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Abstract
Knowledge Graph Entity Typing (KGET) is a subtask of knowledge graph completion,
which aims at inferring missing entity types by utilizing existing type knowledge and triple
knowledge of the knowledge graph. Previous knowledge graph embedding (KGE) algo-
rithms infer entity types through trained entity embeddings. However, for new unseen
entities, KGE models encounter obstacles in inferring their types. In addition, it is also dif-
ficult for KGE models to improve the performance incrementally with the increase of added
data. In this paper, we propose a statistic-based KGET algorithm which aims to take both
performance and incrementality into consideration. The algorithm aggregates the neigh-
borhood information and type co-occurrence information of target entities to infer their
types. Specifically, we first compute the type probability distribution of the target entity in
the semantic context of given fact triple. Then the probability information of fact triples
involved in the target entity is aggregated. In addition to local neighborhood information, we
also consider capturing global type co-occurrence information for target entities to enhance
inference performance. Extensive experiments show that our algorithm outperforms previ-
ous statistics-based KGET algorithms and even some KGE models. Finally, we design an
incremental inference experiment, which verifies the superiority of our algorithm in pre-
dicting the types of new entities, and the experiment also verifies that our algorithm has
excellent incremental property.

Keywords Knowledge graph entity typing · Knowledge graph completion ·
Incremental inference

1 Introduction

Many large-scale Knowledge Graphs (KGs) were built for real-world applications such as
recommendation systems [1] and question answering [2]. High-quality KGs can provide
powerful support for many AI tasks [3]. For example, ERNIE 3.0 [4], which recently thrived
on NLP tasks, claims that the model absorbed a well-designed knowledge graph with over
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Figure 1 An example of knowledge graph

50 million entities. However, KGs usually suffer from incompleteness and miss important
facts, jeopardizing their usefulness in downstream tasks. Therefore, it is critical to develop
automatic methods of knowledge graph completion.

A KG is usually composed of a large number of fact triples (subject, predicate, object)
(denoted (s, p, o)). The subject and object are entities, and the predicate is the relation-
ship that connects the two entities. There is a special class of triples, whose predicates are
rdf:type, use the object to indicate the entity type of the subject. We refer to these triples
as type knowledge, and the remaining as triple knowledge. Figure 1 shows an example of a
knowledge graph centered on an Indian film actor Raza Murad. Knowledge Graph Entity
Typing (KGET) aims at inferring missing entity types by utilizing existing type knowledge
and triple knowledge of the knowledge graph.

Previous KGE-based models achieved many achievements on KGET. They embed entity
types and complete entity types through link prediction. High-quality type inference results
can be obtained by relying on the entity embeddings trained by the KGE model. How-
ever, real-world knowledge graphs are often constantly updated. Take 7-lore Knowledge
Graph1 as an example, the knowledge graph adds millions of entities a day. The KGE mod-
els does not have the entity information of these new additions during the training process,
which causes KGE models to encounter many difficulties in the inference stage. [5] pro-
poses the inductive concept to elaborate on this challenge. Although, some recent studies
begin to focus on Out-of-Knowledge-Base Embedding [6–8], there is few KGET algorithm
for new entities. On the other hand, the current KGE-based models cannot take advantage
of incoming new data to improve performance, i.e. these algorithms are not incremen-
tal. Statistics-based algorithms have natural advantages in increment and efficiency, but
the performance of existing statistics-based KGET algorithms is far inferior to KGE-based
models.

In this paper, we aim to design a statistics-based KGET algorithm that takes into account
both performance and incrementality. Specifically, for a target entity, we leverage its neigh-
borhood information and its existing type information for inference. Inspired by [9], we
assume that the relations connecting entities have semantic invariant properties from entity

1http://www.openkg.cn/dataset/7lore
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to type. As shown in Figure 1, for the fact triple (Jodhaa Akbar, starring, Raza Murad), even
if the subject and object are replaced with their corresponding types, the derived type triple
(film, starring, film actor) still holds. For neighborhood information, it could be observed
that Raza Murad is connected with the neighbor entity Jodhaa Akbar by the relation star-
ring. If we know that entity Jodhaa Akbar is a film and has type film, we can infer the type
triple (film, starring, film actor) and further infer that entity Raza Murad has type film actor.
For type information, multiple different types often co-occur in an entity, such as film actor
and person. If we know that Raza Murad already has the type of film actor, we can infer
that Raza Murad has the type person by using co-occurrence information. We named the
algorithm PIANO, which means Performant and Incremental algorithm with Aggregating
Neighborhood and co-Occurrence information for KGET. PIANO consists of two stages:
data statistics stage and information aggregation stage.

