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Efficient maintenance of highway cover labelling
for distance queries on large dynamic graphs

Muhammad Farhan1 ·QingWang1

Abstract
Graphs in real-world applications are typically dynamic which undergo rapid changes in
their topological structure over time by either adding or deleting edges or vertices. How-
ever, it is challenging to design algorithms capable of supporting updates efficiently on
dynamic graphs. In this article, we devise a parallel fully dynamic labelling method to
reflect rapid changes on graphs when answering shortest-path distance queries, a fundamen-
tal problem in graph theory. At its core, our solution accelerates query processing through
a fully dynamic distance labelling of a limited size, which provides a good approximation
to bound online searches on dynamic graphs. Our parallel fully dynamic labelling method
leverages two sources of efficiency gains: landmark parallelism and anchor parallelism. Fur-
thermore, it can handle both incremental and decremental updates efficiently using a unified
search approach and a bounded repairing inference mechanism. We theoretically analyze
the correctness, labelling minimality, and time complexity of our method, and also conduct
extensive experiments to empirically verify its efficiency and scalability on 10 real-world
large networks.

Keywords Graph algorithms · Highway cover · Shortest-path distance queries ·
Distance labelling · Dynamic graphs

1 Introduction

Given a graph G, a distance query on G is to answer the distance between any two ver-
tices in the graph G. As a fundamental primitive, distance queries are widely applied in
modern network-oriented systems, such as communication networks, context-aware search

This article belongs to the Topical Collection: Special Issue on Knowledge-Graph-Enabled Methods
and Applications for the Future Web
Guest Editors: Xin Wang, Jeff Pan, Qingpeng Zhang, Yuan-Fang Li

� Muhammad Farhan
muhammad.farhan@anu.edu.au

Qing Wang
qing.wang@anu.edu.au

1 School of Computing, Australian National University, Canberra, Australia

World Wide Web (2023) 26:2427–2452

Received: 26 August 2022 / Revised: 14 December 2022 / Accepted: 29 January 2023 /

© The Author(s) 2023
Published online: 22 March 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01146-2&domain=pdf
mailto: muhammad.farhan@anu.edu.au
mailto: qing.wang@anu.edu.au


Figure 1 Performance overview of our proposed method PARDHL and the state-of-the-art methods DECM
[8], DECPLL [9], DECFD [10] and DECHL [11], where the update time is calculated by processing 1,000
edge deletions over complex networks with sizes varying from 20 millions of edges to 3 billions of edges

in web graphs [1, 2], social network analysis [3, 4], route-planning in road networks [5, 6],
management of resources in computer networks [7], and so on.

Traditionally, a distance query can be answered using Dijkstra’s algorithm [12] on non-
negative weighted graphs or breadth-first search (BFS) algorithm on unweighted graphs.
However, these algorithms may end up traversing the entire network when two vertices are
far apart from each other, thus becoming too slow for applications that require low latency.
To speed up query response time, a plethora of methods have been proposed in the past
years [5, 10, 13–21]. Among these methods, precomputing a distance labelling is typically
considered as a promising solution. However, most of existing distance labelling methods
were designed for static networks.

Networks in the real-world are typically dynamic which undergo rapid changes, i.e. edge
additions/deletions in their topological structure over time. For example, people become
friend/unfriend or follow/unfollow others in social networks, web links become valid/invalid
in web graphs, and communication networks may have faults being detected and recovered
[7, 22, 23]. It is imperative to design dynamic algorithms that can efficiently update distance
labelling to reflect graph changes for fast and accurate responses to distance queries. So
far, only limited attempts have been made on maintaining a distance labelling for dynamic
graphs [8, 10, 24–26]. Among them, the methods considering incremental updates (i.e. edge
additions) [10, 24, 25] are relatively efficient, e.g., an incremental update can be processed
on graphs with billions of vertices in less than one second [25]. Unfortunately, the methods
considering decremental updates still suffer from long update time of a distance labelling
[8–10]. As shown in Figure 1, the average update time of one edge deletion on graphs of
size around 20 million edges is 135 seconds for DECM [8] and 19 seconds for DECPLL [9],
which are very inefficient. Moreover, these methods all consider the single-update setting,
i.e., performing one single edge insertion or edge deletion at a time. Unlike existing works,
in this article, we aim to explore the following research questions:

Q1: Is it possible to design a dynamic labelling algorithm which can efficiently reflect
both incremental and decremental updates on graphs for fast and accurate distance
computation?
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Figure 2 An illustration of our parallel framework, which dynamically maintains highway cover labelling
for graphs undergoing rapid updates

Q2: Can such a dynamic labelling algorithm handle multiple updates in parallel in
order to offer performance gains over existing dynamic labelling algorithms in the
single-update setting?

To answer these research questions, we propose a parallel solution for answering dis-
tance queries on dynamic graphs undergoing rapid changes in their topological structure.
Our method is efficient both in time and space, and can scale to large graphs with bil-
lions of edges. There are several design considerations. First and foremost, we combine
offline labelling and online searching in our proposed solution so as to leverage the advan-
tages from both sides - accelerating query processing through a distance labelling that has
a limited size but provides a good approximation to bound online searches. Then, we pro-
ceed to design a fully dynamic distance labelling algorithm, which dynamizes a distance
labelling to efficiently reflect updates on the underlying graph. This algorithm consists of
three stages: (1) Finding affected vertices - to precisely identify vertices that are affected
by updates; (2) Finding boundary vertices - to bound the traversal space that is needed for
repairing; (3) Repairing affected vertices - to change the labels of affected vertices via an
inference process based on their new distances. Figure 2 illustrates the high-level overview
of our solution. At its core, we abide by the following principles:

Parallel searches: We exploit interactions between updates and design a novel parallel
approach to find affected vertices, which involves both landmark parallelism and anchor
parallelism.
Bounded space: We bound search spaces for updates to only small portions of graphs
that are affected, which are achieved by identifying boundary vertices with respect to
updates.
Repair inference: We develop a repairing approach that can efficiently infer the new
distances of affected vertices to repair their labels through a level-by-level computation
from boundary vertices.

1.1 Contributions

To summarise, the main contributions of this work are as follows:
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(a) We study the problem of answering exact distance queries on dynamic graphs by
proposing an efficient solution comprising of a fully dynamic distance labelling and
online sparsified searches.

(b) Our fully dynamic labelling algorithm can uniformly handle both incremental and
decremental updates efficiently using a novel parallel search strategy and a bounded
repairing inference mechanism.

(c) We prove the correctness of our method and show that it can preserve the minimality
of distance labelling, as well as provide the complexity analysis.

(d) We have evaluated our method on 10 real-world large networks to verify their effi-
ciency, scalability and robustness. The results show that our algorithms significantly
outperform the state-of-the-art methods. It can answer queries in the order of millisec-
onds and maintain very small labelling sizes, even for large graphs with billions of
edges. To the best of our knowledge, this is the first study to develop a parallel fully
dynamic labelling method for distance queries.

