World Wide Web (2023) 26:2399-2425
https://doi.org/10.1007/511280-023-01145-3

®

Check for
updates

A DRL-based online VM scheduler for cost optimization
in cloud brokers

Xingjia Li' - Li Pan’ - Shijun Liu’

Received: 24 October 2022 / Revised: 1 December 2022 / Accepted: 29 January 2023 /
Published online: 14 March 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

The virtual machine (VM) scheduling problem in cloud brokers that support cloud burst-
ing is fraught with uncertainty due to the on-demand nature of Infrastructure as a Service
(TaaS) VMs. Until a VM request is received, the scheduler does not know in advance when
it will arrive or what configurations it demands. Even when a VM request is received, the
scheduler does not know when the VM’s lifecycle expires. Existing studies begin to use
deep reinforcement learning (DRL) to solve such scheduling problems. However, they do
not address how to guarantee the QoS of user requests. In this paper, we investigate a cost
optimization problem for online VM scheduling in cloud brokers for cloud bursting to mini-
mize the cost spent on public clouds while satisfying specified QoS restrictions. We propose
DeepBS, a DRL-based online VM scheduler in a cloud broker which learns from experience
to adaptively improve scheduling strategies in environments with non-smooth and uncertain
user requests. We evaluate the performance of DeepBS under two request arrival patterns
which are respectively based on Google and Alibaba cluster traces, and the experiments
show that DeepBS has a significant advantage over other benchmark algorithms in terms of
cost optimization.

Keywords Cloud computing - Deep reinforcement learning - Online scheduling -
Cloud brokering - Hybrid cloud - Cloud bursting

< Li Pan
panli@sdu.edu.cn

P4 Shijun Liu
Isj@sdu.edu.cn

Xingjia Li

xingjia.li@mail.sdu.edu.cn

School of Software, Shandong University, Jinan, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01145-3&domain=pdf
mailto: panli@sdu.edu.cn
mailto: lsj@sdu.edu.cn
mailto: xingjia.li@mail.sdu.edu.cn

2400 World Wide Web (2023) 26:2399-2425

1 Introduction

As virtualization and networking technologies advance, cloud computing has established
an irreplaceable paradigm that has altered the way of designing and purchasing comput-
ing resources and IT services. Cloud computing possesses on-demand and elastic features,
enabling the information business to access low-cost computing resources, therefore trans-
forming it into the century’s most inventive area, and enabling industrial and scientific
computing to access inexpensive on-demand services. Cloud computing’s quick growth
has resulted in a more established and mature market and technology, leading to improved
services for consumers. However, the proliferation of cloud providers has introduced new
hazards for customers. While the majority of cloud providers currently offer similar ser-
vices, they do not all guarantee cloud interoperability and portability. As consumers become
more reliant on a single cloud provider, it becomes more difficult for them to switch cloud
vendors, a phenomenon known as vendor lock-in [1-3]. As a result, multi-cloud arises as
a model for concurrently utilizing services supplied by different cloud providers. Utilizing
services based on multiple clouds, consumers receive a more efficient and robust service,
while cloud providers benefit from increased user adoption of cloud services [4]. Cloud
brokers [5] play a significant role in the cloud ecosystem by providing consumers more
appealing cloud services from multiple cloud providers. By utilizing a cloud broker, con-
sumers can avoid being overly reliant on a single cloud provider and instead obtain a cloud
service that is more favorable in terms of cost and service quality. According to available
data, the worldwide cloud service brokerage market is worth USD 6993.19 million in 2020
and is predicted to reach USD 7679.41 million in 2021, before increasing at a 10.15 percent
compound annual growth rate to reach USD 12.49135 billion by 2026 [6].

Global pandemic of COVID-19 has driven a surge in demand for cloud computing.
Because of the proliferation of home offices, internet businesses, such as online conferenc-
ing, have seen increased adoption. This rise in demand has left some firms unable to meet
all of their computing needs entirely through their own private cloud, prompting several to
shift some of their computing needs to the public cloud. According to the State of the Cloud
Report Survey provided by Flexera [7], 92% of the 750 companies participating in the study
are using multiple or hybrid clouds. Cloud bursting is a typical hybrid cloud paradigm that
mixes on-premises and cloud computing resources to provide services to users. As shown
in Figure 1, when the total user requirements surge, it is difficult for the private cloud to
handle all the user requests. Faced with these challenge, the cloud bursting architecture
accommodates all user requests by transferring some of them from the private cloud to the
public cloud. Typical cloud bursting application scenarios include 3D rendering, data anal-
ysis, and seasonal online marketing campaigns. These scenarios are characterized by brief
overflows of traffic or sudden demands on computing resources that are difficult for local
computing resources to cope with. Cloud brokers can help users manage resources, both
local computing resources as well as multi-cloud resources. Therefore, cloud brokers are
well-suited to assisting customers who already have local data centers in achieving a hybrid
cloud environment, and cloud bursting enabled by cloud brokers has been studied [8].

Infrastructure as a Service (IaaS) is the most popular cloud computing service model,
providing users with virtual machines called instances as services under some billing
models. On-demand instances with a pay-per-use billing model are one of the important
categories. It is vital for cloud brokers that provide IaaS to fulfill the on-demand nature of
services. This means that, until a request arrives, cloud brokers are unaware of its arrival

@ Springer

World Wide Web (2023) 26:2399-2425 2401

Total user
requirements

Private cloud
capacity limits

e,%\%/ Ve P Ve

N .

é@)/ _~ Public Cloud
S

N \g&

User
E % requests Partial user | reﬂugsts
Users Private Cloud Public Cloud

Figure 1 An overview of cloud bursting for handling surges in user requests

time or its exact configuration requirements. Moreover, there is no way to know or accu-
rately predict the exact moment of departure before this request leaves. On the other hand,
cloud brokers considering cloud bursting need to select among numerous servers in pri-
vate and public clouds, and should minimize the public cloud cost while dealing with
request uncertainty. Therefore, cloud brokers need an appropriate online scheduling strat-
egy to accommodate current cloud bursts. Figure 2 gives a scenario where cloud bursting is
implemented using a cloud broker, where requests from different organizations such as data
analysis service providers, factories, and research institutions are transferred to the public
cloud via cloud bursting. Different types of jobs are scheduled as virtual machines in private
clouds and multiple public clouds.

Existing scheduling problems in cloud computing focus on the use of heuristics and
meta-heuristics to obtain near-optimal scheduling solutions in an acceptable running time
for large-scale jobs and clusters. For dynamic environments, such as cloud brokers with
uncertain user requests, meta-heuristics suffer from rapid diversity loss and premature con-
vergence [9], and thus there is no guarantee that meta-heuristics will always achieve superior
performance. In contrast to meta-heuristics, machine learning methods can uncover hid-
den relationships between data in order to generate scheduling decisions that are difficult
to detect using conventional optimization techniques or heuristics based on common sense
[10]. Reinforcement learning (RL), a machine learning paradigm characterized by trial and
error and delayed gains, has achieved abundant and effective results in recent years on
sequential decision-making problems in various fields of engineering and academia. Deep
reinforcement learning (DRL) is a combination of reinforcement learning and deep learning,
which overcomes the shortcomings of table-based reinforcement learning and empowers
reinforcement learning with the ability to model complex systems and adapt to complex
environments.

Due to the enormous potential demonstrated by DRL, approaches based on DRL have
been applied to cloud resource management and scheduling issues [11, 12]. Several works
[10, 13, 14] have proposed DRL-based approaches for offline VM scheduling and place-
ment policies. Sheng et al. [15] investigate online VM scheduling in NUMA architectures

@ Springer

2402 World Wide Web (2023) 26:2399-2425

A 2 O
-\ /

3

% :

NV \/ Cloud

2

4

<=ph+—EBy

Broker
VM VM
ke
000
.oe ooo
Public Cloud 1 Public Cloud 2 Private Cloud

Figure 2 A scene where cloud bursting is implemented using a cloud broker

to optimize the amount of requests that can be accommodated from the cloud provider’s
perspective. However, existing research on using reinforcement learning for cloud resource
scheduling does not directly address the scheduling of requests with explicit QoS restric-
tions. Due to the nature of reinforcement learning in trial and error, agents are prone to take
actions that violate the requested QoS requirements.

Considering the challenges of online decision making and guaranteeing QoS of user
requests faced by the VM scheduling problem in cloud broker architectures for cloud burst-
ing, in this paper we propose a DRL-based online VM scheduler called DeepBS that takes
cloud bursting into account from the perspective of cloud brokers. When confronted with
dynamic user requests that have unknown arrival time, configuration requirements, and
departure time, DeepBS can make immediate decisions and adapt to the changing environ-
ment to minimize the cost of computing resources while ensuring that the QoS requirements
of user requests are satisfied. We evaluate the performance of our proposed algorithm
under two request arrival patterns which are respectively based on Google cluster trace and
Alibaba cluster trace, and the experiments show that DeepBS has a significant advantage
over other benchmark algorithms in terms of cost optimization. Our main contributions are
as follows:

® Facing the increasing demand for computing resources, a cloud broker architecture for
cloud bursting is proposed for unified management of cloud resources in private clouds
and multiple public clouds. As a result, computing resources in the form of hybrid
clouds are viewed as a unified whole.

