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Abstract
With versatility and complexity of computer systems, warning and errors are inevitable. To
effectively monitor system’s status, system logs are critical. To detect anomalies in system
logs, deep learning is a promisingway to go. However, abnormal system logs in the real world
are often difficult to collect, and effectively and accurately categorize the logs is an even time-
consuming project. Thus, the data incompleteness is not conducive to the deep learning for
this practical application. In this paper, we put forward a novel semi-supervised dual branch
model that alleviate the need for large scale labeled logs for training a deep system log
anomaly detector. Specifically, our model consists of two homogeneous networks that share
the same parameters, one is called weak augmented teacher model and the other is termed
as strong augmented student model. In the teacher model, the log features are augmented
with small Gaussian noise, while in the student model, the strong augmentation is injected
to force the model to learn a more robust feature representation with the guidance of teacher
model provided soft labels. Furthermore, to further utilize unlabeled samples effectively, we
propose a flexible label screening strategy that takes into account the confidence and stability
of pseudo-labels. Experimental results show favorable effect of ourmodel on prevalent HDFS
and Hadoop Application datasets. Precisely, with only 30% training data labeled, our model
can achieve the comparable results as the fully supervised version.

Keywords Log anomaly detection · Semi-supervised learning · Distributed system ·
Dual branch

1 Introduction

With the exponential growth of computing tasks and data, distributed parallel computing
systems (DPCS) are increasingly widely adopted to make full use of hardware resources to
achieve rapid and effective task deployment. While DPCS are effective in many ways, they
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are not easy to maintain and manage, which can cause some serious system problems. To
effectively monitor the system’s health, system logs are usually collected for diagnosing.

Generally, the log-based anomaly detection method is realized by mining a large amount
of system log data and conducting effective classification, which can be simply treated as
a binary classification task. At present, for this task, there are mainly machine learning
algorithms based on shallow method [1–5] and methods based on deep model [6–10]. For
the traditional machine learning methods, they do not need a large amount of well annotated
data to achieve satisfactory classification effect. For deep models, although their accuracy is
much higher than that of traditional machine learning, the dependence on massive data often
makes the model inadequate in real applications. For the problem we faced in log anomaly
detection, due to the diversity of anomalies and the large number of logs, effective annotation
of data is not energy-consuming, and in some real distributed systems, abnormal data is often
difficult to collect, resulting in more scarce effective annotation.

In this paper, to tackle the above mentioned issue in log anomaly detection, we propose a
innovative semi-supervised dual branch Log anomaly detection model dubbed SSDLog that
alleviate the need for large scale labeled logs for training a deep system log anomaly detector.
Specifically, in the training process of our model, we do not need a large amount of labeled
data like the conventional deep models, but can achieve the comparative training effect as
them with the support of only 30% label data and the remaining 70% unlabeled one. More
explicitly our model consists of two homogeneous networks that share the same parameters,
one is called weak augmented teacher model and the other is termed as strong augmented
student model. In the teacher model, the log features are augmented with small Gaussian
noise, while in the student model, the strong augmentation is injected to force the model to
learn a more robust feature representation with the guidance of teacher model, which can
provide a more stable soft pseudo-labels for supervised training. In the meantime, to further
utilize unlabeled samples effectively, we propose a label screening strategy that takes into
account the confidence and stability of pseudo-labels, which can further obtain reliable and
learnable training samples.

To summarize, the following three contributions are made in this paper:

1. A novel semi-supervised dual branch model for efficient Log anomaly detection is pro-
posed with only a few labels available in the training set. To the best of our knowledge,
this is one of the latest attempts for the Log anomaly detection task in real scenario.

2. A novel teacher-student semi-supervised model integrated with flexible label screening
strategy is established to efficiently detect system Log anomalies.

3. Ourmodel has achieved superior performanceonprevalent systemLoganomalydetection
datasets. In particular, the performance of our SSDLog is comparable to that of the full-
labeled methods [7, 11] under the condition of only 30% labeled data available.

The remainder of the paper is organized as follows. In Section 2, we survey recent related
work. Section 3 details our SSDLog approach. Sections 4 and 5 present the experimental
results on multiple datasets. Finally, we conclude the paper in Section 6 with a summary and
an outlook on future work.

