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Abstract
Graph Convolution Network (GCN) has been widely applied in recommender systems for
its representation learning capability on user and item embeddings. However, GCN is vul-
nerable to noisy and incomplete graphs, which are common in real world, due to its recursive
message propagation mechanism. In the literature, some work proposes to remove the fea-
ture transformation during message propagation, but making it unable to effectively capture
the graph structural features. Moreover, they model users and items in the Euclidean space,
which has been demonstrated to have high distortion whenmodeling complex graphs, further
degrading the capability to capture the graph structural features and leading to sub-optimal
performance. To this end, in this paper, we propose a simple yet effective Quaternion-based
Graph Convolution Network (QGCN) recommendation model. In the proposed model, we
utilize the hyper-complexQuaternion space to learn user and item representations and feature
transformation to improve both performance and robustness. Specifically, we first embed all
users and items into the Quaternion space. Then, we introduce the quaternion embedding
propagation layers with quaternion feature transformation to perform message propagation.
Finally, we combine the embeddings generated at each layer with the mean pooling strategy
to obtain the final embeddings for recommendation. Extensive experiments on three pub-
lic benchmark datasets demonstrate that our proposed QGCN model outperforms baseline
methods by a large margin.

Keywords Recommender systems · Collaborative filtering · Graph neural network ·
Quaternion embedding

1 Introduction

Recommender systems have been widely used for alleviating information overload in real-
world applications, such as social media [16], news [42], videos [39], E-commerce [15] and
Point of Interest (POI) applications [30]. It aims to estimate whether a user will show a prefer-
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ence for an item, based on the user’s historical interactions. Among existing recommendation
methods, Collaborative Filtering (CF) based models [8, 14, 34, 36] have shown great per-
formance in user and item representation learning. For example, Matrix Factorization [13]
represents users and items with embedding vectors and models the user-item interactions
with the inner product. Neural collaborative filtering [8] utilizes nonlinear neural networks
with multiple hidden layers to capture the user-item interactions for better user and item
representations.

Recently, GCN-based recommendation models have surged to learn better user and item
representations in the user-item bipartite graph. The typical flow can be summarized as
follows: 1) Initialize user and item representations by embedding them into the latent space;
2) Use an aggregation function over neighbors of each node to update its representation
iteratively; 3) Readout the final representation of each node by combining or concatenating.
The paradigm of GCN iterative aggregating feature information from local graph neighbors
has been proved to be an efficient way to distill additional information from graph structure
and thus improve user and item representation learning. For example, GC-MC [1] explores
the first-order connectivity between users and items by utilizing only one convolution layer
in the user-item bipartite graph. NGCF [32] leverages the message-passing mechanism to
obtain high-order connectivity and collaborative signal between users and items. LightGCN
[9] simplifies the NGCF [32] model, removing the components of feature transformation and
nonlinear activation, leading to improvement in training efficiency and generation ability.

Despite effectiveness, GCN is still vulnerable to noisy and incomplete graphs, which
are common in real-world scenarios, due to its recursive message propagation mechanism
[3, 4, 41]. However, some latest GCN-based recommendation models (e.g. LightGCN [9])
propose to remove the feature transformation during message propagation, but making it
unable to effectively capture the graph structural features and become more sensitive to
noisy or missing information. Moreover, they model users and items with real-value embed-
dings, which has been demonstrated to have high distortion when modeling complex graphs
[2, 18], further degrading the capability to capture the graph structural features and leading
to sub-optimal performance.

Can we move beyond the Euclidean space to learn better user and item representations
and feature transformation, capture the graph structural features more effectively, and thus
improve both recommendation performance and model robustness? Quaternion space - a
hyper-complex vector space, where each quaternion is a hyper-complex number consisting
of one real and three imaginary components, has shown great performance in representa-
tion learning [19, 20, 38]. Hamilton product, the multiplication of quaternions, enhances the
inter-latent interactions between real and imaginary components of two quaternions. Any
slight change in the input quaternion results in an entirely different output, leading to highly
expressive computations, thus the intricate relations are captured more powerfully [25].
Figure 1 shows the difference between real-value transformation and quaternion transfor-
mation. There has been significant success of quaternion-based methods in various fields.
For example, [5] builds deep quaternion networks in the Quaternion space for classification
tasks. Zhu et al. [43] proposes quaternion-based convolutional neural network (CNN) for
image classification and denoising tasks. Parcollet et al. [24] applies the Quaternion space
into recurrent neural network (RNN) and long-short term memory neural network (LSTM)
for automatic speech recognition. Parcollet et al. [23] integrates multiple feature views in
quaternion-valued CNN to be used for sequence-to-sequence mapping with the CTC model.
[22] investigates quaternion-based CNN and RNN for speech recognition. [28] proposes
quaternion-based attention models and Transformer for NLP tasks.

