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Abstract
Traditional recommender systems only utilize a single user-item interaction behavior as the
optimization target behavior. However, multi-behavior recommender systems leverage mul-
tiple user behaviors as auxiliary behaviors(favorite and page view), which is more practical.
Therefore, recommender systems by exploring patterns of multiple behaviors are of great signi-
ficance in improving performance. Many previous works toward multi-behavior recommen-
dation fail to capture user preference intensity for different items in the heterogeneous graph.
Meanwhile, they also ignore high-order relationships that incorporate user different prefer-
ence intensity into user-item heterogeneous interactions. To solve the above challenges, we
propose a novel multi-behavior recommendation model named neighbor-aware attention-
based heterogeneous relation network model in E-commerce recommendation (NAH). NAH
leverages the attention propagation layer to capture user preference intensity for different
items and employs a composition method to incorporate relation embeddings into node
embeddings for high-order propagation. Experiment results on two real-world datasets verify
the effectiveness of our model in the multi-behavior task by comparing it with some start-of-
the-art methods. Further studies verify that our model has a significant effect on exploring
high-order information and cold-start users who have few user-item interaction records.

Keywords E-commerce recommendation · Graph neural networks · Multi-behavior task ·
Embedding learning

1 Introduction

Recommender systems have been widely used in various fields and can effectively alleviate
the issue of information overload. Traditional recommender systems usually only utilize a
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single type of user-item interaction data [1] (i.e., e-commerce, purchase behavior using use-
item), but it has data sparsity and cold-start issues. Therefore, more and more works have
begun to consider the incorporation of multiple auxiliary behaviors to enhance user prefer-
ences, and the approach using multiple behaviors is actually more practical. Figure 1 shows
an example of multi-behavior recommendation in E-commerce platform. With the increase
in the variety and quantity of items, the data provided by a single behavior (purchase) is lim-
ited, and the introduction of auxiliary behaviors such as page-view, favorite, and add-to-cart
to infer user preferences will attract much attention.

In recent years, how to take advantage of auxiliary behaviors has become a trending
topic, and many works have also proposed many novel methods and achieved excellent
performance. Summarizing existing methods [2, 3] for multi-behavior or multi-relation rec-
ommendation, Neural Multi-Task Recommendation(NMTR) [4] proposed to build a model
using a multi-task learning framework and shared embedding layers, and using Neural
collaborative filtering [1] as the score prediction function. Efficient Heterogeneous Col-
laborative Filtering (EHCF) [5] believed that there is a transitive relationship between
various behaviors, and designed a new non-sampling transfer learning scheme to improve
the recommendation performance. Multiplex graph neural networks (MGNN) [6] used mul-
tiple network structures and graph convolutional networks to learn shared embedding and
behavior-specific embedding for nodes. Graph heterogeneous multi-relational recommen-
datio (GHCF) [7] revealed the uncovering relationships between heterogeneous user-item
interactions and embedded both embeddings of nodes and relations to exploit the high-order
information in heterogeneous graph. Despite effectiveness, they cannot consider the pref-
erence strength of neighbor nodes and the high-order relationship under the multi behavior
message passing architecture of different nodes.

Motivation by the above observations in previous multi-behavior recommendation
works, there are two major issues in Graph Neural Networks (GNNs). The first issue is that
GNNs’ propagation weights are based on conventional aggregation methods, in which prop-
agation weight in most methods depends on the neighboring nodes or the set of neighboring
nodes. However, this does not take into account the intensity of the target node’s prefer-
ence for its neighbors. For instance, Figure 1 shows an example of behavior heterogeneity

cart-to-add

purchase

view-page

1
u

2
u 3

u

Figure 1 An example of the heterogeneity in E-commerce scenario. Specifically, multiple implicit feedback
provide richer information than single target behavior
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by incorporating multiple feedback to enhance recommendation. User u1 purchase smart
watch and mug in Figure 1. As we all know, a smart watch provides more user preferences’
information than a mug, and u1 purchase a smart watch and a mug but if their neighbor-
ing nodes sets are a similar size. For the user node, the weight of links between them are
similar in size. In fact, the link to the smart watch should gain more weight than the link to
the mug, so we should take into account user preference intensity for neighboring nodes. In
short, multi-behavior recommendation is required to consider the preference strength from
neighboring nodes rather than obtaining node weights based on conventional aggregation
methods

The second issue of GNNs is that traditional recommender system does not consider
high-order relationships between nodes(users and items) by incorporating multiplex behav-
iors under message passing architecture. The effectiveness of previous multi-behavior
methods relies on sufficient user-item interactions to learn better embeddings. We believe
that exploring user-item high-order relationships can better capture the connectivity between
users and items under sparse relational data. As shown in Figure 1, there are few purchase
behavior records. Traditional recommendation methods have intensively solved the relation-
ship between target node and neighboring nodes to learn better embedding. Therefore, we
try to alleviate the cold start problem by considering the introduction of auxiliary behaviors
and the high-order relations between user-item heterogeneous interaction

To be more specific, we build a unified heterogeneous graph containing two types
of nodes (users and items) and edges of different user-item interaction under different
behaviors. Firstly, in order to capture node preference intensity, we proposed to leverage
the attention mechanism to distinguish different neighboring nodes and assign different
weights according to the importance of different items during embedding propagation,
and recursively propagate the embedding from the neighboring nodes to update embed-
dings. Secondly, by considering the behavior relationships between user-item heterogeneous
interaction, we incorporate the relationship between users and items into the heteroge-
neous graph together to utilize the high-hop signals between nodes(users and items) to
build a unified multi-behavior prediction model. By incorporating user preference inten-
sity into user-item interaction in the heterogeneous graph, we leverage collaborative signals
from high-order neighbors to learn better node embeddings in graph neural networks for
enhanced recommendation.