@ Springer

World Wide Web (2023) 26:2399-2425 2403

® The online VM scheduling problem is modeled in the cloud broker architecture for
cloud bursting with the goal of minimizing computing resource cost while guaranteeing
QoS. This problem is quite challenging because user requests have uncertainty in arrival
time, configuration requirements, and departure time.

® To address the problem of online VM scheduling in the cloud broker architecture
used for cloud bursting, we propose a DRL based scheduler called DeepBS for online
scheduling of VM requests with unknown arrival and departure time as well as het-
erogeneous configuration requirements in a multi-cloud environment, with the goal of
minimizing computing resource cost and guaranteeing QoS of user requests.

® We evaluate the performance of our proposed algorithm under two request arrival
patterns based on Google cluster trace and Alibaba cluster trace and the latest pric-
ing of Amazon EC2. The experimental analysis shows that DeepBS has a significant
advantage in terms of cost optimization. Specifically, DeepBS has a 27.84% perfor-
mance advantage in cost optimization over the best performing benchmark algorithm
in both real cluster-based tracking request arrival modes, and still maintains optimal
performance in simulation scenarios with more extreme request arrival patterns.

The rest of the paper is structured as follows. Section 2 takes a look at related work.
Section 3 describes the system model and problem formulation. Section 4 presents a method
for modelling the cloud broker VM scheduling problem with the objective of minimizing
cost as an RL problem. Section 5 details the DRL-based DeepBS. Experiments and per-
formance analysis are performed in Section 6. Finally, Section 7 concludes this paper. A
side-by-side comparison of related works is shown in Table 1.

2 Related work

Through virtualization technology, cloud providers make physical machines (also known
as host, server, or PM) available to consumers in a multi-tenant basis. Multiple virtual
machines can be deployed concurrently on the same physical hardware [22]. From the
user’s perspective, virtual machines delivered in the form of instances appear to be limit-
less, elastic, and on-demand. Appropriate resource management is required for the provider
to reduce resource waste and maximize cost savings [23, 24]. One of the most challeng-
ing resource allocation problems in cloud computing is the VM scheduling problem, which
involves determining which physical machine will host the VM request based on current
VM requirement and server resource consumption conditions [25].

In this section, the literature on VM scheduling is reviewed. Related research is divided
into three categories: bin packing based methods, meta-heuristic based methods, and
reinforcement learning based methods.

2.1 Bin packing based methods

The resource allocation problem in cloud environments is often modelled as a variant
of the classical bin packing problem. A number of greedy heuristic strategies are pro-
posed based on competitive ratio analysis and worst-case performance guarantees. Online
strategies are widely studied and applied in practice as they give intuition-based and
performance-guaranteed results.

Li et al. [16, 17] analyze the competitive ratios of First Fit, Best Fit and Any Fit,
which are commonly used in dynamic bin packing problem, and propose a hybrid First Fit

@ Springer

World Wide Web (2023) 26:2399-2425

2404

auruQ uonenuwiS eqeqly EMOOO mOO MEE.EOT/ I10J %#NC@& 180D JIojuerens) woo ym Odd Yo d\ré meQDQ
auluQ oImzy Joquunu [Imny 1s91, NOza 0T [S1]
OCEQO :Oﬁﬁﬁﬁaﬂm :OEQE_\EEOU %MH@EM 180D Odd 120 :NH
AUIPO uonenuIg 1omod pawnsuo)) oner 19mod 01 goO NOJQ moqurey 120C [o1]
SuIIO - aoueeq peo] uedsoyey NOa 020t [c1]
AUIPIO uonenwIS VIS $S0[@ouruLIo)19d uonduwnsuod A31aug Surures[-Q) 020T [+1]
AUIPIO - V1S uondwnsuod remod Surures[-Q) 810C [e1]
[UIPFO uopemurg umMOpMO[s qof dFe1oAy HOYOANIHY 910¢C [11]
AUIPIO qeTIouR[d uonenuIs uoneZIIN 221n0sAY uondwnsuod romod OdIN 1202 [oz]
CLETe) qe peue[d UONEZIIN 95IN0SaY OV ‘VOS 10T [61]
suuQ - sutq uado jo requinN wyos[e puqiy 610¢C [81]
auluO - suiq jo IequnN g 3811 pUqAH 910¢C [L191]
QUI[JJO 1o duIfu) josareq SOLIJOW QOURULIONIDJ POyIdN hie) § pEN|

SyIoMm pajefal Jo uostredwod apis-£q-opIs v | d|qeL

pringer

A's

World Wide Web (2023) 26:2399-2425 2405

algorithm with improved competitive ratio compared with First Fit to solve the MinTotal
dynamic packing problem for on-demand cloud resource allocation. Azar and Vainstein et
al. [18] investigates a variant of the online packing problem called Clairvoyant Dynamic
Bin Packing, in which the time of departure is known when items arrive. An O (/logi) —
competitive online algorithm is proposed.

2.2 Heuristic and meta-heuristic based methods

Due to the large solution space and high computational complexity of service deployment
problems, it is impossible to achieve an exact solution under these conditions, even given
detailed information about the request and specific information about the cloud resources
[26]. Meta-heuristics are significantly effective in solving large computational and complex
problems. This class of algorithms is not problem-specific but a general framework that
gives near-optimal or suboptimal solutions to NP-complete problems in an acceptable run-
ning time by efficiently exploring the search space. As a result, meta-heuristic algorithms
have been widely studied as a service deployment problem with a large solution space and
difficulty in finding exact solutions [27].

Gharehpasha et al. [19] propose a method that combines the Sine Cosine Algorithm
(SCA) and the Antlion optimizer (ALO) as discrete multi-objective chaotic functions for
optimal allocation of VMs. The first objective of the algorithm is to minimize power con-
sumption in the cloud data center by balancing the number of active PMs and the second
objective is to reduce resource wastage by using an optimal allocation of VMs on the PMs
in the cloud data center. Ghetas [20] proposes a new approach to virtual machine layout
based on the monarch butterfly optimization (MBO) algorithm, which aims to maximize
packing efficiency and reduce the number of active physical servers. The aim is to improve
the energy efficiency and resource utilization of data centers and thus reduce overall cloud
management COStSs.

Although meta-heuristics can search for near-optimal solutions in a large solution space,
they are difficult to use for online problems due to the unknowable nature of online
scheduling problems with respect to future information.

2.3 Reinforcement learning based methods

The resource management problem encounters the following difficulties in both genuine
cloud providers and cloud brokers. To begin, the systems are massive and heterogeneous,
as seen by the vast number and variety of servers or instances that cloud providers and
cloud brokers must manage. Additionally, there is uncertainty regarding the arrival time of
user requests, their configuration requirements, and their departure time. Finally, in the face
of unpredictable user requirements, scheduling algorithms must make real-time decisions,
and it is impossible to make the assumption that all requests are known before decisions
are made [28]. DRL is a combination of RL and DL to provide a solution allowing for
high-dimensional problems [29]. The goal of DRL is to learn optimal behaviour by inter-
acting with the environment so that the system can actively learn optimal policies without
a prior knowledge and can solve complex problems in environments with uncertainty, such
as resource management problems in cloud environments.

The DeepRM proposed by Mao et al. [11] is the most representative work on DRL-based
resource management solutions. Their proposed approach allows DeepRM-based systems
to learn how to schedule job resources themselves instead of manual-based heuristics. Rolik
et al. [13] propose a Q-learning based approach to cloud data center resource management

@ Springer

2406 World Wide Web (2023) 26:2399-2425

for dynamic virtual machine placement in an online manner to optimize data center power
consumption, user service level agreement compliance and resource utilization. Long et al.
[14] propose a reinforcement learning-based virtual machine placement strategy (RLVMP)
for solving energy saving problems in cloud data centers. This strategy uses performance
loss as part of the reward function in reinforcement learning to avoid performance degra-
dation due to energy saving. The deep Q-learning task scheduling (DQTS) proposed by
Tong et al. [12] is used to solve the directed acyclic graph (DAG) task processing problem
in a cloud environment, with the optimization objectives of load balancing and makespan
minimizing. Caviglione et al. [10] propose a multi-objective management strategy based
on DRL with the objectives of (i) minimizing the effects of hardware/software outages, (ii)
minimizing co-location interference, and (iii) minimizing power consumption. Zhao and
Buyya et al. [21] propose a DRL-based task scheduling method in hybrid clouds consid-
ering the cyclical fluctuations of clean energy sources as exemplified by solar energy. The
method aims at minimizing energy cost and public cloud cost, and achieves multi-objective
DRL scheduling by constructing reward function based on a weighting method. Sheng et al.
[15] propose a DRL-based approach called SchedRL to solve the VM scheduling problem
in multi-NUMA architectures. They model the VM scheduling problem as a bin packing
problem. An evaluation with Azure’s public dataset shows that SchedRL can accommodate
more requests than Best Fit and First Fit with the same amount of computational resources.