1.2 Outline

The rest of the article is organized as follows. In Section 2, we review existing works that
are related to our work. In Section 3, we present preliminary notations and definitions
used in this article along with problem formulation. In Section 4, we discuss our parallel
fully dynamic framework. In Section 5, we present our proposed method that can maintain
distance labelling in parallel to efficiently reflect graph changes for distance querying. A
formal proof for showing that our method is correct and preserve the property of minimality
of highway cover labelling, along with complexity analysis is detailed in Section 6. Then, in
Section 7, we discuss our experimental results. Finally, we conclude the article and outline
future research directions in Section 9.

2 Related work

We review previous works that have attempted to address the shortest-path distance query
answering problem on dynamic graphs.

In [13], Akiba et al. proposed the pruned landmark labelling (PLL) method which pre-
computes a 2-hop cover distance labelling [27] by performing a pruned breadth-first search
(BFS) from every vertex. The idea is to prune vertices whose distance information can be
obtained from the partially available 2-hop cover distance labelling constructed during pre-
vious BFSs. This work helps to lower construction cost and labelling size. Later on, Li
et al. [20] developed a parallel method called parallel shortest distance labelling (PSL) for
constructing PLL in parallel in order to increase scalability. These labelling-based meth-
ods serve as the state-of-the-art for answering exact distance queries. However, they are
designed for static graphs whose topological structure remains unchanged over time.

Some early works on extending 2-hop cover distance labelling from static graphs to
dynamic graphs have considered either incremental updates (i.e., edge insertions) or decre-
mental updates (i.e., edge deletions). In [24], Akiba et al. studied the problem of maintaining
a 2-hop cover distance labelling on graphs undergoing incremental updates. This work
claims fast update time at the cost of increased labelling size as they do not remove outdated
and redundant distance entries from the labels of affected vertices which may significantly
affect query performance over time. They consider that removing outdated and redun-
dant distance entries would be costly and may make the update operation slower. Another
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recently proposed method [25] studied incremental updates on graphs which solves the
problem of eliminating outdated and redundant entries, thereby guaranteeing minimality
of labelling. Note that, in the case of decremental updates, outdated and redundant dis-
tance entries must be removed; otherwise distance labelling cannot be correctly updated. To
tackle the problem of maintaining 2-hop cover distance labelling for decremental updates,
Qin et al. [8] proposed a method using the well-ordering property of 2-hop cover distance
labelling. However, this method is inefficient to perform updates for even moderately large
graphs and can only scale to graphs that have a few millions of vertices and edges. It has
been shown in the experiments that the average update time of 1000 deletions on a network
of size 19 millions edges is 135 seconds which is too high to be used in real-world scenarios.

Several methods [9–11, 28, 29] have been proposed to consider both incremental and
decremental updates on graphs. Hayashi et al. [10] proposed a fully dynamic (FD) method
to perform distance queries on dynamic graphs. The key idea is to select a small set of land-
marks R and precompute shortest-path trees (SPTs) w.r.t. each r ∈ R. Then, a distance
query traverses a sparsified graph under an upper distance bound being computed via the
SPTs. To reflect graph changes, they maintain SPTs to ensure correct distances. However,
this method cannot perform decremental updates efficiently, e.g., as shown in [10], it takes
about 6 seconds on average to reflect one graph change (i.e., an edge deletion) on Twitter
network. D’angelo et al. [9] maintains a 2-hop cover distance labelling for dynamic graphs.
They first developed a method for reflecting decremental updates on a graph, which works in
three phases, 1) identify the affected vertices, 2) remove the outdated entries, and 3) restore
the 2-hop cover property. Then, they combined the work proposed in [24] for incremen-
tal updates with their method for decremental updates to form a fully dynamic algorithm.
However, this fully dynamic algorithm has a very high complexity of performing decremen-
tal updates, e.g., on a network with 16 millions of edges, it takes 19 seconds, which would
be impractical for many real-world applications. Another method by D’Emidio et al. [29]
claims an improvement over the method proposed in [9] for decremental updates. How-
ever, this method is limited to graphs with few millions of nodes when updating labels is
required to be in the order of seconds. A recent method [28] has also attempted to apply a
parallel method (PSL) for constructing PLL [20] on dynamic graphs for fast distance com-
putation which unfortunately can only accommodate million-scale graphs. Very recently,
Farhan et al. [11] proposed a fully dynamic method that leverages the advantages of high-
way cover distance labelling proposed in [18] for fast processing of dynamic changes on
graphs. Nonetheless, their method, similar to previous methods, processes graph updates
in the single-update setting which may cause repeated computation w.r.t. multiple updates
and thus is slow as shown in our experiments. In this article, we have adopted batch-update
setting to reflect graph changes much more efficiently by exploiting different interaction
between updates in a batch.

3 Problem formulation

Let G = (V ,E) be a graph where V is a set of vertices and E is a set of edges. The
distance between two vertices s and t in G, denoted as dG(s, t), is the length of a shortest-
path between s and t . If there does not exist any path between two vertices s and t , then
we consider dG(s, t) = ∞. We use PG(s, t) to denote the set of all shortest-paths between
s and t in G, and NG(v) the set of neighbors of a vertex v ∈ V , i.e. NG(v) = {w ∈ V |
(v, w) ∈ E}. Without loss of generality, we assume that G is undirected and unweighted
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and explain how this work can be extended to directed graphs and non-negative weighted
graphs in Section 8.

In this work, we consider two fundamental types of updates on graphs, edge insertion
and edge deletion. Given a graph G = (V ,E), an edge insertion is to add an edge (a, b) into
G where {a, b} ⊆ V and (a, b) /∈ E. Conversely, an edge deletion is to delete an edge (a, b)

from G where (a, b) ∈ E. We consider to perform multiple updates aggregated as a batch
in parallel. Without loss of generality, we assume that there is no insertion and deletion on
the same edge in a batch since these two operations cancel each other out. It is worth noting
that node insertion or node deletion can be treated as a set of updates which contains only
edge insertions or only edge deletions, respectively.

Let R ⊆ V be a small set of special vertices in a graph G, called landmarks. A label
L(v) for each vertex v ∈ V is a set of distance entries {(ri , δL(ri , v))}ni=1 where ri ∈
R, δL(ri, v) = dG(ri, v) and n ≤ |R|. The set of labels for all vertices in V , i.e., L =
{L(v)}v∈V , is a distance labelling over G. The size of a distance labelling L is defined
as size(L) = ∑

v∈V |L(v)|. In the literature, a distance labelling is often constructed by
following the 2-hop cover property [27]. For any two vertices (u, v) in a graph, the 2-hop
cover property requires at least one common vertex w existing in both L(u) and L(v) and
w must also be on one shortest-path between u and v.

Definition 1 (2-hop cover distance labelling) A distance labelling L over a graph G =
(V ,E) is a 2-hop cover labeling if the following holds for any pair of vertices u, v ∈ V :

dG(u, v) = min{δL(w, u) + δL(w, v) |
(w, δL(w, u)) ∈ L(u), (w, δL(w, v)) ∈ L(v)}. (1)

In our work, we consider a distance labelling property based on the notion of highway,
i.e., highway cover labelling [18], which has recently been shown to outperform the state-
of-the-art methods in the single-update setting [11]. A highway H = (R, δH ) consists of a
set R of landmarks and a distance decoding function δH : R × R → N

+ s.t. δH (r1, r2) =
dG(r1, r2) for any two landmarks r1, r2 ∈ R.