The main contributions of this paper are as follows:
Considering capturing users’ preference intensity for different items, the traditional rule-

based method of calculating the propagation weight has defects. We exploit the attention
embedding propagation layer [8], which propagates the embedding from the neighbors
of the node to update its embedding in a recursive way. During the learning propagation
weight, weight is calculated according to the importance of different items, which can obtain
different contributions from neighboring nodes.

Considering the high-order relationship propagation between user and item under
multi-behavior passing architecture, the previous works lacked explicit modeling of the
user-item heterogeneous interaction in the high-hop graph structure. We utilize relation-
aware propagation layers, which incorporate relation embedding into nodes embeddings
to high-order propagation with the hip-hop graph structure of the user-item heterogeneous
interaction. And it can fully utilize node information by exploring the high-hop hetero-
geneous connection, which is helpful to capture high-order relations in nodes embedding
learning.

We conduct extensive experiments on two real-world datasets Beibei and Taobao. And
the experimental results show that NAH model effectively improves the recommendation
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performance compared with the state-of-the-art baselines, which is extremely useful for
recommendation tasks to cold-start users.

2 Problem scope

In this paper, we aim to further study introducing multiple auxiliary behaviors data in het-
erogeneous graphs to alleviate the problems of data sparsity and cold start in recommender
systems that rely on massive amounts of implicit feedback data. Since implicit feedback
lacks user explicit preference information, we focus on how to extract users’ different
preference intensity to provide more practical research for multi-behavior recommendation
tasks.

Therefore, our main research is to incorporate multiple auxiliary behaviors into the rec-
ommender system and combine the weights of user-adaptive learning neighbors to perform
high-order propagation to learn better node representations. On the one hand, we aim to
employ graph neural network’s special designs for heterogeneous interaction data to make
full use of extracting user preference intensity in recommender systems. On the other hand,
we consider the fusion of entities nodes and behaviors for propagation to explore their
high-order propagation relationships.

Based on the research on multi-behavior recommender systems, there are two challenges
existing in our problem: 1) how to capture and calculate user preference intensity and 2)
how to perform high-order propagation to obtain semantic information by incorporating user
preference intensity from different hops. Motivated by the above challenges, we propose
a novel method NAH that leverages the attention propagation layer to capture user prefer-
ence intensity and employs the composition method to incorporate relation embeddings into
node embeddings to high-order propagation in graph neural networks for multi-behavior
recommendation.

3 Preliminaries

In the e-commerce recommendation scenario, user utilizes different types of behaviors
to help recommender systems to achieve the purpose of improving the recommendation
performance. According to the introduction, GNNs [9–11] have performed well in rec-
ommendation methods due to the powerful learning capability of graph-structured data.
single-behavior recommendation [1, 12, 13] may not perform as well as multi-behavior rec-
ommendation. To sum up, multi-behavior recommendation is studied from two categories:
the first category is to utilize multi-behavior data to improve the sampling strategy of posi-
tive and negative samples or to optimize the loss function. In previous work, multi-channel
Bayesian persionalized ranking (MC-BPR) [14] employs an extended sampling method to
obtain different types of feedback reflecting different strengths of user preference according
to different types of implicit feedback. Specifically, EHCF [5] designed an efficient hetero-
geneous collaborative filtering model to capture the interaction behavior between users and
items, establish fine-grained user-item relationships, and effectively learn model parameters
from pure data to further improve performance. Another category is to leverage multi-
behavior data to improve the capability to learn better user and item embeddings. Graph
neural networks for social recommendation (GraphRec) [15] provides an approach to jointly
capturing interactions and opinions in the user-item graph, which coherently models hetero-
geneous advantages. Intra- and inter-heterogeneity recommendation (ARGO) [16] explored
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a graph-based message-passing architecture to model interaction heterogeneity with rela-
tional aggregation networks and recursively propagate the embedding of adjacent nodes on
the user-item graph. In our work, we intend to design a recommendation model by lever-
age multiple type behavior, which takes into account the user preference intensity for the
different neighboring items and explores high-order information between nodes(users and
items).

