
World Wide Web (2023) 26:2691–2707
https://doi.org/10.1007/s11280-023-01159-x

Beyondmodel splitting: Preventing label inference attacks
in vertical federated learning with dispersed training

Yilei Wang1,2 ·Qingzhe Lv1 · Huang Zhang2 ·Minghao Zhao3 · Yuhong Sun1 ·
Lingkai Ran1 · Tao Li1,4

Received: 29 September 2022 / Revised: 21 December 2022 / Accepted: 25 February 2023 /
Published online: 8 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Federated learning is an emerging paradigm that enables multiple organizations to jointly
train a model without revealing their private data. As an important variant, vertical federated
learning (VFL) deals with cases in which collaborating organizations own data of the same
set of users but with disjoint features. It is generally regarded that VFL is more secure than
horizontal federated learning. However, recent research (USENIX Security’22) reveals that
it is still possible to conduct label inference attacks in VFL, in which attacker can acquire
privately owned labels of other participants; even VFL constructed with model splitting (the
kind of VFL architecture with higher security guarantee) cannot escape it. To solve this
issue, in this paper, we propose the dispersed training framework. It utilizes secret sharing
to break the correlations between the bottom model and the training data. Accordingly, even
if the attacker receives the gradients in the training phase, he is incapable to deduce the
feature representation of labels from the bottom model. Besides, we design a customized
model aggregation method such that the shared model can be privately combined, and the
linearity of secret sharing schemes ensures the training accuracy to be preserved. Theoretical
and experimental analyses indicate the satisfactory performance and effectiveness of our
framework.

Keywords Vertical federated learning · Label inference attack · Secret sharing ·
Dispersed training

1 Introduction

Machine learning has gained great success in numerous fields, such as decision-making, risk
identification, and disease diagnosis. The widespread adoption of machine learning and its

This article belongs to the Topical Collection: Special Issue on Privacy and Security in Machine Learning
Guest Editors: Jin Li, Francesco Palmieri and Changyu Dong.

B Tao Li
litao_2019@qfnu.edu.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01159-x&domain=pdf

2692 World Wide Web (2023) 26:2691–2707

effectiveness is mainly attributed to, except for the advances ofML algorithms, the increasing
affordability of collecting, storing, and processing large quantities of data. Especially, the
feasibility of joint and integrated use of data from multiple sources (e.g., data collected by
different institutes or stored in different data centers). However, sharing data may encounter
security and privacy issues.With the increase in awareness of data privacy protection, sharing
data containing citizens’ sensitive information is legislatively forbidden. For example, the
regulations like the General Data Protection Regulation (GDPR) [1, 2] in European Union,
the Personal Data Protection Act (PDPA) [3] in Singapore, and California Consumer Privacy
Act (CCPA) [4] in the US.

Under such circumstances, federated learning (FL) is proposed and gets great popularity. It
enables multiple data owners (e.g., clients or data centers) to collaboratively trainMLmodels
without revealing their private data. As the basic workflow, participants in FL iteratively (i)
conduct local computations on their data to derive certain intermediate results, (ii) conceal
the intermediate results with certain cryptographic tools, and (iii) share the protected result
with other participants, until the final training result achieved.

According to different kinds of data partitioning, FL can be categorized as horizontal
federated learning (HFL) and vertical federated learning (VFL). HFL deals with the case
when the data is horizontally partitioned, i.e., the datasets share the same feature space but
differ in the sample space. For example, two hospitals hold medical records of different
groups of patients (i.e., the sample space) that describe whether they have a certain disease
(i.e., the feature space). Comparatively, VFL deals with the case when the data is vertically
partitioned, i.e., datasets share the same sample space but differ in the feature space. A typical
example of VFL is that, two hospitals holdmedical records of the same group of patients (i.e.,
sane sample spaces), but each of them describes different aspects of the medical status of a
patient, e.g., dataset from hospital A records the COVID swab test of the patients, whereas
dataset from hospital A records chest CT scan of them (i.e., different feature spaces).

Due to its relatively symmetric structure, the construction of HFL is simple. It normally
is constructed via model averaging – for each iteration the client train a model for several
epochs and sends its model to the client, who afterward aggregates the submitted local model
and gets the updated global model. But in terms of VFL, especially VFL constructed with
model splitting, the training process is relatively complex. In VFL with model splitting,
the whole model is divided into a top model (holding at the server) and several bottom
models (as specific intermediate states preserved at the clients). The training process is
finished with iteratively bilateral communication. The clients run their bottom model with
their local data and upload the result to the server; the server runs a top model to aggregate
the participants’ output, computes the gradients of the loss, and sends the gradients back
to every participant.

Accordingly, the potential attackers of HFL have chance to peep gradients of all the
parameters of the model, which can be used to infer private information. Comparatively,
attackers of VFL only control part of the federated model and accordingly can only get
gradients of an incompletemodel. Thus, it is generally believed that VFL has a higher security
guarantee, especially forVFL constructedwithmodel splitting (inwhich the participants have
no access to the last layer of the DNN and thus the label in the server are more secure) [5].
In spite of this, recent research reveals that it is still feasible to conduct inference attacks on
VFL [6]. Specifically, Fu et al. [6] find that, the gradients sent from the server essentially can
help the client to learn a good feature representation with respect to the labels. This leaked
information serves as a pre-trained model for label inference attacks.