123



World Wide Web (2023) 26:2835–2854 2837

Quaternion transformationReal-value transformation

Figure 1 Comparison between real-value transformation and quaternion transformation

Moreover, there has been some work introducing the Quaternion space into graph rep-
resentation learning to obtain more expressive graph-level representations [19, 20, 38]. For
example, [19] generalizes graph neural networks in the Quaternion space for graph clas-
sification, node classification, and text classification. Nguyen et al. [20], Zhang et al. [38]
introduce more expressive quaternion representations to model entities and relations for
knowledge graph embeddings for knowledge graph completion. Despite Quaternion space
being introduced into various fields for various tasks and achieving remarkable performance
improvement, there is almost no exploration of the Quaternion space in GCN-based recom-
mendation scenarios. Some challenges during this process remain to be explored. The most
crucial one is that: The model should not be designed to be very complex or redundant to
better validate the effectiveness of the Quaternion space and for more intuitive comparison.
In other words, how to introduce the Quaternion space while keeping the model as simple as
possible remains to be considered.

To this end, in this paper, we propose a simple yet effective Quaternion-based Graph
Convolution Network (QGCN) recommendation model, which improves both performance
and robustness. Specifically, we first embed all users and items into the Quaternion space
with quaternion embeddings. Then, we introduce the quaternion embedding propagation lay-
ers with quaternion feature transformation to perform message propagation for aggregating
more useful information. Finally, we combine the embeddings generated at each layer with
the mean pooling strategy to obtain the final embeddings for recommendation. The quater-
nion feature transformation enhances the inter-latent interactions between real and imaginary
components, enabling it to capture the graph structural features more effectively, distinguish
the contribution of different nodes during message propagation, and thus improve both per-
formance and robustness. Extensive experiments are conducted on three public benchmark
datasets to validate the effectiveness of our proposedQGCNmodel. Results show that QGCN
outperforms the state-of-the-art methods by a large margin, which indicates that it can better
learn user and item representations. Besides, with further robustness analysis, we find that
the performance of our QGCN model remains steady in various noisy or incomplete graphs,
while that of compared state-of-the-art methods declines dramatically. This indicates that our
model is more robust and can effectively capture the graph structural features.

We summarize the contributions of this work as follows:

• To the best of our knowledge, we are the first to introduce the Quaternion space into
GCN-based recommendation models.
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• A QGCN model is proposed to model users and items in the Quaternion space and
propagate them with quaternion feature transformation, which significantly enhances
both recommendation performance and model robustness.

• We conduct extensive experiments on three public benchmark datasets, and experimental
results demonstrate the effectiveness of our QGCNmodel. Results of robustness analysis
verify the effectiveness of the quaternion feature transformation in capturing the graph
structural features.

2 Preliminaries

In this section, we cover some necessary background on quaternion before delving into the
architecture of our proposed model.

2.1 Quaternion

A quaternion Q ∈ H is a hyper-complex number consisting of one real part and three
imaginary parts defined as:

Q = Qr + Qi i + Q j j + Qkk, (1)

where Qr , Qi , Q j , Qk ∈ R, and i, j, k are imaginary units, satisfying the following rule:

i2 = j2 = k2 = ijk = −1. (2)

A n-dimensional vector form of quaternion Q ∈ H
n is defined as:

Q = Qr + Qi i + Q j j + Qkk, (3)

where Qr , Qi , Q j , Qk ∈ R
n , each coefficient of the real unit or the imaginary units is a

n-dimensional vector.

2.2 Quaternion addition

The addition of two quaternions Q and P is defined as:

Q + P = (Qr + Pr ) + (Qi + Pi )i + (Q j + Pj )j + (Qk + Pk)k, (4)

2.3 Quaternion inner product

The inner product of two quaternions Q and P is defined as:

Q · P = Qr · Pr + Qi · Pi + Q j · Pj + Qk · Pk . (5)
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2.4 Hamilton product

The quaternion product of two quaternions Q and P is defined as:

Q ⊗ P = (Qr Pr − Qi Pi − Q j Pj − Qk Pk)

+(Qi Pr + Qr Pi − Qk Pj + Q j Pk)i

+(Q j Pr + Qk Pi + Qr Pj − Qi Pk)j

+(Qk Pr − Q j Pi + Qi Pj + Qr Pk)k. (6)

We further simplify the result of Hamilton product above into matrix form as follows:

⎡
⎢⎢⎣
1
i
j
k

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣
Qr −Qi −Q j −Qk

Qi Qr −Qk Q j

Q j Qk Qr −Qi

Qk −Q j Qi Qr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Pr
Pi
Pj

Pk

⎤
⎥⎥⎦ . (7)

3 Methodology

In this section, we present our proposed QGCN model. As illustrated in Figure 2, the
model contains three main components: Quaternion Embedding Layer, Quaternion Embed-
ding Propagation Layers, and Prediction Layer.