p
(0)
u , q

(0)
v initial embeddings for users, items

U,V collection of user sets and collectioin of item sets

S relation embedding matrix

Nu,Nv neighborhood of user and neighborhood of item

u,v a user node and a item node

M,N the number of users and the number of items

K the number of behavior types

P,Q user embedding matrix and item embedding matrix

s
(0)
r initial embeddings for relation

R(k) user-item interaction under k-th type behavior

R(k)uv if u has interacted with v under the behavior k

d user and item embedding dimension

d’ relation embedding dimension

W(l) the attention network weight matrix

W(l)
r the relation weight matrix

W(l)
nn graph neural network weight matrix

R̂(k)uv the predicted probability that u will interact with v under the target behavior

Assume that there are two types of entities U and V , which denote the set of users and
items, respectively. Assume that M and N denote the number of users and items respec-
tively, where u denotes a user, and v denotes an item. The multiple types behavior of user
interaction matrix denote as {R(1), R(2), ..., R(K)}, where K denotes the number of behav-
iors, {R(1), R(2), ..., R(K−1)} denote the auxiliary behaviors, and R(K) denotes the target
behavior. R(k) denotes whether the user has interacted with the item under behavior k. We
suppose that the item of interaction matrix R

(k)
uv has a value of 1 or 0:

Rk
uv =

{
1, if u has interacted with v under k;
0, otherwise.

(1)

In the multi-behavior recommender system, the R-th behavior is generally selected as the
target behavior to be optimized. The target behavior is usually purchase behavior in the e-
commerce scenario. And the auxiliary behavior includes click, favorite, share, add to cart,
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etc. Given the target user u, the multi-behavior recommendation task can be formulated as:
Input: user-item interaction data based on multiple types of behaviors {R1, R2, ...,RK }.
Output: Under the target behavior, according to the estimated probability R̂(K)uv , the items
that have not interacted with user u are ranked top-N and recommended.

4 Methodology

In this section, the details of our proposed NAHmodel will be described, and its architecture
is shown in Figure 2. Our model has three important components, 1)a sharing embedding
layer that generates initial features for the user, item and behaviors embeddings; 2)a message
aggregation layer that aggregates feature information from adjacent vertices to learn user
preference intensity and extracts user-item interaction information to high-hop propagation
based on multi-behavior data; 3) joint prediction layers to fuse each layer embedding, which
will be used to predict the likelihood that the user will interact with items under target
behavior.

4.1 Unified heterogeneous graph

According to the above, we know that the multi-behavior recommendation task is to uti-
lize various auxiliary behaviors to recommend the target user under the target behavior.
Therefore, we aim to build a unified heterogeneous graph to model the research problem.
For an undirected graph G = (V ,E,R), node set V contains user node u ∈ U and item
node v ∈ V . The edges in E denote edges of different user-item interactions under dif-
ferent behaviors, and relation R represents the set of all behavior types. Specifically, user
u1 adds item v1 to cart under auxiliary behavior r2, then there exists an edge in graph
G, denoted as R

r1
u1,v1 = 1. In general, graph G is used to propagate and update node

embedding, during which the neighborhood messages are aggregated based on behavior-
aware interaction information between users and items. As far as our method is concerned,
we assign different weight for neighboring node embedding propagation that user-item
interaction depends on user preference so that justifies the necessity of capturing user pref-
erence intensity in multi-behavior task. In order to make better use of multi-behavioral

Figure 2 The illustration of NAH model architecture. Given user u, item i and relation S(r) as the
input. 1.Attention Aggregation Layers: aggregate the neighboring node messages and relational embedding;
2.Multi-order embedding: aggregate high-order relations by performing the composition operation on adja-
cent node v under its relation r. 3.Joint prediction layer: get user, item and u-i interaction embedding behavior
after propagating L layers
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data, the user-item propagation architecture explores high-hop connectivity that incorpo-
rates user preference intensity to capture more accurate behavioral collaborative signals for
multi-behavior recommendation.

4.2 Sharing embedding layers

Similar to the existing multi-behavior methods [4, 7, 17], we employ one-hot encoding to
the input user and item IDs. Let p

(0)
u ∈ Rd and q

(0)
v ∈ Rd represent the features of user

u and item v respectively, where d is embedding dimension. Let P = {p(0)
u1 , p

(0)
u2 , ..., p(0)

uM
}

and Q = {q(0)
v1 , q

(0)
v2 , ..., q(0)

vN
} represent the embedding matrix of user and item respectively,

and ID embedding layer can be defined as a fully connected layer.

p(0)
u = P · XT

u , q(0)
v = Q · YT

v (2)

where the size of P andQ are M ×d and N ×d, and represent the u-th and v-th row vectors
in P and Q, respectively. XT

u and YT
v denote the one-hot feature vectors for user u and item

v. Note that embeddings matrices P and Q as initial features of node users and node items
can be considered as input features for each node in our framework. For different types of
behavior, the initial feature vector of behavior denotes as follows:

s(0)
r = S · ZT

r (3)

where the size of S is K × d ′, and K represents the number of behavior types, d ′ represents
relations embedding dimension. Behavior embedding is also generated by an ID embedding
layer, which is used to project the behaviors to the user-item vector space.

