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Abstract
Anomaly Detection in multivariate time series (MTS) plays an important role in many real-
world Web services such as the Web traffic monitoring system. With abundant MTS data,
exploiting the relationships among different variables, i.e., inter-variable relationships, is
crucial for detecting anomalies. Recent studies have made substantial efforts to promote rela-
tionship learning from graph neural network. However, existing methods mostly neglect the
distinctive characteristics of inter-variable relationships under different contexts, i.e., dynam-
ics of inter-variable relationships. Therefore, we propose a “Hierarchical Attention Networks
for Context Anomaly Detection” (HAN-CAD) model to fully exploit the inter-variable rela-
tionships and their dynamics. More concretely, we model each time series segment (context
sequence) as a graph, where variables in the sequence are nodes and edges denote correla-
tion patterns among variables. Then, the first graph attention layer is built on this graph to
obtain the variable representation, which captures the relationships among different variables.
Thereafter, the second attention layer outputs the sequence representation by integrating inter-
variable relationships within the current context sequence. Finally, anomalies can be detected
based on the reconstruction model, i.e., AutoEncoder. Extensive experiments on real-world
datasets demonstrate that the proposed method can effectively detect anomalies in MTS and
outperforms recent state-of-the-art methods.

Keywords Anomaly detection · Multivariate time series · Graph neural network ·
Hierarchical attention network

1 Introduction

Anomaly detection aims to identify rare observations that differ considerably from themajor-
ity of other ones [12, 20, 32]. In recent years, diverse research communities, e.g., cyber
security [9], anomalous activity detection [24] and image processing [39], etc., have done
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tremendous work on anomaly detection. Especially, in real-world scenarios, a wide range
of applications [2] w.r.t. anomaly detection are involved with time series data. For instance,
detectingmalicious or abnormal activities in sequential sensor readings is vital for the control
system of a power grid [18]. Hence, we focus on detecting anomalies in time series data.

Early work on anomaly detectionmostly focused on univariate time series, which consider
only a single time-related variable or metric. The key to detecting anomalies with a single
metric is to learn the temporal dependencies of the time series. Traditional methods [7, 37]
often use statistics such as mean, ARIMA [23] and HiddenMarkovModels [29] to determine
the temporal trends of sequences and thus obtain the expected value of a specified point.
Recently, numerous deep learning-based methods [1, 33] have been proposed to enhance the
ability to represent time series data and better capture its temporal dependencies, e.g., CNN
[25], RNN [4] and LSTM [22], etc. However, in many circumstances, multivariate time series
data are involved, e.g., detecting anomalies in server machines [17] based onmultiple metrics
such as CPU usage, bandwidth and network throughput. Considering the characteristics of
MTS data, e.g., high dimensionality, complex interactions and temporal dependency among
variables, it thus remains a challenging problem for anomaly detection.

Conventionally, MTS data consist of multiple univariate time series, and thus MTS
anomaly detection can be divided into several univariate time series anomaly detection prob-
lems [14]. However, this intuitive approach of applying univariate-basedmethods completely
ignores the relationships among different variables in MTS data. To address this issue, a few
methods [11, 31] employ dimensionality reduction techniques for high-dimensional time
series data, and then they apply univariate-basedmethods. To capture more complex relation-
ships among variables, various methods [15, 21, 35] based on deep learning techniques have
been proposed, such as Gated Recurrent Unit(GRU) [6] with AutoEncoder [27]. Nonethe-
less, most of these methods only model the multivariate relationships implicitly, which still
have limits [8]. To overcome this problem, several deep learning methods [8, 36] have been
proposed recently to explicitly construct the relationships among different variables using
graph neural networks [19].