2 Related work

This section will introduce related work from two aspects: log anomaly detection and semi-
supervised deep learning.
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2.1 Log anomaly detection approaches

Before deep learning take over computer vision and NLP, statistic approaches and non-deep
machine learning approaches are mainly leveraged in log analysis field. On the one hand,
classic statistical methods calculate specific features manually extracted from log data. There
are several traditional statistic approaches, include PCA-based approach [12].In addition,
Safyallah et al. [13] analyze frequent and common log sequence execution path to detect
anomalies. Fu et al. [14] use rule-basedmethod to identify log templates and detect anomalies
in distributed system logs.

To prevent certain features extracted by statistic approaches from affecting the effect
of log anomaly detection, many studies emerged who using non-deep machine learning
methods to detect anomalies. The related approaches include, SVM-based approaches [1,
2], Bayesian Learning-based model [3], Decision Tress-based model [4], HMM(Hidden
Markov Model)-based approach [5]. For example, Fulp et al. [1] leverage sliding window to
analyze system logs and support vector machine (SVM) to predict anomalies. Liang et al. [2]
use support vector machine (SVM), RIPPER (a rule-based classifier) and custom nearest
neighbor method to establish three classifiers for anomaly prediction. Lou et al. [5] apply
Bayesian Learning method to extract structural diagrams from system logs. Hen et al. [4]
identified system failures by using decision tree to model labeled log information with higher
interpretability compared with other classification methods. Morever, Yadwadkar et al. [3]
use Hidden Markov Model-based (HMM) methods to detect anomalies.

Recently years, Deep Learning-based approaches are popularly used for abnormal log
detection with better performance. AutoEncoder is an unsupervised neural network which
effectively compresses and encodes data. Farzad et al. [15] proposed an unsupervised model
for anomaly detection of log messages by using isolated forest and two AutoEncoder net-
works, the isolated forest is used to detect normal logs with thresholds, and the AutoEncoder
networks are used for training and feature extraction. Afterwards, due to the fact that LSTM-
based approaches [6] could extract sequence features and detect anomaly log in real time.
Du et al. [7] design a LSTM-based model to detect abnormal for log workflows and log
values. Brown et al. [8]extend an attention mechanism to LSTM for improving detection
performance. Moreover, another LSTM-based model combines with generative adversar-
ial networks (GANs) is proposed by Xia et al. [9]. For offline approaches, a CNN-based
model [10] is proposed by us to achieve state-of-art in abnormal detection with Hadoop
dataset. Currently, we propose a black-box based attacking approach to attack some of above
detection models. The results show that the robustness of those detection models is weak.
Hence, we propose a Self-Knowledge Distillation (SKD) approach to improve the robustness
and accuracy for typical deep learning-based log detection models [16].

Nowadays, new methods derived from machine learning have also been used for log
anomaly detection. Rui et al. [17] put forward a framework called LogTransfer, which uses
transfer learning to transfer abnormal log information in a cross-system way, thus avoid-
ing similar log systems to retrain the detection model, and greatly reducing the manpower,
material resources and time expenses on the premise of ensuring the detection effect. Duan
et al. [18] designed a method called QLLog, which integrates Q-Learning algorithm and
feedback mechanism in reinforcement learning to improve the understanding of anomaly log
patterns and detect anomalies quickly and effectively.

Nevertheless, in actual scenarios, the logs of different systems are different. Therefore,
manual labeling of massive log information takes time and effort. The above related algo-
rithms do not take into account the semi-supervised learning conditions, which greatly
limits the applicability of current Log anomaly detection algorithms. This paper innovatively
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proposes a semi-supervised log anomaly detection algorithm to further promote the applica-
tion of this technology.

2.2 Semi-supervised learning

At present, the latest semi-supervised deep learning (SSL) methods focus mainly on the
following three aspects:1. Consistency regularization [19–23]; 2. Pseudo-labeling [24–26];
3. Data augmentation [27–30].

