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Abstract
Knowledge graph completion aims to solve the problem of incompleteness and sparsity in
knowledge graphs. However, the negative sampling strategy in current completion methods
samples entities with equal probability and cannot guarantee the quality of negative samples,
causing gradient disappearance during the training process. In addition, existing embed-
ding learning methods ignore the diversity and complexity of the entities and relations in a
knowledge graph. Therefore, we design a dynamic semantic sampling and correlation embed-
ding completion framework that includes a negative sampling algorithm based on dynamic
semantic similarity and a correlation embedding model. The negative-sampling algorithm
can gradually explore high-quality negative samples to participate in model training. The
embedding model can enrich embeddings by learning the sequential and correlated informa-
tion of entities and relations in the knowledge graph. Finally, we conducted experiments on
two public datasets, and the experimental results proved the performance of our method.
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1 Introduction

In order to efficiently organize and represent the large amount of knowledge information
contained in the massive information resources, researchers have proposed the concept of
knowledge graphs and applied them to the field of semantic search. Essentially, knowledge
graphs provide semantically structured graphical representations of knowledge facts, which
are expressed in the form of a triple (h, r , t), where h and t represent head and tail entities,
respectively, while r represents relations between entities.

Due to the great representation of knowledge, knowledge graph has attracted widespread
attention in the academia and industry, and many of them have applied KG in recommender
systems [1, 2], conversational agents [3], and knowledge reasoning [4–6]. Although com-
monly used large knowledge graphs such as Freebase [7], DBpedia [8], andYAGO [9] contain
millions of entities and relations, knowledge graphs still suffer from an incomplete issue. For
example, 71% of the person entities in Freebase do not have the attribute of birthplace [10]. A
large number of knowledge facts is hidden or missing during the graph construction [11–13],
and the incomplete structure and content of knowledge graphs directly affecting downstream
intelligent applications. Thus, knowledge graph completion has become a key research topic.

The knowledge graph completion task is to predict the missing part with given the two
elements of the triple, such as (?, r , t), (h, ?, t), or (h, r , ?), where the question represents the
missing entity or relation.Many scholars have predicted a triple by learning the embedding of
entities and relations to complete the missing element. The embedding are learned by scoring
the negative sample triples (h̄, r , t̄) and the positive triples (h, r , t). However, there are no
natural negative samples in existing knowledge graphs. Therefore, it is critical to design an
effective negative sampling strategy for embedding learning methods. It is more critical to
learn the embedding when negative samples are available.

Thesemethods use randomnegative sampling [14] to obtain negative training samples. The
method of randomly extracting entities from the entity set for constructing negative examples
cannot guarantee the quality of the negative samples because the knowledge graph is often
incomplete. Low-quality negative samples easily cause the problemof gradient disappearance
in the model learning process. For embedding learning, these methods use entity contextual
information to enrich entity representation [15] or use hypergraphs to model higher-order
relation features. However, these methods ignored the sequential correlation information of
the triple and the complex influence of different relations on entities, which will reduce the
representation ability of the model.

In this paper, we addressed the two above problems. (1)For the low-quality negative sam-
ples problem, we first set the probability of different candidate sets according to different
types of relations, so as to reduce the generation of low-quality negative sampling triples.
Then we explore negative triples with high semantic similarity to positive triples, and dynam-
ically updates the candidate sets to retain high-quality negative samples for model training.
(2)As for the problem of incomplete use of information inside the triples, we consider the
sequential information inside the triple and the partial correlation between elements inside the
triple. Meanwhile, we adopt CNN to mine the convolutional correlation information between
different relations on entities to enhance the embedding representation of knowledge facts.
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We design a completion framework that includes a negative sampling algorithm based
on dynamic semantic similarity and a correlation embedding model. The negative sampling
algorithm mainly includes: 1)Determine the replacing entity is used to reduce the generation
of low-quality negative sampling triples by setting the different probabilities of replacing
the head and tail entities; 2)Dynamic constructing the negative candidate set is designed to
guarantee the quality of negative samples by constructing from the selected candidate set and
comparing the semantic similarity. The embedding model consists of two parts: 1)Sequen-
tial correlation capture module. This module is to extract sequential correlation information
inside the triple, and interactions between the entities and relations; 2)Convolutional corre-
lation module: This module adopts convolutional neural networks to capture the complex
correlational features and mine the impact of different relations on entities.

To summarize, the main contributions of this paper are as follows.

(1) We design a general negative sampling algorithm based on dynamic semantic similarity,
which can capture high-quality negative sample triples for embedding model training.

(2) We design the correlation embedding model, which can enhance the embeddings of
knowledge facts by considering the sequential correlated information inside the triples
and the correlated features between different entities and relations.

(3) We conducted comparison experiments on two public datasets, WN18RR and FB15K-
237. The experimental results verify the performance of the semantic negative sampling
strategy and the embedding model proposed in this paper.

The remainder of this paper is organized as follows. Section 2 introduces the related work.
Section 3 introduces the problem definition. Section 4 introduces our negative sampling
algorithm and embedding model. Experimental results and ablation studies are presented in
Section 5. Finally, Section 6 concludes this paper.