1

0,

4

0,

1

2

3

1

−1,

2

−1,

3

−1,

,

2

−1,

3

−1,

2

3

4

1,

4

2,

4

3,

Layer 1

Layer 1

Layer 2

Layer 3

Layer 2
Layer 3

1

2,

1

1,

1

3,

: Hamilton Product : Quaternion Addition : Quaternion Inner Product

1

4

,

1

2

3

4

1

4

2

3

5

D
ro

p
o

u
t &

 L
2

N
o

rm
D

ro
p

o
u

t &
 L

2
N

o
rm

Figure 2 The architecture of our proposed QGCN model which is formed by Quaternion Embedding Layer,
Quaternion Embedding Propagation Layers and Prediction Layer
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3.1 Quaternion embedding layer

Firstly, we embed all the users and items into the Quaternion space. For each user u ∈ U , we
represent it with a quaternion ID embedding e0,Qu = e0u,r +e0u,i i+e0u, j j+e0u,kk ∈ H

d , where
d represents the dimension of quaternion. And the same for item quaternion ID embeddings.

3.2 Quaternion embedding propagation layers

3.2.1 Quaternion embedding propagation

Next, we perform message propagation within the Quaternion Embedding Propagation Lay-
ers with quaternion feature transformation. As mentioned above, we argue that removing the
feature transformation during message propagation makes it unable to effectively capture
the graph structural features and become more sensitive to noisy or missing information,
further degrading the model performance. So in this part, we introduce the feature transfor-
mation in the Quaternion space at each layer for message propagation to aggregate more
useful information. In order to prove our quaternion feature transformation to be valid more
intuitively, we adopt the simple message propagation procedure like the vanilla GCN [12]
without the nonlinear activation function, only involving the user and item embeddings and
the quaternion transformation matrices. We generate the quaternion transformation matrix at
layer l as follows:

Wl,Q = Wl
r + Wl

i i + Wl
j j + Wl

kk, (8)

where Wl
r ,W

l
i ,W

l
j ,W

l
k ∈ R

d×d .
Thus, our quaternion embedding propagation rule in QGCN is defined as:

el,Qu =
∑
i∈Nu

1√|Nu ||Ni |W
l,Q ⊗ el−1,Q

i ,

el,Qi =
∑
u∈Ni

1√|Ni ||Nu |W
l,Q ⊗ el−1,Q

u , (9)

where el,Qu and el,Qi respectively represent user u’s quaternion embedding and item i’s quater-
nion embedding after l layers propagation; 1/

√|Nu ||Ni | is the symmetric normalization term
following the vanilla GCN [12], designed to avoid the scale of embeddings increasing with
graph convolution operations, where Nu and Ni respectively denote the user u’s interacted
items and the item i’s interacted users;Wl,Q ∈ H

d×d is the quaternion feature transformation
matrix at layer l; ⊗ denotes Hamilton product.

To facilitate the implementation of the quaternion embedding propagation, we derive the
Hamilton product ⊗ betweenWl,Q and el−1,Q

u in Eq. (9) as follows (c.f. (7)):

⎡
⎢⎢⎣
1
i
j
k

⎤
⎥⎥⎦

T
⎡
⎢⎢⎢⎣

Wl
r −Wl

i −Wl
j −Wl

k
Wl

i Wl
r −Wl

k Wl
j

Wl
j Wl

k Wl
r −Wl

i
Wl

k −Wl
j Wl

i Wl
r

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

el−1
u,r

el−1
u,i

el−1
u, j

el−1
u,k

⎤
⎥⎥⎥⎦ . (10)

The result of Hamilton product ⊗ betweenWl,Q and el−1,Q
i can be derived similarly.
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3.2.2 Dropout and L2Norm

Dropout drops the units of the neural networks with a certain probability during the training
process, which proves to be an effective way to prevent neural networks from overfitting
[10, 27]. Motivated by the previous work of introducing dropout into graph convolutional
network [1] and GCN-based recommendation models [32], we apply dropout to the user and
item embeddings at each layer l with a certain dropout rate p, which is one of the critical
hyper-parameters to be tuned. Then, we perform L2 Normalization function on them for
training speed and stability. We summarize the dropout and L2 normalization as follows:

el,Qu = L2Norm
(
Dropout(el,Qu )

)
,

el,Qi = L2Norm
(
Dropout(el,Qi )

)
. (11)