123

World Wide Web (2023) 26:2691–2707 2693

Figure 1 Architecture and workflow of the dispersed training framework

In this paper, we propose the dispersed training framework, to combat such attacks and
enable the security of VFL. The basic idea of dispersed training is to utilize secret sharing
breaking the correlations between the gradients and the training data. As shown in Figure 1,
participant B holds his own data with labels hoping to train a model; he hopes to utilize
participant A’s data to improve the quality of his model. Participant A is the positional
attacker and he is intended to infer participant B’s label. In the dispersed training framework,
a shadow model (i.e., participant C) is created for participant A, and part of the data of
participant B is shared to participant C. In the training phase, the clients (i.e., participants A
and C) update their bottom model with their shared data and upload their partial outputs to
the server. The server aggregates the clients’ partial outputs and trains its top model; their
outputs can be efficiently aggregated, due to the linearity of the secret sharing schemes. The
server’s training output is also segmented into two parts and delivers each segment the A
and C, respectively, who later iteratively train and update their bottom model. With such a
method, even if the attacker receives the gradients in the training phase, he is incapable to
deduce the feature representation of labels from the bottom model.

The rest of the paper is organized as follows. Section 2 presents basic backgrounds of
federated Learning and describes how inference attack is conducted on vertical federated
Learning. We present our dispersed training framework and its construction on Section 3.
The performance evaluation is presented on Section 4. Related work on this topic is presented
at Section 5, and we conclude this paper on Section 6.

123

2694 World Wide Web (2023) 26:2691–2707

2 Inference attacks in VFL: an introduction and analysis

2.1 Federated learning

Compared with the common centralized learning, the federated learning provides a collab-
orative learning method to perform distributed training models on data, which protects the
privacy of data [7]. According to the characteristics of data, the federated learning is mainly
divided into three categories: horizontal federated learning, vertical federated learning, and
transfer federated learning [8].

Horizontal federated learning is suitable for the situation where the data features of the
participants overlap a lot, but the IDs of the samples overlap less. The purpose of horizontal
federated learning is to train a more accurate prediction model by combining more samples
with the same characteristics. For example, two e-commerce platforms in different regions
have purchase records of the same consumption level in their respective regions. The two
e-commerce platforms can train a model through horizontal federated learning and can push
products to users of this consumption level. Vertical federated learning is suitable for samples
with more overlapping IDs and less overlapping data features. The purpose of the vertical
federated learning is to train a model by combining more features of the same sample. For
example, a bank and a lending company in the same area, the bank has data on a group
of people’s economics status and whether they owe money, while the lending company has
another asset status of the same group of people. Integrating the lending company and the
bank into cooperate method can carry out vertical federated learning by using their data, and
train an accurate model to predict risk and decide whether to service a loan to someone [8].
Transfer federated learning is more suitable when the data characteristics of the participants
and the number of samples overlap less, or the distributions of the participants differs greatly.
For example, hospitals and lending companies in different regions want to train a prediction
model, but the two parties have little overlap in data features and sample numbers. At this
time, transfer federated learning can be used to train the model [9].

2.2 Label inference attacks in VFL

The label inference attack of vertical federated learning is proposed by Fu et al. [6], which
reveals the privacy relationship between vertical federated learning and labels. Fu et al. [6]
designed three attack methods to reason about labels with high privacy, which can enable
malicious participants to perform inferring attacks on labels of anyparticipant’s data, resulting
in serious privacy leakage.

Passive label inference attack is vertical federated learning for model splitting. Although
no participant can access the top model, the trained bottom model can be used for inference
attacks [10]. Its principle is that the adversary can convert its features into indicative informa-
tion about labels during the training process, and use that information to make predictions.
The adversary uses vertical federated learning to train the bottom model with indicative fea-
tures, and then adds an initialization layer to the upper layer of the trained bottom model to
form a complete model, and uses a small amount of labeled data to perform semi-supervised
learning on the attack model. With this model, the label can be directly inferred.

Active label inference attacks use the adversary to accelerate the gradient descent of the
bottom model, so that the bottom model is better trained in each iteration, which can provide
better training features to the server, making the top model of the server more dependent on
the bottom model, and the adversary then fine-tunes this bottom model to form a complete

123

World Wide Web (2023) 26:2691–2707 2695

attack model that can perform inference attacks on labels. Fu et al. [6] designed a malicious
local optimization algorithm and added an algorithm to limit the learning rate to the gradient
descent algorithm, which can ensure that the learning rate is appropriate, so as to accelerate
the gradient descent and make the malicious bottom model better trained.

The direct label inference attack is aimed at vertical federated learning without model
splitting. The adversary can receive the gradient leaked from the server. Fu et al. [6] proved
by mathematical analysis that the adversary can directly analyze the leaked gradient sign.
When the gradient sign is negative, it proves that the guessed label is exactly the actual label.
When the gradient sign is positive, the guessed label is incorrect. This can cause serious label
leakage.

In summary, all three attacks result in serious privacy breaches. Passive label inference
attack is due to the bottom model having better inference ability, and the bottom model
is trained by semi-supervised learning to form an attack model to perform label inference
attack. Active label inference attack is on top of the base, using malicious SGD to accelerate
gradient descent, resulting in a malicious bottom model that can be trained better and has
better inference attack capability. The direct label inference attack, on the other hand, is not
very related to the first two. The direct label inference attack is directly caused by the leakage
of label information through the gradient leaked from the server. Due to previous work [6],
common privacy protection methods cannot be used to defend against passive label inference
attacks and active label inference attacks, the proposed model in this paper is mainly for the
discussion of the first two attack methods.