2 Related work

The following section introduces the current status of research on negative sampling and
completion techniques.

2.1 Negative samplingmethods

2.1.1 Static negative sampling

Static negative sampling algorithms ignore the changes in the distribution of samples during
the training process and sample directly in the set of entities. The two main static negative
sampling algorithms are random negative sampling and Bernoulli negative sampling.

Random negative sampling is one of the most widely used negative sampling methods in
knowledge graph embedding learning, such as TransE [14], TransR [16] and TransD [17].
It randomly samples an entity from the set of entities in the knowledge graph to replace the
head entity or tail entity in the positive triple (h, r , t) and obtain the negative triple (h̄, r , t)
or (h, r , t̄).

The randomnegative sampling approach is simple and efficient. However, randomly draw-
ing entities from the entity set to construct negative examples is highly prone to generating
low-quality negative samples because knowledge graphs are often incomplete.

Bernoulli negative sampling is first proposedbyTransH [18] and sets different probabilities
according to the mapping properties of the relation. The probability of constructing the head
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entity negative triple is higher when the mapping property of the relation is “one to-many.”
In contrast, the algorithm constructs the tail entity negative triple with a higher probability
when the relation is “many-to-one.”

The interference of low-quality negative triples is avoided to some extent by setting differ-
ent probabilities of constructing negative triples, however, the Bernoulli negative sampling
algorithmcannot guarantee the embedding quality of negative samples dynamically improved
with model training.

2.1.2 Dynamic negative sampling

The algorithm with static negative sampling did not observe changes in the sample score
distribution of the embedded model during training. Subject to Generative Adversarial Net-
works (GAN) [19] driven by their success in modeling dynamic distributions, methods such
as IGAN [20] and KBGAN [21] have applied GAN to generate negative sampling triples.

Given a positive triple (h, r , t), IGAN models the distribution of all entities by h̄, t̄ �
p(e | (h, r , t)), then generates a corresponding negative sample triple (h̄, r , t̄). With joint
training, IGAN can perform dynamic sampling of negative sample triples.

Rather than modeling the distribution of the entire entity set, KBGAN learns the distribu-
tion of negative samples scores in a subset, and sample relatively high-quality triples.

Based on GAN, NSCaching [22] uses a caching mechanism for sampling the higher
scoring negative sampling triples, without using generators and discriminators. However, the
negative sampling triples have participated in the training process while the model scores
them in the cache, and the model has essentially learned the low-quality negative samples.

Although GAN provides a way to model dynamic negative sample distributions, it is very
unstable and difficult to train [23], and its performance varies across models. In addition,
both IGAN and KBGAN must be pre-trained, which increases the training cost. Therefore,
we design a general negative sampling algorithm that can be applied to most KG embedding
models for capturing high-quality negative sampling triples.

2.2 Completionmethods

Embedding learning-based [24–26] models significantly improve the accuracy of completion
by efficiently computing the semantic relations between entities and relations in a low-
dimensional space.

The translation model is the most classical approach to knowledge embedding learning.
Representative translationmodels include TransE [14], TransH [18], TransR [16] and TransD
[17]. The main idea behind translation models is to consider the process of finding effective
triples as the translation operation of entities through relations, and then learn the embedding
representation of knowledge by minimizing the marginal-based loss functions of the above
models.

Semantic matching models DistMult [27], CompIEx [28] and HoIE [29] use semantic
similarity-based scoring functions to mine potential semantic associations between entities
and relations, and obtain the likelihood of new facts to hold by embeddings of entities and
relations, thus predicting new knowledge and complementing the knowledge graph.

Network representation learning approaches complete the knowledge graph by merging
the information extracted from the network topology with the content information of the
nodes and edges. The classical network representation learning models include DeepWalk
[30], LINE [31], SDNE [32].
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Recently, neural network-based completion models have been rapidly developing. ConvE
[33] proposed a two-dimensional convolutional neural network to learn the embeddings of
knowledge.TheConvKB[34]model improves on theConvEmodel byusingone-dimensional
convolution to extract global features based on relations, and achieves improvements in
the accuracy of link prediction. SACN [35] is an end-to-end structure-aware convolutional
network. The SACN model utilizes a weighted graph convolutional network as an encoder
that aggregates the node structure, node attributes, and edge types of the knowledge graph,
and improves the ConvE model with learnable weights applied to the information of locally
aggregated neighboring structures. CapsE [36] handles the embeddings of triples using a
capsule network. KBGAT [37] incorporates an attention mechanism to capture the influence
of neighboring nodes on the entity. DSKG [38] uses recurrent neural networks to capture the
sequence information of the triples.

The above representation-based learning completionmethods still suffer from the problem
of over-simplifying the embeddings of knowledge facts and do not completely consider the
diversity and complexity of entities and relations in the knowledge graph, which reduces the
accuracy of the model. Therefore, we proposed a correlation embedding model to solve these
problems.

3 Problem definition and analysis

3.1 Symbol definition

We first introduce the basic symbols that used in this paper, as shown in Table 1.