Definition 2 (Highway cover distance labelling) A highway cover labelling � = (H, L)

consists of a highway H and a distance labelling L satisfying that, for any v ∈ V \R and
r ∈ R,

dG(r, v) = min{δL(ri, v) + δH (r, ri) | (ri , δL(ri , v)) ∈ L(v)} (2)

Intuitively, a highway cover labelling requires that, for every vertex v ∈ V , its label L(v)

must contain a distance entry to each landmark r ∈ R unless there is another landmark
occurring on a shortest-path between r and v. For a detailed explanation, please refer to
[18], which has also provided some illustrative examples for highway and highway cover
labelling.

In this work, we study the problem of answering distance queries on dynamic graphs that
undergo rapid changes in their topological structures. Since both edge insertion and deletion
are considered, we formulate the problem as a fully dynamic distance query answering
problem.

Definition 3 (Fully dynamic distance query) Given a dynamic graph G′ that undergoes
edge insertions and edge deletions, a fully dynamic distance query for any two vertices s

and t in G′ is to compute their distance on G′.

2432 World Wide Web (2023) 26:2427–2452



4 Parallel fully dynamic framework

In this section, we explore an efficient and scalable parallel fully dynamic framework that
combines offline distance labelling and online searching to answer exact distance queries.
Our proposed framework has two main components: (i) fully dynamic distance labelling,
and (ii) sparsified searching. The key idea is to dynamically maintain a distance labelling
for a graph G that undergoes updates, and then use such a fully dynamic distance labelling
to guide online searches on a sparsified subgraph of G in order to answer fully dynamic
distance queries efficiently.

4.1 Fully dynamic distance labelling

Let G be a graph that undergoes updates (edge insertions and deletions) and B be a sequence
of updates occurring on G. We use G ◦ B to indicate the graph that corresponds to applying
updates B on G. A fully dynamic distance labelling on G ◦ B is a highway cover distance
labelling that is dynamically maintained to reflect updates B on G. That is, a fully dynamic
distance labelling � = (H,L) on G can be dynamically maintained to a fully dynamic
distance labelling �′ = (H ′, L′) on G ◦ B for any sequence B of updates containing edge
insertions and deletions. Note that the set of landmarks on G and G ◦ B remains the same
during the maintenance.

As discussed in [9], minimality is a highly desirable property to consider when design-
ing a distance labelling over dynamic graphs. Otherwise, a distance labelling may have
increasingly unnecessary entries in its labels and query performance deteriorates over time.

Definition 4 (Minimality) A fully dynamic distance labelling � = (H,L) on G ◦ B is
minimal if size(L′) ≥ size(L) always holds for any fully dynamic distance labelling �′ =
(H ′, L′) on G ◦ B.

Since the set of landmarks is unchanged, the highways H and H ′ in the above definition
always have the same size, i.e., only differing in distance values between landmarks. It has
been shown in [18] that, given a graph and a set of landmarks on the graph, there exists a
unique minimal highway cover labelling on the graph.

4.2 Fully dynamic distance querying

Given a fully dynamic distance labelling � = (H, L) on a graph G, an upper bound on the
distance between any pair of vertices s, t ∈ V \R in G is computed as follows:

d

st = min{δL(ri, s) + δH (ri, rj ) + δL(rj , t) | (ri , δL(ri , s)) ∈ L(s),

(rj , δL(rj , t)) ∈ L(t)} (3)

A fully dynamic distance query Q(s, t, �) on G using a fully dynamic distance labelling
� can be answered by conducting a bi-directional BFS search over a sparsified graph
G[V \R] (i.e., removing all landmarks in R from G) under the upper bound d


st such that:

Q(s, t) =
{

dG[V \R](s, t) if dG[V \R](s, t) ≤ d

st ,

d

st otherwise.

(4)

One major challenge of this framework is “how to design an algorithm that can efficiently
compute a fully dynamic distance labelling on G ◦ B for any sequence B of updates on a
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Algorithm 1 PARDHL.

graph G in order to perform fully dynamic distance queries on graphs undergoing updates,
particularly when such graphs are very large?”

5 Parallel maintenance of distance labelling

Below, we introduce a parallel fully dynamic method that can handle all updates including
both edge insertions and edge deletions in parallel and reflect the effects of these updates
into a distance labeling efficiently. Our proposed method, denoted as PARDHL (an abbrevi-
ation for Parallel Dynamic Highway Labelling), involves three main steps: finding affected
vertices, finding boundary vertices, and repairing affected vertices. Algorithm 1 describes
a high-level view of PARDHL. We discuss these three steps in detail.

5.1 Finding affected vertices

We start with defining “affected vertices” whose labels may need to be updated as a conse-
quence of edge insertions and edge deletions. Let G = (V ,E) be changed to G′ = (V ′, E′)
by a sequence of updates B, i.e., G′ = G ◦ B, R be a set of landmarks, and � be a fully
dynamic distance labelling on G.

Definition 5 (Affected vertex) A vertex v ∈ V is affected w.r.t. a landmark r ∈ R by a
sequence of updates B iff PG(v, r) �= PG′(v, r), and unaffected otherwise.

We use A(r, B) = {v ∈ V | PG(v, r) �= PG′(v, r)} to denote the set of all affected
vertices by B w.r.t. a landmark r and A = ⋃

r∈R A(r, B) refers to the set of all affected
vertices.

The following lemma states how affected vertices relate to a single update (edge insertion
or edge deletion).

Lemma 1 A vertex v is affected w.r.t. a landmark r iff there exists a shortest-path between
v and r that passes through an inserted edge (a, b) in G′ or a deleted edge (a, b) in G.

By this lemma, we know that any update on an edge (a, b) satisfying dG(r, a) = dG(r, b)

is trivial w.r.t. a landmark r , since such an update does not affect any vertices w.r.t. the
landmark r . Without loss of generality, we assume that dG(r, b) > dG(r, a) for updates on
an edge (a, b) in the rest of this article.

Since a vertex v is affected w.r.t a landmark r iff PG(v, r) �= PG′(v, r) (cf. Definition 5),
a “naive” way of finding all affected vertices is to conduct a BFS from each landmark r ∈ R

on both graphs G and G′, respectively, and then compare whether PG(v, r) �= PG′(v, r)

2434 World Wide Web (2023) 26:2427–2452



Fig. 3 (a) A graph with two landmarks 5 and 12 and a sequence of updates B = 〈(4, 8), (10, 13)〉 containing
a deleted edge (4, 8) and an inserted edge (10, 13), and (d) affected vertices by B = 〈(4, 8), (10, 13)〉 w.r.t.
landmark 5 are highlighted in green color

holds for each vertex v. However, this has the time complexity O((|V | + |E|)|R|) which
is prohibitively high for large graphs. In the following, we propose a parallel algorithm to
identify affected vertices. The key ideas are: (1) to search only on affected vertices on the
changed graph G′ by leveraging the distance labelling on the original graph G and an obser-
vation on how affected vertices relating to anchor vertices; (2) to parallelise searches for
multiple updates based on their anchor vertices, regardless whether they are edge insertions
or deletions. Below, we first define the notions of anchor vertex and pre-anchor vertex in
terms of an update (a, b), which can be an edge insertion or an edge deletion.