Most of the existing work, whether it is the VM placement problem, the container place-
ment problem, or the task scheduling problem, has been done from the cloud provider’s
perspective, with energy as the optimization goal. This does not apply to resource optimiza-
tion problems in cloud brokers, which provide IaaS services and higher level services to
users based on the IaaS services provided by the cloud provider, where the cloud broker
does not directly manage the physical machines and the cost is not the energy overhead of
the physical machines, but the cost of the [aaS services. This paper presents a DRL-based
approach to address the problem of online VM scheduling in the cloud broker architecture
used for cloud bursting. To the best of our knowledge, this paper is the first to use a DRL-
based approach to address the cost optimization problem of resource management from the
perspective of a cloud broker. Since RL agents need to learn by trial and error, it is chal-
lenging to use RL to solve the scheduling problem for cloud services while ensuring QoS.
In contrast to other work using RL to solve the scheduling problem in cloud environments
while ignoring QoS, we propose a method to guide RL agents to learn polices that can avoid
QoS violations.

3 System model and problem formulation

In this section, the cloud broker architecture for cloud bursting discussed in this paper is
first presented, with a detailed description of the problem scenario. Afterwards, the cost
minimization problem in this scenario is formulated.

3.1 The cloud broker architecture for cloud bursting

The existing deployment models of cloud computing can be divided into the following
three types [30]: public clouds, where the cloud infrastructure is made available for public
development use; private clouds, in which the cloud infrastructure is dedicated to a single
organization; hybrid clouds, in which the cloud infrastructure is a hybrid of several differ-
ent cloud infrastructures. Cloud brokers serve as intermediaries between cloud providers

@ Springer

World Wide Web (2023) 26:2399-2425 2407

and users, providing multi-cloud based services to help users avoid vendor lock-in, i.e.,
addressing the lack of support for cloud interoperability and portability in cloud environ-
ments. Different from the traditional cloud broker model, the cloud broker model proposed
in this paper not only provides services based on multiple cloud providers but also provides
support for local data centers in private clouds, i.e., a hybrid cloud model based on a cloud
broker.

The cloud broker architecture for cloud bursting is as shown in Figure 3. The cloud bro-
ker acts as a middleman between multiple users and multiple clouds, the extent of which
is marked with a solid black line. After a user sends VM requests to a cloud broker, the
cloud broker makes an immediate decision using the scheduler DeepBS. As different pub-
lic clouds provide different user interfaces, specific adapters need to be implemented for
different cloud providers, which are managed by Server Manager, enabling a uniform way
of operating and monitoring servers in different clouds. DeepBS obtains an observed state
for decision making by looking at the current user requests and the information provided
by Server Manager on servers’ usage state, which reflects the current state of the resources
managed and requests received by the cloud broker. After feature extraction of the state by

28 a2 a8

Users Users Users
T T T CLOUD BROKER
Y

DeepBS | VM requests
S s (
| H D

_|,| State [l

Action_ QoS
Guarantor

T Reward {}

Server Manager

Adapter 1 | Adapter 2 | |Adapter jt1
| |

Private Cloud Public Cloud 1 Public Cloud j

Figure 3 An overview of cloud broker system model based on DeepBS

@ Springer

2408 World Wide Web (2023) 26:2399-2425

a deep neural network, DeepBS gives an action which indicates the scheduling result of the
VM request. As the DRL based approach learns through trial and error and exploration,
DeepBS is subject to illegitimate scheduling at the start of training and in the case of fluctu-
ating user requests. To ensure QoS requirements, a QoS Guarantor is introduced to ensure
that requests are placed legally and to provide a penalty as feedback when DeepBS makes
illegal decisions. Considering the demands of cloud bursting, DeepBS needs to perform
VM scheduling in an online manner. Offline VM scheduling is scheduled against a batch of
requests that have already arrived. In this way, information about all jobs can be obtained
before the scheduling decision is made, thus enabling optimal or near-optimal decisions to
be made. Unlike offline VM scheduling, online VM scheduling requires scheduling deci-
sions to be made as soon as the requests arrive, which means that the scheduler can only
make decisions based on available information.

This architecture considers user requests in the form of VMs. However, this architecture
can be easily extended to include user requests in the form of containers and user requests in
the form of tasks executed via containers. Container technology, as represented by Docker
[31], is widely used as a lightweight virtualization technology with simple and efficient fea-
tures compared to traditional virtual machines [32, 33]. For any service with on-demand
characteristics, cloud bursting and multi-cloud capabilities can be obtained through this
architecture, with adaptive cost savings through DeepBS. Based on lightweight virtualiza-
tion technology, this architecture can also be extended to fog and edge computing nodes.
Edge and fog computing, as extensions to cloud computing, offer end users lower latency
compared to cloud computing. Existing edge computing nodes typically have similar prices
to cloud computing but with fewer computing resources [34]. From a cost optimization per-
spective, edge computing nodes are not a necessary option, although they can be considered
for this architecture. For latency-sensitive tasks edge nodes are valuable to consider, but it
is beyond the scope of this paper and future work in this direction is discussed in Section 7.

3.2 Problem formulation

The objective of the VM scheduling problem in cloud brokers for cloud bursting presented
in this paper is to minimize the total cost of computing resources, which includes: the cost of
private clouds and the cost of an additional on-demand approach to public clouds. However,
in order to meet user QoS demands and the on-demand characteristics, there are several
requirements and limitations for the scheduler in this architecture. Firstly, the scheduler
should ensure that the sum of all VM requests placed on the same server at any time does not
exceed the capacity of that server. Secondly, the scheduler in the cloud broker needs to make
real-time decisions on the placement of user VM requests, i.e., for a given user VM request,
the cloud broker needs to immediately decide whether to place it on a server in a local pri-
vate cloud or on a server in a public cloud. Finally, it is important to note that the knowledge
of the cloud broker’s scheduler is limited, as the scheduler only knows the configuration
requirements of currently arriving VM requests and the usage of currently available com-
puting resources, while it is difficult for the scheduler to obtain a prior knowledge of future
arrivals and when current VMs will be released.

For each VM request, the cloud broker can place the request on a private cloud server, or
on a server of one of the available cloud providers. In this paper, we define the set of VM
requests from users as R = {r;|1 < i < R}, where R = |R| is the total number of user

@ Springer

World Wide Web (2023) 26:2399-2425 2409

Table2 Summary of main notations

Notation Definition
ri the ith arriving user VM request
rip ara the configuration requirement for the para for the ith arriving user VM

request, para € {CPU, RAM}

the time point at which the ith arriving user VM request arrives/ends,
time € {arr, end}

time

T

R the set of all VM requests from users

cj the public cloud with index j

M the available VM types considered by the cloud broker

M ;, the VM types indexed as i in the private cloud

M ("7, the VM type indexed as i in the public cloud c;

Xr; the scheduling decision for request r;

bfflym the capability of the para of VM type My, para € {CPU, RAM}
costy,y the price per unit of time of the VM type My

Costproker (R)) the total cost incurred by the cloud broker due to request set R

requests. A user request is modelled as a tuple r; =< rCPU, pRAM parr pend o \where

riCP v l.R AM represents the del:mand for memory,
r{"" is the arrival time of the request, and r{"*¢ is the end time of the request. Note that when
scheduling online, the values of riCP v l.RAM are only known when the request arrives,
while r{"" and rf"d are hidden information to the scheduler because they are only known
when the user makes a create and destroy request and requires an immediate response. Let

M =M, .., MCTJ,} be all the available VM types considered by the cloud broker, and

T = |M]| be the number of all available VM types. For all M}, x represents the cloud
which the server belongs to (the private cloud (p), the ith of the j public clouds (c;)), and
y represents the index of the VM type in the cloud. Thus, for each container request r;, the
corresponding scheduling decision can be defined as:

represents the request’s demand for CPU, r

end
i
and r

X, = M. &)

For an available VM m}, its configuration information is modelled as the tuple <
bf‘;u, bf’;M, costy,y >, where bg‘;” is the total CPU capacity of mY, bffy“M is the total
RAM capacity of m), and costyy is the price per unit time of the VM type M Y. M3 | is the
number of VMs enabled for this category in this cloud provider.