3.2 Sample quality definition

Negative sample triples: Suppose there exists a knowledge graph KG. The facts in KG are
stored in the set of triples S = (h, r , t), each triple (h, r , t) consists of head entity h ∈ E ,

Table 1 Summary of notations

Symbol Meaning description

E the set of entities in knowledge graph

R the set of relations in knowledge graph

h a head entity, h ∈ E

r a relation, r ∈ R

t a tail entity, t ∈ E

(h, r , t) a fact triple in knowledge graph

S = {(h, r , t)} the set of fact triples

S̄ = {(h̄, r , t̄)} the set of negative triples

wrh the attention of the relation to the head entity

w
′
rh the normalized attention

Mhr the embeddings matrices of head entity and relation

Mr t the embeddings matrices of relation and tail entity
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relation r ∈ R, and tail entity t ∈ E , where E is the set of entities and R is the set of
relations. Negative sample triples (h̄, r , t) and (h, r , t̄) are derived by replacing the entities
of the corresponding positive triples with entities from the knowledge graph.

To better understand the high- and low-quality negative triples, we define sample quality as
follows. The negative samples that are closer to the positive triples in terms of semantics are
considered to be of high-quality for the embedding model. Meanwhile, the negative samples
that are more different from the positive triples in terms of semantics are considered to be of
low-quality for the embedding model.

As shown in Fig. 1, the construction of negative triples by random negative sampling is
effective in the initial stage of model training. However, as training continues, most of the
negative triples are located outside the margin (i.e., inside the blue circle in Fig. 1), and there
is a high probability that the negative sample entities inside the blue circle will be selected
by random sampling such that the low-quality negative samples are not as far away. This
is because the positive samples in the low-quality negative samples are from the positive
samples in the semantic space and are prone to the problem of gradient disappearance during
model training.

In addition, this conclusion can be obtained by analyzing the objective function of the
embedding model. The objective function is shown in (1).

min
∑

(h,r ,t)∈S

∑

(h̄,r ,t̄)∈S̄
L(h, r , t) (1)

where S is the set of real positive triples in the knowledge graph, S̄ is the set of artificially
constructed negative triples and L(h, r , t) is the loss function of the embedding model. The
calculation of it is as:

L(h, r , t) = [γ + f (h, r , t) − f (h̄, r , t̄)] (2)

where γ is the marginal distance, f (h, r , t) is the score of positive samples, f (h̄, r , t̄) is the
score of negative samples.

Assuming that the embedding model is negatively sampled from within the blue region
of Fig. 1, the score of the negative sample triple f (h̄, r , t̄) will be relatively large, while
the training target of f (h, r , t) is a very small score tending to 0. When the model executes

Figure 1 Illustration of the quality of negative sample triples in model training
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negative sampling from the blue region will obviously result in the score of ‖ f (h, r , t) −
f (h̄, r , t̄)‖ being too large. Once the score exceed the marginal distance, it will trigger the
problem of gradient disappearance.

The sample algorithm is preferred for selecting the triples inside the red dashed circle
(high-quality negative samples) in Fig. 1, which can provide more detailed features in the
embedding model training process.

3.3 Problem analysis

A high-quality negative sample triple can accelerate model convergence and improve model
performance.Given a positive triple (Liaoning, the capital city, Shenyang), if randomnegative
sampling is used, there is a high probability that some unrelated entities with less information,
such as "basketball" or "apple", will be sampled, and these entities are very different from
"shenyang" at the semantic level. Therefore, these negative sample triples can only guide the
model to distinguish tail entities different from non-city ones during the training process, but
cannot help the model to make more detailed distinctions among city-like tail entities.

The two most widely used static sampling methods, i.e. random negative sampling and
Bernoulli negative sampling, cannot control the quality of negative triples, and the low-quality
negative triples are prone to the problem of loss of 0 for the embedding model based on the
marginal loss function L(h, r , t) = [γ + f (h, r , t)− f (h̄, r , t̄)], leading to the phenomenon
of gradient disappearance and thus hinders the training of the model. The dynamic negative
sampling algorithm applied in KBGAN and IGAN attempts to model the distribution of
entities to avoid selecting low-quality triples, however, extra generators and discriminators
are introduced, which makes the training process complicated and the model performance
unstable.

Moreover, low-quality negative sample triples do not sufficiently help model training and
can slow down the convergence rate. Therefore, it is essential to mine high-quality negative
triples during the training of the embedding model.

4 Ourmethod

4.1 Completion framework

Figure 2 shows the overall framework of knowledge graph completion that includes three
key components: the dynamic semantic similarity negative samplingmodule, KG embedding
module, and completion module.

For the random negative samplingmethods easy to generate low-quality negative samples,
we design a dynamic semantic similarity negative samplingmodule to guarantee the quality of
negative samples. First, the module sets the probability of different candidate sets according
to different types of relations, so as to avoid replacing the original entity with entities of
excessive semantic differences. Then the negative triples with high semantic similarity to
positive triples are provided for the knowledge graph embedding model, and the negative
sample triples participate in the training process of the KG embedding model together with
the positive triples.