Data statistics stage All type triples derived from fact triples will be counted. Intuitively,
type triples with more occurrences are more likely to be considered facts. However, such
intuitions may suffer from noise and imbalance in knowledge graphs. Therefore, we treat
type-predicate pairs as queries and type triples as answers, and use the conditional proba-
bility of type triples under query pairs to measure the confidence of type triples. It is worth
mentioning, we use a neat trick to add a self-loop with relationship co-occurrence to each
entity for statistical type co-occurrence information. The entire data statistics process only
needs to traverse the knowledge graph and its export type triples once.

Information aggregation stage At this stage, we consider two issues: i) How to aggregate
the information of multiple type triples derived from a fact triple. ii) How to aggregate the
information of multiple fact triples associated with a target entity. For these two issues, we
adopt the strategy of mean and sum respectively. Finally, we get a score for the entity-type
pair, which reflects the confidence that the entity has a type, the higher the score, the more
likely the entity is to have the type.

Our contributions are as follows:

• We design a statistics-based algorithm for KGET named PIANO, which maintains both
high performance and incremental property.

• We conduct KGET experiments on multiple datasets, and the experimental results
show that PIANO far outperforms most previous statistics-based algorithms, and even
outperforms KGE-based models.

• We design a specific incremental experiment to infer types of new entities and to verify
the incremental properties of algorithms.

2 Related work

Statistics-based Algorithm In the semantic web community, there has been research
related to KGET for a long time [10], which is called schema discovery. Schema discovery
can be roughly classified into three categories: implicit schema discovery, explicit schema
enrichment, and structural pattern discovery. Explicit schema enrichment into which KGET
can be categorized. Among them SDType (Statistical Distribution of Types) [11] is the
research most relevant to our work. SDType treats the predicates associated with the target
entity as features, and tries to avoid propagation of errors of irrelevant instances through
a weighted voting method. Its essential idea is type-constrained [12, 13], which means the
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scope of entity type is constrained by predicate associated with the entity. For example, the
types of subject and object entities connected by the MarriedTo predicate can usually only
be person or subtypes of person. Fang et al. [14] is similar to SDType as it is based on the
statistical distribution of types. The difference is that it infers the type based on the category
information. However, not all knowledge graphs have category information available.

KGE-based Algorithm In the field of knowledge graph embedding, many works [15–19]
have been proposed to embed entities and predicates into low-dimensional semantic spaces
for downstream tasks. However, most of these models are used in the knowledge graph
link prediction task, while ignoring the KGET task. Until recently, these KGE models
were first applied to the KGET task by Moon et al. [20]. They tried two paradigms: One
paradigm treats rdf:type triples as fact triples and directly uses the KGE models for type
inference. Another paradigm is to also embed entity types into a low-dimensional semantic
space, and perform type inference through the distance between entity embeddings and type
embeddings. Thereafter, Zhao et al. [9] proposed the connecting embeddings model (Con-
nectE) and introduced the concepts of global type knowledge and local triple knowledge.
The concept of global type knowledge considers entities with the same type to be close
in the embedding space. The concept of local triple knowledge believes that the predicate
has semantic invariance. That is, when the subject and object entities in the fact triple are
replaced with the corresponding types, the derived type triple still holds. In addition, Pan et
al. proposed CET [21] model, which utilizes the neighbor information in an independent-
based mechanism and aggregated-based mechanism for type inference. Recently, several
new KGE-based KGET models were proposed continuously, such as ConnectE-MRGAT
[22], AttEt [23] and RACE2T [24].

In this paper, we propose a new statistics-based KGET algorithm PIANO. Different from
SDType, PIANO utilizes not only the predicates associated with the target entity, but also the
type information of neighbor entities for type inference. Incorporating the idea of aggregat-
ing neighborhood information based on representation learning, PIANO is able to possess
satisfactory performance while maintaining the incremental property.

3 Methodology

To facilitate reading, we first define some notions. A KG G usually contains fact triples
(s, p, o) ∈ G, where entities s, o ∈ E, and predicates p ∈ P . In KGET tasks, an entity
e usually has some existing type declarations te ∈ T . We use T (e) to represent the set of
known type instances of entity e. Given a fact triple (s, p, o), based on the existing type
declarations of its subject entity and object entity, we can derive a large number of type
triples (ts , p, to). All of the type triples derived from fact triples in G form a Type Graph
(TG), denoted as Gt . Note that a type triple may appear in Gt repeatedly. For a given
predicate p, we define the set of all subject types associated with p in Gt as domain, and
the set of all object types as range, denoted as D(p) and R(p) respectively.