Ultimately, the goal of the VM scheduling problem in a cloud broker is to find the optimal
set of placement decisions for all VM requests so that the cloud broker spends the least
amount of money. In this paper, a hybrid cloud scenario is considered, where the servers
used to host VMs can come from both private clouds and multiple cloud providers. The
cost considered therefore consists of two components, the local server cost and the cost paid

. . M
to the cloud provider. However, the cost of a private cloud Zl 7! costy, ; can usually be
considered as a fixed overhead compared to the cost of a pay-as-you-go public cloud, so the

@ Springer

2410 World Wide Web (2023) 26:2399-2425

cost minimization problem in a cloud broker architecture for cloud bursting is modelled as
follows:

ic| 1Mc; 1
min Costproker (R) = Z Z M, |coste; i)
j i
Xr; :M,ﬁr,te[ri‘"’,rf”dj
s.t. > rePU < bCPU Vi e T, VMY e M 3)
i
Xr; :M,{,te[rlfm',rf”d]
Z rMEM < b%yEM,Vt eT,VYM] e M 4)
i
X, € M,Vrj € R 5)

where Costp,orer (R) represents the total cost of the cloud broker facing the request set R
in this VM scheduling problem, with the constraint (3) limiting the total CPU demand of
VMs placed on the same server at any one time to no more than the server’s CPU limit.
Similarly, the constraint (4) limits the total memory requirements of VMs placed on the
same server at any one time to the memory limit of that server. Finally, the constraint (5)
defines a restriction on the deployment scheme that should be given for all requests. All
symbols are summarized in Table 2.

4 DRL for Cost Minimization

In this section, we propose a model for solving the cloud broker VM scheduling problem
with DRL to minimize costs.

DRL combines reinforcement learning with deep learning that can solve high-
dimensional problems to become a general framework for solving decision-making prob-
lems with high-dimensional state space [29]. DRL learns by trial and error, with agents
selecting actions by obtaining observations of the state from the environment. The envi-
ronment will give a reward based on the impressions generated by the action given by
the agent. The goal of RL or DRL is to maximize cumulative reward, i.e., to maximize
Ry = Y 220 vkrr+k, where y € [0, 1] is a discount factor, expressing the discount of
future rewards to current impacts. Markov decision process (MDP) is defined as M =
(S, A, R, P), where S is the observation space, A is the action space, R is the set of
rewards, P is the distribution describing the MDP dynamics, and xY is the initial state of
the observation [35]. DRL is balanced between exploration and exploitation to obtain better
decision strategies in MDP.

Considering the above VM scheduling problem, it is a non-trivial task to schedule user
VM requests with uncertainty in an online way. Existing meta-heuristic algorithms are dif-
ficult to adapt to the online environment. We propose a DRL algorithm based cloud broker
for making online VM placement decisions, DeepBS, and one of the main challenges in
using DRL to solve a particular problem is how to model the problem as an MDP. We define
the main concept of the DRL as follows:

e State space S: In DeepBS, the state space is designed to express the current state of
the system, including: the current level of idle servers available in multiple clouds, and
the current VM requests that need to be processed. For each of the server resource

@ Springer

World Wide Web (2023) 26:2399-2425 2411

categories to be considered within the scenario, e.g. CPU, memory size, etc., the obser-
vation of servers includes the number of resources available in each category of server
currently available in the cloud broker’s computing resources. The state representation
of computing resources in a cloud broker can be denoted as

CPU RAM) (s giu’ CIiAxM)] c R2U+D, (6)

sm = [(s,
For a VM request, the information about this request is represented by its demand for
each of the server resource categories. The state representation of VM requests in a
cloud broker can be denoted as

CPU RAM) (rCPU RAM)] c RZk. (7)

s = [(r; k=1 Titk—1

Therefore, at time 7, the state of DeepBS is represented as

st = [spm, sr] € REUFAED, (8)

® Action space A: The action space represents the optional scheduling result for DeepBS.
For each action, DeepBS chooses to make a scheduling decision for the first VM request
at the head of the current queue. The optional action spaces include: actively dropping
the request, placing the request on a server in a private cloud, and placing the request
on a server in a public cloud, i.e.,

-1
a = M’p,teT &)
Méj,j e|C|l,teT.

In reinforcement learning, the execution of each action means the end of the current
time step and the acquisition of the next state and a reward signal. It is important to dis-
tinguish between time step in reinforcement learning and real-world time. In DeepBS
scheduling is not done with a fixed time period as the decision cycle, but performed in
an event-driven manner. When a VM request arrives, DeepBS needs to make an imme-
diate response and decision. Consider the case where requests arrive centrally or where
a single user makes multiple VM requests at the same time, and place the requests that
arrive at the same time in a queue to make decisions in turn. For requests arriving at
the same time DeepBS needs to acquire multiple states and perform multiple actions
in a short period of time in succession. However, as it takes some time for the VM to
start and the image to be transferred, it is possible that the creation of the VM requested
in the previous request is not completed by the time a new decision needs to be made.
To solve this problem, DeepBS takes into account the already reserved computational
resources of the VM being created when acquiring a new state.

e Reward R: Reward signals are designed to motivate the agent to learn policies that are
effective in this environment, and the design of rewards in DeepBS is based on the
definition of the cloud broker VM scheduling optimization problem. The cost used for
the private cloud is considered fixed in the objective function and the variable lies in
the additional on-demand public cloud cost. For this reason, the reward is designed to
signal a negative value of the on-demand cost as a penalty for the additional cost. Its
accumulation is the total amount of public cloud cost. Therefore, to guide the agent to

@ Springer

2412 World Wide Web (2023) 26:2399-2425

learn the least costly scheduling policy, we set its reward to the negative of the public
cloud cost incurred in the last time slot, i.e.,

==Y Y IM{|cosic;, (10)

cjeC teT

where |M£j| is the number of VMs of type ¢ used in public cloud provider c; in the
previous time slot and costc, ; is the price of one time slot of VMs of type ¢ used in
public cloud provider c;.

At this point, we have given a mapping of the cost minimization problem in a cloud
broker to a form of MDP that can be solved using DRL. However, there is one more chal-
lenge that needs to be addressed. As mentioned earlier, reinforcement learning methods
learn through trial and error in the environment. Therefore, it is common for a reinforcement
learning agent to take to an illegitimate action. This illegitimacy refers to the fact that the
action sampled by the agent may not meet the QoS requirements of the user. For most work
applying reinforcement learning to the cloud resource scheduling problem all actions are set
to be legal, i.e. ignoring the QoS requirements of users that are common in the cloud. This is
possible in some scenarios, such as solving workflow scheduling problems where the agent
takes an ill-advised action that causes the workflow to take too long to execute, and the
poor results from that action are reflected in the reward. However, in the cost minimization
problem in a cloud broker, if the agent takes an illegal action, such as allocating a smaller
resource to a user’s request than the user requirements, or not allocating any resources to
the request, then the result in the reward will be a lower public cloud cost, or even no public
cloud cost at all. In other words, the agent can profit from the QoS violations, which will
result in the reinforcement learning agent to learn a policy that we do not expect.

1: Initialize: Current VM request to be scheduled r;, penalty p
2: a; = DeepBS.step(s;);

3: cluster state := ServerManager.getCurrentClusterState();

4: allocated resourse := getResourse(cluster state, a;);

5: if allocated resources do not meet the QoS required by r; then
6: return O;

7. else
8 Rent additional public cloud VM for r;;

9 return penalty p;

10: end if

Algorithm 1 QoS Guarantor.

For this problem, we propose the QoS Guarantor, which is used to ensure that each
scheduling policy satisfies the request requirements specified by the user and to guide the
reinforcement learning agent so that it does not fall into a local optimum solution gener-
ated by a wrong scheduling decision. The QoS Guarantor is shown in Algorithm 1. When
the QoS Guarantor determines that the action currently taken by the reinforcement learning
agent is not satisfying the QoS requirements of the corresponding request, the QoS Guar-
antor processes the request separately and gives a penalty p. The penalty p far exceeds the
public cloud cost incurred by the request. In this way, the reinforcement learning agent is

@ Springer

World Wide Web (2023) 26:2399-2425 2413

informed that the action it has taken is wrong. As a result, the reinforcement learning agent
will learn the least costly VM scheduling policy in the space of actions that satisfy QoS.

5 DRL-based online VM scheduler

In this section, we present DeepBS, a cost-optimized hybrid cloud VM scheduling algo-
rithm for cloud brokers oriented to cloud bursting based on proximal policy optimization
(PPO). PPO is an improvement of trust region policy optimization (TRPO) [36] with some
advantages, but is simpler to implement and more general with better empirical sample
complexity and runtime complexity. Specifically, the proposed algorithm uses the actor-
critic RL framework and constrains the update size by trust region [37] to reduce the policy
method variance. DeepBS uses two neural networks to construct actor and critic, learning
both the actor’s policy function 7z (-|s) and the critic state value function V7 (s). DeepBS
selects the scheduling decision action a from the action space by observing the current sys-
tem state s, and optimizes the DeepBS scheduling policy after obtaining the reward signal
r given by the environment.