For consistency regularization strategy, the basic idea is to make the output of the same
disturbed sample through the network as consistent as possible, so as to enhance the repre-
sentation smoothness of the model around the sample. In [19], the consistency penalty term
is first introduced in to semi-supervised learning optimization. The method constrained the
consistency of the output of two versions of the same input data. In addition, to enhance the
robustness of the model to label noise and shorten the training time, temoral ensembling is
proposed to get one of the branch’s output in a non-parametric way by exponential moving
average (EMA). Considering the delay in updating the sample output, Meam Teacher [31]
adopted the method of EMA on the model to further enhance the performance on the large
dataset. In order to carry out data disturbance more effectively and find the best consistency
constraint direction, [32] proposed to use virtual adversarial training strategy to carry out
data disturbance. Recently, [33] combined MixUp [34] and consistency strategies in SSL
to make consistency act between different classes to obtain a more reasonable classification
hyperplane. Similarly, in [21], Berthelot et al. proposed a MixUp-based consistency method
combined with auto-augmentation for SSL. Most recently, Jiang et al. [35] proposed a worst
case consistency regularization technique that minimizes the largest inconsistency between
an original unlabeled sample and its multiple augmented variants.

For Pseudo-labeling strategy, in brief, it uses the prediction of unlabeled samples derived
from the same or a dedicated model’s prediction as the training label to expand the dataset,
and such approaches commonly adopt a high threshold mask to alleviate the confirmation
bias. Arazo et al. [24] proposed a soft pseudo-labeling strategy combined with MixUp aug-
mentation for SSL. ThenWei et al. [25] proposed an incremental self-labeling strategy based
on Generative adversarial network for efficient label propagation. Recently, considering that
it is not reliable to directly assign a fixed threshold for filtering pseudo-labels, Wang et al.
proposed [26] FreeMatch that to define and adjust the confidence threshold according to the
model’s learning status. Similarly, in [36] Huang et al. proposed a percentile-based threshold
adjusting scheme, named PercentMatch, that is to dynamically alter the score thresholds of
positive and negative pseudo-labels for each class during the training.

Data augmentation methods typically improve the generalization ability of the model
by generating various variant data through image-based transformation and Mixed Data
Augmentation (MDA) [29, 33]. For the image-based transformation augmentation, the most
representative approach is FixMatch [28], which operated by adopting weak and strong auto-
augmentation for SSL. For MDA-based augmentation, in [29] Wei et al. proposed a novel
FMixCut algorithm for effective data augmentation. In [27], to deal with the problem of
class-imbalance in SSL (CISSL), Kong et al. proposed a MixUp-based data augmentation
and label reassignment strategy for CISSL.

The mechanisms of the above three strategies are different; however, in some cases, they
can be fused effectively to further improve the accuracy of the model. Whereas, none of the
aforementioned literature has studied SSL in Log anomaly detection, in which the accuracy
of the detector is significantly threatened by the small amount of labeled data. In this paper,

123



World Wide Web (2023) 26:3137–3153 3141

we propose a novel framework dubbed SSDLog for semi-supervised log anomaly detection.
To the best of our knowledge, this is one of the latest attempts for the Log anomaly detection
task in real semi-supervised scenario.

3 Methodology

In this section, we first present the problem setup for semi-supervised Log anomaly detection
problem. Based on this, we introduce our SSDLog, a novel teacher-student semi-supervised
model integrated with flexible label screening strategy for semi-supervised Log anomaly
detection.

3.1 Problem setup

For Log-based abnormal detection task, as the raw data is usually a sequence of logs with
semantic information. In this study, the target log data sets are HDFS log and Hadoop appli-
cation log. Following most works, we preprocess the raw data with log template approach,
and turn it into log key sequences. The log sequence is denoted by xi ∈ (R)L×1, where L
indicates the fixed length of each log code. As shown in Figure 1.