4.3 Message aggregation layers

After receiving embedding merged by a sharing embedding layer, the next step is to aggre-
gate the neighboring node messages and update target node embedding under different type
behaviors. In our framework, we aggregate the neighboring nodes to capture user preference
intensity by an embedding aggregation mechanism and update user and item embeddings
by high-order propagation based on type-aware behavior for recommendation.

4.3.1 Embedding aggregation

Our main idea is to consider the user preference intensity on item differently by combining
the two key factors of relational embedding and aggregation of messages from the user’s
neighboring nodes according to different behavior types under the multi-behavior messag-
ing architecture. For each target node, the information of neighboring nodes is fused into
the embedding by propagation, which reinforces embedding learning, by considering that
the contribution of each item to user preference is different. In our task, to make better use
of the neighboring node information, we leverage the attention mechanism to capture the
importance of the target node and neighboring nodes, and according to the importance of
neighbors, to help learn structure information.

In our message passing architecture, we leverage the attention mechanism to calculate
the importance weights of user node u and neighboring node v. In particular, we obtain the
embedding representation of the corresponding neighbors of the neighboring node v of node
u through a layer of neural network. Then, we employ the similarity function to calculate
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the similarity of the node itself to its neighbors, which is formally calculated as follows:

α′
uivj

= a(W1pui
,W2qvj

) (4)

where ui denotes the target user, and vj denotes neighboring nodes of ui . a(·) is a similarity
function, which represents the similarity between ui and vj . In this paper, we define a(·) as
a layer neural network. α′

uivj
represents the importance of item vj to user ui . In addition,

W1 andW2 denote trainable transformation matrices.
In order to obtain the attention coefficient easier to calculate and compare, we incorpo-

rate the softmax function to regularize all the adjacent nodes vj of the target node ui . We
leverage the broadcast mechanism to get the attention matrix and normalize the target node
by a softmax function to calculate the importance weights as follows:

αuivj
= exp(α′

uivj
)∑

vj ∈Nu
exp(α′

uivj
)

(5)

where α′
uivj

denotes the intermediate value of the input softmax function to generate
importance weights αuivj

. Therefore, the embedding aggregation layers formula is as
follows:

αuivj
= exp(σ(a[W1pu||W2qv]))∑

k∈Nu
exp(σ (a[W1pu||W2qk])) (6)

where || denotes the concatenation operation and we define σ() as Leaky ReLU [18] non-
linear activation function. And we obtain the importance weights αuivj

between user i and
item j under behavior type k. Then, the embedding aggregation process is transformed as
follows:

p(l)
u = σ

⎛
⎝ ∑

vj ∈Nu

αuivj
W(l−1)q(l−1)

v

⎞
⎠ (7)

where σ(·) is Leaky ReLu. pu and qv are the input user and item embeddings for nerual
network layer, respectively. Likewise, item embedding also can be based on the above aggre-
gation and propagation process. In our embedding generated process, different embeddings
are aggregated by weight αui,vj

and transformation parameter W ∈ d × d from different
latent dimensions. Under behavior type k, our message passing architecture for the target
user node ui from its adjacent item nodes proceeds in a similar way in (7).

4.3.2 High-order propagation

After performing the aggregation embeddings of type-specific behavior between
nodes(users and items), we model the high-order relations by performing the operations on
adjacent node v under its relation r. Given the generated user-item interaction graph struc-
ture, we learn high-order relations in multi-behavior framework on a graph G by stacking
multiple layers of information propagation. According to the weight of the user’s behavior,
we follow to employ weighted sum as combination.

In high-order propagation process, the embeddings of node users(or node items) is repre-
sented by accumulating incoming messages from all heterogeneous interaction items(users).
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Inspired by entity-relation composition operations used in knowledge graph embedding
approaches[19], The message passing equation of our model is defined as:

q(l)
v = σ

⎛
⎝ ∑

(u,r)∈N(v)

1√|Nu||Nv|
W(l)

nn

(
p(l−1)

u � s(l−1)
r

)⎞
⎠

p(l)
u = σ

⎛
⎝ ∑

(v,r)∈N(u)

1√|Nu||Nv|
W(l)

nn

(
q(l−1)
v � s(l−1)

r

)⎞
⎠ (8)

where Nu and Nv denote the set of neighbors of users and items, respectively; W(l)
nn is

the graph neural network parameters of the model; σ is Leaky ReLU activation function.
1√|Nu||Nv | is the symmetric normalization term, which is used to avoid the increase of

the embeddings scale with graph convolution operations while increasing. � denotes the
element-wise product of vectors and q

(l−1)
v � s

(l−1)
r is to incorporate relation embeddings

into the message-passing formulation.
After the node embeddings defined in (8) are updated, the relation embeddings are also

performed as follows:
s(l)
r = W(l)

r s(l−1)
r (9)

where W(l)
r is a relational neural network weight parameter that projects all relations as

nodes into the same embedding scale and make them available on the next layer.