In our algorithm a combination of value-based DRL algorithm and policy-based DRL
algorithm is used, and they use different networks respectively. Among them, the value-
based DRL algorithm determines the value function by using a neural network as function
approximator. The policy-based DRL algorithm learns the probabilities of the parameterized
policy output actions directly instead of storing Q-values. Therefore, it has the ability to
solve continuous action spaces and high-dimensional action spaces compared to the value-
based reinforcement learning algorithm. The policy-based reinforcement learning algorithm
performs the following updating each time:

0 =60+ aVeJ(9) (11)

for performance objective J(9) and learning rate o € R*, and the goal of reinforcement
learning is to maximize J(6). To achieve this, according to the Policy Gradient Theorem
[38], our optimization objective and its gradient are denoted as

J(0) = vy (50) = Egomy (R(x)) = f PR, (12)
Vo (0) = Eenr,[Y Vologma(Ar|Si) Y v' ™" Ril. (13)
t'=0 t'=0

In order to avoid large variance in the estimation of the gradient, the benchmark func-
tion is introduced as an estimate of the state S; value, and the gradient of the optimization
objective after the introduction of the benchmark function b(S;) can be expressed as

Vo (0) = Eenr, [Vologmo(Ar|S)(Y_ v' ™ Ry = b(Si))]. (14)
t'=0 t'=0

@ Springer

2414 World Wide Web (2023) 26:2399-2425

The actor-critic RL framework is used in DeepBS to estimate the Q-value function by using
critic’s state value function as a benchmark function and using the idea of bootstrapping, so
the advantage function A™ (s, a) as well as the gradient Vg J (6) is

AT (s,a) = Q™ (s,a) — V' (s), (15)
Vo J(0) = Er~n9[z Vologmg(Ay|Sy)A™ (Sr, Ap)]. (16)
t'=0

However, for DeepBS, the action space is an alternative scheduling scheme, which gener-
ates a very large action space when considering larger clusters and multiple cloud providers,
and creates more challenges for optimization of reinforcement learning problems. One of
the problems with the traditional method is that the training is unstable, because an inap-
propriate step size can lead to too slow or too much variance in the training. To address
this challenge, a policy gradient algorithm called TRPO is proposed, which reduces the pol-
icy method variance by using the advantage function and an idea based on a trust region to
better handle the step size. The optimization objective is to maximize the loss function

" 70(AdS) x
Loy (1)) = MG[Z — (AI|SZ)A9(SI,AI)] (17)

while constraining the old and the new pohcy being not too far away, which is achieved by
using Kullback-Leibler divergence. The optimization problem of TRPO can be expressed as

max; L, (74) (18)
s.t. Eswpﬂe[KL(mgo,d,n’g)] <. (19)

The ability to apply reinforcement learning algorithm to complex, high-dimensional
problems is empowered by solving this form of optimization problem, and original experi-
ments show that this approach has robust performance in many high-dimensional complex
scenarios. This policy gradient method has superior problem solving ability. However, the
solution of its optimization problem requires the calculation of H~!g with a complexity of
O(N?), and in practice the conjugate gradient method is commonly used to approximate this
value, which still requires the execution of the conjugate gradient method several times at
each parameter update, which makes the method computationally complex and complicated
to implement.

DeepBS considers the real-time nature of the scheduling task and adopts a PPO-based
approach to limit the changes in policy updates. Compared to TRPO, PPO has some advan-
tages of TRPO and has a simple format and high computational efficiency to be used for
large-scale problems, and multiple updates for small batches of data also improve the effi-
ciency of data utilization. It has the same motivation as TRPO, i.e., to take the maximum
possible improvement in the policy parameters without causing a performance crash. One
approach is to directly clip the objective function used for the policy gradient, resulting in a
more conservative update. The clipping-based objective is as follows:

LPPO=Clp (Y = By [min(ri(0)A™, clip(r;(0), 1 — €, 1 + €)A™)], (20)
where r,(0) = % is the ratio of the probability under the new and old policies.
old

Another approach is to use the constraint (18) in the optimization problem (19) as a penalty
term for the optimization objective, i.e., to optimize the regularized version of the problem.
The KL-penalized objective is as follows:

LPPO=Penalty gy — B [r,(0)A™ — BK L(1a,,, 70)] (21)

@ Springer

World Wide Web (2023) 26:2399-2425 2415

1: Initialization: policy parameters 6y, value function parameters ¢g
2: for each training epoch do

3 Empty trajectory buffer D = {};

4: while a user VM request r; arrives do

5: Observe s from Server Manager;

6 Observe sk from the request queue;

7 Srj = [sAm, SRS

8 Policy network gives action a,; based on s ;

9 Initialization T

10: rr+ = QoSGuarantor(arj);

11: if Reaching a new billing cycle then

12: Server Manager gives ¢; based on public cloud cost;

13: rrj—f— = (t;

14: end if

15: Add sy, ar;, 1y t0 D;

16: end while

17: for for i = D.length to 1 do

18: r:(0") = g (As]Sy) /79, (Ar]S)

19: 0 = argmaxy ;prr X pep dogmomin(r(O) A", clip(r;(0),1 — €,1 +
€) Aot — BK L(7,,, 76));

20: ¢ = argmax ﬁ Y D Zszo(Vd)(St) - G4

21: end for

22: end for

Algorithm 2 DeepBS: a DRL-based online VM scheduler for cloud brokers.

DeepBS uses a hybrid approach combining PPO-Clip and PPO-Penalty, i.e., we use both
a clipping-based approach and a KL-penalized approach, thus reducing the complexity of
the computation while ensuring the stability of updates from 7y to 7. The optimization
objectives of DeepBS is:

L(y) = Exy [min(ri(0)A™, clip(ri(0), 1 — €, 1 + €)A™) — BK L(mg,,;, 79)] (22)

Finally the whole process of the algorithm is summarized in Algorithm 2. To begin with,
DeepBS initializes the parameters of the Actor and Critic neural networks separately. As
previously stated, DeepBS is event-driven. It makes a decision as soon as a user VM request
arrives. The state of the system including the state of computing resources and the state of
the VM requests is obtained from the Server Manager and the request queue respectively.
The policy network then takes an action. Considering DeepBS learns through trial and error
so that there is a possibility of giving illegal actions, a QoS Guarantor is required to deter-
mine the action’s legality. For legal actions, the scheduling will be performed according to
the action. For illegal actions, that is, actions that violate QoS, the QoS Guarantor notifies
the Server Manager to use a separate server to accommodate the request and give DeepBS
a large penalty. Server Manager periodically gives a reward that reflects the current cloud
broker cost in the public cloud in accordance with the public cloud billing method. For

@ Springer

2416 World Wide Web (2023) 26:2399-2425

each request, the state, action and reward are saved and used to periodically update network
parameters to optimize DeepBS.

6 Performance analysis

In this section, we evaluate the DeepBS proposed in this paper. The details of the experi-
mental setting and benchmark algorithms are first described, followed by a comparison and
analysis of the performance of DeepBS.

6.1 Experiment settings

We implemented DeepBS using Pytorch 1.10 [39] and evaluated it using two real traffic
trace datasets. Cloud brokers providing on-demand services are faced with several aspects
of uncertainty regarding user requests. This uncertainty is in terms of the arrival time of the
request, the demand for the request, and the end time of the request. Different workloads
have a significant impact on the performance of the scheduling policy. For this reason, two
different workloads based on real cluster traces are used in our experiment as simulations
of user requests. The first workload used is based on Google cluster trace data [40]. Specifi-
cally, we set the arrival patterns of the requests in the experiment and the request sizes based
on several days of tracing of resource-intensive workloads in the Borg clusters published
by Google. In addition, to consider the scheduler to be generalizable and effective in other
workload scenarios, another workload used in the experiments comes from the Alibaba clus-
ter trace dataset [41]. This dataset records the tracking of requests for an Alibaba production
cluster, where each machine in the cluster is required to handle long-running online services
and batch workloads. Figure 4 shows examples of partial requests for two different work-
loads, with real-world user requests reflecting more pronounced fluctuations. For the two
different workloads, the scheduler only knows the demand for the request when it arrives
and the scheduler does not know when the request will end until the request actually leaves.

We developed a real cluster tracking-driven cloud broker environment based on Ope-
nAl Gym [42] to train and evaluate the DRL-based cloud broker VM placement scheduler
proposed in this paper. Heterogeneous cloud computing resources are considered in the
Gym-based cloud broker environment we built. In a cloud broker architecture that consid-
ers cloud bursting, the computing resources consist of a private cloud and multiple public
clouds. In the experiments, multiple public cloud instance categories are considered, as

0.4 0.6
035 —c o
0.3 ——MEM
0.25 04
0.2 03
0.15
0.1 0.2
0.05 0.1
0 0
-0.05
-0.1 -0.1
(a) Example of Google cluster trace. (b) Example of Alibaba cluster trace.

Figure 4 Examples of partial VM requests for each of the two types of workloads used in our experiments

@ Springer

World Wide Web (2023) 26:2399-2425 2417

exemplified by the instance type t3 in EC2 in AWS [43], whose configuration and pricing
are shown in Table 3.

We evaluate the performance of DeepBS using three heuristics and two DRL-based algo-
rithms as comparisons. Among them, several models of DRL are selected from methods
commonly used in the cloud computing field to solve scheduling problems. To make them
applicable to the optimization problems considered in this paper, these models use the same
state, action, and reward as DeepBS. Next, we briefly describe how these algorithms are
implemented.

® Dominant Resource Fairness (DRF) [44]: The default scheduling policy in YARN
[45] and Mesos [46] is a fairness-based scheduling procedure that achieves maximum-
minimum fairness of the dominant resource when work arrives and when work is
completed.