Definition 6 (Anchor vertex and pre-anchor vertex) The anchor vertex of an update (a, b)

is either a or b, whichever is further away from r , and the pre-anchor vertex of (a, b) is a
vertex in {a, b} that is not the anchor.

Note that when dG(r, a) = dG(r, b) there is no anchor vertex nor pre-anchor vertex
corresponding to the update (a, b). It can be easily proven that, for any update (a, b), if it
is not trivial w.r.t. a landmark r , i.e. dG(r, a) �= dG(r, b), its anchor vertex must be affected
by (a, b) whereas its pre-anchor vertex is unaffected by (a, b). Based on this observation,
we can use the pre-anchor vertex of an update to compute the anchor distance for such an
update.

Definition 7 (Anchor distance) The anchor distance of an update (a, b) w.r.t. a landmark r

is dG(r, u′) + 1 where u′ is its pre-anchor vertex.

For an edge insertion, this anchor distance indicates the new distance of the anchor vertex
to the landmark r on the changed graph G◦(a, b); for an edge deletion, this anchor distance
indicates the old distance of the anchor vertex to the landmark r on the original graph G. In
our work, regardless of edge insertions or edge deletions, we use anchor distances to devise
a unified algorithm that can find vertices affected by updates in parallel. Concretely, given
a sequence of updates B, there exists a set of anchor vertices corresponding to the updates
in B. We can then perform parallel searches from multiple or all anchor vertices in this set
to find affected vertices efficiently, for which we call anchor parallelism.

Example 1 Consider the example graph in Figure 3(a) which has two landmarks 5 and
12. After applying a sequence of updates B = 〈(4, 8), (10, 13)〉 containing a deleted edge
(4, 8) and an inserted edge (10, 13), the set of all vertices affected by B w.r.t. the landmark
5 is {8, 12, 13, 14, 15, 16, 17, 18} because their sets of shortest-path(s) to landmark 5 have
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Algorithm 2 Finding affected vertices.

changed that is also highlighted in Figure 3(d). We have two anchor vertices 8 and 13 for B

w.r.t. 5. The simultaneous searches from these anchors are shown in Figure 3(b)-(c) which
results in identifying all affected vertices.

The following lemma states that we can start with an anchor vertex to traverse its local
neighbourhood and then identify affected vertices based on their distances to the anchor
vertex on G′, the anchor distance on G and the distance labelling information on G. We can
also easily see that this lemma allows us to parallelise searches from anchor vertices.

Lemma 2 Let G′ = G ◦ B. A vertex v in G is affected by B w.r.t. a landmark r if the
following condition holds for at least one update (u′, u) ∈ B:

dG(r, v) ≥ (dG(r, u′) + 1) + dG′(u, v). (5)

Proof Given a vertex v in G which satisfies the condition in (5), we know that there must
exist at least one new shortest path between r and v that goes through an inserted edge
(u′, u) in G′, or at least one old shortest path between r and u that goes through a deleted
edge (u, u′). By Lemma 1, we thus know that v is affected.

Algorithm 2 shows the pseudo-code of our algorithm that finds affected vertices. Given
a sequence of updates B on G and a highway cover distance labelling � on G, we conduct
a partial BFS search for each update (a, b) ∈ B w.r.t. a landmark r in parallel. Specifically,
for each update (a, b) ∈ B, we start from the anchor vertex b with its new depth π =
Q(r, a, �) + 1 (Lines 5-6). Then, for every (v, π) ∈ Q, we examine the neighbors of v and
enqueue the ones into Q that are affected based on Lemma 1 with their new depths π + 1
(Lines 9-10) and add v to A(r, B) as an affected vertex (Line 9). This process continues
until Q is empty.
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Example 2 Consider the graph in Figure 3(b)-(c), the jumped BFS for the deleted edge
(4, 8) iteratively finds 3 affected vertices {8, 15, 16} starting from the anchor vertex 8,
and the jumped BFS for the inserted edge (10, 13) finds 6 affected vertices {12, 13, 14,

16, 17, 18} w.r.t. the landmark 5. After all parallel jumped BFSs, Algorithm 2 will return
the set A(r, B) = {8, 12, 13, 14, 15, 16, 17, 18}.

5.2 Finding boundary vertices

Now we define a special kind of affected vertices, called boundary vertices, which allows
us to bound the update space so as to efficiently repair the labels of affected vertices. These
boundary vertices lie at the boundary of affected and unaffected vertices.

Definition 8 (Boundary vertex) A vertex v is a boundary vertex w.r.t. a landmark r ∈ R and
a sequence of updates B if v is an affected vertex and has at least one unaffected neighbor
w, i.e. w /∈ A(r, B) ∧ w ∈ NG′(v).

We use B(r, B) to refer to the set of boundary vertices w.r.t. a landmark r and a sequence
of updates B. Since a boundary vertex v has at least one unaffected neighbor w, dG′(r, v)

must be upper-bounded by dG(r,w) + 1. It is worth noting that, if v is disconnected from
the landmark r after applying the updates B, then the upper bound of v is undefined. In
Algorithm 3, we treat dG′(r, v) = ∞ (Line 2) in this case. Then, we define the distance
bound of v, denoted as d∗(r, v), by its unaffected neighbors such that:

d∗(r, v) = min{dG(r,w) + 1 | w /∈ A(r, B) ∧ w ∈ NG′(v)}. (6)

The following lemma states that the smallest distance bound of a boundary vertex v

equals to the new distance from v to the landmark r on the changed graph G′.

Lemma 3 LetG′ = G◦B. If a vertex v ∈ A(r, B) has the smallest distance bound d∗(r, v),
then dG′(r, v) = d∗(r, v) holds.

Proof We prove this by contradiction. Assume that dG′(r, v) �= d∗(r, v). Since d∗(r, v) is
the minimum length of all paths between v and r that go through only unaffected vertices,
it means that dG′(r, v) < d∗(r, v) and one shortest-path between v and r must go through
at least one affected vertex v′ ∈ A(r, B). Then dG′(r, v) > dG′(r, v′) must hold. This
contradicts with the assumption that v has the smallest distance bound and thus dG′(r, v) =
d∗(r, v).

Note that, dG′(r, v) = d∗(r, v) does not generally hold for every boundary vertex v. If the
distance bound of a boundary vertex v is not the smallest in comparison with the distance
bounds of other boundary vertices in B(r, B), the distance dG′(r, v) can be computed from
its affected neighbors rather than its unaffected neighbors. Nonetheless, in such cases, the
affected neighbors of v needs to find their new distances to the landmark r on the changed
graph G′ before computing dG′(r, v).