For a normal Log, we set its label yi to 1, otherwise to 0.
Formally, suppose that for a binary abnormal detection problem, we have a labeled dataset

X = {(xm, ym) : m ∈ (1, ...M)}, and an unlabeled dataset U = {(un) : n ∈ (1, ...,N )}. We
express the labeled ratio as β = M/(M+N ) andM � N . As we usually assume that the
labeled data are randomly selected from the whole dataset, unlabeled data and labeled data
are all obey the same distribution. Consequently, our goal is to train a binary classifier f (·)
that performs effectively to detect anomalies from the normal Logs.
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Figure 1 The schematic of SSDLog. Two branches are carried out including a teacher model and a student
model. For the teacher model, both labeled and unlabeled data are used as input, and weak augmentation
is injected into the encoded vector; at the end of the classification head of teacher model, the pseudo-label
screening strategy is carried out to filter out more stable and confidential samples. For the student model,
only unlabeled data is used as input, and strong augmentation is injected into the encoded vector; for the
classification head of student model, the Cross-Entropy is conducted in the pseudo-labeled screened training
sample
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3.2 SSDLog anomaly detector

The framework of the proposed SSDLog is presented in Figure 1. As we can see, our whole
framework consists of two networks that share the same network structure and parameters.
Themodel at the top is called teacher model, which takes both labeled setX and unlabeled set
U as input. Inside teacher model, the weak augmentation is injected to get reliable outputs for
both sets’ data. The model at the bottom is called student model, which only takes unlabeled
set U as input for training. Noting that, for the label provided from the teacher model to
train the student, only samples with high confidence and stable output can be selected. In
addition, in the training of student model, in order to make its generalization ability stronger,
stronger noise disturbance is injected into its encoded vector than the teacher’s model. In
the following, we will first detail our dual branch model, then explain our label screening
process.

A. Dual branch architecture

Since our two-branch model belongs to the siamese neural network, we’ll use the teacher
model as an example here, and we’ll declare the differences where necessary.

As shown in Figure 1, for the teacher model f T (·), we will feed both ui and xi as input.
Then we declare a learnable code book matrix C(·) ∈ R

N×K for encoding discrete Log
values, where N indicates the number of discrete codes, and K is the encoding length for
each code scalar. As each Log is an encoding sequence with fixed length L , the output e(xi )
after encoding for each sample is a matrix with size L×K . Formally, we express the obtained
encoded matrix for sample xi as:

e(xi ) = xi � C (1)

where � represents the encoding operation of xi by code book C .
After the encoded matrix is obtained, we then add noise into each matrix. Since we did

not limit the output range of the encoding, it is difficult to obtain a relatively reasonable noise
by simply random a noise matrix. Also, Dropout operation is also not suitable for our log
anomaly detection as some code is fatal to identify abnormal and there may not have strong
dependence from other encoded values. Then, here, we make innovative use of a MixUp-
like feature augmentation approach that mix feature pairs with fusion factor ε. Formally, we
express our augmentation process as:

ẽ(xi ) = (1 − ε)e(xi ) + εê(xi ) (2)

where, ε is sampled from beta(α, α) distribution and can be expressed as:

ε ∼ max(beta(α, α), 1 − beta(α, α)) (3)

where α is set to 0.95 for teacher model, so as to keep more information from the original
encoded feature e(xi ). For student mode, α in (3) is set to 0.9 to give a relative stronger aug-
mentation. For simplicity, we express all the data derived from teachermodel with superscript
T , and S for student’s, otherwise there is no need to specify them.

It’s worth noting that in (2), ê(xi ) is obtained by a random shuffle of e(xi ).
After the augmented feature matrix is obtained, it then passed into three parallel convolu-

tional layer with different kernel size. Following [10], we implement three kernel with size
3×K , 4×K and 5×K to catch the long and short dependencies among encoded features. In
order to further enable the model to automatically catch effective features in different ranges,
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we also use the attention mechanism for feature weighting. Since this part is not the key part
of this paper, we will not expand the description, and relevant operations can be viewed in
our previous work [16].

Finally, after a simple fully-connected classifier head, we get the final output of the model.
Thenwe implementCross-Entropy loss to train themodelwith corresponding labeled samples
xi along with their labels, as shown in (4). It should be noted that the ratio between labeled
samples and unlabeled samples is fixed to 1:1 in teacher model’s training to take into account
the accuracy of the model and the ability to explore unknown samples.