4.4 Joint prediction layer

In the joint prediction layer, we get a multi-layer representation {p(0)
u , ..., p(l)

u } for user,
{q(0)

v , ..., q(l)
v } for item, {s(0)

r , ..., s(l)
r } for user and item interaction embedding behavior after

propagating L layers. Obtaining embeddings from different layers indicates that the infor-
mation of neighbors of different orders is to be a combination. So we further combine them
to get the final representation: To predict the likelihood of multiple behaviors of a user
towards an item, the learned representation under each behavior type is used as a separate
prediction layer.

pu =
l∑

k=0

αkp
k
u,

qv =
l∑

k=0

αkq
k
v , (10)

sr =
l∑

k=0

αks
k
r

where αk is a hyper-parameter that represents the importance of the k-th layer embedding.
Inspired by layer combination approaches to get final representations in simplifying and
powering Graph Convolution Network [12], we select uniform weight 1

L+1 as a combination
operation. By this way, we predict the final embedding with information from different
layers, which not only enriches semantic information but also captures the effect of graph
convolution with self-connections.

In order to predict the likelihood of multiple user behaviors towards an item, the learned
representation for each behavior is incorporated into a separated prediction layer. To be
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specific, sk
r denotes the learned embedding of the k-th behavior, and user u estimates the

probability of item v under the k-th behavior as:

R̂(r)uv = pu · diag(sk
r ) · qv =

d∑
i

puisrkiqvi (11)

where diag(sk
r ) represents the diagonal matrix whose diagonal elements correspond to sk

r ,
and d represents the embedding size.

4.5 Multi-task learning

To learn the parameters, our main idea is that the massive amount of heterogeneous implicit
feedback data and data sparsity, the sampling-based learning method will result in a limited
number of observed samples with interactions, while large-scale samples without observed
interactions are not observed in the recommendation task. Therefore, we decided to adopt
the latest high-efficiency Non-negative sampling learning method [5] to optimize our model.
In order to better learn the model parameters, we introduce a weighted regression with
squared loss [20] to compute the loss for a single behavioral matrix:

Lr =
∑
u∈U

∑
v∈V +

u ∪V −
u

λr
uv(R(r)uv − R̂(r)uv)

2 (12)

where λr
uv is the weight of R(r)uv . Then, V +

u , V −
u represent the set of positive and negative

items for target user u, respectively.
Suppose LP

r is the loss of positive data and LA
r is the loss of all data. Based on the latest

high-efficiency Non-negative sampling learning method [5], Lr is the sum of the loss of
positive data and the loss of all data, and the loss of unlabeled data has been eliminated.
Thus, the loss for a single behavioral matrix is performed as: Lr = LP

r + LA
r , where

LP
r =

∑
u∈U

∑
v∈V +

u

((λr+
uv − λr−

uv )R̂2
(r)uv − 2λr+

uv R̂(r)uv)

LA
r =

d∑
i

d∑
j

((skiskj )

(∑
u∈U

puipuj

) (∑
v∈V

λr−
uv qviqvj )

)

(13)

Finally, following the Multi-Task Learning (MTL) mode, different but related tasks models
are jointly trained, and the minimum loss function is preformed as:

L =
R∑

r=1

γrLr + μ ‖θ‖22 (14)

where γr is a hyper-parameter that controls the effect of the r-th behavior on joint training,
which is set differently according to different datasets; r is the number of behavior types.
We also carry out that

∑n
r=1γr = 1 to advance the tuning of hyper-parameters.

To optimize the objective function, we use mini-batch Adam [21] as the optimizer,
which enables the learning rate to be self-adaptively updated during training, alleviating the
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difficulty of choosing an appropriate learning rate. In our model, we also employ the dropout
methods, which is an efficient workaround to prevent overfitting [22] of neural networks.

5 Experiments

In this section, we conduct experiments on two real-world datasets in the processing
of multi-behavior recommendation tasks to validate the effectiveness of our proposed
NAH model by comparing it with the state-of-the-art baselines. We describe the details
of the distribution of the data sets, ablation study of auxiliary behavior, and setting of
hyper-parameters.

5.1 Experimental settings

5.1.1 Datasets

We evaluate the performance of the model on two real-world datasets, collected on Taobao
and Beibei platforms. The specific information of datasets are displayed in Table 1:
Beibei: The Beibei dataset [4] is the largest e-commerce platform for maternal and infant
specialty products in China. This dataset includes different types of user-item interaction
data, and we take three behavior(page-view, add-to-cart, and purchase) to study their influ-
ence on recommendation performance in our experiments.
Taobao: The Taobao dataset [23] is the most popular online e-commerce platform in China.
Compared with the beibei dataset, they have the same three user behaviors, but the data dis-
tribution of the two is completely different. Beibei has fewer users and items entities but has
many records of auxiliary behaviors and more records of target behaviors. And Taobao has
more users and item entities, but fewer behavior records.

For a fair comparison with the start-of-the-art baselines, the datasets were preprocessed
consistently following previous works [5], which split both datasets according to the num-
ber of records of the target behavior and exclude users and items with less than 5 target
behaviors.