3.3 Prediction layer

After the above L layers’ quaternion embedding propagation, dropout and L2 normalization,
we obtain L + 1 representations for each user u and item i , including the user embedding
initialized at quaternion embedding layer, e0,Qu and user representations generated at each
layer during propagation, {e1,Qu , e2,Qu , . . . , eL,Q

u }. And the same for item i , we obtain L + 1
item representations which consist of {e0,Qi , {e1,Qi , e2,Qi , . . . , eL,Q

i }}. Since the output of
different layers expresses different connections, utilizing the representations of all layers
seems like an effective method for GCN-based models. Readout function is the method to
obtain the final node representation, e.g. Max, Sum, Concat, Mean pooling, which are the
most primitive and simple pooling methods.

We concatenate the real and imaginary components of the node embeddings and apply
the pooling methods as follows:

elu = Concat{el,Qu,r , el,Qu,i e
l,Q
u, j , e

l,Q
u,k }, (12)

e∗
u = Readout{elu}Ll=1, (13)

where Readout is the readout function (i.e. Max, Sum, Concat, Mean pooling) applied on the
node embeddings generated at each layer. We further conduct experiments and investigate
the influence of the readout function applied to our model in the ablation study part.

After generating the final user and item embeddings, we predict by the inner product of
user u and item i :

ˆyui = e∗
u
Te∗

i . (14)

3.4 Optimization

We adopt Bayesian Personalized Ranking (BPR) loss [26], which encourages the observed
interactions to achieve higher scores than the unobserved ones. The objective function for
our QGCN model is as follows:

Loss =
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

− ln σ(ŷui − ŷu j ) + λ‖�‖22, (15)
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where σ is the sigmoid function; λ represents the regularization weight, which is L2 reg-

ularization to prevent overfitting; � =
{
{e0,Qu }u∈U , {e0,Qi }i∈I , {Wl,Q}l∈[1,L]

}
denotes all

trainable parameters of QGCN. The mini-batch Adam [11] is adopted to optimize the predic-
tion model and update the model parameters. In particular, for a batch of randomly sampled
triples, their representations can be obtained by the propagation rules, and then the model
parameters are updated by using the gradients of the loss function.

3.5 Complexity analysis

Specifically, R, |V | and |E |, L and d respectively represent the user-item interaction matrix,
the number of nodes and edges, the number of graph convolution layers, and the quaternion
dimension.

3.5.1 Time complexity

The time complexity of our model is mainly in the following three parts, adjacency matrix,
graph convolution, andBPR loss. For the adjacencymatrix, the time complexity isO(|E |) that
we set each element Rui = 1 in user-item interaction matrix R if user u has interacted with
item i . For the graph convolution, the quaternion embedding propagation has computation
complexity O(L|E |d2). For the BPR loss, the time complexity is O(|E |d). Therefore, the
overall time complexity of our model is O(|E | + L|E |d2 + |E |d). As we can see, the layer-
wise propagation rule is the main operation. By deriving the Hamilton product in (9) with
the real-value operation (10), we can conclude that the time complexity of the quaternion
propagation is equal to the normal matrix multiplication in the basic GCN propagation rule
leveraged by previous GCN-based recommendation models.

3.5.2 Space complexity

The space complexity of our model is mainly in the user and item embeddings and the
quaternion transformation matrix at each layer. Therefore, the overall space complexity of
our model isO(|V |d+ Ld2), which is equal to the space complexity of previous GCN-based
recommendation models.

4 Experiments

In this section, we conduct experiments to answer the following research questions:

• RQ1 How does our proposed QGCN model perform compared with the state-of-the-art
baselines?

• RQ2 How can QGCN alleviate the problem of noisy or incomplete graphs?
• RQ3 What is the influence of readout function, quaternion embedding and quaternion
weight matrices on the model performance?

• RQ4 How do the key hyper-parameters, such as dropout rate and regularization affect
the effectiveness of QGCN?
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Table 1 Statistics of the
experimented data

Dataset #Users #Items #Interactions #Density

Yelp2018 31668 38048 1561406 0.00130

Amazon-Book 52643 91599 2984108 0.00062

Kindle-Store 68223 61934 982618 0.00023

4.1 Datasets

To evaluate the effectiveness ofQGCN,we conduct experiments on three benchmark datasets:
Yelp2018 [9], Amazon-Book [9], and Amazon-Kindle-Store [17], which are publicly avail-
able. The first dataset is the 2018 edition Yelp1 released by the Yelp challenge. The last two
datasets are two widely used datasets for product recommendation from Amazon review.2

Following the general dataset settings in previous recommendationmethods [9, 17, 32], we
filter users and items with few interactions to ensure the quality of the datasets. Specifically,
for all the datasets, we use the 10-core settings, which ensure that each user and item have at
least 10 interactions. The detailed statistics of the three datasets are shown in Table 1.