3.1 SDType++

Our goal is to be able to compute an entity-type matrix M ∈ R
|E|×|T |, where element Mij

represents the confidence score that the ith entity has the j th type. For a predicate p, if
its domain frequently contains a type t, we believe that the subject s associated with the
predicate p has a high probability of having that type. The intuition holds for its range.
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To reflect this intuition, we first calculate the predicate-type incidence matrices
Ms

p2t ,M
o
p2t ∈ R

|P |×|T |. The elements in the matrices represent the times that the predicate
and the subject(or the object) type appear together in Gt . For example, Ms

p2t [p][ts ] indi-
cates the number of (ts , p, −) in Gt . As we described in Figure 1, an entity in the KG may
be associated with more than one fact triple. To this end, we calculate the entity-predicate
incidence matrices Ms

e2p,Mo
e2p ∈ R

|E|×|P |. Ms
e2p[e][p] indicates the number of (e, p,−)

in G. We refer to the algorithm as SDType++. Different from SDType [11], SDType++ not
only considers what kind of predicate is associated with the target entity, but also considers
that the target entity may be associated with the same predicate multiple times.

The statistical process of the previous matrix can be regarded as the data statistics stage
of SDType++. Through matrix operations we can naturally aggregate all statistics and obtain
entity-type matrix M:

M = Ms
e2pMs

p2t + Mo
e2pMo

p2t (1)

3.2 PIANO

However, there are some problems with the intuition in SDType++. As shown in Table 1,
no matter what the target entity and its neighbor entities are, as long as the entity is located
in the object position of the predicate starring, the entity will be preferentially predicted
to have type tv actor. Recalling Figure 1, we find that entity Raza Murad should be more
likely to have type film actor than have tv actor. To compensate for this flaw, we fuse the
information of neighbor entities of the target entity.

Data statistics stage First, we count the number of each type triple in the Gt . Consider-
ing data sparsity, we use a dictionary A to store these information. That is, A[(ts , p, to)]
represents the number of (ts , p, to) in Gt . In the process of calculating A, we can also
calculate Ms

p2t ,M
o
p2t above mentioned. In order to facilitate calculations and save com-

puting resources, we use dictionaries Qo and Qs to store Ms
p2t and Mo

p2t , respectively.
That is, Qo[(ts , p)] = Ms

p2t [p][ts] and Qs[(p, to)] = Mo
p2t [p][to]. Second, we convert the

above statistics into probability information. For each type triple (ts , p, to), we calculate the
conditional probability under the query of (ts , p) and the query of (p, to):

p((ts, p, to)|(ts , p)) = A[(ts , p, to)]/Qo[(ts , p)] (2)

p((ts, p, to)|(p, to)) = A[(ts , p, to)]/Qs[(p, to)] (3)

For a triple (s, p, o), the value p((ts, p, to)|(ts , p)) indicates the probability that o has the
type to under the query (ts , p). The motivation for computing conditional probabilities is
that the types of neighbor entities can constrain the types of target entities. For example,
from common sense, we think that the p((film, starring, film actor)| (film, starring)) should

Table 1 Top 6 types of range
of predicate starring Type Statistics

tv actor 7863

person 7841

film actor 7665

award nominee 7258

entity in film 6366

influence node 6326
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be greater than p((f ilm, starring, tvactor)| (f ilm, starring)).That is, the probability of
a film starring a film actor should be greater than the probability of a film starring a tv actor.

Information aggregation stage We first consider how to aggregate the information of
multiple type triples derived from a fact triple. For the target entity, the information returned
by each type triple is probabilistic information and the numbers of type triples derived by
fact triples are different. For example, in Figure 1, Indian has 66 known type declarations,
while Jodhaa Akbar has only 7. We use the averaging operation to keep the numerical value
of the probability information between 0 and 1. Based on our common sense, we believe
that Jodhaa Akbar is more helpful for predicting that Raza Murad have type film actor.
Keeping numerical information in probabilistic form better reflects this intuition. In the sec-
ond step, we consider how to aggregate all neighborhood information of the target entity
e. For a target entity e, we define its subject neighborhood as Ns = {(s, p)|(s, p, e) ∈ G}
and its object neighborhood as No = {(p, o)|(e, p, o) ∈ G}. Similar to SDType++, the
information aggregated by each fact triple can be regarded as a vote process, so we adopt
a summation strategy when aggregating information in the second step. Our goal is still to
calculate the entity-type matrix M . The element in M is the score of the target entity e on
each type which is calculated as follows:

M[e][t] =
∑

(s,p)∈Ns

1

|T (s)|
∑

ts∈T (s)

p((ts , p, t)|(ts , p))

+
∑

(p,o)∈No

1

|T (o)|
∑

to∈T (o)

p((t, p, to)|(p, to)) (4)

where |T (e)| represents the number of known type declaration of the entity e. 1/|T (e)| is
the average factor.