Example 3 Consider the graph in Figure 4(a), three boundary vertices with their distance
bounds w.r.t. the landmark 5 are highlighted in dark green. Although the distance bound
of vertex 14 is 4 through its unaffected neighbor 11, the distance dG′(5, 14) = 3 can be
obtained through its affected neighbor 13 as shown in Figure 4(b).
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Algorithm 3 Finding boundary vertices.

Fig. 4 An illustration of our bounded repair algorithm w.r.t. the landmark 5. Affected vertices are highlighted
in green color, boundary vertices are highlighted in dark green color, blue color denotes vertices that are
being repaired, and red color denotes vertices that are being pruned. Their distance bounds are also provided
next to these vertices

Algorithm 3 describes our algorithm for finding boundary vertices. Given a changed
graph G′ by a sequence of updates B and a set of affected vertices A(r, B), for each vertex
v ∈ A(r, B), we compute the distance bound of v using the distance information of its
unaffected neighbors (Lines 4-7). Additionally, to improve efficiency, we remove outdated
distance information from the labels of all affected vertices because they will be repaired
based on the changed graph G′ in the next section (Line 8).
Example 4 Consider the graph in Figure 4(a), we start with eight affected vertices and find
only three of them as boundary vertices {12, 13, 14} because of the presence of at least one
unaffected vertex in their neighborhood and their bounded distances are being computed
using the distance information of their unaffected neighbors.

5.3 Repairing affected vertices

In this section, we propose a repairing strategy to efficiently update the labels of affected
vertices in order to reflect graph changes. The key idea is to conduct a BFS only on affected
vertices bounded by the “boundary vertices”.
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Concretely, based on Lemma 3, we can conduct a BFS from boundary vertices with the
smallest distance bound to infer the distances of their affected neighbors and repair their
labels. After each iteration, we treat affected vertices with repaired labels as being unaf-
fected and further process boundary vertices that have the smallest distance bound again.
This process terminates only when the labels of all affected vertices are repaired.

To further improve efficiency, we develop a landmark pruning strategy based on the
following lemma.

Lemma 4 A vertex v ∈ A(r, B) can be pruned from repairing (i.e., do not repair its label)
if there exists a landmark r ′ ∈ R\{r} lying on one shortest-path in PG′(v, r).

Proof By Definition 2, if there exists such a landmark r ′, dG′(r, v) can be computed using
(3) based on the highway and label of v w.r.t. the landmark r ′. Thus, the entry in L(v) w.r.t.
the landmark r is not needed.

From Lemma 4, we notice that, if a vertex v ∈ A(r, B) can be pruned, any vertex
v′ ∈ A(r, B) satisfying dG′(r, v′) = dG′(r, v) + dG′(v, v′) can also be pruned. Putting all
together, we incorporate a landmark pruning strategy into our repairing algorithm.

Algorithm 4 describes our algorithm for repairing affected vertices. Given a graph
G′ = G ◦ B, a set of affected vertices A(r, B) and a set of boundary vertices B(r, B),
we first sort vertices in B(r, B) w.r.t. their boundary distances and set π as the minimum
boundary distance (Lines 2-3). We use two queues Ql and Qp to process vertices to be
labeled and pruned, respectively. Then, we conduct a BFS w.r.t. a landmark r starting from
vertices in B(r, B) with the smallest distance bound. We process vertices in B(r, B) that
have distance π and enqueue to Qp or Ql based on whether they need to be labeled or
have been pruned. For each vertex v ∈ Ql at distance π , we examine affected neighbors
w of v. If w is pruned, and if w is a landmark, then we repair the highway (Line 12) and
add w to Qpruned because it is pruned (Line 13). Otherwise, we repair the label of w i.e.,
add an entry for r with the new distance π + 1 in L(w) and enqueue w to Ql (Lines 14-
15). After that, we remove w from A(r, B) because it has been repaired (line 17). Now
we process vertices with distance π + 1 in B(r, B) and put them to respective queues
before processing pruned vertices, because otherwise vertices in Qp may prune out some
of them that should not have been pruned (Lines 19-20). Next, we process vertices Qp

and for each (v, π) ∈ Qp at depth π , we enqueue affected neighbors w of v to Qp and
remove them from A(r, B) (Lines 22-24). We process these two queues, one after the other,
until Ql is empty.

Example 5 In the graph of Figure 4(a), we have three boundary vertices with their dis-
tance bounds. In the graph of Figure 4(b), we start with the boundary vertex 13 which
has the smallest distance bound 2 w.r.t. the landmark 5, repair its label and infer new dis-
tance bound 3 for its affected neighbors 12 and 14. Then, in the graph of Figure 4(c), we
repair the labels of boundary vertices 12 and 14 which have the smallest distance bound
3 and infer new distance bound 4 for their affected neighbors 16, 17 and 18. Note that
vertex 12 is pruned because it is a landmark. Next, in the graph of Figure 4(c), we only
repair the label of boundary vertex 18 because the other two boundary vertices 16 and
17 are pruned due to the presence of landmark 12 in their shortest-paths to the root land-
mark 5. Finally, in the graph of Figure 4(d), boundary vertices 8 and 12 are also pruned
based on Lemma 4.
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Algorithm 4 Repairing affected vertices.

Due to the highway cover property of distance labelling, we can also leverage the paral-
lelism at the landmark level, and we call this landmark parallelism. As shown in Algorithm
1, all these three steps can be conducted in parallel with respect to each landmark r ∈ R.

6 Theoretical discussion

In this section, we discuss the correctness of our parallel fully dynamic method and show
that it can preserve the minimality property of highway cover labelling. We also analyse the
time and space complexity of our proposed method.
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6.1 Proof of correctness

When a graph G is changed to a graph G′ after undergoing a sequence of updates B, our
proposed method PARDHL can dynamically maintain a highway cover labelling � over
G to a highway cover labelling �′ over G′. Formally, PARDHL is correct iff, whenever
Q(u, v, �) = dG(u, v) holds for any two vertices u and v in G, Q(u′, v′, �′) = dG′(u′, v′)
also holds for any two vertices u′ and v′ in G′. We prove the following theorem to show the
correctness of PARDHL.

Theorem 1 Let G′ = G ◦ B and �′ = PARDHL(G, �,B,G′). Then �′ is a highway cover
labelling on G′.

Proof First, we prove that FindAffected finds the set of all affected vertices w.r.t. a
landmark r by a sequence of updates B. By Lemma 1, we know that each affected vertex
is enqueued into Q during a BFS search from b (Lines 4 and 7-8 in Algorithm 2). Thus,
A(r, B) contains all affected vertices w.r.t. r and (a, b).