Lce(xi , yi ) = CE( f Tt (xi ), yi ) (4)

B. Flexible label screening

This part is both related to teacher model and student model. First, using the teacher
model, we obtain the output of the unlabeled sample ui at epoch t, denoted as ft (ui ). We
thenweighted the historical output using an exponentialmoving average (EMA) to getMt (ui )
at epoch t . Meanwhile, the output variances of the latest 30 epochs are calculated for each
sample(ui ), and expressed as St (ui ), respectively.

Next, we effectively filter the unlabeled data by declaring an evaluation expression that
takes into account the confidence and stability of the teacher’s output of the unlabeled sample:

�
T
t (ui ) = MT

t (ui ) − μSTt (ui ) (5)

whereμ is the hyper-parameter that controls the proportion of confidence and stability impor-
tance, in our paper, we set it to 0.1 throughout our experiments.

MT
t (ui ) in (5) is calculated by:

mT
t (ui ) = λmT

(t−1)(ui ) + (1 − λ) f Tt (ui )

MT
t (ui ) = mT

t (ui )/(1 − λt ) (6)

where λ is the momentum weight used to control the updating rate, in our paper, we set it
to 0.4 by default. f Tt (ui ) is the output of the teacher model for the unlabeled sample ui at
epoch t .

For the calculation of STt (ui ), all the initial value is set to 0, and each STt (ui ) is updated
by:

STt (ui ) = std({ f Tt−29(ui ), f Tt−28(ui ), ..., f Tt (ui )}) (7)

When we get �T (ui ) for each unlabeled data ui , we then conduct pseudo-label screening
by choosing the value of �

T (ui ) greater than a pre-defined threshold τ as pseudo-labeled
sample for Cross-Entropy optimization. For a tradeoff between safety and exploration, we
set τ as a dynamic changing hyper-parameter along with training epoch, and expressed as:

τt = 0.95 × t

epochs
(8)

where epochs denotes the total epochs to be trained. From (8), we can conclude that with the
training goes by, the threshold will grow slowly. This manner will guarantee that the model
will receive more data for the initial training so as to avoid the over-fitting and confirmation
bias problem. As the training processes, the model will concentrate on more safe and stable
samples for training and finally reach a desired anomaly detector.
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From (5) to (7)we can see that our screening strategy can take both confidence and stability
of the output into consideration, so as to get more valuable unlabeled samples for training.
The Cross-Entropy loss operated in the student side is formally expressed a in (9)

Lce(ui ) = I(�T
t (ui )) × CE( f St (ui ), Onehot(MT

t (ui ))) (9)

where I(·) is a 0-1 indicator that defined as:

I(�T
t (ui )) =

{
1, i f �

T
t (ui ) > τt

0, otherwise
(10)

In (9), Onehot(·) denotes the operation of converting the probability vector to an Onehot
0-1 vector.

We summarizeSSDLoganomalydetection algorithm inAlgorithm1.Note that, the teacher
model is responsible for training the student model with unlabeled data, which transfers more
latent information to detectionmodel. The studentmodel shares the sameweight as the teacher
model but with different augmentation injected into the training process.

Algorithm 1 SSDLog anomaly detection.

Input: prepossessed log sequences set X and U . αT = 0.95; αS = 0.9. μ = 0.1. λ=0.4.
1: for t in R iterations (or Epochs) do:
2: sample a batch of labeled data {(x1, y1),...,(xB , yB )}
3: sample a batch of unlabeled data {u1,...,uB}
4: f Tt (xi ), f

T
t (ui ) ← Teacher model (xi , ui )

5: f St (ui ) ← Student model (ui )
6: Lce(xi , yi ) = CE( f Tt (xi ), yi ) � (4)
7: MT

t (ui ) ← (6)
8: STt (ui ) ← (7)
9: �

T
t (ui ) ← (5)

10: Lce(ui ) = I(�T
t (ui ))CE( f St (ui ), Onehot(MT

t (ui ))) � (9)
11: Update f (·) through Lce(xi , yi ) and Lce(ui )
12: end for

3.3 Efficiency analysis

Through the introduction of our framework, it can be found that we made two copies of
the same model for the effective SSL through combining consistency and pseudo-labeling
strategy, and also adaptively added the feature augmentation strategy for Log in the training
process. Therefore, compared with the traditional single branch network, the running time
of our algorithm is bound to increase. To put it simply, we are still training only one network
model, and the two-branch structure can be seen as passing through the network twice for
the unlabeled sample. Therefore, the theoretical increase in training time is simply to run the
unlabeled sample once more during the forward propagation process.