However, existing methods [8, 17, 36], whether modeling relationships among different
variables implicitly or explicitly, tend to neglect that variable relationships can be different
under different context sequences. In otherwords, previousmethodsmodel static correlations,
while in reality, these correlations are indeed dynamic or evolving over time. As shown in
Figure 1, a smart grid is equipped with three sensors, i.e., voltage sensor, temperature sensor
and current sensor, to monitor health status. It is normal for the three sensors to follow the
same trend, where temperature will always rise with increasing voltage or current, as shown
in sequence 1. However, in sequence 2, temperature violates this trend. However, we can not
treat it as an anomaly since the temperature in the plant is always brought down manually

Figure 1 Illustration of dynamic relationships among variables
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when the outdoor air temperature is high, which is obviously a common problem in a real-life
world. Hence, the questions are how to capture temporal dependency under different contexts
and integrate them with relationships among different variables.

To address aforementioned problems, we propose a novel Hierarchical Attention Net-
work for Context Anomaly Detection (HAN-CAD) model to fully exploit the relationships
among different variables and their temporal characteristics with regard to various context
sequences. We propose using GRUs to obtain the initial feature representation of variables
and sequences. Then, we construct a similarity graph for the variables and apply graph atten-
tion to capture variable-level correlations based on the similarity graph. Furthermore, another
attention layer is proposed to learn the sequence-level temporal relationships between vari-
ables and sequences. By hierarchically integrating temporal relationships, we propose using
the reconstructionmodel, i.e., AutoEncoder, to detect anomalieswithout requiring any groun-
truth information. Specifically, our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to use graph attentionmechanisms to capture
dynamics of variable relationships and sequences for MTS context anomaly detection.

• Based on the hierarchical attention structure, we can obtain the temporal-aware and
context-aware representation so as to better detect anomalies.

• We perform comprehensive experiments on three real-world datasets. Experimental
results show that our proposed method is effective and outperforms the state-of-the-art
methods.

The rest of this paper is organized as follows. In Section 2, we overview the related
work. Then, our proposed method is described in Section 3, including the problem statement
and details of the proposed model. Experiments and empirical evaluations are reported in
Section 4. Finally, Section 5 concludes the paper.

2 Related work

Anomaly detection in MTS is an important and challenging task in many real-world appli-
cations [2]. Extensive studies have been carried out by academic researchers and industry
practitioners. In this section, we briefly review the related deep learning work for MTS
anomaly detection since our proposed method is based on deep learning models.

Recent work on deep learning-based MTS anomaly detection can be categorized into
three groups: prediction-based models, reconstruction-based models and hybrid models. All
of these models [10, 13, 21, 28, 35, 40] follow a similar procedure, which involves feature
extraction for MTS using deep learning techniques and construction of different task models.
The major difference lies in how the anomaly score is determined, i.e., by the prediction error
for prediction-based models, the reconstruction error for reconstruction-based models, and
both errors for hybrid models. The core idea of prediction-based models is to predict the
observation at time step x̃t based on previous observations. Then, the observation at time
step t can be determined as an anomaly if the prediction error between the true observation
xt and x̃t is larger than the defined threshold. For instance, Bontemps et al. [3] proposed
the first LSTM network for collective anomaly detection with several measures of predicted
errors. Hundman et al. [13] proposed a dynamic thresholding method based on LSTM to
predict future observations for spacecraft. Furthermore, Siami-Namini et al. [26] compared
the performance for different variants in time series data and concluded that BiLSTM [34]
is more suitable for time series prediction. Reconstruction-based models are widely used for
anomaly detection, which try to obtain the representation of the whole sequence and compute
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the reconstructed error of the observation at each time step. Most of the reconstruction-
based models are based on two deep generative models, namely AutoEncoders (AEs) and
Generative Adversarial Networks (GANs) [30]. For instance, Malhotra et al. [21] proposed
the use of LSTM Encoder-Decode network, in which sequences are represented by LSTM
and the reconstruction process is based onAE. To address the overfitting problemofAE, Zhou
et al. [38] proposed a robust anomaly detection approach based on GAN by augmenting the
data using the time warping technique. For more related work about deep learning methods,
readers can refer to [2, 5].