3 Dispersed training

3.1 The trainingmodel

Before describing more details with respect to the training model, we present the model in
brief. First, a shadow model c is generated, which has the same structure with a but with a
benign type. The difference between the malicious and benign types is that when training the
model, the benignmodel utilizes SGD for gradient descent, while themaliciousmodel utilizes
its own local optimizer to accelerate gradient descent. Then the malicious model shares its
training dataset with the shadow model through secret sharing, and performs local training
on the bottom models. Consequently, the output of the bottom model is uploaded to the top
model after being merged and aggregated. Finally, the top model assigns the gradient to the
bottom models. Note that the shadow model should share the gradient with the malicious
model. The above process is repeated until the model converges.

Algorithm 1 is the pseudo-code of the training model. More details are as follows.

1. Initialization. Initialize a shadow model c, where the structure is similar to a with a
benign type. Note that although model c has the same structure, the training process is
different from that of model a. Then, initialize the parameters of the bottom model and
the top model, respectively.

2. Dataset Splitting.According to the assumptions in the literature [6], there are two bottom
models a and b in the trainingmodel. The training sets are xa and xb, respectively. inwhich
participant A holding model a is an attacker, and the participant B holding model b is
an honest participant. Here we only need to split the dataset xa of model a. That is, the
bottommodel a and shadowmodel c share the training set data xa . Specifically, xa is split

123

2696 World Wide Web (2023) 26:2691–2707

Algorithm 1 The framework for training process.
Input: Training data set xa , xb , ytop for Bottom model a, b, Top model top respectively, learning rate η.
Output: The well trained parameters θa , θb for Bottom model a, b.
1: (1) Initialize:
2: ① For malicious model a, create model c by copying model a and set it to be a benign party;
3: ② Initialize the parameters θi (i ∈ a, b, c), θtop for a, b, c, top respectively.
4:
5: (2) Dataset splitting:
6: ① Choose a random value α;
7: ② Assign αxa and (1 − α)xa to model a and c as their training dataset respectively;
8:
9: (3) Bottom model training:
10: while each epoch does not stop do
11: for each batch bati (i ∈ a, b, c) of sample Ids do
12: for model a, b, c do
13: oi ← ParticipantForwardProp(θi , bati)
14: end for
15: end for
16: end while
17:
18: (4) The merging and aggregation of the Output:
19: ① oa ← Mergshare(oa ,oc) � concatenating outputs of a and c
20: ② oall ←Concat(oa ,ob) � concatenating all bottom model outputs
21:
22: (5)Top model training:
23: ① o f inal ← ServerForwardProp(θtop, oall)
24: ② L ←LossFunc(o f inal ,y)

25: ③ gtop ← ∂L
∂θtop

26: ④ θtop ←θtop-η · gtop � updating top model
27:
28: (6)Sharing the gradient and update model:
29: ① for model a, b do
30: ② ga ← ∂L

∂oa
,gb ← ∂L

∂ob
31: ③ {ga , gc} ← SS(ga) � Secret sharing of gradient
32: ④ParticipantBackProp(θi ,gi ,oi):
33:
34: ParticipantForwardProp(θi ,bati):
35: return bottom model forward outputs θi (bati)
36:
37: ServerForwardProp(θtop ,oall):
38: return top model forward outputs θtop(oall)
39:
40: ParticipantBackProp(θi ,gi ,oi):
41: ① gi ←gi · ∂oi

∂θi
42: ② θi ←θi -η · gi � updating bottom model

into αxa and (1− α)xa , where α is a random number, αxa is participant A’s training set,
and (1 − α)xa is participant C’s training set

3. Training for BottomModel. In each round of local training, models a, b, and c use their
respective training datasets for local training. However, the training data is too large, in
the actual training process, the training data is divided into blocks (denoted as bati , where
i ∈ a, b, c). It should be noted that the bottom model is a linear model, and the activation
function Relu() is also linear. Therefore, during the entire training process, the parameters
of each layer between the bottom model a and c are always linear.

4. Merging and Aggregation of Outputs. This stage is divided into two steps:

123

World Wide Web (2023) 26:2691–2707 2697

(a) Themerging of outputs of themodel a and c.Here, although both participants A and
C participated in the training locally, for the top model, there is still only an interface
with model a. Therefore, in the dispersed training model, we design a merge function
Mergshare(). After the model a and c have trained the local model to generate the
output oa, oc, the function treats oa, oc as two shares, and merges the results of model
a and c into a new output oa through Mergshare(). The new output oa is uploaded
to the top model through the interface between the top model and model a.
Note thatmodels a and cmaintain a linear relationship during training, so theirmerged
result is consistent with the upload results after model a is trained alone. That is to
say, the new output oa uploaded to the top model under the name of A is the same as
the previous work [6] that A directly uploads the output to the top model. Here we
assume that there is an output merging layer among models a, c and the top model.
Its main function is to combine the outputs of models a and c to the top model. At
the same time, the gradients received from the top model need to be secretly shared
first, and then downloaded to models a and c, respectively.

(b) The aggregation of outputs a and b. After the merging in step 4(a), the top model
obtains oa and ob through its interface with models a and b, respectively. At this
time, according to the method of previous work [6], the function Concat() is used to
aggregate oa and ob to generate oall , which is further trained by the top model.