It is worth noting that in the test phase of our model, feature augmentation is removed,
and the inference time of the network is consistent with that of the traditional single-branch
network, that is, there is no performance degradation in our model.
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4 Evaluation

In this section, we first detail the experiment setup and datasets. Then, we compare the
proposed SSDLog method with other methods on the semi-supervised version of HDFS and
Hadoop Application datasets. Finally, we apply our model to a real-world industry dataset
and an unstable dataset to validate the robustness and efficiency.

4.1 Experimental setup and dataset

We implement the model through Pytorch [37]. We evaluate our model and the other
relevant approaches on HDFS and Hadoop, two prevalent benchmarks on distributed system
log. We set β = 10%, 20%, 30% and 50%, respectively to construct the semi-supervised
version of HDFS and Hadoop Application. We also show the fully-supervised results under
two datasets. In addition, we establish a novel dataset, i.e, a real world industry dataset, to
validate the effectiveness of our proposed method in real SSL condition with β = 50%. The
data distribution of these datasets is listed in Table 1. Their detailed information is introduced
as follows:

HDFS dataset is first produced by Xu et al. [12], and this dataset is from more than 200
Amazon EC2 nodes for Hadoop distributed file system in runtime, which collects 11,175,
and 629 logs, plus 29 unique log keys. First, the raw data size is over 1.5 GB, and then the
raw data is divided into log sessions based on block_id . Finally, there are 558,223 normal
sessions and 16,838 anomalous sessions in the dataset.

HadoopApplication dataset [38] contains twoHadoop applications fromHadoop cluster,
including Word Count and Page Rank. The whole cluster has five nodes with 16GB RAM
for each. The abnormal logs consist of the errors caused by machine malfunction, network
disconnection, and full disk.

IndustryDataset Wecollect real-world industry dataset from theWindowsEvent Tracing
for Windows (ETW) framework, which records 135 different log sessions. Different log
sessions represent differnt system behaviors. The industry dataset consists of 4,878 abnormal
log events and 130,411 normal log events.

Unstable Dataset We define noisy dataset as unstable dataset since it is hard predicted
system performance due to unstable log pattern. We simulate unstable log data with stochas-
tic system variation pattern. The noise of log events generally contains three categories of
information. The log sequences may lose some log events, repeat some log events, or mess

Table 1 The summary of adopted benchmark datasets

Datasets # of labeled blocks # of train # of test

HDFS(10%) 55,822 1,684 1,117,563

HDFS(20%) 111,644 3,368 2,235,126

HDFS(30%) 167,466 5,052 3,352,689

HDFS(50%) 279,110 8,420 5,587,815

Hadoop Application(10%) 76 14 5,538

Hadoop Application(20%) 152 28 11,076

Hadoop Application(30%) 228 42 16,614

Hadoop Application(50%) 380 70 27,690
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up log events. Therefore, we randomly perturb the original HDFS dataset with different ratio.
Figure 2 demonstrates the three different ways of injecting noises into log sequences.

In terms of evaluation metrics, we consider three types of metrics including precision
(Precision = T P

T P+FP ), recall (Recall = T P
T P+FN ), and F1-score (F1 − score =

2(Precision×Recall)
Precision+Recall ), to assess the performance of SSDLog.

4.2 Evaluation on HDFS

First of all, we compare our proposed framework with our previous approach [10], which is
implemented by the vanilla CNN. To quantifymodel performance and assess their difference,
three metrics are selected, including model precision, recall, and F1-score. The results are
represented in Table 2. SSDLog outperforms by a large margin.

In addition, we compare SSDLog with the other two log-based anomaly detection
approaches, including DeepLog [7] and LogAnomaly [11], on HDFS dataset. DeepLog
is an LSTM-based model for log sequence prediction and efficient anomaly detection.
LogAnomaly is an end-to-end model with LSTM network to detect abnormal log sequences.