In order to make better use of the information inside the triples, we design a correlation
embedding module to learn the sequential correlation and the convolutional correlation of
different relations to entities. First, themodule usedRNN to capture the sequential correlation
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Figure 2 The framework of knowledge graph completion

information. Meanwhile, a CNN is adopted to mine the convolutional correlation of different
relations on entities, so as to enhance the embedding representation of knowledge. As the
training progresses, the embeddings of the triple (h, r , t) are adjusted with feedback and the
candidate set in the negative sampling algorithm is dynamically updated.

Finally, the knowledge graph was complemented based on the scores of the triples. The
three key components are described in detail in the following sections.

4.2 Dynamic semantic similarity negative sampling algorithm

In order to provide high-quality negative samples and dynamically update the embedding rep-
resentation of negative samples to match the current model training, we design the Dynamic
Semantic Similarity Negative Sampling algorithm (DSS_Sample) which consists of two pro-
cedures: determine the replacing entity and dynamic constructing the negative candidate set.
The algorithm can dynamically construct negative samples that are semantically similar to
the positive triples from the candidate set. These high-quality negative samples can prevent
the problem of gradient disappearance during model training.

4.2.1 Determine the replacing entity

In the process of constructing negative sample triples for the corresponding positive triples,
the random negative sampling algorithm generates negative sample triples by replacing the
head and tail entities of the positive triples with an equal probability. Then, missing triples
were filled by randomsampling from the entity set.However, an equal-probability approach to
determine head or tail candidate sets may introduce many low-quality negative sample triples
during training because real-world knowledge graphs are often incomplete. To minimize this
occurrence, we used the Bernoulli negative sampling [18] to calculate the probabilities of
replacing the head and tail entities.

When the probability of replacing the head entity is greater than that of replacing the tail
entity, we choose to sample from the head entity candidate set H ; Conversely, we choose
to sample from the tail entity candidate set T . Also, we randomly sample from the set of
identified candidates to guarantee the generalizability of the samples.

4.2.2 Dynamic constructing the negative candidate set

The negative-sampling algorithm is guaranteed to maintain high-quality negative samples as
the embedding model training proceeds by dynamically constructing the negative candidate
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Figure 3 Schematic diagram of constructing and updating the candidate set

set, as shown in Fig. 3. Because the design of the head entity candidate set H and the tail
entity candidate set T are the same when dynamically constructing the negative candidate
set, we take the head entity candidate set H as an example in this section.

First, we initialize the candidate set H to an empty set and open a supplementary sample
cache Re with a space size of m. Then we randomly sample m entities from the entity set
E without putting back at a time. We perform a negative sample filtering operation on each
entity to filter out the low-quality negative triples that directly conflict with the existing real
triples in the KG. Finally, we execute a union operation between Re and H to construct a
head entity candidate set H containing m entity samples.

Sim(h, h̄) =
∑n

i=1 hi × h̄i√∑n
i=1 h

2
i ×

√∑n
i=1 h̄

2
i

(3)

Then, wemeasure the semantic similarity between the negative samples h̄ and the positive
samples h in the head candidate set H

′
by calculating their cosine similarity using (3). The

semantically closer entities have cosine values closer to 1. Next, we sort the negative samples
in the candidate set in descending order according to their semantic similarity and keep top-m
negative samples as the updated candidate set. In each epoch, a sample from the candidate
set is randomly selected to participate in the training, and the negative sample is removed
from the candidate set H

′
. After n epoch iterations, m − n negative samples remain in H

′
.

We then repeat the construction of the candidate set, that is, resample Re containing m
negative samples. We compare the similarity with the remaining samples of m − n in the
current candidate set, sort them, and select the top m samples. Finally, the candidate set is
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constructed and updated to ensure that it can maintain high-quality negative samples as the
embedding model training proceeds.

The general process is presented in Algorithm 1. Firstly, the entire data of the knowledge
graph is sliced into t copies of size m (lines 1-2). The candidate set is constructed using the
Bernoulli probabilitymethod and is randomly sampled (lines 3-6). The above steps (lines 1-6)
correspond to determine the replacing entity. Subsequently, the semantic similarity between
the negative samples h̄ and the positive samples h in the candidate set H

′
is calculated (line

8). The top m negative samples were retained (lines 9-10). Finally, the negative sample triple
was constructed for model training and the candidate set was updated (lines 11-15). And
these above steps (lines 7-15) correspond to dynamic constructing the negative candidate set.

Algorithm 1 Negative sampling strategy based on dynamic semantic similarity.
Input: training set S = {(h, r , t)}, head entity candidate set H , tail entity candidate set T
Output: negative sample triple set S̄
1: for i = 1âe¦t do
2: Sample a batch Sbatch ∈ S of size of m;
3: for each (h, r , t) ∈ Sbatch do
4: Bernoulli: calculate and compare probability p1 with p2; � Calculate the probability p to decide

whether to replace the head entity or the tail entity.

5: Initialize H
′ ← ∅; � Take the replacement of head entity as an example.