5. Training for Top Model. The top model is trained with the output oall and to get the
output o f inal .

6. Gradient Download. After the top model is locally trained, the loss function is first
calculated, and then the gradient is passed down to the bottom model. In the previous
work [6], the top model will pass gradients down to models a and b, respectively. In
this paper, the process of model b receiving its gradient is similar to the previous work
[6]. However, it’s different for downloading the gradient to the model a since model c is
involved. In particular, the gradient ga of the model a is generated first. Then a new ga
and gc are obtained by the secret sharing function SS(), which are passed to the models
a and c. This function is implemented by the merging layer.

7. Repeat (1)-(6) for the bottom model and the top model until converge.

3.2 The attackmodel

In the attack model, we still use the model completion proposed by Fu et al. [6]. After
completing the federated training process, we will get the trained bottommodel. This bottom
model also has strong capabilities to run label inferring attack. We retrain the bottom model
and use a small amount of labeled data as Fu et al. [6].More specifically, themalicious attacker
adds an extra layer to continue semi-supervised learning, and finally trains the bottommodel.
The newly trained model is used as an attack model to execute label inference attack.

4 Performance evaluation

4.1 Experiments settings

All experiments are performed on Intel(R) Core i5-12500H @ 2.50GHz, 16GB RAM,
NVIDIA GeForce RTX 2050 card (Table 1). The three datasets used in the experiment

123

2698 World Wide Web (2023) 26:2691–2707

Table 1 Experimental equipment, experimental data on the indicators

Experimental equipment Card Experiment Indicators

Intel(R) Core i5-12500H NVIDIA GeForce RTX 2050 Top-1 Accuracy

are CIFAR-10, CINIC-10, and BCW, which are also the datasets used by previous work [6].
In this paper, Top-1 Accuracy is selected as the performance indicator for the attack effect
of federated original tasks and label inferring. Top-1 accuracy means that the predicted label
takes the largest one in the final probability vector as the prediction result. If this prediction
result is the actual label, it means the prediction is correct, otherwise, the prediction is wrong.
In the process of training the attack model, this paper selects an additional small amount of
labeled data for semi-supervised training of the bottom model. In the attack model experi-
ment, CIFAR-10 and CINIC-10 selected 40 labeled samples, and the BCW dataset selected
20 labeled data for semi-supervised training. As mentioned in the previous work [6], the
number of labels will affect the effect of the label inference attack. When the number of
samples reaches a certain number, the result of the label inference attack will grow slowly.
Therefore, the same as in the previous work [6], In this experiment, 40 data and 20 data are
also selected.

CIFAR-10: CIFAR-10 is a typical classification dataset, which contains 60,000 images,
of which 50,000 images are used as a training set and 10,000 images are used
as a test set. Each photo is a 32*32 color image, and there are 10 different
categories of images in the entire dataset.

CINIC-10: CINIC-10 is an extension ofCIFAR-10 through subsampled ImageNet images,
and like CIFAR-10, it is also divided into 10 categories. To solve the problem
of the small number of CIFAR-10, the CINIC-10 dataset appeared. It contains
270,000 images, which is 4.5 times larger than CIFAR-10. The images are
evenly divided into three subsets: training set, validation set, and test set. Each
subset has 90,000 images, the number of training sets is 1.8 times that of
CIFAR-10, and the number of test sets is 9 times that of CIFAR-10. Through
this data set, we can test the effect of our designed scheme on large data sets.

BCW: The Breast Cancer Wisconsin (BCW) dataset is a breast cancer dataset with a
total of 569 pieces of data and 32 feature columns, mainly for nuclear features.
The label of the sample is whether the diagnosis is benign or malignant. The
data set used in the experiment is the data set used by Fu et al. [6], which
randomly selects 426 samples as the training set and the remaining 143 samples
as the test set.

In order to compare with the paper proposed by Fu et al. [6], we use the same top and
bottom model structure of Fu et al. [6]. For large datasets like CIFAR-10 and CINIC-10,
the bottom model is chosen as the residual network and the top model is full connect neural
network, for the BCW dataset both the bottom and top models are used as fully connected
neural network, and the specific structure is shown in Table 2.

4.2 Comparison with original attack

The performance of the model after dispersed training in the face of a passive label inference
attack is shown in Figure 2. It can be seen from the Top-1 accuracy of the attack on the three
datasets, compared with the label inference attack proposed by Fu et al. [6] the effect has

123

World Wide Web (2023) 26:2691–2707 2699

Table 2 Neural network structure
of the bottom model and top
model

Dataset Bottom model structure Top model structure

CIFAR-10 ResNet-18 FCNN-4

CINIC-10 ResNet-18 FCNN-4

BCW FCNN-3 FCNN-3

dropped significantly, especially on the CIFAR-10 dataset by about 70%. After dispersed
training, the Top-1 accuracy rates of attacks on CIFAR-10, CINIC-10, and BCW datasets
are 9.99%, 10.02%, and 36.36%, respectively. For the CIFAR-10 and CINIC-10 datasets, the
Top-1 accuracy rate of the attack is reduced to about 10%. These two datasets only have ten
categories, so the Top-1 accuracy rate of the 10% attack is equivalent to the Top-1 accuracy
rate for these ten categories to random guess. The results from the CIFAR-10 dataset to the
CINIC-10 dataset are all around 10%, indicating that our scheme also has a good defense
effect on large datasets. Overall, the dispersed training proposed in this paper can effectively
prevent passive label inference attacks.

