In: Proceedings of the 27th International Conference
on Neural Information Processing Systems-Volume 2, pp. 3086-3094. (2014)

Oberst, M., Sontag, D.: Counterfactual off-policy evaluation with gumbel-max structural causal models.
In: International Conference on Machine Learning, pp. 4881-4890. (2019)

Lorberbom, G., Johnson, D., Maddison, C.J., Tarlow, D., Hazan, T.: Learning generalized gumbel-max
causal mechanisms. Adv. Neural Inf. Syst. 34 (2021)

Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144 (2016)

Potapczynski, A., Loaiza-Ganem, G., Cunningham, J.P.: Invertible gaussian reparameterization: Revisit-
ing the gumbel-softmax. Adv. Neural Inf. Process Syst. 33, 12311-12321 (2020)

Hu, S., Xie, S., Zheng, H., Liu, C., Shi, J., Liu, X., Lin, D.: Dsnas: Direct neural architecture search
without parameter retraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12084—12092. (2020)

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P, Jia, Y., Keutzer, K.: Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10734-10742. (2019)
Xiao, T., Chen, Z., Wang, D., Wang, S.: Learning how to propagate messages in graph neural networks.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1894-1903. (2021)

He, C., Ye, H., Shen, L., Zhang, T.: Milenas: Efficient neural architecture search via mixed-level refor-
mulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11993-12002. (2020)

Li, Y., Dong, M., Wang, Y., Xu, C.: Neural architecture search in a proxy validation loss landscape. In:
International Conference on Machine Learning, pp. 5853-5862. (2020)

Li,D., Yang, T.,Du, L., He, Z., Jiang, L.: Adaptivegcen: Efficient gen through adaptively sparsifying graphs.
In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 3206-3210. (2021)

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W., Chen, H., Wang, W.: Robust graph representation
learning via neural sparsification. In: International Conference on Machine Learning, pp. 11458-11468.
(2020)

Kong, T., Kim, T., Jeon, J., Choi, J., Lee, Y.C., Park, N., Kim, S.W.: Linear, or non-linear, that is the
question! In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining,
pp. 517-525. (2022)

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Proceed-
ings of the 31st international conference on neural information processing systems, pp. 972-981. (2017)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of
the 26th international conference on world wide web, pp. 173-182. (2017)

He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with
implicit feedback. In: Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 549-558. (2016)

@ Springer

http://arxiv.org/abs/1611.01144

3206 World Wide Web (2023) 26:3183-3206

49.

50.

SI.

52.

53.

54.

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth
IEEE international conference on data mining, pp. 263-272. IEEE (2008)

Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In:
Proceedings of the 43rd international ACM SIGIR conference on research and development in information
retrieval, pp. 1001-1010. (2020)

Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X.: Self-supervised graph learning for recom-
mendation. In: Proceedings of the 44th international ACM SIGIR conference on research and development
in information retrieval, pp. 726-735. (2021)

Zhu, T., Sun, L., Chen, G.: Embedding disentanglement in graph convolutional networks for recommen-
dation. IEEE Trans. Knowl. Data Eng. (2021)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:
Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256.
(2010)

Kingma, D.P, Ba, J.: Adam: A method for stochastic optimization. In: ICLR (Poster). (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

Authors and Affiliations

Zhuo Cai' - Guan Yuan' - Xiaobao Zhuang' - Senzhang Wang? - Shaojie Qiao? -
Mu Zhu*

Zhuo Cai
czhuo@cumt.edu.cn

Xiaobao Zhuang
zhuangxb@cumt.edu.cn

Senzhang Wang
szwang @csu.edu.cn

Shaojie Qiao
sjqiao@cuit.edu.cn

Mu Zhu

zhumubest@163.com

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou
221000, China

School of Computer, Central South University, Changsha 410083, China

School of Software Engineering, Chengdu University of Information Technology, Chengdu
610225, China

State Key Laboratory of NBC Protection for Civilian, Beijing 100000, China

@ Springer

	Adaptive self-propagation graph convolutional network for recommendation
	Abstract
	1 Introduction
	2 Related work
	2.1 GCNs for recommendation
	2.2 Gumbel-Softmax

	3 Motivation
	4 Methodology
	4.1 Category distribution generation module
	4.2 Adaptive self-propagation
	4.3 Prediction
	4.4 Model optimization
	4.5 Time complexity analysis
	4.6 Model analysis

	5 Experimental analysis
	5.1 Datasets and evaluation metrics
	5.2 Baselines
	5.3 Experimental environment and parameter settings
	5.4 Performance comparison (RQ1)
	5.5 Ablation experiments
	5.5.1 Effectiveness of adaptive self-propagation mechanism (RQ2)
	5.5.2 Impact of different aggregation mechanisms (RQ3)
	5.5.3 Impact of layer combination (RQ4)

	5.6 Hyper-parameter analysis (RQ5)
	5.6.1 Impact of temperature factor and coefficient of similarity term
	5.6.2 Impact of model depth

	6 Conclusion
	Acknowledgements
	References