6: Randomly sample a subset Re ∈ H with m entities;

7: H
′ = H

′ ∪ Re;
8: Compute the similarity between h and h̄ for all h̄ ∈ H ;

9: Ranking the similarity in H
′
in descending order;

10: H
′ ← H

′
topm ; � Retain the top m negative samples and update the candidate set

11: for i=1,...,n do
12: Randomly sample h̄ ∈ H

′
;

13: Construct negative sample (h̄, r , t) for training;
14: S̄ ← (h̄, r , t);
15: Remove h̄ from H

′
’

16: end for
17: Return S̄;
18: end for
19: end for

4.3 Correlation embeddingmodel

To address the problem that the existing methods make incomplete use of information inside
the triples, we consider the sequence information inside the triple, and the correlational
information of different relations on entities to enhance the embeddings. And we design
the correlation embedding (CorE) model which mainly includes two parts: the sequential
correlation capture module and the convolutional correlation module, as shown in Fig. 4.

The initialized embedding representation first passes through a sequential correlation
capture module to capture the sequence information inside the triple, and the interactions
between entities and relations to enhance the semantic representation of uncommon entities.
Then, it uses a relational convolution layer to capture the semantics of the same entities
expressed under different relations to enrich the embedding of factual triples representation.
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Figure 4 Structure of the correlation embedding model

4.3.1 Sequential correlation capture module

To extract the whole sequential information of the triple, as well as the partial correlation
between elements inside the triple, we design a sequential correlation capture medule.

For the whole sequential information of the triple, we use RNN and take the whole
triple (h, r , t) as input to capture it inspired by DSKG [38]. Note that triples are not exactly
equivalent to sentences with a sequence length of three, especially when the direction of some
of the relations does not point explicitly, such as the two triples (China, City, Shanghai) and
(Shanghai, City, China), both of which hold in the knowledge graph, despite the completely
different positions of the head and tail entities. Based on this, the initialized embedding of the
triples indicates that when acquiring layers through sequence information, the model should
capture such information instead of directly learning the current sequence values in relation
to the historical sequence values. Therefore, we use the residual network to encapsulate the
recurrent neural network to avoid network degradation.

For the partial correlation between elements inside the triple, we design a self-attentive
reinforcement layer to capture it, which can enhance the semantic representation of uncom-
mon entities.

We take the relation embeddings r as an example to explain self-attention learning. First,
we perform the dot product operation on the transpose of r with the head entity, itself, and
the tail entity, respectively, to obtain the initialization weight wrh, wrr , wr t . The calculation
of wrh is as:

wrh = rT h (4)

where wrh is the attention of the relation to the head entity, r and h are the embeddings of
the relation and head entity. The weightwrr , wtr are calculated as above. Then we normalize
these weights as:

w
′
rh = ewrh

ewrh + ewrr + ewrt
(5)

And the normalized weights w
′
rr , w

′
r t are calculated in the same way.
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By repeating the above steps, we obtain the attention of the head entity for itself w
′
hh , the

relation w
′
hr , and the tail entity w

′
ht . And we also get the attention of the tail entity for head

entity w
′
th , the relation w

′
tr , and itself w

′
t t .

To extract the sequence-correlated information of the triple, we multiply the normalized
attention with the initialized input sequence X respectively, and obtain the z-vector that
incorporates the connection with other elements, as shown in Equation:

zi∈h,r ,t =
∑

j∈h,r ,t

w
′
i jX (6)

where w
′
i j represents the normalized attention, X = (h, r, t).

4.3.2 Convolutional correlation module

To improve the embedding representation of triples with complex relations such as "one-to-
many" and "many-to-one"[39], we design a convolutional correlationmodule. First, this layer
extracts the relational transition features from the head entity to the relation and transition
features from the relation to the tail entity. Subsequently, the global relational features of
the head entity, relation, and tail entity are extracted from the two transition features. The
structure is shown in Fig. 5.

The initialization input module takes the output data (embeddings of the head entity
h, relation r, and tail entity t) of the self-attention reinforcement layer in the correlation
embedding model as the input of this layer.

The first-layer splicing module performs splicing processing on the head entity embed-
dings h and the relation embeddings r, the relation embeddings r and the tail entity

Figure 5 Structure of the relation convolutional layer
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embeddings t, and two embeddings matricesMhr ∈ R
k×2 andMr t ∈ R

k×2 with dimension
k are obtained.

Thefirst-layer convolutionmodule usesmultiple convolution kernelsw to act on thematrix
splicing Mhr and Mrt to extract the transition features from the head entity to the relation and
the transition feature from the relation to the tail entity, respectively. The convolution kernel
w is repeatedly computed on each row of the matrices and generates feature embeddings
vhr = [v1, v2, ..., vk] and vhr = [v1, v2, ..., vk]. The embeddings vi are calculated as:

vi = S(w · M + b) (7)

where S(·) is the ReLU activation function, and b is the bias term.
The pooling module applies a maximum pooling operation to the feature mapping embed-

dings vhr and vr t to extract the maximum value in the local sensory domain. The size of the
pooling window is 2 × 1 and the step size is 2. After pooling, the feature mapping vectors
are updated to v

′
hr = [v1, v2, ..., vk/2] ∈ R

k/2 and v
′
r t = [v1, v2, ..., vk/2] ∈ R

k/2.
The second-layer splicing module continues the splicing operation on the pooled mapping

embeddings v
′
hr and v

′
r t to obtain a triple mapping matrix Mhrt ∈ R

k/2.
The second-layer convolution module also uses multiple convolution kernels w to act on

the triple mapping matrix Mhrt to extract global information, and then obtain the feature
embeddings v

′
hrt = [v1, v2, ..., vk/2] ∈ R

k/2. This module can extract the features of triple
entities and relations in each dimension as a whole.