In addition, this paper also compares active label inference attacks. As can be seen from
Figure 3, the model after dispersed training is also effective against active label inference
attacks. On the CIFAR-10 dataset, the attack Top-1 accuracy rate dropped from 84.84%
to about 10%, and the attack Top-1 accuracy rate for the other two datasets also dropped
significantly.

Overall, our scheme can reduce the accuracy of label inference attacks to randomguessing,
which proves that dispersed training can effectively mitigate label inference attacks.

Figure 2 Performance comparison between the original passive attack and our attack

123

2700 World Wide Web (2023) 26:2691–2707

Figure 3 Performance comparison between the original active attack and our attack

4.3 Comparison with original federated tasks

Table 3 shows the accuracy of the original federated tasks for each dataset after dispersed
training. Compared with the original federated learning, the federated accuracy decreased
after dispersed training. It drops by 4%, 15%, and 18% on the BCW, CIFAR-10, and CINIC-
10 datasets, respectively. Among them, the accuracy of the CIFAR-10 and CINIC-10 datasets
dropped significantly, which was caused by the large datasets. Although the label inference
attack can be effectively prevented after dispersed training, the federated accuracy has also
decreased to a certain extent, especially on large datasets. Therefore, the implement of dis-
persed training requires a trade-off between defending against label inference attacks and
federated training accuracy.

4.4 Comparison with gradient compression

Compared to common machine learning privacy-preserving methods, our scheme can
mainly make the performance of active label inference attacks and passive label inference

Table 3 The performance of the original federated tasks and our federated tasks after dispersed training

Dataset Metric Original federated tasks Our federated tasks

CIFAR-10 Top-1 Acc 0.8280 0.6784

CINIC-10 Top-1 Acc 0.7132 0.5306

BCW Top-1 Acc 0.8671 0.8252

123

World Wide Web (2023) 26:2691–2707 2701

Table 4 Defense performance of gradient compression and our scheme against the active label inference attack

Dataset Original active attack Gradient compression Our scheme attack

CIFAR-10 0.8484 0.64 [6] 0.099

CINIC-10 0.7818 0.5884 0.1002

attacks reduced to random guesses and can make the performance of the original federated
task not degraded too much. For example, in the method of adding noise to the gradient, the
performance of the original federated learning task decreases from 0.8 to about 0.1, which can
lead to the failure of the federated task. Let’s take gradient compression, a privacy-preserving
method, as an example. As shown in Table 4, the active label inference attack decreases from
0.8484 to 0.64 after gradient compression at a compression rate of 0.9, while our scheme can
be reduced to about 0.10 for random guesses. The original federated performance is reduced,
both down to roughly 0.7 or so.

4.5 Output distribution of malicious model

We use t-SNE [11] to map the output of bottom model A into 2D space. As shown in
Figure 4, the classification of each color is less obvious. Because of our dispersed training,
the bottom model A cannot learn about the relationship between labels and features and
has a poor ability to perform label inference attacks. The attack model formed after model
completion cannot perform label inference attacks.

5 Related work

At present, data security is a thorny issue, such as the malicious recovery of image data,
the anonymity of network data transmission, privacy protection of distributed systems, data

Figure 4 The outputs of attack model a

123

2702 World Wide Web (2023) 26:2691–2707

privacy protection in big data environment [12], etc. Various solutions are proposed to solve
these kinds of problems [13–19]. Zhang et al. [20] proposed an interesting approach for
optimizing the multicast traffic based on the advantages of the software-defined networking.
Among them, machine learning, especially federated learning, is a hot topic. Federated learn-
ing (FL) was first proposed by google [21–23], aiming at building machine learning models
with distributed entities (e.g. devices or datasets), where the private information of the entities
should be protected [13]. In general, FL has three categories, Horizontal Federated Learn-
ing [23–25], Vertical Federated Learning [26–30] and Federated Transfer Learning [31].
Federated Reinforcement Learning [32] has also recently emerged. Security issues [33–39],
especially in vertical federated learning, has got arouse wide concern [40, 41]. Wei et al. [42]
investigate the issues of security and privacy in VFL. Fu et al. [6] discuss the problem of label
leakage instead of membership inference or sample property [43–46]. Rassouli et al. [47]
prove it’s possible for the adversary to reconstruct the passive party’s feature under the black
box. To protect privacy in VFL, Zhu et al. [48] propose a secure framework PIVODL and
Han et al. [49] propose FedValue by using Shapley-CMI and guaranteeing the data privacy
toward the view of game theory.

In general, differential privacy (DP) [50–53] and homomorphic encryption (HE) [54–57]
are used to protect the privacy of the data in VFL. Geyer et al. [58] guarantee privacy of the
users in the training process. Yuan et al. [59, 60] utilize HE to train data in the cloud. While
DP and HE do not work here. First, if we only add some ransom salts to the training data, the
training and the attack process are almost identical to the previous work [6]. Therefore, we
add a convergence level, where the output and shared gradient converge. As for HE, it also
fails in our setting. It’s due to the fact that the bottom model can still be trained well even if
the messages between the bottom and top model are encrypted with HE. Consequently, the
attacks can be implemented by adding one level. Recently, secure multi-party computation
(SMC) [61–64] is implemented to solve the privacy issues in VFL. For example, SecureML,
an SMC framework is used to scalable preserve the privacy in machine learning. SMC can
preserve privacy of sensitive data [65]. Mohassel et al. [66] propose a 3PCmodel by utilizing
secret sharing with non-colluding servers. Personalized federated learning [67–69] is used to
address data heterogeneity in federated learning. Secret sharing [70] preserves the information
with respect to the intersection elements.