We randomly split each dataset into training, validation, and testing set with a ratio of
80:10:10 for each user. For each observed user-item interaction, we treat it as a positive
instance. Then, we randomly sample one negative item that the user did not consume before
as a negative instance to pair the positive instance.

4.2 Experimental settings

4.2.1 Evaluation metrics

To evaluate the effectiveness of our model on top-K recommendation, we take two evaluation
metrics widely used in previous work: Recall@K and NDCG@K. Here, we set K = 20 by
default, and the average results for all users in the testing set are reported. The specific
definition is as follows:

• Recall@K describes the percentage of user-item rating records included in the final
recommendation list. We denote the recommendation list for a user as RK , and the
corresponding testing set as T . Then, the specific definition of Recall@K is as follows:

Recall@K = |T ∩ RK |/|T |. (16)

• NDCG@K i.e.NormalizedDiscountedCumulativeGainmeasures the quality of ranking,
which emphasizes more on the relevance of the items on the top of the recommendation
list. We denote the relevance of the i-th item in the recommendation list as ri , and the set
of relevant items as R. Then, the specific definition of NDCG@K is:

NDCG@K =
K∑
i=1

ri
log2(i + 1)

/ R∑
i=1

1

log2(i + 1)
, (17)

1 https://www.yelp.com/dataset
2 https://jmcauley.ucsd.edu/data/amazon/
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Table 2 Overall performance comparison over three datasets

Dataset Yelp2018 Amazon-Book Kindle-Store
Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

NeuMF 0.0451 0.0363 0.0258 0.0200 0.0496 0.0206

HOP-Rec 0.0517 0.0428 0.0309 0.0232 0.0796 0.0458

GC-MC 0.0462 0.0379 0.0288 0.0224 0.0793 0.0455

NGCF 0.0579 0.0477 0.0344 0.0263 0.0825 0.0509

LightGCN 0.0649 0.0530 0.0411 0.0315 0.1040 0.0639

QGCN 0.0668 0.0547 0.0489 0.0376 0.1250 0.0788

%Improv. 2.93% 3.21% 18.98% 19.37% 20.19% 23.32%

4.2.2 Baselines

To demonstrate the effectiveness of our proposed QGCN model, we compare QGCN with
the following competitive baseline methods:

• NeuMF [8] is a state-of-the-art neural collaborative filtering model, captures the nonlin-
ear interactions between user and item embeddings with multiple hidden layers.

• HOP-Rec [37] is a state-of-the-art graph-basedmodel, exploits the high-order connectiv-
ity between users and items by performing randomwalks to augment a user’s interactions.

• GC-MC [1] explores the first-order connectivity between users and items by utilizing
only one convolution layer over the user-item bipartite graph.

• NGCF [32] leverages the message-passing mechanism to obtain high-order connectivity
and collaborative signal in the user-item integration graph.

• LightGCN [9] removes two components, feature transformation and nonlinear activation
in NGCF, leading to improvement on training efficiency and generation ability.

4.2.3 Parameter settings

We implement our QGCN model in PyTorch,3 optimize QGCN with Adam [11] with the
default learning rate of 0.0001, and set batch size as 2048 for speed. We apply a grid search
for the only two hyper-parameters: the dropout rate is tuned among {0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8} and the coefficient of L2 normalization in Equation (15) is searched
in {1e−6, 1e−5, . . . , 1e−2}. The embedding parameters are initialized with the Xavier
method [6].

4.3 Performance comparison (RQ1)

Table 2 shows the performance with competing methods. The best results are highlighted in
bold. We summarize the main observations as follows:

• NeuMF, a state-of-the-art neural collaborative filtering model, performs relatively poorly
since it captures the connectivity between user and item embeddings in the embedding
learning process rather than leveraging the high-order user-item interactions.

3 https://pytorch.org
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• Compared with NeuMF, GC-MC utilizes one convolution layer to explore the first-order
connectivity between users and items and improve the performance, demonstrating the
influence of first-order neighbors for representation learning.

• HOP-Rec exploits the high-order connectivity between users and items by performing
random walks to augment a user’s interactions, resulting in better performance than
GC-MC. NGCF performsmuch better over the above baselines. It leverages themessage-
passing mechanism to obtain high-order connectivity and collaborative signal in the
user-item integration graph. LightGCN simplifies the NGCF [32] model, removing the
components of feature transformation and nonlinear activation, leading to improvement
in training efficiency and generation ability.