Finally, after v
′
hrt is flattened, it is sent to the fully connected layer. The flattened triple

feature embeddings v
′
hrt and parameterw perform a dot product operation to obtain the triple

score. This score can be used as the basis to judge whether the triplet is true. The score is
calculated as:

f (h, r , t) = f latten(v
′
hrt ) · w (8)

4.4 Loss function

The correlation embedding model adopts a pair-wise training method, which needs to be
learned by minimizing the score of positive triples (h, r , t) and maximizing the score of
unobserved negative triples (h̄, r , t) or(h, r , t̄). Therefore, we adopt the loss function which
taking into account the score of positive and negative examples in TransE [14]. The loss
function is as:

L(h, r , t) = [γ + f (h, r , t) − f (h̄, r , t̄)] (9)

The training objective is to minimize the loss function.

5 Experiments

In this section, the negative sampling algorithm based on dynamic semantic similarity and
the correlation embedding knowledge graph embedding model are experimentally verified
and analyzed.

5.1 Dataset

Weevaluate the dynamic semantic similarity basednegative sampling algorithmDSS_Sample
with correlation embedding model on two benchmark datasets WN18RR and FB15K-237.
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Table 2 The statistic details of the datasets

Dataset #Entity #Relation #Training set #Validation set #Testing set

WN18RR 40943 11 86835 3034 3134

FB15K-237 14541 237 272115 17535 20466

Among them, FB15K-237 is a subset of the relational database Freebase and contains a large
number of fact triples. WN18RR is a subset of WordNet and contains the lexical relation
between two words. The statistical details of the datasets used in this paper are shown in
Table 2.

5.2 Evaluationmetrics

Three common evaluation metrics are used in the evaluation process for the link prediction
task described above.

(1) MR:MR is the average ranking of all positive triples in the test set. The higher the ranking
of the positive triples, the higher the accuracy of the algorithm. Therefore, a smaller MR
indicates a better experimental result.

(2) MRR: MRR is calculated from the inverse of the ranking of each positive triple and is
the average inverse of the ranking of all positive triples in the test set. Therefore, a larger
MRR indicates a more satisfactory experimental result.

(3) HIT@n: HIT@n is the proportion of positive triples in the test set in the top n rankings
of the predicted scores. Therefore, a larger HIT@n indicates a higher accuracy of link
prediction.

5.3 Experimental setup

5.3.1 Baseline

First, we compare our negative sampling algorithm with the static and dynamic negative
sampling algorithms.

(1) Static negative algorithm: Random negative sampling [14] is the most traditional sam-
pling method in the KG embedding model. The Bernoulli negative [18] sampling
algorithm reduces the generation of low-quality negative sample triples by setting the
probability of replacing the head entity or the tail entity differently.

(2) Dynamic negative sampling algorithm: KBGAN first randomly draws a candidate set
Neg = (h̄, r , t̄) from the entire set E . Then, it samples triples from Neg. In the frame-
work of GAN, the generator in KBGAN can approximate the score distribution of the
triples in the set Neg and sample a higher quality triplet.

Second, we compare the correlation embedding with the following knowledge graph
embedding methods to verify the performance of the embedding completion model.

(1) Translation-based models: TransE [14] adopts the idea of translation h+ r ≈ t to model
the relation between entities. TransH [18] extends TransE by projecting the head entity
and the tail entity into the relation hyperplane. TransD [17] considers the diversity of
entities and relations based on TransE.
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(2) Semantic matching-based models: DISTMULT [27] uses a diagonal matrix to represent
relations. CompIEx [28] extends DisMult to complex space.

(3) Neural network-based models: KBGAN [21] learns the embeddings of knowledge facts
based on GAN. DSKG [38] uses recurrent neural networks to capture the sequence
information of triples. ConvE [33] uses a 2D CNN to capture the interactions between
the entities and relations. ConvKB [34] extends ConvE by using 1D CNN to capture
global relations between entities. CapsE [36] uses capsule neural networks to learn the
embeddings. KBGAT [37] incorporates an attention mechanism to capture the influence
of neighboring nodes on the entity.

5.3.2 Data initialization and parameter setting

For the negative sampling experiments, we adopt two training strategies, which are training
from scratch and training with pre-trained data, on dynamic negative sampling algorithm.

(1) Training from scratch: The embedding representations of relations and entities are initial-
ized by the Xavier unified initialization procedure, and the initialization data of the given
KGare directly used in the four negative sampling algorithms, including randomnegative
sampling, Bernoulli negative sampling, KBGAN+scratch and DSS_Sample+scratch.