Then, we show that FindBoundary finds the set of all boundary vertices w.r.t. a
landmark r and updates B. Algorithm 3 finds boundary vertices B(r, B) from all affected
vertices v ∈ A(r, B). It adds an affected vertex v ∈ A(r, B) into B(r, B) iff v has at least
one unaffected neighbor (Lines 4-7). Algorithm 3 also removes the distance entries of r

from all affected vertices (Line 8).
Now, we prove that RepairAffected modifies � = (H, L) to �′ = (H ′, L′) s.t. (1)

(r, dG′(r, v)) ∈ L′(v) for v ∈ A(r, B) iff PG′(r, v) does not contain any other landmark in
the shortest-path from v to r; (2) δH ′(r, r ′) = dG′(r, r ′) for any r ′ ∈ R\{r}. By Lemma 3,
starting from boundary vertices with the smallest distance bound, the distances of affected
vertices on G′ are iteratively inferred in A(r, B) and added into their labels via Ql if these
affected vertices are not prunable (Lines 6, 15-16 and 19). If an affected vertex v is prunable,
it is kept in Qp; if v is also a landmark, δH ′(r, v) in H ′ is updated (Lines 5, 10-13, 18).
Thus, every vertex v appearing in Qp has no distance entry of r in L′(v), whereas every
vertex v appearing in Ql must have (r, dG′(r, v))) ∈ L′(v). By Lemma 4, this proves both
(1) and (2).

The following theorem states that the minimality of labelling can be preserved by
PARDHL.

Theorem 2 If � is minimal, then �′ = PARDHL(G, �,B,G′) is also minimal.

Proof The proof for Theorem 1 shows that (r, dG′(r, v)) ∈ L′(v) for v ∈ A(r, B) iff
PG′(ri , v) does not contain any other landmark on any shortest-path between r and v. This
ensures the minimality for the labels of all affected vertices. For unaffected vertices, by
Definition 5, their labels should remain unchanged. Thus, if � is minimal, then �′ obtained
by updating the labels of all affected vertices must also be minimal.

6.2 Complexity analysis

Let m be the total number of affected vertices w.r.t. a landmark r , l be the average label size
of a highway cover distance labelling (i.e., l = size(L)/|V |), and d be the average degree
of affected vertices.
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Algorithm 2 takes O((m · d · l)/t) time and O(|V |) space to find all affected vertices,
where t is the total number of parallel processes. Algorithm 3 takes O(m · d) to compute
distance bounds. Then, Algorithm 4 takes O(m · d2) to repair the labels of all affected ver-
tices because the pruning step may be checked for each affected vertex in the worst case.
We omit l from O(m · d) for Algorithm 3 and from O(m · d2) for Algorithm 4 because dis-
tances for all unaffected neighbors of affected vertices are stored in Algorithm 2. Therefore,
PARDHL takes O(|R|× (m ·d · l)+ (m ·d)+ (m ·d2)) = O(|R|×m ·d(l +d +1)) time and
space O(|V |) space. In practice, m is usually orders of magnitudes smaller than |V | and l is
also significantly smaller than |R|.

7 Experiments

We implemented our proposed method PARDHL to answer the following questions:

Q1. How efficiently can PARDHL process graph updates in comparison with the-state-of-
the-art dynamic algorithms?

Q2. How does the number of landmarks affect the performance of PARDHL?
Q3. What is the effect of the size of updates on the performance of PARDHL?
Q4. Is there an upper bound on the size of updates, for which PARDHL is better

than reconstruction (i.e., recomputing a labelling from scratch) and online search
algorithms without using any labelling?

7.1 Experimental setup

We implemented our method in C++11 and compiled it then using gcc 5.5.0 with the -O3
option. We performed all the experiments using 28 threads on a Linux server (Intel Xeon
W-2175 with 2.50GHz, 28 cores and 512GB of main memory).

7.1.1 Baseline methods

We compared our method with the following state-of-the-art algorithms:

– FULFD: a fully dynamic algorithm proposed in [10] which combines a distance
labelling with a graph traversal algorithm to answer distance queries.

– FULHL: a fully dynamic labelling algorithm proposed in [11] which combines a
highway cover labelling with graph traversal algorithm to answer distance queries.

– INCHL+: an online incremental algorithm proposed in [25], which combines a highway
cover labelling with a graph traversal algorithm for answering distance queries;

– Opt-BiBFS: an online bidirectional BFS algorithm to answer distance queries, using an
optimized strategy to expand searches from a direction with less vertices [10].

Besides these methods, there are several other methods for answering distance queries on
dynamic graphs, such as FULPLL [9], DECM [6], and WPSL [28] which can only process
one single update at a time. Since the experimental results of the previous works [10, 11, 28]
have shown that FULFD and FULHL outperform FULPLL, and WPSL outperforms DECM
and can only scale to graphs with millions of nodes and edges, we omit the comparison with
these methods. To distinguish the parallelism power of landmark parallelism from anchor
parallelism, we also consider another variant of our proposed method, called PARDHL−,
which is obtained by removing landmark parallelism from PARDHL. The code of FULFD
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Table 1 Summary of datasets

Dataset Network |V | |E| Avg. deg. Avg. dist.

Skitter comp (u) 1.7M 11M 13.08 5.0

Hollywood social (u) 1.1M 114M 98.91 3.9

Orkut social (u) 3.1M 117M 76.28 4.2

Enwiki social (d) 4.2M 101M 43.75 3.4

Livejournal social (d) 4.8M 69M 17.68 5.6

Indochina web (d) 7.4M 194M 40.73 7.7

IT web (d) 41M 1.2B 49.77 7.0

Twitter social (d) 42M 1.5B 57.74 3.6

Friendster social (u) 66M 1.8B 55.06 5.0

UK web (d) 106M 3.7B 62.77 6.9

and FULHL was provided by their authors and implemented in C++. We used the same
parameter settings as suggested by their authors unless otherwise stated. To have a fair
comparison, we set the number of landmarks to 20.

7.1.2 Datasets

We used 10 real-world large complex networks to verify the efficiency of our algorithms.
We treated these networks as undirected and unweighted graphs. The statistics of these
datasets are summarized in Table 1. They can be easily downloaded though the links of the
Stanford Network Analysis Project [30] and the Laboratory for web Algorithmics [31].

7.1.3 Test data generation

We applied the following principles to sample updates and queries in our experiments.
For updates, we considered three update settings: (1) fully dynamic - contains 50% edge

insertions and 50% edge deletions, (2) incremental - contains only edge insertions, and (3)
decremental - contains only edge deletions. For each update setting, we randomly generated
10 sequences of updates, where each sequence contains 1,000 updates. These settings enable
us to explore the impacts of edge insertions and edge deletions respectively, in addition to
their combined impact.

In Figure 5, we report the distance distribution for updates in the incremental setting
before applying updates and the decremental setting after applying updates. For the incre-
mental setting, the distances between vertices of updates mostly range from 2 to 8 in all
datasets, except for only Indochina and UK which have 15%-30% of updates with distances
larger than 8. For the decremental setting, the distances between vertices of updates in all
datasets are small ranging from 1 to 6, which shows that the updates are selected from
densely connected components of these networks allowing us to evaluate the methods more
effectively. Further, only a small number of updates are disconnected (i.e., have distance ∞)
in most of the datasets.

For queries, we randomly sampled 100,000 pairs of vertices in each dataset to evaluate
the average querying time on graphs after being changed as a result of updates. We also
report the average size of distance labellings after being changed as a result of updates.
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Fig. 5 Distance distributions for updates: (a)-(b) in the incremental setting (only edge insertions), and (c)-(d)
in the decremental setting (only edge deletions)

7.2 Performance comparison

In the following, we compare our proposed method with the baseline methods in terms of
update time, labelling size and query time.