• QGCN outperforms all the baselines by a large margin over all the datasets. In particular,
compared with the strongest baseline, i.e LightGCN, QGCN gains on average 14.03%
improvement w.r.t. Recall@20 and 15.30% improvement w.r.t. NDCG@20 over all the
datasets. In collaborative filtering, the learned user/item representation getting as close as
possible to its actual representation is necessary for better recommendation performance.
The significant improvements reveal that QGCN can better capture high-order user-item
connectivity and learn better user and item embeddings.

• Specifically, our QGCNmodel gains huge and about 20%, relative performance improve-
ment. We ascribe this to the characteristics of the datasets, sparsity. As the sparsity of
the dataset decreases, the quaternion feature transformation could highlight its contri-
bution to distilling sufficient information from the sparse user-item interaction graphs
and further lead to more significant performance improvement. Aside from the effect of
sparsity, we conclude that the user-item interaction matrix size might matter as well. The
size of the Amazon-Book and Kindle-Store user-item interaction matrix is about four
times that of Yelp2018. Moreover, the observations mentioned above that our QGCN
model gaining huge relative performance improvement on sparse and huge graphs is of
great significance to the practical applications and real recommendation scenarios since
real-world graphs for recommendation are often extremely sparse.

• For more intuitive comparisons, We further plot the training curves of training loss and
testing recall per 10 epochs on Kindle-Store and Amazon-Book with optimal settings
on both LightGCN and our QGCN model in Figure 3, where results on Yelp2018 show
the same trend and are omitted for space. Our QGCN model obtains relatively lower
training loss during the whole training process than that in LightGCN, which indicates
our QGCNmodel can better fit the training data and further obtains better testing results,
which demonstrates our model’s stronger generalization capability.

4.4 Robustness analysis (RQ2)

4.4.1 Random Edges Injection

To investigate the robustness of our QGCN model to noisy graphs, we conduct simulated
experiments to explore the influence of random injection of edges. Specifically, we randomly
connect the unobserved edges in the user-item interaction graphR as noisy edges to construct
a noisy graph for the training process. The noise ratio is set in {5%, 10%, 15%, 20%, 25%}.
By the way, the compared LightGCN model and our QGCN model are trained with the
same constructed noisy graph for a fair comparison. And we evaluate with the original graph
(i.e. 0% edges injection). We further plot Recall@20 and relative drop compared with their
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Figure 3 Training curves of QGCN and LightGCN, which are evaluated by training loss and testing recall per
10 epochs on Kindle-Store and Amazon-Book(results on Yelp2018 show the same trend which are omitted
for space)

original performance of both LightGCNand ourQGCNmodel onKindle-Store andYelp2018
in Figure 4.

We observe that QGCN consistently outperforms LightGCN by a large margin under
different ratios of random edges injection on both Kindle-Store and Yelp2018. Along with
the increase of the noise ratio, the performance of LightGCN decreases accordingly, while
that of our QGCNmodel remains almost unchanged. For example, Recall@20 of LightGCN

Figure 4 Effect of random edges injection. The bar represents Recall@20, while the line represents the
relative performance change compared to the original result
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in the noisy graph with 25% noise ratio of noise injection on Yelp2018 is 0.0568, dropping
12.48% (i.e. -12.48%) compared to the original performance, 0.0649. In contrast to the large
drop percent of LightGCN, the performance of our QGCNmodel under 25% noise ratio even
rises by 0.75% (i.e. +0.75%) compared to that under 0% noise ratio. The sharp decline of the
relative drop of Recall@20 of LightGCN along with the increase of noise ratio reveals that
LightGCN is extremely sensitive to noise, which is consistent with our argument mentioned
before. Compared with the steep decline curve of Recall@20 of LightGCN, the relative
performance change curve of our QGCN model is more steady, which demonstrates the
robustness of our QGCN model to noisy graphs.

4.4.2 Random edges discard

In addition to the characteristic of real-world user-item graphs containing a lot of noise,
they are often incomplete as well. Thus, besides the simulated experiments on exploring the
influence of random injection of edges, we also conduct experiments to explore the influence
of the random discard of edges. Similarly, we construct a corrupted graph by randomly
disconnect the existing edges in the user-item interaction graph R with a drop ratio ranging
in {5%, 10%, 15%, 20%, 25%}.We then train the comparedLightGCNmodel and ourQGCN
model with the corrupted graph and evaluate with the original graph (i.e. 0% edges discard).
The details of Recall@20 and relative drop are shown in Figure 5.

We have similar observations fromFigure 5. Specifically, QGCNconsistently outperforms
LightGCN by a large margin w.r.t different ratios of random edges discard on both Kindle-
Store and Yelp2018. The steep performance decline curve of LightGCN is in sharp contrast
to the steady curve of QGCN, demonstrating the robustness of our QGCNmodel to corrupted
graphs.