6 Conclusion

The previous work revealed that the privacy security of VFL also has great risks. Malicious
participants in VFL can launch inference attacks on the labels of other participants, resulting
in serious privacy leakage. To solve this problem, we propose a dispersed training framework,
which introduces a new bottommodel, which can share part of the gradient during the training
of the malicious bottom model through secret sharing, so that the malicious bottom model
cannot better obtain the relationship between labels and features, thereby preventing label
inference attacks. Experiments show that dispersed training can effectively prevent label
inference attacks. However, the accuracy of the original federal task is also affected to a
certain extent, and it can only trade-off between raw federated task accuracy and attack
accuracy, which provides a good direction for our future research. In the future, we can take
into account the original federal performance and reduce the research on the direction of
attack accuracy.

123

World Wide Web (2023) 26:2691–2707 2703

Acknowledgements This study is supported by the Foundation of National Natural Science Foundation of
China (Grant No.: 62072273, 72111530206, 61962009, 61873117, 61832012, 61771231, 61771289); The
Major Basic Research Project of Natural Science Foundation of Shandong Province of China (ZR2019ZD10);
Natural Science Foundation of Shandong Province (ZR2019MF062); Shandong University Science and Tech-
nology Program Project (J18A326); Guangxi Key Laboratory of Cryptography and Information Security (No:
GCIS202112); The Major Basic Research Project of Natural Science Foundation of Shandong Province of
China (ZR2018ZC0438);Major Scientific andTechnological Special Project ofGuizhouProvince (20183001),
Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2019BD-KFJJ009), Talent project
of Guizhou Big Data Academy. Guizhou Provincial Key Laboratory of Public Big Data. ([2018]01).

Author Contributions All authors contributed to the study conception and design. Yilei Wang put forward the
main idea, Yilei Wang, Minghao Zhao and Qingzhe Lv wrote the main manuscript text, Qingzhe Lv, Huang
Zhang and Yuhong Sun wrote the main experimental code, Tao Li revised the manuscript text, Lingkai Ran
searched for the required literature. All authors reviewed the manuscript.

Funding This study is supported by the Foundation of National Natural Science Foundation of China (Grant
No.: 62072273, 72111530206, 61962009, 61873117, 61832012, 61771231, 61771289); The Major Basic
Research Project of Natural Science Foundation of Shandong Province of China (ZR2019ZD10); Natural
Science Foundation of Shandong Province (ZR2019MF062); Shandong University Science and Technol-
ogy Program Project (J18A326); Guangxi Key Laboratory of Cryptography and Information Security (No:
GCIS202112); The Major Basic Research Project of Natural Science Foundation of Shandong Province of
China (ZR2018ZC0438);Major Scientific andTechnological Special Project ofGuizhouProvince (20183001),
Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2019BD-KFJJ009), Talent project
of Guizhou Big Data Academy. Guizhou Provincial Key Laboratory of Public Big Data. ([2018]01).

Data Availability The data used to support the findings of this study are available from the second author upon
request.

Declarations

Ethical Approval and Consent to Participate The authors guarantee that this manuscript is an original work.
This manuscript has not been published or presented elsewhere in part or in entirety and is not under consid-
eration by another journal. We have read and understood your journal’s policies, and we believe that neither
the manuscript nor the study violates any of these. All authors have seen and approved the final version of the
submitted manuscript.

Consent for Publication All authors have checked the manuscript and have agreed to the submission

Human and Animal Ethics The authors declare that this study does not involve human participants or animals.

Competing Interests The authors have no competing interests to declare that are relevant to the content of
this manuscript

References

1. Voigt, P., Von dem Bussche, A.: The EU general data protection regulation (GDPR. A Practical Guide,
1st Ed., Cham: Springer International Publishing 10(3152676), 10–5555 (2017)

2. Hoofnagle, C.J., van der Sloot, B., Borgesius, F.Z.: The european union general data protection regulation:
what it is and what it means. Inform. Commun. Technol. Law 28(1), 65–98 (2019)

3. Chik, W.B.: The singapore personal data protection act and an assessment of future trends in data privacy
reform. Comput. Law Secur. Rev. 29(5), 554–575 (2013)

4. Shatz, S., Chylik, S.E.: The california consumer privacy act of 2018: A sea change in the protection of
california consumers. The Business Lawyer 75 (2020)

5. Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X.: Membership inference attacks on machine
learning: A survey. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)

123

2704 World Wide Web (2023) 26:2691–2707

6. Fu, C., Zhang, X., Ji, S., Chen, J., Wu, J., Guo, S., Zhou, J., Liu, A.X. Wang, T.: Label inference attacks
against vertical federated learning. In: 31st USENIXSecurity Symposium (USENIXSecurity 22), Boston,
MA (2022)

7. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of
deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282, PMLR
(2017)

8. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. ACMTrans.
Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

9. Liu, Y., Kang, Y., Xing, C., Chen, T., Yang, Q.: A secure federated transfer learning framework. IEEE
Intell. Syst. 35(4), 70–82 (2020)

10. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: Distributed deep learning
without sharing raw patient data, arXiv:1812.00564 (2018)

11. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)
12. Yuan, F., Chen, S., Liang, K., Xu, L.: Research on the coordination mechanism of traditional Chinese

medicine medical record data standardization and characteristic protection under big data environment,
vol. 1 of 1. No.517 Shungong Road, Shizhong District, Jinan, Shandong Province, China: Shan-
dong:Shandong People’s Publishing House, 1 ed., (2021)