® The Best-Fit (BF) [47]: The BF algorithm selects the server with the smallest remaining
capacity that can satisfy the request.

® Tetris [48]: It prioritizes resource allocation to requests with short duration or low
resource consumption and pack requests to the server to minimize resource fragmenta-
tion.

® Asynchronous Advantage Actor-Critic (A3C) [49]: A3C is an asynchronous variant of
Actor-Critic that uses asynchronous gradient descent to optimize deep neural network
controllers.

® Dueling Double DQN (D3QN): D3QN combines the advantages of Dueling DQN
[50] and Double DQN [51]. It is an improved algorithm for DQN [52] with faster
convergence and more stable convergence.

The DRL algorithms described above all use a standard implementation of RLIib [53]
based on PyTorch 1.10 [39], and the hyper-parameters are set as follows: the learning rate
is set to 5e-5, the discount factor gamma is 0.94, batch size is 200, layers are [256, 256],
optimizer is Adam, and the rest of the hyper-parameters are the default values in RLIib.

6.2 Performance study
In this subsection, the performance of DeepBS under different workloads is discussed. First
the convergence results of DeepBS with different parameter settings are presented, then the

performance of the algorithm is analyzed under two real cluster trace and finally an analysis
of the performance of the algorithm under more extreme request arrival patterns is given.

Table 3 Amazon EC2 on-demand pricing [43]

Instance name On-Demand hourly rate vCPU Memory
t3.nano 0.0052 USD 2 0.5GiB
t3.micro 0.0104 USD 2 1GiB
t3.small 0.0208 USD 2 2GiB
t3.medium 0.0416 USD 2 4GiB
t3.large 0.0832 USD 2 8GiB
t3.xlarge 0.1664 USD 4 16GiB
t3.2xlarge 0.3328 USD 8 32GiB

@ Springer

2418 World Wide Web (2023) 26:2399-2425

6.2.1 Convergence results with different parameter settings

We train our model based on the request arrival pattern generated by Google cluster tracking
data and first evaluate the effect of three basic parameters on the convergence rate and
results, i.e. learning rate, discount factor and train batch size. The results are shown in
Figure 5.

First, we investigate the effect of different learning rates, and the results are shown in
Figure 5(a). In this investigation, we set the other parameters to their default values. Larger
learning rates lead to larger episode rewards more quickly. However, high learning rates
are not always beneficial for training, setting the learning rate to 0.01 or 5e-4 resulted in
the agent acquiring fewer rewards and converging to a local optimum. Subsequently, we
investigate the discount factor, which represents how the agent evaluates future rewards. A
too large discount factor means that the agent is considering too long term rewards even
beyond the influence of the current action, and a too large discount factor also risks having
too large Q-value. In this investigation, DeepBS sets the gamma to 0.9 to obtain the best
performance in terms of convergence and convergence results. Finally, we investigate the
effect of train batch size on training, which represents the amount of data used per update
when updating using the optimizer. Larger batch sizes require more epochs to converge to
the minimum validation loss and generalise less well to the test data. For this reason, we
chose a relatively small train batch size = 2000 for the training of the model.

Figure 6 records the number of times during training that the agent produces a QoS vio-
lation and is given a penalty term by the QoS Guarantor. As training progresses, the metric
converges after 100 thousand episodes, which is not completely cleared due to the fact that
the RL agent still maintains action exploration during training, with a certain probability

—34000 A

36000 1 ~32500

~38000 4 ~35000

~40000 375004
~42000
~40000
—44000

Average Reward
Average Reward

—42500 -

—46000 - —— gamma = 0.9
—— Ir=0.0001 45000 4 gamma = 0.92

—48000 1r=0.0005 —— gamma = 0.94

~50000 4 —— Ir=0.001 —47500 4 —— gamma = 0.96
—— Ir=5e-05 —— gamma = 0.98
6 10[;000 200‘000 300b00 400‘000 500‘000 6 10[;000 200b00 BOObOO 400‘000 500‘000
Episode Episode
(a) different learning rates (b) different gamma

—32500 1

—35000 -

—37500 4

—40000 -

—42500 1

Average Reward

—45000 —— train batch size=2000
train batch size=3000
—— train batch size=4000

—— train batch size=5000

—47500 -

0 100000 200000 300000 400000 500000
Episode

(c) different train batch size

Figure 5 Moving average episode reward with respect to different parameter settings

@ Springer

World Wide Web (2023) 26:2399-2425 2419

401

35 A

30 1

251

20 A

15 A

Number of Penalties

10 A

0 100 200 300 400 500
Thousand Episodes

Figure 6 Number of penalties given by the QoS guarantor during training

that the current policy considered non-optimal to make a random choice among the actions.
This demonstrates the effectiveness of the QoS Guarantor in guiding the DRL agent to learn
to avoid actions that violate the user’s requested QoS.

6.2.2 Performance analysis of cluster trace-based requests

After completing the training of the model, we verify the performance of DeepBS under
different request arrival patterns based on real cluster tracking data. Figure 7 shows the
performance of DeepBS compared to other benchmark algorithms for the request arrival
pattern based on Google cluster tracking, with DeepBS having the best performance in terms
of cost for the same request arrival pattern and total request volume. Compared to the next
best reinforcement learning strategy, DeepBS has a 13.57% cost optimization. Compared to
the optimal heuristic, DeepBS has a 22.11% cost improvement.

We also use the Alibaba cluster trace dataset as a model for request arrivals that can
reflect the fluctuations in the distribution of requests in the real world, and it is clear that
the requests of users in the real dataset are not uniform and do not have specific rules. As

60000

55000

50000

45000

Average Cost

40000

35000

30000
DRF BF Tetris A3C D3QN DeepBS
Algorithms

Figure 7 Performance of different algorithms for experiments with Google cluster trace

@ Springer

2420 World Wide Web (2023) 26:2399-2425

-

-5000 J
5 —10000 (=
s /\/\
Cg) L}
& _15000
g N /‘
g
<

’
-20000 \v\/\[/

-25000

—— DRF A3C

— BF —— D3QN
~30000 —— Tetris DeepBS
0 100 200 300 400 500

Thousand Episodes

Figure 8 Training trajectories of different algorithms in Alibaba cluster trace

shown in Figure 8, several benchmark heuristics fluctuate considerably in this type of user
request, due to significant fluctuations in the arrival patterns of the requests. Although real
user requests have more significant fluctuations, the DeepBS we propose still has robust
performance through online learning. DeepBS has a stable performance relative to heuris-
tics when user requests fluctuate. Figure 9 shows the performance of DeepBS compared to
other benchmark algorithms at real user requests. The DeepBS algorithm significantly out-
performs other DRL algorithms as well as heuristic algorithms in terms of cost. DeepBS has
a 27.84% performance advantage over the best performing benchmark algorithm in terms
of cost optimization in both real cluster-based tracking request arrival modes.

6.2.3 Performance analysis based on extreme requests

The above experiments analyze the performance of DeepBS in two request arrival pat-
terns based on real cluster data tracking and demonstrate the effectiveness of our proposed
algorithm in cost optimization. In order to consider the scalability and robustness of the
algorithm, we evaluate the performance of the algorithm in more extreme cases.

16000

14000

12000

10000

Average Cost

8000

6000

4000

2000
DRF BF Tetris A3C D3QN DeepBS

Algorithms

Figure 9 Performance of different algorithms for experiments with Alibaba cluster trace

@ Springer

World Wide Web (2023) 26:2399-2425 2421

0
-2500
-5000
© -7500
o
2
& -10000
(]
&
£ _12500
>
<
-15000
-17500 —— DRF A3C
— BF —— D3N
-20000 — Tetris DeepBS
0 100 200 300 400 500

Thousand Episodes

Figure 10 Training trajectories of different algorithms in simulation experiments based on Poisson
distribution

We set up four scenarios with more extreme arrival patterns than the requests based on
real cluster traces, where scenario A has the same request arrival pattern as the Alibaba
cluster trace, but each request has a longer duration. The job arrival patterns generated based
on Poisson distribution, although simulating the arrival pattern, request duration and request
demand size of Alibaba cluster trace, are however more stable compared to real data and the
training trajectory of each algorithm is shown in Figure 10. As requests continue to arrive,
heuristics have relatively fluctuating but stable performance, with fluctuations reflecting
the uncertainty of user request arrival, demand and departure. DRL-based approaches learn
through trial and error, ultimately achieving a better performance than heuristics. DeepBS
can converge faster and has better performance than other DRL methods.