(2) Using pre-trained data: Each KG embedding model is first pre-trained under the baseline
algorithm (random negative sampling algorithm), and training is stopped after reaching
the optimal performance. In this paper, we use the KG pre-trained data as a base in a
hot-start manner, and then apply different negative sampling algorithms to continue the
training.

The parameters of the DSS_Sample algorithm proposed in this paper are as follows: The
size of the set of candidate entities m is 50 and the number of iterations n is 20 (i.e., the set
of candidates is negatively sampled and updated every 20 epochs).

For the experiments on embedding models, we use the Adam optimizer and chooses its
initial learning rate to be 0.001, save the results every 5 epochs, and initialize the embed-
ding dimensionality of entities and relations to be 100 dimensions. The detailed parameters
corresponding to the two datasets are as follow:

(1) WN18RR dataset: batch_size is 1024; the number of convolutional kernels per layer of
the convolutional correlation module is 100; the λ is set to 1; num_epoch is 60.

(2) FB15K-237 dataset: batch_size is 2048; the number of convolutional kernels per layer
of the convolutional correlation module is 50; the λ is set to 1; num_epoch is 60.

5.4 Experimental results and analysis

5.4.1 Negative sampling algorithm experiments

To demonstrate the wide applicability of the DSS_Sample algorithm, the negative sampling
algorithm is experimented on the link prediction tasks of four embedding models, such as
TransE, TransD, TransH andCorE, respectively. In the above experimental results, the bolded
metrics denote the experimental results of the optimal embedding model corresponding to
the negative sampling algorithm, and the underlined metrics denote the results of the sub-
optimal corresponding embedding model. The experimental results are shown in Table 3.
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Table 3 Results of the comparison of negative sampling performance

Models Dataset WN18RR FB15K-237
Metrics MR MRR HIT@10 MR MRR HIT@10

TransE Random 4038 0.175 44.5 237 0.226 38.6

Bernoulli 3924 0.178 45.1 197 0.256 41.9

KBGAN+pretrain 4420 0.186 45.4 628 0.294 46.7

KBGAN+scratch 5356 0.181 43.2 722 0.293 46.6

DSS_Sample+pretrain 3982 0.216 46.9 181 0.300 47.0

DSS_Sample+scratch 3902 0.205 47.3 178 0.301 47.1

TransD Random 4955 0.178 42.2 215 0.224 39.5

Bernoulli 3555 0.190 46.4 197 0.256 41.9

KBGAN+pretrain 3785 0.192 46.5 628 0.294 46.7

KBGAN+scratch 4083 0.188 46.4 722 0.293 46.6

DSS_Sample+pretrain 3745 0.235 50.0 238 0.280 45.8

DSS_Sample+scratch 3736 0.234 50.2 179 0.281 45.7

TransH Random 5646 0.175 43.3 223 0.222 38.8

Bernoulli 4113 0.186 45.1 202 0.233 40.1

KBGAN+pretrain 4708 0.192 45.3 401 0.281 46.4

KBGAN+scratch 4881 0.187 44.8 455 0.278 46.2

DSS_Sample+pretrain 4347 0.288 50.5 219 0.300 47.5

DSS_Sample+scratch 4005 0.283 50.6 199 0.297 47.5

CorE Random 729 0.578 63.8 173 0.603 66.0

Bernoulli 704 0.590 63.9 156 0.606 66.3

KBGAN+pretrain 809 0.533 62.3 453 0.538 64.5

KBGAN+scratch 939 0.512 61.8 653 0.504 63.5

DSS_Sample+pretrain 701 0.599 64.1 149 0.636 66.7

DSS_Sample+scratch 684 0.593 64.2 169 0.612 66.4

Overall analysis Compared with the random negative sampling algorithm, the DSS_Sample
algorithm shows a general performance improvement over each embeddingmodel. For exam-
ple, in the FB15K-237 dataset, link prediction experiments on the TransE embedding model
show that the DSS_Sample algorithm has 59, 0.075, and 8.5% improvements in MR, MRR,
and HIT@10, respectively. Meanwhile, the DSS_Sample algorithm has the same advantages
as the Bernoulli sampling algorithm and KBGAN negative sampling algorithm.

The above experimental results illustrate that the dynamic semantic similarity-based neg-
ative sampling algorithm proposed in this paper can effectively extract high-quality negative
sample triples andhelp the embeddingmodel obtains a higher performance thanother negative
sampling algorithms. Similarly, the embedding model considering the sequential correlation
information of triples and the convolutional correlation information of different relations to
entities has a higher accuracy compared with other models.

Pre-training analysis In this paper, we compare the performance of negative sampling algo-
rithms under two different data initialization modes, pretrain and scratch. The results of
comparing KBGAN+pretrain and KBGAN+scratch show that KBGAN with pre-training
has a better performance. This indicates that dynamic negative sampling algorithm requires
additional pre-training to improve performance.
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In contrast, the performance of the KG embedding model trained by the DSS_Sample
algorithm proposed in this paper outperforms the GAN-based negative sampling algorithm
in either state (pretrained or scratch). Moreover, the results of DSS_Sample +pretrain and
DSS_Sample+scratch roughly converge. This result verifies that DSS_Sample does not
require additional pre-training operations, and has higher accuracy thanGAN-based sampling
method.