Type co-occurrence information Furthermore, we also consider the global type co-
occurrence. As mentioned in [20], 10% of entities in the FB15k dataset have the type
/music/artist but do not have the type /people/person in the Freebase. Another perspective
to the problem, most of entities having type /music/artist in the dataset should also have
type /people/person. Formally, if a large amount of entities have type X and type Y simul-
taneously, then for a target entity that has type X, we think that it is likely to have type Y.
We add a predicate co-occurrencefor each entity in KG (as shown in Figure 1) to mine type
co-occurrence information. The triple (e, co-occurrence, e) will derive lots of type triple
(te1, co-occurrence, te2), where te1, te2 ∈ T (e). In order to explore the importance of neigh-
borhood information and types co-occurrence information, we set a weight parameter ω.
Equation (4) is updated as follows:

M[e][t] =
∑

(s,p)∈Ns

Wp

|T (s)|
∑

ts∈T (s)

p((ts , p, t)|(ts , p))

+
∑

(p,o)∈No

Wp

|T (o)|
∑

to∈T (o)

p((t, p, to)|(p, to)) (5)

where Wp = ω if p is co-occurrence, otherwise Wp = 1.
SDType++ is an extension of SDType, extending the qualitative study of entity types

associated with predicate relations in SDType to a quantitative study. Further, PIANO not
only relies on predicate relationship information, but also adds information on neighbouring
entity types as constraints to predict the constraints of the target entity. Overall, PIANO
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is an extension and generalisation of SDType and SDType++, which aims to improve the
performance of prediction while retaining the efficiency of the statistical-based approach.

3.3 Complexity analysis

The algorithms SDType++ and PIANO both consist data statistics stage and information
aggregate stage, we will analyze the time complexity of these two stages separately.

Data statistics stage Obviously, it only needs to traverse Gt once to get the required statis-
tics. Therefore, the time complexity of the data statistics stage is O(|Gt |). Extremely, |Gt |
may be |T |2 × |G|. It is worth to discuss whether there will be a quadratic explosion in
the number of type triples in Gt . To eliminate this doubt, Figure 2 show the distribution of
existing types number of entities in FB15kET and YAGO43kET. It can be clearly seen that
the maximum number of types in the two datasets is about 100, and the number of types of
most entities is below 20. This phenomenon is in line with the law of the real world, that is,
a large number of entities can be classified with a few type catalogs. We denote the average
types of all entities as α, α � |T |. Hence, the time complexity of the data statistics stage is
O(α2 × |G|).

Information aggregate stage For each entity, it needs to traverse all associated fact triples
in the process of aggregating its neighborhood information. Furthermore, every time the fact
triples are traversed, all possible types of the target entity need to be queried. Combined with
the phenomenon in Figure 2, the time complexity of the type inference stage is O(|G| ×
|T |×α). Note that there is |G| � |T | for the knowledge graph of the real world. Let’s focus
on the time complexity of the SDType++ algorithm. The SDType++ algorithm simplifies
the process of aggregating neighborhood information into a matrix multiplication operation.
According to the dimensions of the matrices, the time complexity of the SDType++ at this

Figure 2 Distribution of types in FB15kET and YAGO43kET
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stage can be calculated as O(|E| × |R| × |T |). Although it seems that the complexity has
increased (due to sparseness, usually, |E| × |R| > |G|), the SDType++ algorithm is faster
in actual calculations benefiting from mature matrix calculation tools.

In view of the fact that the value of α is usually very small, type inference stage is
the main time cost of the two algorithms. In summary, we can deduce that the total time
complexity of the SDType++ algorithm is O(|E|× |R|× |T |) and the total time complexity
of the PIANO is O(|G| × |T | × α).

4 Experiments

4.1 Datasets

For evaluation, we use two real-world datasets widely used in KGE literature which contain
thousands of entity types. Each dataset contains a large number of fact triples (s, p, o) and
type pairs (e, te), and is divided into training set, validation set and test set. Considering
the difference between statistics-based algorithms and the KGE-based models, we only use
the training sets as the prior knowledge for fairness, and use the validation set and the test
set to evaluate the models or algorithm. We did not follow datasets that are widely used in
the semantic web community, such as DBpedia and Histmunic [25]. Because these datasets
contain relatively few types, it is not conducive to the evaluation of the KGET task. Table 2
shows the statistics of used datasets. The introduction of datasets is as follows:

FB15kET [20] is a subset of Freebase [26] which is a large fraction of content describing
facts about movies, actors, awards, sports, and sport teams.

YAGO43kET [20] is a subset of YAGO [27] whose triples deal with descriptive attributes
of people, such as citizenship, gender, and profession.

4.2 Knowledge graph entity typing task

This task aims to complete the entity-type pairs (e, te) when the types of the entity are
missing.