It is worth noting that our work aims to capture variable relationships and its dynamic
based on the graph neural network and attention mechanism. Among existing related work,
both Zhao et al. [36] and Deng et al. [8] propose using graph attention technique to model
inter-variable correlations. Zhao’s model is based on a fully connected network, while in
Deng’s work, they propose using top K directed graph to learn the relationships between
variables, which is more flexible. Li et al. [17] also propose the similar approach to catpure
inter-variable correlations based on hierarchical Variational AutoEncoder. In comparison, all
previouswork only considers the static correlations between different variables.Our proposed
method employs a hierarchical attention mechanism to characterize the dynamic correlations
for MTS anomaly detection based on graph neural network.

3 Methodology

In this section, we present the details and implementation of the proposed method.

3.1 Problem statement

Let XN = {xt }Nt=1 ∈ Rd×N denote a set of multivariate time-series data of length N , where
xt ∈ Rd indicates the observation with d variables or features at time step t and N is
the maximum length of timestamps. In this paper, we aim to detect whether the sequence
Xi : j = {xi , xi+1, · · · , x j } contains abnormal activities, i.e., anomalies, without using any
groundtruth information.

As shown in Figure 1, inconsistent trends among different variables can indicate anomalies
and are changing as time goes by. Therefore, to effectively detect anomalies in multivariate
time-series, it is essential to capture relationships among multiple variables and learn their
dynamic characteristics as anomalies evolve. We address these challenges by proposing a
hierarchical attention network that focuses on two key issues: 1) capturing inter-variable
correlations using a graph attention network from the variable-level perspective, and 2)
characterizing the dynamic relationships between sequences and variables using GRUs and
attention mechanism from the sequence-level perspective. Finally, anomalies can be detected
based on an AutoEconder network.

3.2 Overview of proposedmodel

The overall framework of the proposed method is shown in Figure 2, which involves four
main modules:

• Feature Learning Module: obtains the time-related features for variables and sequences
using GRUs.
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Figure 2 Overview of our proposed framework

• Variable-level Learning Module: learns the interactions between different variables
using a graph attention network.

• Sequence-level Learning Module: learns the evolving relationships between sequences
and variables using GRUs and attention mechanism.

• Reconstruction-based Detection Module: detects the sequence anomalies using an
AutoEcoder nework.

3.3 Feature representation

The Feature Representation Module takes a sequence of length L , i.e., XL ∈ Rd×L , as input
and outputs the dense vectors as features for variables and sequences, respectively. In this
work, we denote vi and s as the dense vector for variable i and sequences, respectively. More
specifically, variables in sequences are much related with different time steps. For instance,
temperature sensors in a smart grid system exhibit varying statuses at different times of the
day. High temperatures during midnight hours may indicate potential device malfunctions or
abnormal operating conditions. These nuanced relationships can ultimately aid in identifying
anomalous patterns.

To capture temporal dependencies and acquire better representations for variables and
sequence,we use aBidirectionalGatedRecurrentUnit (Bi-GRU) networkwhich can leverage
information from both previous time steps (forward direction) and later time steps (backward
direction). Specifically, Let vi = {xi1, xi2, , · · · , xiL} be the initial representation containing
consecutive L observations for variable i . Then, the updated representation goes through
following non-linear transformations sequentially:

zit = σ(Wi
z [hit−1, x

i
t ]) (1)

r it = σ(Wi
r [hit−1, x

i
t ]) (2)

123



2790 World Wide Web (2023) 26:2785–2800

git = tanh(Wi [r it hit−1, x
i
t ]) (3)

and −→
hit = (1 − zit )h

i
t−1 + zit g

i
t (4)

where z, r and g are the update gate, reset gate and candidate hidden state by integrating the
reset gate, respectively. Wi

z , W
i
r and Wi are all trainable weights. hit−1 is the output at time

step t − 1 for variable i .
−→
hit is the output for the forward directional GRU and meanwhile we

get the backward directional GRU output, i.e.,
←−
hit . Thus, the final representation for variable

i can be formulated as follows:

vi = hiL = −→
hiL + ←−

hiL (5)

Following the same procedure, we can also get the representation for the whole
sequence s.