Noting that, as the abovementioned three approaches did not consider the semi-supervised
training conditions, we only give them labeled data for training.

From the given comparison results represented in Table 2, we observe that our proposed
SSDLog outperforms vanilla CNN, DeepLog and LogAnomaly with different on all scores.
Specifically,whenβ =50%,SSDLoggains thebest performanceon recall of 99.4%, exceeding
DeepLog by 0.5%, LogAnomaly by 1.7%, and the vanilla CNNmodel by 3%. This indicates
that SSDLog can better identify the abnormal behaviours in the system procedure and make
accurate anomaly prediction. In addition, SSDLog obtains the highest F1-score of 98.7%,
outperforming DeepLog significantly by 4.4%, LogAnomaly by 2.8%, and the vanilla CNN
model by 1.6%. This implies that ourmodel consistently outperforms these approaches across
all metrics.

Figure 2 Illustration of log events in the synthetic data. The synthetic data can be divided into three categories:
remove log event, add log event, and disrupt log event. The log sequence in the first line is the original log
sequence
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Table 2 The comparison of our
previous models on HDFS dataset
with various SSL conditions

β Approach Precision Recall F1-score

5% CNN 0.939 0.789 0.858

DeepLog 0.793 0.603 0.680

LogAnomaly 0.924 0.534 0.677

SSDLog 0.958 0.946 0.951

10% CNN 0.962 0.858 0.907

DeepLog 0.763 0.870 0.825

LogAnomaly 0.777 0.829 0.800

SSDLog 0.971 0.981 0.976

20% CNN 0.975 0.904 0.938

DeepLog 0.869 0.975 0.919

LogAnomaly 0.922 0.960 0.941

SSDLog 0.978 0.986 0.982

30% CNN 0.972 0.940 0.954

DeepLog 0.913 0.967 0.939

LogAnomaly 0.925 0.965 0.945

SSDLog 0.978 0.992 0.985

50% CNN 0.978 0.964 0.971

DeepLog 0.901 0.989 0.943

LogAnomaly 0.941 0.977 0.959

SSDLog 0.980 0.994 0.987

The best results are in bold

4.3 Evaluation on hadoop

To further assess the effectiveness of SSDLog, we compare our model with other competitors
on the dataset of Hadoop Application. As listed in Table 3, our method outperforms the
other approaches on precision and F1-score. Although recall and precision have slightly
lower than the other methods when beta = 5% and 10%, separately, F1-score of SSDLog is
always higher than the other methods. The SSDLog obtains the highest F1-score of 89.1%
outperforming DeepLog by 13.1%, LogAnomaly by 9.2%, and vanilla CNN by 4.5%. This
observation justifies that SSDLog exhibitsmore accurate anomaly detection and highermodel
robustness. The recall scores on Hadoop Application are lower than HDFS datasets because
there are some challenging anomalous events, which interferes the detection process. For
instance, an unexpected system shut-down may result in an incomplete sequence lacking of
some logkeys. However, this kind of errors is difficult to be detected, since all the patterns
in sliding windows in the model would be identified as correct.

4.4 Evaluation on industry dataset

To demonstrate the capability of SSDLog, we compare SSDLog with three state-of-art meth-
ods on real-world industry dataset. The results are shown in Figure 3. It clearly depicts
that SSDLog obtains the best F1-score among all approaches, outperforming CNN by
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Table 3 The comparison of our
previous models on Hadoop
Application dataset with various
SSL conditions