Protocol We use the same experimental protocol as [9] and [20] described. For each entity-
type pair (e, te) in the test set, experiment uses all type instances in T for replacement and
obtains candidate pairs set C = {(e, t ′e)|t ′e ∈ T }. The scores of all pairs are then calculated

Table 2 Statistics of used
datasets Dataset FB15kET YAGO43kET

#Entity 14,951 42,335

#Predicate 1,345 37

#Type 3,851 45,182

#Train.triples 483,142 331,687

#Valid.triples 50,000 29,599

#Test.triples 59,071 29,593

#Train.tuples 136,618 375,853

#Valid.tuples 15,749 42,739

#Test.tuples 15,780 42,750
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by energy function. Rank C according to the scores and get the ranking of (e, te). It looks
like link prediction task. Finally, according to the ranking of correct pairs in the test set,
we calculate the mean reciprocal rank (MRR) and the proportion of correct pairs ranked
in the top n (H@n). Different from the experimental protocol in the previous literature,
PIANO directly calculates the entity-type matrixM . The elements in theM are the scores of
entity-type pairs, so we only need to sort the type list of each entity without replacing type
instances. Considering that some pairs in C may be the other correct pairs in the training or
validation set, the ranking obtained may be unreasonable. Such the setting is called ‘Raw’
in [15]. The setting to filter other all correct pairs before ranking is called ‘Filter’. We only
report the experimental results with ‘Filter’ setting in this paper.

MRR = 1

|T est |
|T est |∑

i=1

1

ranki

(6)

H@n = 1

|T est |
|T est |∑

i=1

xi (7)

where |T est | represents the number of entity-type pairs in the test set, ranki is the ranking
of the ith true entity-type pair, and xi = 1 if ranki ≤ n, otherwise xi = 0.

Parameter setting PIANO has only one parameter ω to adjust the weight of neighborhood
information and global types co-occurrence information. We search for ω in the range of
{0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000} and select ω based on the H@10 of the validation
set. Finally, the optimal ω is 30 for FB15kET, and 300 for YAGO43kET. Figure 3 shows the
values of H@10 is taken for different values of ω on FB15kET and YAGO43kET.

Experimental results Table 3 shows evaluation of different models on FB15kET and
YAGO43kET. The KGE-based models and the statistics-based algorithms are distinguished
by a horizontal line, the upper part is the results based on the KGEmodels, and the lower part
is the results of the statistics-based algorithms. For statistics-based algorithms, the improved
SDType++ significantly outperforms SDType. This suggests that it is necessary to consider
that the target entity may be associated with the same predicate multiple times. Remark-
ably, among the statistics-based algorithms, PIANO achieves the best results. This indicates
that using the neighbor entity type information can effectively help the PIANO algorithm to
perform type inference on the target entity.

Figure 3 Line chart of H@10 for different values of ω in different datasets
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Table 3 Entity type prediction results

Dataset FB15kET YAGO43kET

METRICS MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

KGE-based RESCAL [17] 0.190 0.097 0.196 0.376 0.080 0.042 0.083 0.153

HOLE [16] 0.220 0.133 0.234 0.382 0.160 0.090 0.173 0.293

TransE [15] 0.450 0.315 0.515 0.739 0.210 0.126 0.232 0.389

ETE [20] 0.500 0.385 0.553 0.719 0.230 0.137 0.263 0.422

ConnectE [9] 0.590 0.496 0.643 0.799 0.280 0.160 0.309 0.479

ConnectE-MRGAT [22] 0.630 0.562 0.662 0.804 0.320 0.243 0.343 0.482

AttEt [23] 0.620 0.517 0.677 0.821 0.350 0.244 0.413 0.565

CET [21] 0.697 0.613 0.745 0.856 0.503 0.398 0.567 0.696

Stastistical-based SDType [11] 0.096 0.029 0.079 0.221 0.003 0.0006 0.002 0.005

SDType++(ours) 0.496 0.408 0.537 0.682 0.114 0.087 0.114 0.158

PIANO(ours) 0.568 0.471 0.615 0.764 0.315 0.238 0.337 0.464

Evaluation of different models/algorithms on FB15kET and YAGO43kET. The bold values represent the best
results in KGE-based models and stastistical-based models, respectively

Compared to KGE-based models, the PIANO algorithm outperforms most models. How-
ever, there is still a significant gap with few KGE-based models, especially CET. CET
achieves the best results on all evaluation metrics on both datasets. We think there may be
two reasons: i) CET also adopts the idea of aggregating neighborhood information, which
shows that neighborhood information can help infer the type of target entity. ii) The KGE-
based model maps entities and types into the semantic space and is able to better capture
the semantic associations between entities and types. Unlike KGE-based approaches that
seek higher prediction accuracy, PIANO is motivated from a practical point of view that
in addition to seeking higher prediction accuracy, maintaining higher efficiency and sus-
taining incremental properties is more meaningful for a continuously updated knowledge
graph. The experimental results show that the FB15kET results are better than those on the
YAGO43kET. The difference between the two datasets leads to the difference in the experi-
mental results. Compared with FB15kET, YAGO43kET contains more kinds of entity types
and entities, but fewer kinds of predicates, i.e. YAGO43kET is more sparse than FB15kET,
which makes the YAGO43kET dataset more challenging for the KGET task.