3.4 Variable-level learning

In multivariate time-series data, learning variable feature independently cannot fully capture
the characteristics of anomalies. Moreover, relationships among variables indeed reveal the
distinctive time-related patterns, which are also favorable for detecting anomalies. Hence,
rather than learning the variables independently, we investigate to leverage their mutual
impacts and aggregate features of these variables at variable level. To address these issues,
we propose to use graph attention network to model relationships and get updated features
for variables.

Firstly, we construct a similarity graph among different variables, i.e., variable-level graph,
in which nodes and edges represent variables and relationships, respectively. The variable-
level graph G = {V , E} contains a node set V = {v1, v2, · · · , vd} with features extracted by
Bi-GRU, i.e., {v1, v2, · · · , vd}. The similarities between variables are computed using Eq.6
and then sorted in descending order. Then, we take top K most similar pairs as edges. There-
after, Graph attentionmechanism is introduced tomodel the interactions among variables and
conduct variable-level feature learning. Furthermore, we propose using multi-head attention
to extract robust features for variables. Finally, the feature representation for each variable
is formed by a weighted sum of all connected node features, which can be formulated as
follows:

si j = vTi v j

‖vi‖ · ‖v j‖ (6)

vi = σ(
1

H

H∑

h=1

∑

j∈Ni

αh
i jv j ) (7)

where H is the number of heads,Ni is the set of neighbors of variable i and αi j is the attention
weight which indicates the relevance of variable j to variable i which can be computed by:

ri j = LeakyReLU(Wr(vi ⊕ vj)) (8)

αi j = exp(ri j )
∑|Ni |

j=1 exp(ri j )
(9)

where ⊕ denotes concatenation and Wr is the trainable weight.
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3.5 Sequence-level learning

In addition, relationships between variables are not stable and always evolve over time. Espe-
cially for variables with strong correlations, their anomaly patterns might vary dramatically
in different sequences. Previous works treat variables and sequences equally and assigned
the same weights to them, which cannot reveal the characteristics of sequence impacts on the
variables. In order to capture sequence-level dependency, we propose using another attention
mechanism to learn the interaction of variables and sequences. Specifically, the attention
weights β j can be computed as follows:

m j = LeakyReLU(Wm(vj)) (10)

β j = exp(sTm j )∑d
j=1 exp(sTm j )

(11)

where s andWm are the feature vector for sequence and the trainable parameters, respectively.
After obtaining the attention weights for sequence, the updated sequence feature repre-

sentation can be computed as follows:

s′ = β0s ⊕
d∑

j=1

β jv j (12)

Specifically, the final feature representation is aggregated by concatenating the original
representation of sequence and representation of variables with evolving relationships among
variables.

3.6 Reconstruction-based detection

Following the above hierarchical attention process, we can obtain the final feature repre-
sentation s for a sequence X = {x1, x2, ..., xL }. Then, we employ AutoEncoder network to
reconstruct the sequence. Let fe (·) denote the Encoder and fd (·) denote the Decoder. Given
the feature vectors s for the sequence X , the encoder maps the s into the latent representation
z and decoder reversely maps the z into the reconstructed X̂ as follows:

z = fe
(
s′,We) (13)

X̂ = fd
(

z,Wd
)

(14)

where both of We and Wd are trainable parameters. Finally, the reconstruction loss can be
defined as follows.

Loss = 1

L

L∑

i=1

‖xi − x̂i‖2 (15)

where ‖·‖2 denotes �2 normal. The sequence can be identified as an anomaly if the recon-
struction error is larger than a threshold. In this paper, we adjust the threshold to maximize
the F1 score.