In scenarios B, C and D, we consider scenarios with more request arrivals and larger
clusters. While scenario B has a larger cluster, the request arrival density for scenarios C and
D is set to twice the Alibaba cluster trace data to analyze the performance of the scheduler
in a more intensive request arrival environment. The performance of heuristic algorithms
decreases significantly with the complexity of the scene and the number of requests. On the

50000 Algorithms

= DRF
mmm BF
. Tetris
-

40000
A3C
D3QN

30000 DeepBS

Average Cost

20000

10000

Scenario

Figure 11 Performance of different algorithms for Poisson distribution-based simulation experiments in a
variety of different settings

@ Springer

2422 World Wide Web (2023) 26:2399-2425

other hand, DeepBS can converge faster than other DRL algorithms in different scenarios.
Figure 11 shows the performance of simulation experiments based on Poisson distribution
in different scenarios, from which we can see that DeepBS has a significant performance
advantage.

7 Conclusion and future work

In this paper, we propose DeepBS, an online VM scheduler in a cloud broker for cloud
bursts by learning from experience to adaptively improve scheduling strategies in environ-
ments with non-smooth and uncertain user requests. Our proposed DeepBS also solves the
problem of reinforcement learning algorithms getting stuck in locally optimal solutions that
produce QoS violations by means of QoS Guarantor. In comparison to classical scheduling
strategies, DeepBS is capable of solving online scheduling problems more effectively by
adaptively learning and adjusting scheduling policies in response to workload fluctuations.
We evaluate the performance of our proposed algorithm under two request arrival patterns
based on Google cluster trace and Alibaba cluster trace. The experimental analysis shows
that DeepBS has a significant advantage in cost optimization over several heuristics and
several other reinforcement learning algorithms, and still maintains optimal performance in
simulation scenarios with more extreme request arrival patterns.

In this paper, we consider the cloud broker VM scheduling problem to minimize public
cloud costs while avoiding QoS violations. However, there are some problems that are not
considered in this paper, and some specific cloud services often require consideration of
other objectives, such as latency. For end users, edge computing has lower latency compared
to cloud computing, but there are limitations in terms of computing resources. Considering
both cost-optimized and latency-optimized scheduling issues will be a direction for future
work.

Authors’ contributions Xingjia Li wrote the main manuscript text, prepared all figures and tables and
provided the methodology. Li Pan and Shijun Liu provided writing-review and editing and provided funding
support.

Funding The authors would like to acknowledge the support provided by the Innovation Method Project of
Ministry of Science & Technology, China under Grant 2020IM020100, the Key Research & Development
Program of Shandong Province (2020CXGC010102), and project ZR2020LZHO11 supported by Shandong
Provincial Natural Science Foundation.

Availability of data and materials All of the materials including figures is owned by the authors and no
permissions are required. The initial dataset is from the public dataset of website https://github.com/google/
cluster-data/ and https://github.com/alibaba/clusterdata/.

Declarations

Ethical approval This declaration is not applicable.

Competing interests I declare that all authors have no competing interests as defined by Springer, or other
interests that might be perceived to influence the results and discussion reported in this paper.

@ Springer

https://github.com/google/cluster-data/
https://github.com/google/cluster-data/
https://github.com/alibaba/clusterdata/

World Wide Web (2023) 26:2399-2425 2423

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Hsu, P-F, Ray, S., Li-Hsieh, Y.-Y.. Examining cloud computing adoption intention, pric-

ing mechanism, and deployment model. Int. J. Inf. Manag. 34(4), 474-488 (2014).
https://doi.org/10.1016/j.ijinfomgt.2014.04.006

. Singh, B., Dhawan, S., Arora, A., Patail, A.: A view of cloud computing. Int. J. Comput. Technol. 4(2b1),

50-58 (2013)

. Leavitt, N.: Is cloud computing really ready for prime time? Computer 42(1), 15-20 (2009).

https://doi.org/10.1109/MC.2009.20

. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, .M.: Scheduling strategies

for optimal service deployment across multiple clouds. Futur. Gener. Comput. Syst. 29(6), 1431-
1441 (2013). https://doi.org/10.1016/j.future.2012.01.007. Including Special sections: High Performance
Computing in the Cloud & Resource Discovery Mechanisms for P2P Systems

. Li, X, Pan, L., Liu, S.: A survey of resource provisioning problem in cloud brokers. J. Netw. Comput.

Appl. 203, 103384 (2022). https://doi.org/10.1016/j.jnca.2022.103384

. Cloud Services Brokerage Market Research Report by Service Type, by Platform, by Deploy-

ment Model, by Region - Global Forecast to 2026 - Cumulative Impact of COVID-19. https://
www.researchandmarkets.com/reports/4989790/cloud-services-brokerage-market-research-report#
rela0-4985613. Accessed 29 Nov 2022

. State of the Cloud Report Survey. https://info.flexera.com/CM-REPORT-State-of-the-Cloud. Accessed

29 Nov 2022

. Nair, S.K., Porwal, S., Dimitrakos, T., Ferrer, A.J., Tordsson, J., Sharif, T., Sheridan, C., Rajarajan, M.,

Khan, A.U.: Towards secure cloud bursting, brokerage and aggregation. In: 2010 Eighth IEEE European
Conference on Web Services, pp. 189-196. https://doi.org/10.1109/ECOWS.2010.33 (2010)

. Song, F,, Xing, H., Wang, X., Luo, S., Dai, P,, Li, K.: Offloading dependent tasks in multi-access edge

computing: a multi-objective reinforcement learning approach. Futur. Gener. Comput. Syst. 128, 333—
348 (2022). https://doi.org/10.1016/j.future.2021.10.013

Caviglione, L., Gaggero, M., Paolucci, M., Ronco, R.: 19. Soft. Comput. 25, 12569-12588 (2021).
https://doi.org/10.1007/s00500-020-05462-x

Mao, H., Alizadeh, M., Menache, 1., Kandula, S.: Resource management with deep reinforcement learn-
ing. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks. HotNets *16, pp. 50-56.
Association for Computing Machinery. https://doi.org/10.1145/3005745.3005750 (2016)

Tong, Z., Chen, H., Deng, X., Li, K., Li, K.: A scheduling scheme in the cloud computing environment
using deep g-learning. Inf. Sci. 512, 1170-1191 (2020). https://doi.org/10.1016/j.ins.2019.10.035
Rolik, O., Zharikov, E., Koval, A., Telenyk, S.: Dynamie management of data center resources
using reinforcement learning. In: 2018 14th International Conference on Advanced Trends
in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), pp. 237-244.
https://doi.org/10.1109/TCSET.2018.8336194 (2018)

Long, S., Li, Z., Xing, Y., Tian, S., Li, D., Yu, R.: A reinforcement learning-based virtual machine
placement strategy in cloud data centers. In: 2020 IEEE 22nd International Conference on High Per-
formance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE
6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 223-230.
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00028 (2020)

Sheng, J., Hu, Y., Zhou, W., Zhu, L., Jin, B.,, Wang, J., Wang, X.: Learning to schedule
multi-numa virtual machines via reinforcement learning. Pattern Recognit. 121, 108254 (2022).
https://doi.org/10.1016/j.patcog.2021.108254

Li, Y., Tang, X., Cai, W.: On dynamic bin packing for resource allocation in the cloud. In: Proceedings
of the 26th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA 14, pp. 2-11.
Association for Computing Machinery. https://doi.org/10.1145/2612669.2612675 (2014)

Li, Y., Tang, X., Cai, W.: Dynamic bin packing for on-demand cloud resource allocation. IEEE Trans.
Parallel Distrib. Syst. 27(1), 157-170 (2016). https://doi.org/10.1109/TPDS.2015.2393868

Azar, Y., Vainstein, D.: Tight bounds for clairvoyant dynamic bin packing. ACM Trans. Parallel Comput.
6(3). https://doi.org/10.1145/336 (2019)

Gharehpasha, S., Masdari, M.: A discrete chaotic multi-objective sca-alo optimization algorithm for an
optimal virtual machine placement in cloud data center. J. Ambient. Intell. Humanized Comput. 12(10),
9323-9339 (2021). https://doi.org/10.1007/s12652-020-02645-0

Ghetas, M.: A multi-objective monarch butterfly algorithm for virtual machine place-
ment in cloud computing. Neural Comput. & Applic. 33(17), 11011-11025 (2021).
https://doi.org/10.1007/s00521-020-05559-2

@ Springer

https://doi.org/10.1016/j.ijinfomgt.2014.04.006
https://doi.org/10.1109/MC.2009.20
https://doi.org/10.1016/j.future.2012.01.007
https://doi.org/10.1016/j.jnca.2022.103384
https://www.researchandmarkets.com/reports/4989790/cloud-services-brokerage-market-research-report#rela0-4985613
https://www.researchandmarkets.com/reports/4989790/cloud-services-brokerage-market-research-report#rela0-4985613
https://www.researchandmarkets.com/reports/4989790/cloud-services-brokerage-market-research-report#rela0-4985613
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://doi.org/10.1109/ECOWS.2010.33
https://doi.org/10.1016/j.future.2021.10.013
https://doi.org/10.1007/s00500-020-05462-x
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1016/j.ins.2019.10.035
https://doi.org/10.1109/TCSET.2018.8336194
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00028
https://doi.org/10.1016/j.patcog.2021.108254
https://doi.org/10.1145/2612669.2612675
https://doi.org/10.1109/TPDS.2015.2393868
https://doi.org/10.1145/336
https://doi.org/10.1007/s12652-020-02645-0
https://doi.org/10.1007/s00521-020-05559-2

2424 World Wide Web (2023) 26:2399-2425

21.