Ablation experiment and parameter sensitivity PIANO has only one parameter of ω.
We attempt to explore the influence of neighborhood information and global types co-
occurrence information of the PIANO. We compare the results of using the neighborhood
information, using the co-occurrence information of global types, and the optimal parame-
ter ω in Table 4, respectively. It can be seen that the PIANO with optimal ω achieves best
results on both datasets.

We further analyse the sensitivity of parameter ω in PIANO based on the H@10 of
the validation set in different datasets in Figure 3. In essence, the larger the value of ω,
the more important the role of type co-occurrence information for PIANO. For FB15kET,
the performance of PIANO increases with the increase of ω at first, and then decreases
with the increase of ω value after reaching the optimal performance. For YAGO43kET, the
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Table 4 Results of ablation experiment

FB15kET YAGO43kET

MRR H@10 MRR H@10

Neighbor information only 0.569 0.761 0.254 0.398

Type co-occurrence only 0.520 0.740 0.310 0.461

PIANO 0.569 0.764 0.315 0.464

The bold values represent the best results

performance of PIANO improves with the increase of the ω value, but eventually tends to
be stable.

Combined with the analysis in Table 4 and Figure 3, we argue that the PIANO algo-
rithm relies more on type co-occurrence information on the dataset YAGO43kET where
the neighborhood information is more sparse. In contrast, on the dataset FB15kET with
richer neighborhood information, excessive reliance on type co-occurrence information
will degrade the performance of the algorithm. Neighborhood information and type co-
occurrence information can complement each other to further improve the performance of
the algorithm.

Case analysis Since PIANO uses statistics to infer types, the algorithm is highly inter-
pretable. Table 5 shows the details in Figure 1 of inferring the types of Raza Murad relying
on fact triple (Jodhaa Akbar, starring, Raza Murad) and global statistics. Each element in
the table represents the calculated conditional probability (the number in parentheses indi-
cates the predicted ‘Raw’ ranking by corresponding type triple). The last line averages the
calculated conditional probabilities of all type triples derived from the fact triple. As we
expected, PIANO lowered the predicted ranking of tv actor to the 4 from 1 and raised the
predicted ranking of film actor ranking from 3 to 2. Compared with Table 1, the ranking
results are more reasonable and more interpretable. We also show the prediction details of
the type in the test set influence node and the type entity in film which is correct but does
not exist in dataset.

Further, Table 6 shows the detail of aggregating neighborhood information of Figure 1.
It can be found that almost all neighborhood information provides person information. As
we expected, the film Jodhaa Akbar provides the most information for film actor. Unex-
pectedly, relying on nationality relations can also achieve close prediction results. We argue
there may be bias issues in the dataset, which may lead a coarse-grained predictor can also
achieve a not bad results.

4.3 Incremental inference experiment

In the real world, the KGs are not only large-scale, but also constantly dynamically updated.
It is very likely that a large number of new entities that have never existed in the knowledge
graph will be linked into the knowledge graph. How to predict the types of these new entities
has become a question that remains to be explored.

When adding a new entity, the embedding-based models encounters a great obstacle
to predicting type instances of the entity since they never trained the embedding of the
new entity. In addition, the embedding-based model training process is often very time-
consuming. Therefore, it is unrealistic to retrain the model once adding a new entity. In the
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Table 5 The details of inferring the types of Raza Murad by the triple (Jodhaa Akbar, starring, Raza Murad)
in Figure 1

Types of neighbor entity Types of target entity

Types in dataset Types not in dataset

Person Award
nominee

Film
actor

Incluence
node

Tv actor Entity in
film

Noinated work 0.054(2) 0.050(4) 0.053(3) 0.044(6) 0.054(1) 0.044(5)

Bollywood film 0.095(1) 0.082(4) 0.089(2) 0.082(3) 0.072(6) 0.058(7)

Film fare awards 0.097(1) 0.085(3) 0.091(2) 0.082(4) 0.070(6) 0.060(7)

Film 0.054(2) 0.050(4) 0.053(3) 0.044(5) 0.054(1) 0.044(6)

Netflix title 0.054(2) 0.050(4) 0.053(3) 0.044(6) 0.054(1) 0.044(5)

Topic 0.089(2) 0.085(3) 0.091(1) 0.071(4) 0.071(5) 0.062(7)

Winning work 0.054(2) 0.051(4) 0.053(3) 0.044(7) 0.054(1) 0.045(5)

Average 0.071(1) 0.065(3) 0.069(2) 0.058(7) 0.061(5) 0.051(6)

same scenario, PIANO could infer types of the new entity based on the existing statistical
information and the entity-relation pairs connected with the new entity. If the degree of the
new entity is d, then the complexity of this process is O(d). Next, we will simulate real
scenes to predict the types of these entities newly linked into the knowledge graph.