5.1.2 Evaluation metrics

To evaluate our model performance, we employ widely used leave-one-out techniques [4,
5] and employ Hit Rate (HR) [26] and Normalized Discounted Cumulative Gain (NDCG)
[27]. HR is a common indicator to measure recall rate, which represents the more items are
on the top-N list. NDCG is an evaluation metric for ranking results, which emphasizes the
impact of the item’s position in the top-N list. For users, our evaluation scheme is to rank
all unlabeled items in the training set, so we get more convincing results than randomly

Table 1 Statistical details of the evaluation datasets

Dataset #User #Item #View #Add-to-cart #Purchase

Beibei 21,716 7,977 2,412,586 642,622 304,576

Taobao 48,749 39,493 1,548,126 193,747 259,747
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sampled subset rankings. By doing so, the results are more convincing than only ranking a
random subset of negative items [28, 29].

5.1.3 Baselines

To verify the effectiveness of our method, we selected several state-of-the-art models to
compare with our model. And we classify them into two categories based on one-behavior
models and multi-behavior models.
one-behavior model:

BPR [24]: it is a widely used learning framework that optimizes pairwise loss for item
recommendation.

NCF [1]: a state-of-the-art learning framework by introducing neural network to learn the
user-item interaction information for item ranking.

LightGCN [12]: a simplified GCNmodel that only includes the most important parts and
improves the recommendation performance.
multi-behavior model:

CMF [25]: it is a popular technique that factorizes multiple matrices jointly to boost the
overall factorization quality by decomposing the rating matrix R, side information matrix
of user and item, respectively.

MC-BPR [14]: the adaptive negative sampling rule in BPR and uses level information to
sample negative samples to expand BPR for heterogeneous data.

NMTR [4]: it uses a cascaded way to build user behavior relationships and uses multi-task
learning to model from users’ multi-behavior data.

EHCF [5]: it applied an efficient non-sampling strategy (Non-Sampling, Whole-data
based Learning) to a multi-behavior recommender system for the first time, and achieves
very significant results in training time and model performance.

GHCF [7]: this is a state-of-the-art method that reveals latent relationships between
heterogeneous user-item interactions and exploits a based on relationship-aware GCN
propagation layer to acquire high-hop signals.

5.1.4 Parameters settings

For parameters, we initialize the latent factor dimension with 64-dim and set the batch
size to 256. And we further explore optimal parameters on validation dataset and evaluate
the model on test dataset. For the parameters of baseline, we mainly set the parame-
ters according to the parameters and tuning strategies provided by the original model. In
training, we optimize our model as mini-batch Adagrad [30] optimizer. Then, we set the
learning rate as 0.001 and utilize the Xavier initialization [31] to initialize the parame-
ters. Besides, we set the message dropout ratio ρ as 0.2 and the node dropout ratio as
0.1 to prevent overfitting in our model. Regularization coefficient is set to 10 for Beibei
and 0.01 for Taobao. Furthermore, We utilize early stop to avoid overfitting, where the
training process will be stopped if recall@10 on validation set does not increase within
50 epochs. For other hyper-parameters, uniform negative entry weight is set to 0.1 for
Beibei and 0.01 for Taobao and multi-task learning coefficient γ is set to γ1 = 1/6,
γ2 = 4/6, γ3 = 1/6 for sampling-based methods in the baseline. For the non-sampling
methods in the baseline, the negative sampling ratio is set is 4, the negative weight val-
ues for Beibei and Taobao are set to 0.01 and 0.1 respectively, and experiments show good
performance.
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5.2 Overall performance

In this subsection, we selected several state-of-the-art baselines to compare with our model.
Then, the performance of all models on two datasets is shown in Tables 2 and 3. Note that
we refer to the parameters and tuning strategies provided by the original models to make a
fair comparison. In order to investigate the Top-N performance, we set length N to [10, 50,
100, 200] in our experiments. From the experiment results, the followings can be observed:

Model effectiveness From the figure, we can find that on HR and NDCG evaluation met-
rics, our NAH substantially outperforms state-of-the-art baselines on both datasets. For
instance, the average improvement of our model over the state-of-the-art baseline is 2.96%
and 1.51% on the Beibei dataset and 2.87% and 1.46% on Taobao dataset for Recall
and NDCG, which clarifies the performance of our model. Our model also demonstrates
that the effectiveness of information of the neighbors of nodes are incorporated into their
embeddings.

User preference intensity Among other single-behavior baselines, models based on graph
neural network (i.e., LightGCN) achieve better performance in most cases. This illus-
trates the rationality of collaborative signals encoding based on user-item graph relationship
for embedding propagation between adjacent nodes. However, LightGCN and NMTR
fail to learn better the target node representation from neighboring nodes, so it demon-
strates that is very important to capture user preference intensity for neighboring nodes for
recommendation performance, which enhances the ability of representation learning.

Mutil-behavior model In comparisons with BPR, NCF and LightGCN, we can observe
that incorporating multi-behavior information into predicting can generally outperform
methods using only a single behavior, which illustrates the importance of heterogeneous
data for recommendation performance. For instance, The improvement of our model over
the state-of-the-art single-behavior method is 98.5% and 71.5% on Beibei and Taobao
dataset for HR@100, respectively. This illustrates that incorporating multiple types of
behaviors to the embedding function of recommender systems plays a positive role.