13. Chen, C., Huang, T.: Camdar-adv: generating adversarial patches on 3d object. Int. J. Intell. Syst. 36(3),
1441–1453 (2021)

14. Jiang, N., Jie, W., Li, J., Liu, X., Jin, D.: Gatrust: A multi-aspect graph attention network model for trust
assessment in osns. IEEE Transactions on Knowledge and Data Engineering (2022)

15. Yan, H., Chen, M., Hu, L., Jia, C.: Secure video retrieval using image query on an untrusted cloud. Appl.
Soft Comput. 97, 106782 (2020)

16. Ai, S., Hong, S., Zheng, X., Wang, Y., Liu, X.: Csrt rumor spreading model based on complex network.
Int. J. Intell. Syst. 36(5), 1903–1913 (2021)

17. Li, T.,Wang, Z., Chen, Y., Li, C., Jia, Y., Yang, Y.: Is semi-selfishmining available without being detected?
Int. J. Intell. Syst. (2021). https://doi.org/10.1002/int.22656

18. Li, T.,Wang, Z., Chen,Y., Li, C., Jia, Y., Yang,Y.: Is semi-selfishmining availablewithout being detected?.
International Journal of Intelligent Systems (2021)

19. Zhang, X., Wang, T.: Elastic and reliable bandwidth reservation based on distributed traffic monitoring
and control. IEEE Transactions on Parallel and Distributed Systems (2022)

20. Zhang, X., Wang, Y., Geng, G., Yu, J., Delay-optimized multicast tree packing in software-defined net-
works. IEEE Transactions on Services Computing (2021)

21. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine
learning for on-device intelligence. arXiv:1610.02527 (2016)

22. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strate-
gies for improving communication efficiency. arXiv:1610.05492 (2016)

23. McMahan, H.B., Moore, E., Ramage, D., y Arcas, B. A.: Federated learning of deep networks using
model averaging. vol. 2, arXiv:1602.05629 (2016)

24. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal, A.,
Seth, K.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

25. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 1310–1321 (2015)

26. Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: Seventeenth Annual Com-
puter Security Applications Conference, pp. 102–110. IEEE (2001)

27. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: Linear regression and
classification. In: Proceedings of the 2004 SIAM International Conference on Data Mining, pp. 222–233.
SIAM (2004)

28. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression modelling via distributed com-
putation. In: Proceedings of the Tenth ACMSIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 677–682 (2004)

29. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 639–644 (2002)

30. Wan, L., Ng,W.K., Han, S., Lee, V.C.: Privacy-preservation for gradient descent methods. In: Proceedings
of the 13th ACMSIGKDD International Conference on Knowledge Discovery and DataMining, pp. 775–
783 (2007)

31. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowledge Data Eng 22(10), 1345–1359
(2009)

123

http://arxiv.org/abs/1812.00564
https://doi.org/10.1002/int.22656
http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1602.05629

World Wide Web (2023) 26:2691–2707 2705

32. Tianqing, Z., Zhou,W., Ye, D., Cheng, Z., Li, J.: Resource allocation in iot edge computing via concurrent
federated reinforcement learning. IEEE Internet of Things Journal 9(2), 1414–1426 (2021)

33. Hu, L., Yan, H., Li, L., Pan, Z., Liu, X., Zhang, Z.: Mhat: an efficient model-heterogenous aggregation
training scheme for federated learning. Inform. Sci. 560, 493–503 (2021)

34. Mo, K., Huang, T., Xiang, X.: Querying little is enough: Model inversion attack via latent information.
In: International Conference on Machine Learning for Cyber Security, pp. 583–591. Springer (2020)

35. Ren, H., Huang, T., Yan, H.: Adversarial examples: attacks and defenses in the physical world. Interna-
tional Journal of Machine Learning and Cybernetics 12(11), 3325–3336 (2021)

36. Kuang, X., Zhang, M., Li, H., Zhao, G., Cao, H., Wu, Z., Wang, X.: Deepwaf: detecting web attacks based
on cnn and lstm models. In: International Symposium on Cyberspace Safety and Security, pp. 121–136.
Springer (2019)

37. Yan,H., Hu, L., Xiang,X., Liu, Z., Yuan,X.: Ppcl: Privacy-preserving collaborative learning formitigating
indirect information leakage. Inform. Sci. 548, 423–437 (2021)

38. Li, J., Hu, X., Xiong, P., Zhou,W., et al.: The dynamic privacy-preservingmechanisms for online dynamic
social networks. IEEE Transactions on Knowledge and Data Engineering (2020)

39. Lu, Z., Liang, H., Zhao, M., Lv, Q., Liang, T., Wang, Y.: Label-only membership inference attacks on
machine unlearning without dependence of posteriors. Int. J. Intell. Syst. 37(11), 9242–9441 (2022)

40. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage in collabo-
rative learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 691–706. IEEE (2019)

41. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning. In: Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), pp. 1–15 (2018)

42. Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen, G., Ranbaduge, T.: Vertical federated learning:
Challenges, methodologies and experiments. arXiv:2202.04309 (2022)

43. Backes, M., Berrang, P., Humbert, M., Manoharan, P.: Membership privacy in microrna-based studies.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 319–330, 2016