Protocol Suppose there is an existing KG, and now a new entity needs to be linked into
the KG through some relations. Because it is a new entity, we know nothing about it.
That is, we don’t have its embedding and any types. Therefore, it is challenging to pre-
dict its type instances. We implement incremental inference experiment on FB15kET and
YAGO43kET. In order to simulate such real scenes, we make a few changes to datasets. We
use FB15kET and FB15k as an example to illustrate the transformation process, and the
same on YAGO43k and YAGO43kET.

First, for all entities having types in the test set of FB15kET, we move all of their other
entity-type pairs from the training set and the validation set to the test set. Analogously, for
all entities having types in the modified validation set, we move the entity-type pairs from
the training set to the validation set. We call the modified dataset FB15kET-I. In particular,

Table 6 The details of inferring the types of Raza Murad by the information of the neighborhood in Figure 1

Query of neighborhood Types of target entity

Types in dataset Types not in dataset

Person Award
nominee

Film
actor

Incluence
node

Tv actor Entity in
film

(Jodhaa Akbar,starring,?) 0.071(1) 0.065(3) 0.069(2) 0.058(7) 0.061(5) 0.051(6)

(?,performance,Jodhaa Akbar) 0.072(1) 0.067(3) 0.070(2) 0.064(4) 0.062(5) 0.048(7)

(?,nationality, Indian) 0.075(1) 0.057(3) 0.062(2) 0.047(5) 0.041(6) 0.037(7)

(?,profession, actor) 0.055(1) 0.048(3) 0.050(2) 0.036(7) 0.046(4) 0.039(6)

Sum 0.273(1) 0.236(3) 0.251(2) 0.205(5) 0.210(4) 0.175(7)
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Table 7 Statistics of datasets
after transformation Dataset FB15kET-I YAGO43kET-I

#Entity 14,951 42,335

#Predicate 1,345 37

#Type 3,851 45,405

#prior.triples 23,440 16,263

#expa.triples 37,070 25,690

#eval.triples 136,839 113,692

#prior.tuples 17,829 49,762

#expa.tuples 24,356 52,218

#eval.tuples 118,231 330,615

we refer to the modified training set, validation set, and test set as the prior set, expansion
set, and evaluation set, respectively.

Second, for each fact triple in training set of FB15k, we consider the following three
cases according to its head entity and tail entity: (1) both the two entities are in the prior
set of FB15kET-I; (2) one entity is in the prior set of FB15kET-I, and the other one is in
the expansion set; (3) one entity is in the prior set of FB15kET-I, and the other one is in the
evaluation set. The prior set, expansion set, and evaluation set of FB15k-I are composed of
fact triples that line with the (1), (2), and (3), respectively.

Finally, we remove all entities, which are not in FB15k-I, and their related entity-type
pairs of FB15kET-I. After processing, we use the prior set of FB15k-I and FB15kET-I to
calculate prior statistical information, use the expansion set to simulate the ever-increasing
data, and use the evaluation set to evaluate the experimental results. It is ensured that the
entities in the expansion set and evaluation set of FB15kET-I are completely unknown
before inference.

Table 7 shows the statistics of datasets after transformation.

Infer types for New Entities As a comparison, we design a process for ConnectE [9] and
CET [21]to infer types of new entity. ConnectE utilizes TransE for training on fact triples to
obtain entity and predicate embeddings. In order to better fit the ConnectE, we use the idea
of TransE [15], i.e. h+r ≈ t, to obtain the embedding of new entities. Specifically, we utilize
all the fact triples connected by the target entity and TransE to obtain a series of generated
embeddings. Average pooling of these generated entity embeddings is performed to obtain
embeddings for new entities. With these embeddings of new entities, ConnectE can predict
their types. Since CET includes a computational process utilizing neighborhood informa-
tion, we utilize the N2T mechanism and Agg2T mechanism [21]in CET to directly perform
type inference on the target entity. We also report the results of SDType and SDType++
predicting new entity types. For PIANO, we aggregate the neighborhood information of the
new entities to implement the inference process.