Non-sampling learning strategy the non-sampling methods(EHCF,GHCF,ARGO,NAH)
generally outperform methods that sampling-based methods (NCF,LightGCN,MC-
BPR,NMTR). EHCF demonstrates the effectiveness of using the whole-data-based learning
strategy, which is suitable for learning from heterogeneous behavior data.

6 Discussions

In this section, we discuss the impact of auxiliary behavior, impact of data sparsity, hyper-
parameter sensitivity and possible limitations of our model.

6.1 Impact of auxiliary behaviors

To understand the effectiveness of multiple auxiliary behaviors, we explore the impact of
auxiliary behaviors on the model performance on both datasets with the consideration of
different type behavior from multiple behaviors.

NAH-P: the model variant of only purchase.

2385World Wide Web (2023) 26:2373–2394



Ta
bl
e
2

N
A
H
re
co
m
m
en
da
tio

n
pe
rf
or
m
an
ce

on
B
ei
be
ic
om

pa
ri
ng

w
ith

st
ar
t-
of
-t
he
-a
rt
ba
se
lin

es

B
ei
be
i

M
et
ho
d

H
R
@
10

H
R
@
50

H
R
@
10
0

H
R
@
20
0

N
D
C
G
@
10

N
D
C
G
@
50

N
D
C
G
@
10
0

N
D
C
G
@
20
0

Si
ng
le
-b
eh
av
io
r

B
P
R
[2
4]

0.
04
31

0.
12
47

0.
21
83

0.
30
56

0.
02
11

0.
04
15

0.
05
41

0.
06
81

N
C
F
[1
]

0.
04
37

0.
15
65

0.
23
48

0.
35
73

0.
02
26

0.
04
50

0.
05
91

0.
07
59

L
ig
ht
G
C
N
[1
2]

0.
04
48

0.
16
18

0.
24
84

0.
37
30

0.
02
31

0.
04
63

0.
06
13

0.
07
95

H
et
er
og
en
eo
us
-b
eh
av
io
r

C
M
F
[2
5]

0.
04
80

0.
15
85

0.
28
56

0.
43
11

0.
02
45

0.
04
59

0.
06
63

0.
08
43

M
C
-B
PR

[1
4]

0.
05
01

0.
17
34

0.
27
23

0.
38
49

0.
02
50

0.
05
04

0.
06
57

0.
07
94

N
M
T
R
[4
]

0.
05
23

0.
20
57

0.
31
80

0.
47
41

0.
02
88

0.
06
10

0.
07
65

0.
09
73

E
H
C
F
[5
]

0.
15
07

0.
33
05

0.
43
00

0.
54
45

0.
08
15

0.
12
04

0.
13
64

0.
15
30

G
H
C
F
[7
]

0.
19
00

0.
37
12

0.
46
17

0.
55
63

0.
10
08

0.
14
14

0.
15
57

0.
16
90

N
A
H

0.
19
22

0.
38
78

0.
47
73

0.
57
52

0.
10
06

0.
14
43

0.
15
88

0.
17
26

2386 World Wide Web (2023) 26:2373–2394



Ta
bl
e
3

N
A
H
re
co
m
m
en
da
tio

n
pe
rf
or
m
an
ce

on
Ta
ob
ao

co
m
pa
ri
ng

w
ith

st
ar
t-
of
-t
he
-a
rt
ba
se
lin

es

Ta
ob
ao

M
et
ho
d

H
R
@
10

H
R
@
50

H
R
@
10
0

H
R
@
20
0

N
D
C
G
@
10

N
D
C
G
@
50

N
D
C
G
@
10
0

N
D
C
G
@
20
0

Si
ng
le
-b
eh
av
io
r

B
P
R
[2
4]

0.
03
73

0.
07
08

0.
08
78

0.
10
34

0.
02
25

0.
02
71

0.
03
08

0.
03
31

N
C
F
[1
]

0.
03
87

0.
07
23

0.
08
90

0.
10
56

0.
02
31

0.
02
76

0.
03
15

0.
03
41

L
ig
ht
G
C
N
[1
2]

0.
04
09

0.
08
06

0.
10
18

0.
12
03

0.
02
34

0.
03
27

0.
03
67

0.
03
83

H
et
er
og
en
eo
us
-b
eh
av
io
r

C
M
F
[2
5]

0.
04
79

0.
07
76

0.
11
74

0.
15
58

0.
02
53

0.
02
97

0.
03
51

0.
03
76

M
C
-B
PR

[1
4]

0.
05
41

0.
07
86

0.
12
72

0.
15
98

0.
02
62

0.
02
89

0.
03
57

0.
03
92

N
M
T
R
[4
]

0.
05
81

0.
09
46

0.
13
67

0.
18
59

0.
02
78

0.
03
39

0.
03
95

0.
05
37

E
H
C
F
[5
]

0.
07
09

0.
16
01

0.
21
98

0.
29
11

0.
04
04

0.
05
88

0.
06
84

0.
07
92

G
H
C
F
[7
]