Stability analysis When testing the link prediction effect of the TransH on the WN18RR
dataset, it was found that the KBGAN negative sampling algorithm did not outperform the
Bernoulli negative sampling algorithm on the MR metric. It performs even worse than the
random negative sampling method on the CorE model. Therefore, KBGAN does not exhibit
consistent performance over different embedding models. This observation further confirms
that GAN-based methods suffer from instability. In contrast, the DSS_Sample algorithm
designed in this paper performs consistently across embedding models with stable perfor-
mance.

5.4.2 Embeddingmodel experiments

Table 4 shows the overall performance of the CorE model and its comparison models on top
of the link prediction task. The CorE model designed in this paper shows almost optimal
results on all three metrics for both datasets (WN18RR and FB15K-237), except that the MR
metric is slightly lower than that of the CapsE model on the WN18RR dataset.

Embedding performance results on HIT@1 to HIT@10 In order to reflect the performance of
the CorE model on the link prediction task, the experiments calculate the metrics HIT@1 to
HIT@10 based on the test set. We consider that the HIT@1 metric is very important, as a
higher HIT@1means that the model is more capable of directly predicting the correct answer
at once, which better reflects the accuracy of the model. Therefore, this paper compares two
current embedding models with higher accuracy, ConvKB and CapsE, on the WN18RR
and FB15K-237 datasets. Figure 6a and b show the experimental results on the WN18RR

Table 4 Results of comparing the embedding performance

Methods WN18RR FB15K-237
MR MRR HIT@10 MR MRR HIT@10

KBGAN 3785 0.192 46.5 825 0.247 44.4

DISTMULT 5100 0.430 49.0 254 0.241 41.9

CompIEx 5261 0.440 51.1 339 0.247 42.8

ConvE 5277 0.460 48.0 246 0.316 49.1

TransE 4038 0.175 44.5 237 0.226 38.6

TransH 5646 0.175 43.3 223 0.222 38.8

TransD 4955 0.178 42.2 215 0.224 39.5

ConvKB 763 0.253 56.7 254 0.418 53.2

CapsE 719 0.415 56.0 303 0.523 59.3

DSKG - - - 175 0.339 52.1

KBGAT 1921 0.412 55.4 270 0.157 33.1

CorE 729 0.578 63.8 173 0.603 66.0
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Figure 6 Embedding performance evaluation of HIT@1 to HIT@10

and FB15K-237 datasets, respectively. The metrics in bold font indicate the best current
experimental results.

The results presented in Fig. 6a and b show that, compared with the current ConvKB
model and CapsE model, the CorE model shows a significant improvement in the HIT@1.
Especially on the WN18RR data, the HIT@1 metric of the CorE model increased by 49.2%
when compared with the ConvKB. The probability of hitting the correct answer at one time
far exceeds that of other models on both datasets. The evaluation index became more relaxed
as n increased. Clearly, for each index from HIT@1 to HIT@10, the CorE model is better
than the other models.

Embedding performance results on different types of relation To verify the performance of the
CorE model on different relations, we divide the relation categories in the dataset FB15K-
237, which are 1-1, 1-M, M-1, and M-M. After classifying the relations, the CorE model is
evaluated using HIT@10 and MRR metrics. The model performance of the HIT@10 metric
on the four different relation types for predicting head entities and tail entities as shown in
Fig. 7a and b, respectively.

The results in Fig. 7a and b show that, the CorE model is more effective than the current
best-performing CapsE model in all tasks, except for the task of predicting the head entity in
the M-1 relation type. This implies that the CorE model can effectively distinguish different
relation types, and obtain a good embedding representation of the triples.

The performance of the MRR metrics is shown in Fig. 8a and b.
The proposed CorE model has stable performance on the four types of relations in the

FB15K-237 dataset, as shown in Fig. 8a and b. For example, in the prediction task of tail

Figure 7 Embedding performance comparison of HIT@10 with different types of relation
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Figure 8 Embedding performance comparison of MRR with different types of relation

entities, the MRR index extreme value difference for the four relation types of the CorE
model is 0.34, which is smaller than the extreme value difference of CapsE (0.52). The CorE
model does not exhibit large fluctuations in performance because of the different types of
data relations and has high stability.

6 Conclusion

Most studies on knowledge graph completion tasks focus on the design of embeddingmodels,
and only few studies were conducted on negative sampling techniques. However, the quality
of negative samples directly affects the performance of embedding models. In this paper, we
propose a negative sampling algorithm based on the dynamic semantic similarity to solve
the problem of gradient disappearance caused by low-quality triples in the training process
of the embedding model, which can gradually explore high-quality negative samples to
participate in the training as the embedding model learns to help improve the performance of
the embedding model. Meanwhile, we design the correlation embedding model by extracting
the correlation between different entities and relations and sequence information inside the
triples, to enrich the embeddings of the triples. The experimental results on the twobenchmark
datasets verify the performance of proposed method.
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