The whole learning process of hierarchical attention method is presented in Algorithm 1.
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Algorithm 1Training forHAN-CAD:HierarchicalAttentionNetwork forMultivariateTime-
series Anomaly Detection.

Require: a multivariate time-series set: XN = {xt }Nt=1 ∈ Rd×N ; batch size B; training epochs I
1: epoch = 0
2: while epoch ≤ I do
3: sample a batch of B time series;
4: for a sample Xp in B do
5: s and v ← Learn the initial feature vectors for the sequence and variables by Eq. 5
6: update the feature vectors v for variables by Eq. 7
7: update the feature vectors s for sequence by Eq. 12
8: end for
9: Loss ← Calculate samples’ reconstruction loss by Eq. 15
10: update all the weights in Eqs. 1, 2, 3, 8, 10, 13 and 14
11: epoch = epoch + 1
12: end while

4 Experimental results

In this section, we conduct experiments on three real-world datasets and evaluate the effec-
tiveness of the proposed method compared with four state-of-the-art methods.

4.1 Datasets andmetrics

Experiments are conducted on three publicly available datasets that have ground truth infor-
mation, which are described as follows:

• ASD (Application Server Dataset) [17]: This dataset is a collection of 45-day-long status
data from 12 servers in a large internet company. The status of servers is monitored based
on 19 metrics (d = 19), e.g., CPU-related metrics, memory-related metrics, network
metrics and etc.. In our experiments, we only used data from one serve to speed up
training. Additionally, we used 66.7% of data for training and the rest for testing.

• SMD (Server Machine Dataset) [27]: This is another dataset for servers, which collected
5-week-long MTS data. SMD contains 12 servers with 38 metrics, including CPU load,
network usage, memory usage etc.. In our experiments, we split the dataset from one
server into two parts: 50% of data was used for training, and the remaining 50% was
used for testing.

• WADI (Water Distribution) [16]: This dataset contains 16-day-long data collected in a
water distribution system. Several cyber-attacks were executed, which caused various
anomalies in the system. In our experiments, we choose five days of normal data for
training and the remaining days containing anomalies for testing.

The detail statistics of three real-world datasets are shown in Table 1

Table 1 Dataset Statistics Datasets ASD SMD WADI

#Features 19 38 112

#Train 8,640 28,479 335,999

#Test 4,320 28,479 172,801

Anomalies (%) 3.40 5.84 5.85
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In order to compare with other baselines, we evaluated the performance of the proposed
method using three commonly used metrics for detection tasks, i.e., precision, recall and F1-
score. Furthermore, it is worth mentioning that any sequence containing at least one anomaly
is considered as being correctly detected.

4.2 Baselines

We extensively compared the performance of the proposed method with five state-of-the-art
MTS anomaly detection methods as follows:

• LSTM-AE [21] is a classic reconstruction-based anomaly detection method, which
exploits temporal dependencies using LSTM and detects anomalies using AutoEncoder.

• MAD-GAN [16]: is another reconstruction-based anomaly detection method based on
GAN.

• MTAD-GAT [36]: is a state-of-the-art method that can efficientlymodel the relationships
between variables using a graph attention network. Anomaly score can be inferred from
the reconstruction error and prediction probability.

• GDN [8]: models the structure among different variables using a graph neural network
and provides interpretability for anomalies based on the attention weights.

• InterFusion [17]: captures the relationships among metrics as well as temporal
dependency based on hierarchical variational AutoEncoder. InterFusion also provides
interpretations based on MCMC methods.

4.3 Experimental setup

In our experiments, the length of sliding window is set as 100, 100 and 30 for ASD, SMD and
WADI, respectively. The models are trained using the Adam optimizer with a learning rate
5e-4. The sizes of representation for variables and sequences are both 64.We also use dropout
to reduce overfitting and the dropout probability is 0.2. The number of header inmulti-headed
attention is 2. The state-of-the-artmethods and the proposedmethod are trained on aWindows
server with 3.60 GHz Intel I9-9900k CPU and 11 GB Nvidia GeForce RTX 2080 Ti GPU.