22.

23.

24.

25.

26.
217.

28.

29.
30.

31.

32.

33.

34.

35.
36.

37.
. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning

39.

Zhao, J., Rodriguez, M.A., Buyya, R.: A deep reinforcement learning approach to resource
management in hybrid clouds harnessing renewable energy and task scheduling. In:
2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 240-249.
https://doi.org/10.1109/CLOUD53861.2021.00037 (2021)

Silva Filho, M.C., Monteiro, C.C., Inicio, PR.M., Freire, M.M.: Approaches for optimizing virtual
machine placement and migration in cloud environments: a survey. J. Parallel Distrib. Comput. 111,
222-250 (2018). https://doi.org/10.1016/j.jpdc.2017.08.010

Moghe, U., Lakkadwala, P., Mishra, D.K.: Cloud computing: Survey of different utilization tech-
niques. In: 2012 CSI Sixth International Conference on Software Engineering (CONSEG), pp. 1-4.
https://doi.org/10.1109/CONSEG.2012.6349524 (2012)

Cong, P., Xu, G., Wei, T,, Li, K.: A survey of profit optimization techniques for cloud providers. ACM
Comput. Surv. 53(2), 26 (2020). https://doi.org/10.1145/3376917

Ranjana, R., Raja, J.: A survey on power aware virtual machine placement strategies in a cloud data
center. In: 2013 International Conference on Green Computing, Communication and Conservation of
Energy (ICGCE), pp. 747-752. https://doi.org/10.1109/ICGCE.2013.6823533 (2013)

Zhang, J., Huang, H., Wang, X.: Resource provision algorithms in cloud computing: a survey. J. Netw.
Comput. Appl. 64, 23-42 (2016). https://doi.org/10.1016/j.jnca.2015.12.018

Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A comprehensive survey for scheduling techniques in
cloud computing. J. Netw. Comput. Appl. 143, 1-33 (2019). https://doi.org/10.1016/j.jnca.2019.06.006
Zhou, G., Tian, W., Buyya, R.: Deep Reinforcement Learning-based Methods for
Resource Scheduling in Cloud Computing: A Review and Future Directions. arXiv (2021).
https://doi.org/10.48550/ARXIV.2105.04086. https://arxiv.org/abs/2105.04086

Plaat, A.: Deep Reinforcement Learning. Springer (2022). https://doi.org/10.1007/978-981-19-0638-1
Mell, P, Grance, T.. The NIST Definition of Cloud Computing. Special Publication
(NIST SP), National Institute of Standards and Technology, Gaithersburg, MD (2011).
https://doi.org/10.6028/NIST.SP.800-145

Empowering App Development for Developers Docker. https://www.docker.com/. Accessed 29 Nov
2022

Bhimani, J., Yang, Z., Mi, N., Yang, J., Xu, Q., Awasthi, M., Pandurangan, R., Balakrishnan, V.:
Docker container scheduler for i/o intensive applications running on nvme ssds. IEEE Trans. Multi-Scale
Comput. Syst. 4(3), 313-326 (2018). https://doi.org/10.1109/TMSCS.2018.2801281

Ramos, F., Viegas, E., Santin, A., Horchulhack, P., dos Santos, R.R., Espindola, A.: A machine learning
model for detection of docker-based app overbooking on kubernetes. In: ICC 2021 - IEEE International
Conference on Communications, pp. 1-6. (2021). https://doi.org/10.1109/ICC42927.2021.9500259
AWS Wavelength brings AWS compute and storage capabilities to 5G networks to build, deploy, and
scale ultra-low latency applications on edge devices. https://aws.amazon.com/wavelength/. Accessed 29
Nov 2022

Szepesviri, C.: Algorithms for reinforcement learning. Synth. Lect. Artif. Intell. Mach. Learn. 4(1),
1-103 (2010)

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust Region Policy Optimization. In:
International Conference on Machine Learning, pp. 1889—1897. https://arxiv.org/abs/1502.05477 (2015)
Sun, W., Yuan, Y.-x.: Optimization theory and methods, vol. 1 (2006)

with function approximation. In: Proceedings of the 12th International Conference on Neural Informa-
tion Processing Systems. NIPS’99, pp. 1057-1063. MIT Press. https://dl.acm.org/doi/10.5555/3009657.
3009806 (1999)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E.Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024-8035.
https://proceedings.neurips.cc/paper/2019/file/bdbca288tee7f92f2bta9t7012727740-Paper.pdf (2019)

. Borg cluster traces from Google. https://github.com/google/cluster-data/. Accessed 29 Nov 2022
. Alibaba cluster trace program. https://github.com/alibaba/clusterdata/. Accessed 29 Nov 2022
. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W. Openai

gym. CoRR abs/1606.01540 (2016). https://arxiv.org/abs/1606.01540

. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Accessed 29 Nov

2022

Springer

https://doi.org/10.1109/CLOUD53861.2021.00037
https://doi.org/10.1016/j.jpdc.2017.08.010
https://doi.org/10.1109/CONSEG.2012.6349524
https://doi.org/10.1145/3376917
https://doi.org/10.1109/ICGCE.2013.6823533
https://doi.org/10.1016/j.jnca.2015.12.018
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.48550/ARXIV.2105.04086
https://arxiv.org/abs/2105.04086
https://doi.org/10.1007/978-981-19-0638-1
https://doi.org/10.6028/NIST.SP.800-145
https://www.docker.com/
https://doi.org/10.1109/TMSCS.2018.2801281
https://doi.org/10.1109/ICC42927.2021.9500259
https://aws.amazon.com/wavelength/
https://arxiv.org/abs/1502.05477
https://dl.acm.org/doi/10.5555/3009657.3009806
https://dl.acm.org/doi/10.5555/3009657.3009806
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f701 2727740-Paper.pdf
https://github.com/google/cluster-data/
https://github.com/alibaba/clusterdata/
https://arxiv.org/abs/1606.01540
https://aws.amazon.com/ec2/pricing/on-demand/

World Wide Web (2023) 26:2399-2425 2425

44. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.. Dominant resource
fairness: Fair allocation of multiple resource types. In: 8th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 11). USENIX Association. https://www.usenix.org/conference/
nsdil I/dominant-resource-fairness-fair-allocation-multiple-resource-types (2011)

45. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T,
Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., Balde-
schwieler, E.: Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th
Annual Symposium on Cloud Computing. SOCC ’13. Association for Computing Machinery.
https://doi.org/10.1145/2523616.2523633 (2013)

46. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker,
S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the data center. In:
Proceedings of the 8th USENIX Conference on Networked Systems Design and Implemen-
tation. NSDI'l1, pp. 295-308. USENIX Association. https://www.usenix.org/conference/nsdill/
mesos-platform-fine-grained-resource-sharing-data-center (2011)

47. Bays, C.: A comparison of next-fit, first-fit, and best-fit. Commun. ACM 20(3), 191-192 (1977).
https://doi.org/10.1145/359436.359453

48. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource packing for cluster
schedulers. In: Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’ 14, pp. 455-466.
Association for Computing Machinery. https://doi.org/10.1145/2619239.2626334 (2014)

49. Mnih, V., Badia, A.P.,, Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., Kavukcuoglu, K.:
Asynchronous methods for deep reinforcement learning. CoRR abs/1602.01783 (2016). https://arxiv.
org/abs/1602.01783

50. Wang, Z., de Freitas, N., Lanctot, M.: Dueling network architectures for deep reinforcement learning.
CoRR abs/1511.06581 (2015). https://arxiv.org/abs/1511.06581

51. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double g-learning. CoRR
abs/1509.06461 (2015). https://arxiv.org/abs/1509.06461

52. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.:
Playing atari with deep reinforcement learning. CoRR abs/1312.5602 (2013). https://arxiv.org/abs/1312.
5602

53. RLIib: Industry-Grade Reinforcement Learning. https://docs.ray.io/en/latest/rllib/index.html. Accessed
29 Nov 2022

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair -allocation-multiple-resource-types
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair -allocation-multiple-resource-types
https://doi.org/10.1145/2523616.2523633
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-res ource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-res ource-sharing-data-center
https://doi.org/10.1145/359436.359453
https://doi.org/10.1145/2619239.2626334
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://docs.ray.io/en/latest/rllib/index.html

	A DRL-based online VM scheduler for cost optimization in cloud brokers
	Abstract
	Introduction
	Related work
	Bin packing based methods
	Heuristic and meta-heuristic based methods
	Reinforcement learning based methods

	System model and problem formulation
	The cloud broker architecture for cloud bursting
	Problem formulation

	DRL for Cost Minimization
	DRL-based online VM scheduler
	Performance analysis
	Experiment settings
	Performance study
	Convergence results with different parameter settings
	Performance analysis of cluster trace-based requests
	Performance analysis based on extreme requests

	Conclusion and future work
	Declarations
	References