44. Chen, D., Yu, N., Zhang, Y., Fritz, M.: Gan-leaks: A taxonomy of membership inference attacks against
gans. arXiv:1909.03935 (2019)

45. Pyrgelis, A., Troncoso, C., De Cristofaro, E.: Knock knock, who’s there? membership inference on
aggregate location data, arXiv:1708.06145 (2017)

46. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.:Ml-leaks: Model and data indepen-
dent membership inference attacks and defenses on machine learning models. arXiv:1806.01246 (2018)

47. Rassouli, B., Varasteh, M., Gunduz, D.: Privacy against inference attacks in vertical federated learning.
arXiv:2207.11788 (2022)

48. Zhu,H.,Wang,R., Jin,Y., Liang,K.: Pivodl: Privacy-preserving vertical federated learning over distributed
labels. IEEE Transactions on Artificial Intelligence (2021)

49. Han, X., Wang, L., Wu, J.: Data valuation for vertical federated learning: An information-theoretic
approach. arXiv:2112.08364 (2021)

50. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learn-
ing with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 308–318 (2016)

51. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. Advances in Neural Information
Processing Systems, 21 (2008)

52. Dwork, C.: Differential privacy: A survey of results. In: International Conference on Theory and Appli-
cations of Models of Computation, pp. 1–19. Springer (2008)

53. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates.
In: 2013 IEEE Global Conference on Signal and Information Processing, pp. 245–248. IEEE (2013)

54. Giacomelli, I., Jha, S. Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge regression with only
linearly-homomorphic encryption. Cryptology ePrint Archive (2017)

55. Hall, R., Fienberg, S.E., Nardi, Y.: Secure multiple linear regression based on homomorphic encryption.
Journal of Official Statistics 27(4), 669–691 (2011)

56. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge
regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy,
pp. 334–348. IEEE (2013)

57. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Founda-
tions of Secure Computation 4(11), 169–180 (1978)

58. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective.
arXiv:1712.07557 (2017)

59. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning made practical with cloud
computing. IEEE Transactions on Parallel & Distributed Systems 25(01), 212–221 (2014)

123

http://arxiv.org/abs/2202.04309
http://arxiv.org/abs/1909.03935
http://arxiv.org/abs/1708.06145
http://arxiv.org/abs/1806.01246
http://arxiv.org/abs/2207.11788
http://arxiv.org/abs/2112.08364
http://arxiv.org/abs/1712.07557

2706 World Wide Web (2023) 26:2691–2707

60. Zhang, Q., Yang, L.T., Chen, Z.: Privacy preserving deep computation model on cloud for big data feature
learning. IEEE Trans. Comput. 65(5), 1351–1362 (2015)

61. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party
computationwith an honestmajority. In: Proceedings of the 2016ACMSIGSACConference onComputer
and Communications Security, pp. 805–817 (2016)

62. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for
malicious adversaries and an honest majority. Cryptology ePrint Archive (2016)

63. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: The garbled circuit
approach. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 591–602 (2015)

64. Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C.-Z., Li, H., Tan, Y.-a.: Secure multi-party computation:
theory, practice and applications. Inform. Sci. 476, 357–372 (2019)

65. Kilbertus, N., Gascón, A., Kusner, M., Veale, M., Gummadi, K., Weller, A.: Blind justice: Fairness with
encrypted sensitive attributes. In: International Conference on Machine Learning, pp. 2630–2639, PMLR
(2018)

66. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52 (2018)

67. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization
layers. arXiv:1912.00818 (2019)

68. Jebreel, N.M., Domingo-Ferrer, J., Blanco-Justicia, A., Sanchez, D.: Enhanced security and privacy via
fragmented federated learning. arXiv:2207.05978 (2022)

69. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

70. Le, P.H., Ranellucci, S., Gordon, S.D.: Two-party private set intersection with an untrusted third party.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2403–2420 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/2207.05978

World Wide Web (2023) 26:2691–2707 2707

Authors and Affiliations

Yilei Wang1,2 ·Qingzhe Lv1 · Huang Zhang2 ·Minghao Zhao3 · Yuhong Sun1 ·
Lingkai Ran1 · Tao Li1,4

Yilei Wang
wang_yilei2019@qfnu.edu.cn

Qingzhe Lv
lvqingzhe2021@163.com

Huang Zhang
zhanghuang_gz@163.com

Minghao Zhao
zhaominghao.thu@gmail.com

Yuhong Sun
sun_yuh@163.com

Lingkai Ran
rlk0729@163.com

1 School of Computer Science, Qufu Normal University, 276800 Rizhao, Shandong, China
2 Institute of Artificial Intelligence and Blockchain, Guangzhou University, 510700 Guangzhou,

Guangdong, China
3 School of Data Science and Engeneering, East China Normal University, 200062 Shanghai, China
4 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou

University, 550025 Guiyang, Guizhou, China

123

	Beyond model splitting: Preventing label inference attacks in vertical federated learning with dispersed training
	Abstract
	1 Introduction
	2 Inference attacks in VFL: an introduction and analysis
	2.1 Federated learning
	2.2 Label inference attacks in VFL

	3 Dispersed training
	3.1 The training model
	3.2 The attack model

	4 Performance evaluation
	4.1 Experiments settings
	4.2 Comparison with original attack
	4.3 Comparison with original federated tasks
	4.4 Comparison with gradient compression
	4.5 Output distribution of malicious model

	5 Related work
	6 Conclusion
	Acknowledgements
	References