4.4 Comparison of performance

Firstly, we compare our proposed method with five baselines on three real-world datasets. In
particular, experiments are repeated 5 times, and average performance and standard deviation
are reported. Table 2 presents the results for all methods using precision, recall and F1 scores,
in which the best results are bold-faced. In general, HAN-CAD shows promising results in
most cases on Precision and Recall and outperforms all baselines on F1, which demonstrates
the effectiveness of our method. Especially, we have the following two observations:
• From the comparison results on the three datasets, we can observe the evident order of
six methods from high to low in terms of the three metrics: “HAN-CAD → InterFusion →
GDN → MTAD-GAT → MAD-GAN → LSTM-AE”. Further, it is worth noting that all
methods capturing correlations between variables, i.e., InterFusion, MTAD-GAT, GDN and
our method, perform better than traditional reconstruction-based methods, which reveals the
importance of inter-variables relationships for MTS anomaly detection.
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Table 2 Performance(%) comparison of different methods on three real-world datasets

Dataset Method Precision Recall F1

ASD LSTM-AE 83.12±2.56 73.42±1.74 79.51±1.17

MAD-GAN 86.37±4.13 77.19±3.02 81.93±3.38

MTAD-GAT 88.92±0.79 87.24±1.06 87.25±0.94

GDN 92.15±0.84 84.72±0.97 87.14±0.86

InterFusion 97.78±1.05 88.15±0.82 94.52±0.86

HAN-CAD 96.82±0.76 92.29±0.61 96.18±0.72

SMD LSTM-AE 87.26±1.63 80.27±1.17 82.94±1.26

MAD-GAN 98.52±2.08 81.75±2.93 89.37±2.11

MTAD-GAT 94.45±0.93 87.12±0.81 91.26±0.83

GDN 92.15±1.45 94.91 ±0.89 93.35±0.92

InterFusion 94.15±0.96 93.90±0.78 94.02±0.73

HAN-CAD 97.26±0.42 95.81±0.91 96.16±0.53

WADI LSTM-AE 81.72±1.28 73.25±2.04 78.14±1.19

MAD-GAN 89.01±2.81 72.84±1.13 79.08±1.62

MTAD-GAT 91.62±0.63 77.15±0.94 85.17±0.78

GDN 85.24±0.84 80.92±0.91 83.15±0.87

InterFusion 90.15±1.01 87.61 ±0.92 88.15±0.93

HAN-CAD 96.87±0.61 86.95±1.73 92.73±1.08

• All the baselines obtain lower measure scores on the WADI than on other datasets, which
implies anomalies in WADI are more difficult to detect. This is probably because WADI
is consisted of 112 variables and thus has more complex relationships among variables.
However, our proposed method, HAN-CAD, is able to effectively capture these complex
relationships through the use of dynamic context-based modeling. Therefore, HAN-CAD
significantly outperforms the baseline methods even on the challenging WADI dataset and
achieves high performance measures.

In our experiments, we used the sliding window technique to obtain context sequences.
To validate the effects of context sequences for different methods, we compared HAN-CAD
with MTAD-GAT, GDN and InterFusion with different lengths of sliding windows in terms
of F1 score. As shown in Figure 3, our method consistently showed promising results with
different lengths on all three datasets.Moreover, ourmethod presented a stable trend, inwhich
HAN-CAN achieved the best F1 when length is 100. Whereas, two graph neural network-
based (GNN-based) methods show more fluctuations, which indicates that integrating the
inter-variable relationships and context sequence would make GNN-based MTS anomaly
detection more robust.