0.
08
05

0.
18
44

0.
25
06

0.
33
01

0.
04
48

0.
06
73

0.
07
81

0.
08
90

N
A
H

0.
08
15

0.
19
05

0.
25
98

0.
34
41

0.
04
44

0.
06
81

0.
08
05

0.
09
13

2387World Wide Web (2023) 26:2373–2394



NAH-PV: the model variant of including purchase and page view.
NAH-PC: the model variant of including purchase and add to cart.
Tables 4 and 5 show the model performance for different combination behaviors. From

the results, auxiliary behaviors both page view data and add to cart data can lead to better
recommendation performance. And the performance of NAH is further improved when all
three behavior data are used simultaneously. This demonstrates the effectiveness of mod-
eling auxiliary behaviors for user preference. Besides, we find that two observations: On
one hand, carting behavior on Beibei dataset has a greater effect on the recommendation
than carting behavior on Taobao dataset, which may be due to the amount of auxiliary
behavior data on two datasets. On the other hand, we incorporate auxiliary behaviors into
our model, which significantly improves the recommendation performance. It can be seen
that the impact of user implicit feedback on recommender systems, which also makes the
research on multi-behavior recommendation meaningful.

6.2 Impact of data sparsity

Data sparsity is a big challenge since there are lacking of record of target behavior and for
new users without behavior record, which make most recommendation models inefficient.
However, we enhance the recommendation by introducing auxiliary behavior [32] and u-
i high-order relationship. From Tables 2 and 3, the average improvement of our model is
superior to the state-of-the-art baseline based on optimal parameters. The improvement of
our model over the state-of-the-art single-behavior method is 139.7% and multi-behavior
method is 4.47% on Beibei dataset for HR@50, illustrating the strong power of NAH
model. From the Figure 3, our NAH outperforms other methods, including the state-of-the-
art multi-behavior models such as NMTR and GHCF. In particular, our method performed
well for users with less than 16 purchase records, which verifies the validation of alleviat-
ing data sparsity issues. Moreover, the performance on Taobao dataset and Beibei dataset
is slightly different, we think this may be caused by the different data distribution of the
dataset. For example, Taobao dataset is sparser than Beibei dataset and has fewer user-item
interactions; page view data is much more than add-to-cart data due to page view data are
easier to collect; Taobao dataset and Beibei dataset have great differences in the number of
purchase behavior records in each data sparsity split. The results demonstrate the effective-
ness of NAH in alleviating the data sparsity issue with auxiliary behaviors since NAH learns
target behavior and auxiliary behaviors in a reasonable way.

6.3 Hyper-parameter study

To evaluate how hyper-parameters affect the performance of our NAH, we investigate the
effect of two important hyper-parameters coefficient γk and layer numbers L in our model.
Since our model is a multi-task model, we test three loss coefficients γ1, γ2, and γ3 in the
multi-task loss function. In addition, we analyze the influence of the layer numbers L on
performance.

Firstly, we examine the influence of different γk on Beibei and Taobao datasets to check.
We tune the three loss coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1]. As γ1 + γ2 + γ3 = 1,
when γ1 and γ2 are given, the value of γ3 is determined. When γ1=0 and γ2=0, the model
only has purchase behavior like single behavior recommendation, and it performs badly. For
both datasets, setting (1/6, 4/6, 1/6) achieves the best performances.

Next, we test the influence of the depth of our model on Beibei and Taobao datasets
to check the effectiveness of multiple embedding propagation layers. In particular, we test
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Figure 3 Impact of number of Purchase

vary the depth of our model in the range of [1,2,3,4,5] and the results are shown in Figure 4.
When L=1, it represents that the model has a first-order embedding propagation layer and
others are similar. In the figure, the y-axis denotes the performance of HR@100 compared
with different layer numbers. From the figure, we can observe that by increasing the model
depth from 1 to 4 on the Beibei and Taobao datasets, the performance of our model is
significantly improved, which demonstrates that our model has the capability to capture
high-order relationships in multi-behavior recommendation scenario.

7 Conclusion

In this paper, we investigate the issue of multi-behavior recommendation that considers
user preference intensity and high-hop propagation based on heterogeneous user feedback.
To fully model user preference intensity between users and items under different types of
behaviors, We propose a novel graph-based approach NAH. The proposed NAH has lever-
aged the attention mechanism to obtain the important weight of different neighborhoods and
explore high-order propagation on a heterogeneous graph. Extensive experimental results
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demonstrate the state-of-the-art performance of NAH on two real-world datasets. Further
ablation studies verify the effectiveness of employing different types of auxiliary behaviors
and alleviating data sparsity issues in our NAH.

Although specifically designed for extracting user preference intensity, we explore the
high-order relationship under the multi-behavior recommendation, the experiment proves
that the depth of embedding propagation layers still has certain limitations. In the future,
we will further explore how to solve the problems of overfitting or data noise. we are also
interested in exploring special designs on a heterogeneous graph, such as adaptive learning
behavior importance and semantics. In addition, we also intend to extend NAH model to
other heterogeneous graph recommendations scenarios.
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