7.2.1 Update time

Tables 2, 3 and 4 show the average update time of the proposed and baseline methods
after performing updates in different settings. We also report the fraction of affected ver-
tices (i.e., |A|

|V | ) for 1000 updates which is averaged over 10 sequences for our algorithms.
From Table 2, we see that the average update time of our method PARDHL is consider-
ably less than FULHL and significantly much less than FULFD on all the datasets in the
fully dynamic setting. We can also see that PARDHL− is comparable with FULHL and
significantly outperforms FULFD. Our proposed methods have promising results for large
datasets. In particular, they process updates on networks with over billions of edges and
on networks that have large fractions of affected vertices, much more efficiently than the
baseline methods.

Table 3 shows that the average update time of PARDHL outperforms INCHL on all the
datasets, and outperforms INCHL+ and INCFD except on Twitter and Friendster in the
incremental setting. This is because PARDHL leverages advantages from parallelism when
a large fraction of vertices is affected and as we can see that the fraction is negligibly small
for Twitter and Friendster which make it slower on these datasets as compared to sequen-
tial methods INCFD and INCHL+. We can also see that PARDHL− has comparable results
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Table 2 Comparison of the update time between our methods and the baseline methods. The update time is
reported for 1,000 updates, averaged over 10 sequences

Dataset Fully Dynamic Update Time (sec.)
|A|
|V |

PARDHL− PARDHL FULHL FULFD

Skitter 1.053 0.249 0.479 20.22 0.7857

Hollywood 0.188 0.046 0.117 3.136 0.0379

Orkut 4.118 0.998 1.833 35.98 0.2780

Enwiki 5.103 2.244 3.586 115.9 0.4960

Livejournal 0.591 0.233 0.502 13.07 0.0492

Indochina 5.182 1.487 2.674 270.7 2.1660

IT 44.04 9.630 55.74 416.9 2.9187

Twitter 62.82 31.24 129.8 5010 0.3939

Friendster 4.597 1.856 44.31 17.16 0.0009

UK 33.14 11.22 74.56 431.0 0.6949

Table 3 Comparison of the update time in the incremental setting between our methods and the baseline
methods

Dataset Incremental Update Time (sec.) |A|
|V |

PARDHL− PARDHL INCHL INCHL+ INCFD

Skitter 0.446 0.090 0.170 0.457 0.576 0.3847

Hollywood 0.167 0.040 0.071 0.081 0.087 0.0405

Orkut 1.949 0.430 1.698 3.026 1.990 0.1700

Enwiki 0.285 0.107 0.284 0.229 0.157 0.0075

Livejournal 0.300 0.096 0.222 0.325 0.251 0.0209

Indochina 6.877 1.214 3.525 167.7 504.5 2.9487

IT 60.89 12.88 62.45 95.92 335.7 4.2755

Twitter 2.891 1.198 14.16 0.037 0.107 0.0004

Friendster 4.388 1.724 21.57 0.169 0.220 0.0006

UK 20.56 5.505 42.27 21.49 469.5 0.5029

with the baseline methods INCHL and INCFD and particularly performs well for datasets
which have relatively large fractions of affected vertices. Overall, Our methods can perform
incremental updates more efficiently under large fractions of affected vertices.

We can also verify from Table 4 that the average update time of PARDHL is signifi-
cantly faster than the state-of-the-art methods DECHL and DECFD on all the datasets in the
decremental setting. Particularly, PARDHL has much improved results on networks with
high average degree such as Twitter and Hollywood. Due to the inherent complexity of
decremental operation on graphs (i.e., increasing distances), DECFD takes very long time
in identifying and updating labels of affected vertices. We can also observe that PARDHL−
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Table 4 Comparison of the update time in the decremental setting between our methods and the baseline
methods

Dataset Decremental Update Time (sec.) |A|
|V |

PARDHL− PARDHL DECHL DECFD

Skitter 1.214 0.317 0.700 24.22 0.7466

Hollywood 0.218 0.053 0.129 6.912 0.0368

Orkut 4.859 1.090 1.537 69.44 0.3197

Enwiki 8.433 3.534 6.539 239.1 0.8536

Livejournal 1.032 0.384 0.665 15.00 0.0937

Indochina 2.111 1.265 1.425 43.12 0.4162

IT 8.351 3.54 31.26 350.5 0.1637

Twitter 90.03 50.02 231.9 10628 0.4971

Friendster 4.784 1.957 44.62 28.54 0.0012

UK 31.76 13.07 70.53 254.1 0.5165

outperforms DECFD and is comparable with DECHL and again better exploits parallelism
on datasets with large fraction of affected vertices w.r.t. dataset size.

7.2.2 Labelling size

Table 5 shows that PARDHL has significantly smaller labelling sizes as compared to FULFD
on all the datasets. We did not provide the labelling sizes of FULHL because it is also
designed based on highway cover distance labelling and due to the minimality property
has the same labelling sizes as PARDHL. The labelling size of FULFD remains unchanged
at all times because they maintain fixed bit-parallel shortest-path trees. On the other hand,
PARDHL stores pruned shortest-path trees; therefore, to preserve the property of minimality,
labels need to be added or deleted as a result of graph updates. However, the labelling size of
PARDHL remains stable in practice because the average label size is bounded by a constant,
i.e. the number of landmarks.

7.2.3 Query time

Table 5 shows the average query time of PARDHL is comparable with FULFD. Again,
we did not provide query time of FULHL because it has the same results as our method
PARDHL. It has been previously shown [9] that the average query time is mainly dependent
on labelling size. Since the dynamic operations do not considerably affect the labelling size
for PARDHL and FULFD, their query time also remains stable.

We compare the total time of querying and updating of our methods with the baseline
methods in Figure 6. For a fair comparison, we take the sum of the total update time for
randomly sampled updates of varying sizes i.e., 1 to 10,000 plus the query time of 1,000
queries after applying the updates as the total time of our methods, denoted as PARDHL+QT
and PARDHL−+QT, and the baseline methods, denoted as FULHL+QT and FULFD+QT.
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Table 5 Comparison of the labelling size and query time between our proposed methods and the baseline
methods

Dataset Query Time [ms] Labelling Size

PARDHL FULFD PARDHL FULFD

Skitter 0.029 0.020 42 MB 153 MB

Hollywood 0.026 0.036 27 MB 263 MB

Orkut 0.102 0.156 70 MB 711 MB

Enwiki 0.053 0.051 82 MB 608 MB

Livejournal 0.043 0.051 122 MB 663 MB

Indochina 0.788 0.767 85 MB 838 MB

IT 1.167 1.103 866 MB 4.74 GB

Twitter 0.868 0.174 1.14 GB 3.83 GB

Friendster 0.815 0.902 2.43 GB 9.14 GB

UK 1.174 5.233 1.78 GB 11.8 GB

Fig. 6 Comparison between the total time of querying and updating w.r.t varying size of updates up to 10,000
updates of the proposed methods PARDHL− and PARDHL, and the baseline methods Opt-BiBFS, FULHL,
and FULFD

For the baseline method Opt-BiBFS, we take only the query time of 1,000 queries after
applying the updates. We see that, even adding the update time of maintaining the labelling
under updates of varying sizes, the overall query performance of our methods is signifi-
cantly better than the baseline methods on all the datasets. In particular, our methods show
a promising query performance on large networks Twitter, Friendster and UK.