β Approach Precision Recall F1-score

5% CNN 0.683 0.700 0.691

DeepLog 0.648 0.607 0.627

LogAnomaly 0.528 0.769 0.626

SSDLog 0.862 0.625 0.725

10% CNN 0.935 0.642 0.761

DeepLog 0.725 0.565 0.635

LogAnomaly 0.521 0.775 0.623

SSDLog 0.922 0.701 0.797

20% CNN 0.875 0.700 0.778

DeepLog 0.791 0.584 0.672

LogAnomaly 0.722 0.605 0.658

SSDLog 0.895 0.850 0.872

30% CNN 0.886 0.775 0.827

DeepLog 0.870 0.626 0.728

LogAnomaly 0.802 0.684 0.739

SSDLog 0.932 0.821 0.873

50% CNN 0.929 0.776 0.846

DeepLog 0.926 0.644 0.760

LogAnomaly 0.831 0.770 0.799

SSDLog 0.934 0.851 0.891

The best results are in bold

Figure 3 F1-score of different models on the industry dataset. The best results are in bold
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6.9%, DeepLog by 11.4% and LogAnomaly by 15.3%. What’s more, SSDLog achieves
a higher recall score than the others, outperforming CNN by 14.7%, DeepLog by 6.2% and
LogAnomaly by 14.9%. As observed, the proposed SSDLog has a superior performance in
anomaly detection. It is noteworthy that SSDLog only applies 5% labeled training set, further
proving the effectiveness of SSDLog.

4.5 Evaluation on real-world unstable dataset

In addition, to verify the capability of anomaly detection in real-world SSL conditions,
we compare SSDLog with vanilla CNN, DeepLog and LogAnomaly on the aforementioned
unstable dataset. The comparison results on the unstable dataset are presented in Figure 4. It is
observed that our proposed SSDLog significantly archives better performance than the other
three methods. With the increase of the noise ratio, SSDLog exhibits remarkable anomaly
detection accuracy than the other threemethods. In addition,DeepLog andLogAnomaly show
weaker detection ability on the noisy data, since the classifier fromDeeplog and LogAnomaly
has some deviation which may consider all unseen log patterns as anomalies.

5 Ablation study and analysis

Though SSDLog performs well on anomaly detection, a small part of log sequences are still
classified incorrectly. To reveal the reasons of these misjudgments, we further analyze the
misclassified cases of HDFS. We find out that when log key are identical, the log can also be
either normal or abnormal. This suggests that the property of abnormal logs does not only
rely on log keys. Obviously, the latent information hidden in the log values and log semantics
also have certain effects in the process of log anomaly detection. Therefore, we employ one
type of log values, i.e, timestamp, to distinguish the aforementioned type of log sequences
with an unsupervised method. For these log cases with the same log key sequence, we extract
timestamp intervals between relevant log events. These timestamp intervals are embedded

Figure 4 F1-score of different models on the synthetic unstable dataset. Different marked curve denotes
different approaches
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Figure 5 Distribution of log timestamp intervals produced by identical log key sequences. The blue and orange
dots represent the time intervals of abnormal log and normal log, respectively. The gray dashed lines denote
the decision boundaries generated by GMM

into vectors, which are fed to a Gaussian Mixture Model (GMM). The GMM assumes that
all vectors are generated from a mixture of Gaussian distributions. This GMM can separate
normal and abnormal logs according to different probabilistic distributions.

An instance of timestamp intervals’ distribution is illustrated in Figure 5. It is observed
that the clusters of normal and abnormal sequences have an obvious distance between each
other. The log events are divided by decision boundaries generated by GMM. Though these
logs have identical log key sequences, they can be correctly classified into abnormal and
normal logs due to different timestamp interval distributions.

It implies that better anomaly identification can be obtained by further integrating log
value with log keys. Among different log values, the timestamp interval is a good choice
since it reflects system response and delay, and facilitates efficient anomaly detection.

6 Conclusion and future work

In this paper, we proposed a novel approach named SSDLog to detect log anomaly in semi-
supervised condition. our model adopted two-branch teacher-student model for SSL. In
addition, to further utilize unlabeled samples effectively, we proposed a flexible label screen-
ing strategy that takes into account the confidence and stability of pseudo-labels. To validate
the effectiveness, we compare SSDLog with other state-of-art approaches. The experimental
results shown that our SSDLog achieved a higher performance than the other methods in
semi-supervised log anomaly detection task.

In the future, to further alleviate the need for data collection, we will explore the few-shot
learning for log anomaly detection. Besides, more datasets with valuable information will
be suggested to extend usage scenarios of SSDLog, such as CPS data, IoT data, and other
system monitoring data.
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