The simulated experiments on exploring the influence of random injection and discard of
edges both demonstrate the robustness of our QGCN model. QGCN remains steady in dif-
ferently constructed graphs while the baseline model declines dramatically, which indicates
that changing the structure of the graph by random injection or discard of edges has almost
no influence on the model performance. We ascribe this to the expressive quaternion feature
transformation, distinguishing the contribution of different nodes and effectively capturing
the graph structural features during message propagation. Thus, it can aggregate more useful
information and further lead to better model performance and robustness.

Figure 5 Effect of random edges discard. The bar represents Recall@20, while the line represents the relative
performance change compared to the original result
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Table 3 Performance of our model and its variants

Dataset Yelp2018 Amazon-Book Kindle-Store
Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

QGCN-Q 0.0603 0.0491 0.0369 0.0280 0.0939 0.0576

QGCN-W 0.0660 0.0541 0.0485 0.0370 0.1244 0.0795

QGCN 0.0668 0.0547 0.0489 0.0376 0.1250 0.0788

4.5 Ablation study (RQ3)

4.5.1 Influence of components

We perform ablation studies to explore the contribution of different components to the model
performance by comparing QGCN with the following two variants:

• QGCN-Q: In this variant, we embed all users and items into the real-value space instead
of the Quaternion space and maintain the component of feature transformation.

• QGCN-W: This variant removes the quaternion transformation matrices duringmessage
propagation.

Table 3 shows the results of the two variants of QGCN, and the best results are highlighted
in bold. QGCN performs much better than QGCN-Q, which shows the significant influence
of modeling in the Quaternion space. And QGCN outperforms QGCN-W in most cases,
indicating the effectiveness of quaternion transformation matrices. The comparison between
QGCN and its two variants demonstrates that the design of our proposed QGCN model is
reasonable and effective.

4.5.2 Influence of Readout Function

Since different pooling methods generate different final user and item embeddings, we con-
duct experiments and investigate the influence of the readout function applied to our model.
Table 4 shows the results under different readout functions, and the best results are highlighted
in bold. We can observe that Mean pooling performs relatively better than the other three
readout functions, Max, Sum, Concat pooling. We think Mean pooling method could not
only maintain the information of nodes but also uniform the user and items representations
generated at each layer, leading to more powerful generalization capability.

Table 4 Influence of readout function

Dataset Yelp2018 Amazon-Book Kindle-Store
Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Max 0.0501 0.0387 0.0412 0.0312 0.1033 0.0655

Sum 0.0429 0.0541 0.0467 0.0363 0.1206 0.0771

Concat 0.0572 0.0491 0.0475 0.0364 0.1222 0.0776

Mean 0.0668 0.0547 0.0489 0.0376 0.1250 0.0788
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4.6 Hyper-parameter study (RQ4)

4.6.1 Effect of dropout rate

Dropout drops the units of the neural networks with a certain probability during the training
process, which proves to be an effective way to prevent neural networks from overfitting [10,
27]. Motivated by the previous work applying dropout in graph convolutional network [1]
and GCN-based recommendation models [32], we investigate the influence of the dropout
rate p ranging from 0.0 to 0.8 on our proposed QGCN model.

Figure 6 displays the experimental results, including Recall@20 and NDCG@20, under
different dropout rates on Yelp2018 and Amazon-Book. Specifically, the dropout rate set as
0.1 leads to the best performance. Besides, the performance degrades generally after the peak
in that too many neurons lost leads to underfitting and limits the expression of our model.
These observations are consistent with the findings of prior effort [32] and demonstrate the
effectiveness of proper dropout rate settings in our model.

4.6.2 Effect of regularization

Regularization is an effective strategy to prevent overfitting, so that we tune the coefficient
of L2 normalization λ among {1e−6, 1e−5, . . . , 1e−2} to investigate the influence of the
regularization on our proposed model.

Figure 7 shows the performance of our QGCN model under different regularization coef-
ficients λ on Yelp2018 and Amazon-Book. As shown in Figure 7, too small or too large
regularization coefficient result in relatively poor performance. Results are relatively steady
when the regularization coefficient λ is set between 1e−5 and 1e−4, while the performance
significantly decrease when λ is set larger than 1e−4 or smaller than 1e−5. This indicates that
a medium regularization coefficient is more suitable for our model. Specifically, the optimal
regularization coefficient for Yelp2018, Amazon-Book, and Kindle-Store is 1e−4, 1e−5 and
1e−4 respectively.