7.3 Impact of varying landmarks

We analyse the performance of our proposed method PARDHL with the baseline methods
FULHL and FULFD under varying landmarks, i.e., |R| ∈ [10, 20, 30, 40, 50, 150].

Figure 7 shows that the update time of our method PARDHL and the baseline meth-
ods FULHL and FULFD, after applying a sequence of 1000 updates in the fully dynamic
setting, under varying landmarks. We can see from Figure 7 that our method PARDHL out-
performs FULHL and FULFD on all the datasets against each setting of landmarks. This
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Fig. 7 Update time of PARDHL (in colored bars) and the baseline methods FULHL (in colored plus grey
bars) and FULFD (in colored plus grey plus light grey bars) under 10-50 landmarks

Fig. 8 Update time of PARDHL− and PARDHL for performing updates of varying size up to 10,000 updates
against construction time of highway cover labelling from scratch

is due to parallel searches for finding affected vertices and the novel pruning approach for
repairing labels. Particularly, our method PARDHL can perform much better than FULHL
and FULFD on large datasets with over billions of edges when the number of landmarks is
increased. For clarity of performance illustration, we present results for Friendster sepa-
rately for FULHL and FULFD.

7.4 Impact of varying size of updates

We evaluate the performance of our methods PARDHL and PARDHL− against the increas-
ing size of updates that are selected randomly. We start with 500 updates and then iteratively
add 500 updates up to 10,000 updates in the fully dynamic setting.

Figure 8 shows the average update time after constructing a distance labelling from
scratch, and updating the distance labelling using our fully dynamic algorithms after each
increase. We observe from Figure 8 that our methods perform well on all the datasets i.e.,
the update time remains lower under the construction time for almost all the datasets. We
can also observe that increasing the size of updates tends towards slower increase in update
time which shows that parallel searches and efficient repairing under large sizes of updates
is much more efficient in processing the graph updates. It is worth noticing that PARDHL
is more efficient than PARDHL− which shows that landmarks parallelism in PARDHL can
be better leveraged for larger sizes of updates particularly for Indochina, IT and UK. This is
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due to the updates in these networks have larger distances, as shown in their distance distri-
butions in Figure 5 which may result in much more affected vertices and thus parallelism is
better leveraged.

8 Extensions

We can easily extend our proposed method to directed or weighted graphs.
For directed graphs, more specifically, we can redefine dG(s, t) as the distance from

vertex s to vertex t . We store two label sets for each vertex v ∈ V , namely forward label
Lf (v) and backward label Lb(v), which contain pairs (ri , δriv) after performing forward
and backward pruned BFSs w.r.t. each landmark ri ∈ R, respectively. We also store two
highways, namely forward highway Hf = (R, δHf

) and backward highway Hb = (R, δHb
)

such that for any two landmarks ri , rj ∈ R, δHf
(ri , rj ) = dG(ri, rj ) and δHb

(rj , ri) =
dG(rj , ri).

For maintaining a precomputed highway cover distance labelling as a result of graph
changes, we run our method twice, one for fixing the forward labels and highway and the
other for fixing the backward labels and highway. To repair the forward labels and highway,
we first perform parallel BFSs using Algorithm 2 on the forward adjacency list of a changed
graph to find the set of all affected vertices. Then, we find boundary vertices using Algo-
rithm 3 by checking the neighbors of all affected vertices in the reverse adjacency list of a
changed graph. Finally, we repair the forward labels and highway starting from the bound-
ary vertices that have the minimum distance using the forward adjacency list of a changed
graph and infer the distances of affected vertices on the changed graph via a level-by-level
inference. Similarly, the backward labels and highway can be repaired in the same man-
ner. For a given query pair (s, t), we can use Lf (s) and Lb(t) to compute the upper bound
distance from s to t in the same way as described in (3).

We can also extend our proposed method to non-negative weighted graphs. In such cases,
we use Dijkstra’s algorithm in place of BFSs in order to compute and maintain a highway
cover distance labelling for dynamic weighted graphs.

9 Conclusion and future work

In this article, we have proposed a novel parallel method for answering distance queries on
dynamic graphs. Our proposed method exploits anchor parallelism by parallelising searches
for multiple updates that can find affected vertices simultaneously. We have also introduced
an efficient repairing mechanism based on the observation of boundary vertices, which can
bound a search space to only affected vertices while repairing their labels. Our repairing
mechanism uses a novel pruning strategy to further bound the search space of affected
vertices for efficient maintenance of a highway cover distance labelling. We have analyzed
the correctness and complexity of our method and showed that it preserves the labelling
minimality. We have empirically verified the efficiency, scalability and robustness of our
method on 10 real-world networks.

For future work, we plan to further investigate the following research directions: 1) it
would be interesting to explore the opportunity to extend the proposed algorithms to road
networks, and 2) re-positioning/selection of landmarks in a dynamic setting in order to
reduce the size of the labelling and hence of the query time. Re-selection of highly central
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landmarks could also be required after a certain amount of changes occurring on the topo-
logical structure of a dynamic network. This would help optimize the size of a highway
cover distance labelling and query performance. Therefore, it is also interesting to explore
the problems such as: after how much changes on the topological structure of a dynamic
graph, re-positioning of landmarks is required.
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30. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans
Intell Syst Technol, vol. 8(1). https://doi.org/10.1145/2898361 (2016)

2451World Wide Web (2023) 26:2427–2452

https://doi.org/10.1007/s11280-016-0421-1
https://doi.org/10.1145/3299901
https://doi.org/10.1007/s00778-021-00707-z
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1007/s00778-012-0274-x
https://doi.org/10.1145/1150402.1150476
http://arxiv.org/abs/2102.08529
https://doi.org/10.1145/2898361


31. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: Proceedings of the 13th
International Conference on World Wide Web. WWW, pp. 595–602. https://doi.org/10.1145/988672.
988752 (2004)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

2452 World Wide Web (2023) 26:2427–2452

https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752

	Efficient maintenance of highway cover labelling for distance queries on large dynamic graphs
	Abstract
	Introduction
	Contributions
	Outline

	Related work
	Problem formulation
	Parallel fully dynamic framework
	Fully dynamic distance labelling
	Fully dynamic distance querying

	Parallel maintenance of distance labelling
	Finding affected vertices
	Finding boundary vertices
	Repairing affected vertices

	Theoretical discussion
	Proof of correctness
	Complexity analysis

	Experiments
	Experimental setup
	Baseline methods
	Datasets
	Test data generation

	Performance comparison
	Update time
	Labelling size
	Query time

	Impact of varying landmarks
	Impact of varying size of updates

	Extensions
	Conclusion and future work
	Declarations
	References