Furthermore, we also investigate how the graph structure impacts the effectiveness ofMTS
anomaly detection based on GNN. Figure 4 shows the results with different ratios of edges in
terms of F1 score for MTAD-GAT, GDN and HAN-CAN on the three datasets. The findings
show that our method outperforms the other two GNN-based methods in most settings. In
addition, it is observed that all GNN-based methods perform worse on sparse graphs, which
may be due to the difficulty in extracting non-linear structural features for relationships in
such graphs.
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Figure 3 F1 scores with different sliding window lengths
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Figure 4 F1 scores with different number of edges
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Table 3 Ablation study

Dataset Method Precision Recall F1

ASD HAN-CAD 96.82±0.76 92.29±0.61 96.18±0.72

w/o feature learning 94.24±0.81 90.46±0.93 93.72±1.04

w/o variable learning 92.83±0.72 91.83±0.59 90.61±0.62

w/o sequence learning 95.03±0.81 90.02±0.94 92.03±0.96

SMD HAN-CAD 97.26±0.42 95.81±0.91 96.16±0.53

w/o feature learning 96.15±0.83 90.46±1.06 93.71±0.96

w/o variable learning 92.17±0.47 90.52±0.87 90.72±0.66

w/o sequence learning 94.95±0.81 92.02±1.01 92.84±0.89

WADI HAN-CAD 96.87±0.61 86.95±1.73 92.73±1.08

w/o feature learning 94.25±0.82 84.63±0.96 91.06±0.80

w/o variable learning 92.15±0.52 83.01±1.14 89.71±0.86

w/o sequence learning 93.63±1.04 85.25±0.61 91.24±0.92

4.5 Ablation study

Finally, we investigate the impacts of the three components in our method on three datasets.
In particular , the first model is trained without using the component of Bi-GRUs, i.e. w/o
feature learning. The secondmodel is trained without using the component of graph attention
mechanism, i.e.w/o variable learning. The thirdmodel is trainedwithout attentionmechanism
among variables, i.e. w/o sequence learning. Table 3 summarizes the results for the ablation
study.We can see that all three components are important, as removing any one of them results
in decreased performance in all three measures. Additionally, the comparison results indicate
that the graph attentionmechanism is themost critical component among the three, suggesting
that capturing the relationships among variables is crucial for effectively detecting anomalies
in MTS. Moreover, we report the training time for the baselines and the proposed method in
Table 4. It is evident that as the amount of data increases, the training time also increases.
Among the GNN-based methods, our approach performs the most efficiently, possibly due to
the stable training achievedby integrating variable-level learning and sequence-level learning.

Table 4 Comparison of training times in seconds

Method ASD SMD WADI

LSTM-AE 1,063±12 3,039±31 5,721±38

MAD-GAN 1,692±17 28,931±24 49,723±51

MTAD-GAT 7,915±63 71,819±91 101,792±217

GDN 6,641±48 29,274±85 43,639±169

InterFusion 652±14 2,357±21 5,028±52

w/o feature learning 5,354±21 20,411±55 25,638±85

w/o variable learning 3,541±15 17,339±34 22,416±57

w/o sequence learning 5,601±34 22,119±52 28,379±76

HAN-CAD 6,367±18 23,469±41 34,849±64
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Furthermore, we can observe that the training time decreases the most when variable learning
is not employed in our method.

5 Conclusion

In this paper, we focus on detecting anomalies in multivariate time series. We argue that
relationships among different variables are dynamic with regard to context sequences, and
capturing the dynamic relationships can improve the accuracy of anomaly detection. Hence,
we propose a novel Hierarchical Attention Network for Context Anomaly Detection in Mul-
tivariate Time Series. Two attention layers are hierarchically equipped into our model, in
which one graph attention is introduced to obtain inter-variable relationships and the other
attention is used to capture dynamic relationships. The effectiveness of our method is vali-
dated on three real-world datasets. And extensive comparison experiments demonstrate the
superiority of our method.
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