Figure 6 Effect of dropout rate
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Figure 7 Effect of regularization

5 Related work

5.1 Quaternion-based applications

Quaternion space is a hyper-complex vector space, where each quaternion is a hyper-complex
number consisting of one real and three imaginary components. Owing to Hamilton prod-
uct, which is the multiplication of quaternions, the interactions between real and imaginary
components of two quaternions are enhanced, leading to highly expressive computations.
In addition, if any slight change happens in the input quaternion, Hamilton product will
generate an entirely different output [25] and further influence the final performance. The
Quaternion space has been successfully employed in various fields. It has been introduced
into various fields for various tasks and achieved remarkable performance improvement
than the basic real-valued model. For example, [5] provides the architecture components
needed to build deep quaternion networks in the Quaternion space for classification tasks.
Zhu et al. [43] re-designs the basic modules like convolution layers and fully-connected
layers in the Quaternion space and proposed quaternion-based convolutional neural net-
work (CNN) for image classification and denoising tasks. Parcollet et al. [24] applies the
Quaternion space into recurrent neural network (RNN) and long-short term memory neu-
ral network (LSTM) for the task of automatic speech recognition. [23] integrates multiple
feature views in quaternion-valued CNN to be used for sequence-to-sequence mapping
with the CTC model. Parcollet et al. [22] investigates quaternion-based CNN and RNN for
speech recognition. Tay et al. [28] proposes quaternion-based attention models and Trans-
former for NLP tasks. Moreover, there has been some work introducing the Quaternion
space into graph representation learning to obtain more expressive graph-level representation
[19, 20, 38]. For example, [19] generalizes graph neural networkswithin theQuaternion space
for graph classification, node classification, and text classification.Nguyen et al. [20] Zhang et
al. [38] introduce more expressive quaternion representations to model entities and relations
for knowledge graph embeddings for knowledge graph completion.

5.2 Collaborative filtering and graph-based recommendation

Collaborative Filtering (CF) based models [8, 14, 34, 36] have shown great performance in
learning user and item representations. For example, Matrix Factorization [13] represents
users and items with embedding vectors and models the user-item interactions with the inner
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product. Neural collaborative filtering [8] utilizes nonlinear neural networks with multiple
hidden layers to capture the user-item interactions for better user and item representations.
Another research line exploits the user-item interaction graph for recommendation. Prior
efforts like ItemRank [7], adopt label propagation on the graph and encourage connected
nodes to have similar labels. HOP-Rec [37] firstly performs random walks to augment a
user’s interactions to exploit the connectivity information.

Recently, Graph Neural Networks(GNN), such as GCN [12] and GAT [29], have shown
promising performance in various fields. Moreover, there are approaches that focus on
addressing some of the flaws of GNN. API-GNN [40] reduces the disturbance of neigh-
borhood aggregationand. BGN [31] improves the efficiency and scalability of GNN by a
binarized graph neural network. Specifically, GCN-based recommendation models have
surged to learn better user and item representations in user-item bipartite graphs. For exam-
ple,GC-MC [1] explores the first-order connectivity between users and items by utilizing only
one convolution layer in the user-item bipartite graph. NGCF [32] leverages the message-
passing mechanism to obtain high-order connectivity and collaborative signal between users
and items. LightGCN [9] simplifies the NGCF [32] model, removing the components of
feature transformation and nonlinear activation, improving training efficiency and genera-
tion ability. Apart from these GCN-based recommdation models , some methods leverage
self-supervised learning for additional information [33, 35], and some research on the het-
erogeneous graph, opposite of the homogeneous graph [21].

6 Conclusion

In this work, we argued the limitation of the unreasonable operation of removing the fea-
ture transformation and modeling users and items in the Euclidean space and performed
empirical studies to justify this argument. We moved beyond the Euclidean space, fully
utilized the Quaternion space, a hyper-complex space, and proposed a simple yet effective
Quaternion-based Graph Convolution Network model formed by a Quaternion Embedding
Layer, Quaternion Embedding Propagation Layers, and a Prediction Layer. Extensive experi-
ments on three public benchmark datasets were conducted to evaluate the effectiveness of our
proposed model. Results showed that our model outperforms the state-of-the-art methods by
a large margin. This indicates that it can better learn user and item representations. Besides,
further robustness analysis demonstrated that our QGCN model is more robust to noisy and
incomplete graphs and can effectively capture the graph structural features. Moreover, the
specific performance comparison showed that our QGCN model gains huge performance
improvement on sparse graphs, which is of great significance to the practical applications
and real recommendation scenarios.

This work represents an attempt to explore the Quaternion space to model users and items
and the effectiveness of quaternion transformation in the Quaternion-based GCN collabora-
tive filtering methods. We believe the insights in this study are enlightening for introducing
the Quaternion space into other recommendation scenarios and digging into the nature and
effectiveness of quaternion transformation.
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