Experimental results The experimental results under the new experimental protocol are
shown in Table 8. In such a real scene, the performance of all methods are greatly reduced. It
shows that inferring types for new entities is a challenging task. Through comparison, it can
be found that the performance of PIANO is more stable, and the best results are obtained
under the new experimental protocol. It is worth noting that the performance of CET under

2465World Wide Web (2023) 26:2453–2470



Table 8 Results of inferring types of new entities

Dataset FB15kET-I YAGO43kET-I

Metrics MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

ConnectE 0.39 0.288 0.425 0.605 0.075 0.054 0.080 0.117

CET 0.366 0.282 0.397 0.538 0.010 0.008 0.011 0.014

SDType 0.308 0.179 0.348 0.599 0.010 0.003 0.011 0.019

SDType++ 0.417 0.331 0.441 0.597 0.086 0.065 0.087 0.122

PIANO 0.446 0.362 0.482 0.620 0.144 0.103 0.153 0.222

The bold values represent the best results

this experimental protocol degrades sharply and is even inferior to that of ConnectE. This
is in stark contrast to the performance of CET in achieving SOTA results in Table 3 on the
ordinary KGET task. We think there are mainly two possible reasons: i) KGE-based models
rely on trained entity embeddings for type inference when performing the KGET task. When
performing type inference on new entities, the model cannot utilize the information of the
new entities, resulting in degraded inference performance. ii) Comprehensive consideration
of Table 4 and Figure 3, the algorithm may over-rely on the co-occurrence information of
entity types. We believe that CET may overfit during training, making the model over-rely
on type co-occurrence information while ignoring the role of neighborhood information.
Hence, it is difficult for CET to effectively apply the neighborhood information of the target
entity for type inference.

In addition, we consider utilizing continuously updated data to improve the performance
of PIANO. This process is unrealistic for KGE-based models, because the models must be
retrained once new data is added. However, the retraining processes are extremely cum-
bersome and require a lot of expensive computing resources, while PIANO only needs to
update the statistics.

We attempt to add 100 entities of the expansion sets in turn, and connect the correspond-
ing triples to update the statistics. Every time we add new data, we re-evaluate the results
on the evaluation set. We compare the performance changes of SDType, SDType++ and
PIANO in the process of incremental data addition. Figures 4 and 5 show the performance
changes of the three algorithms on FB15ET-I and YAGO43kET-I, respectively. In Figure 4,
we can see that the performance of SDType decreases during the process of increasing data.
We think that the process of adding data has associated more predicates to entities in the
prior set, and that these predicates may confuse SDType. Although SDType++ and SDType

Figure 4 Comparison of H@1/3/10 and MRR improvements on the test set for the SDType, SDType++ and
PIANO with adding new data on FB15kET-I
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Figure 5 Comparison of H@1/3/10 and MRR improvements on the test set for the SDType, SDType++ and
PIANO with adding new data on YAGO43kET-I

go through the same process, SDType++ can benefit from newly added data by distinguish-
ing the number of predicates associated with the target entities. Compared with SDType++,
which only has obvious incremental effect on H@10 indicators, PIANO can significantly
benefit from the new data in all indicators. This phenomenon is more obvious in Figure 5,
where the type data of YAGO43kET-I is numerous and sparse. In Figure 5, PIANO can still
improve performance as new data is added, while SDType and SDType++ are almost insen-
sitive. It shows that the addition of predicate data can bring gains to algorithms, but the gain
is limited. The addition of the type information of neighborhood can continuously improve
the ability of the algorithm to infer types of target entities.

In conclusion, although SDType has an incremental nature in theory, it encounters
obstacles in a wide variety of data types. SDType++ alleviates the challenges SDType
faces in incremental experimentation. PIANO has superior incremental properties and can
continuously benefit from new data to improve performance.

Efficiency analysis of PIANO Tomeasure the efficiency of PIANO, we compare the training
time of the KGE-based methods CET, ConnectE and the computational time of statistics-
based method PIANO in incremental experiments. Since the KGE-based methods need to

Figure 6 Comparison of training time for ConnectE, CET and PIANO with adding new data on FB15KET-I
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retrain the models after adding new entities, we consider five subsets of FB15KET-I with
the sizes of 500, 1000, 1500, 2000 and 2500, respectively. We use these five datasets as the
train sets to train models and report the results in Figure 6. The models CET and ConnectE
are conducted with one Intel(R) Core(TM) i7-8700 CPU and one Nvidia A100 GPU, while
PIANO are only conducted with one Intel(R) Core(TM) i7-8700 CPU. From the Figure 6,
we can observe that the computational time of PIANO is much smaller than the training time
of the models CET and ConnectE, especially the model ConnectE, which further indicates
the efficiency of our model.

5 Conclusion

In this paper, we propose a statistics-based knowledge graph entity typing algorithm
PIANO. The algorithm performs type inference by aggregating the neighborhood informa-
tion and type co-occurrence information of the target entity. The experimental results show
that the PIANO algorithm achieves performance that can compete with the KGE-based
models. We find that neighborhood information plays a better role in dense data, while type
co-occurrence information plays a more important role in sparse data.

We also design incremental experiments to simulate the knowledge graph update process
in real-world scenarios. The experimental results show that all the algorithms encounter
a dramatic decline in performance when predicting types of new entities. Nevertheless,
the PIANO algorithm retains a relatively stable performance. Experiments also verify that
PIANO algorithm can improve the performance according to the continually added data,
that is, the algorithm has outstanding incremental property.
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