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Abstract
We design a two-stage federated learning incentive mechanism by including both a “com-
binatorial auction” stage and a “bargaining” stage, referred as Combinatorial Auction 
and Bargaining (CAB). We demonstrate that the CAB-based federated learning incentive 
mechanism not only maximizes the overall utility of both the federated learning platform 
and mobile users, but also generates greater profits for the platform than other mechanisms. 
Further, we apply both theoretical and numerical analysis to prove the effectiveness of the 
proposed mechanism and show that it is individually rational and incentive compatible, and 
outperforms other baseline mechanisms.

Keywords Federated learning · Artificial intelligence · Incentive mechanism · Mobile edge 
computing

1 Introduction

The combination of artificial intelligence and mobile edge computing (MEC) is consid-
ered to be a promising path for the development of machine learning techniques in the 
future. As a model-level coordinated learning paradigm, federated learning [1] can make 
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full use of distributed computing resources in MEC systems. It allows mobile devices to 
train a global model in a decentralized manner by which mobile users only need to send 
local model updates after each iteration to the task publisher instead of directly uploading 
the original data to finish a machine learning task. Google’s research team first proposed 
this concept in 2016 [2] in order to solve the problem of input prediction on users’ mobile 
devices. By using a huge number of mobile phone devices, mobile users can train their 
input models locally. Specifically, users first train the models locally on their own mobile 
device, then the training parameters are integrated by the platform and sent back to each 
user to update and optimize the local model. In this way, federated learning is able to train 
the model with various sources of data while protecting user privacy. This new form of 
machine learning framework has been widely adopted in different fields including smart 
medical treatment [3], finance [4], intelligent manufacturing [5], and education [6], e.g. 
UAVs (Unmanned Aerial Vehicles) [7], app Waze [8] etc.

Despite of the benefits federated learning has brought, there are still many challenges 
in practice. First, most existing studies have an optimistic assumption that all mobile 
users will voluntarily contribute their resources. This assumption, however, is not realis-
tic in practice because model training requires resource consumption and without a well-
designed compensation mechanism, mobile users are reluctant to participate in federated 
learning tasks. Second, most existing incentive mechanisms focus more on the compen-
sation of mobile users while ignoring the profits of the federated learning platform. For 
example in [9–12], the mechanisms they propose only consider the benefits of users, so 
as to attract users to participate in training. However, most mechanisms fail to consider 
the profits of the platform, some even generate negative profits for the platform. If the 
profits of the platform cannot be guaranteed, they may choose not to continue to publish 
tasks, resulting in the failure of cooperation between the two sides. Third, current incentive 
mechanisms fail to consider the time cost of users. The benefits of the platform and users 
will be influenced if the required time of the incentive mechanism is too long.

This paper aims to solve the above-mentioned problems from the following perspec-
tives: (1) we propose a two-stage incentive mechanism based on combinatorial auction and 
bargaining (CAB) to encourage the participation of users and the platform; (2) we show 
that the proposed mechanism can effectively protect the benefits of the federated learning 
platform and ensure social welfare maximization of the whole system and (3) we introduce 
a time discount factor to measure time cost in the bargaining stage. Our theoretical and 
numerical analyses show that this proposed mechanism is individually rational and incen-
tive compatible, and performs better than other baseline models.

The rest of this paper is organized as follows. Section 2 reviews the related work. The 
system model is introduced in Sect.  3. The relevant propositions of this mechanism are 
proved in Sect. 4. Simulation results are presented in Sect. 5, and finally, Sect. 6 concludes 
the paper.

2  Related work

Existing studies primarily focus on the incentive mechanisms, clients selection, and effi-
ciency. Some studies investigate the impact of resource allocation on incentive mechanisms 
in federated learning. Nishio et  al. [13], for example, propose a protocol called FedCS. 
FedCS consists of a resource request phase to collect computing power and wireless chan-
nel status from randomly selected clients, i.e. a subset of federated learning (FL) workers, 
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so that they can complete local training on time, solve the problem of client selection with 
resource constraints and allow the server to aggregate as many client selection problems 
as possible. Hence, FedCS can achieve better performance than protocols that ignore cli-
ent selection. The problem of fairness is also discussed in [14, 15]. Yu et al. [14] propose 
FL exciter and real-time algorithm, dynamically dividing a given budget among federated 
data owners in a context-aware manner. Those data owners, who have contributed a large 
amount of high-quality data and have not been fully compensated for a long time, will 
enjoy a higher share of the revenue subsequently generated by the federation in order to 
be fair. Zeng et al. [16] propose a multidimensional auction incentive mechanism, known 
as FMore, which covers a series of scoring functions. Game theory can also be used to 
derive the optimal strategy of marginal users and expected utility theory can be used to 
guide aggregators to effectively obtain the required resources. Jiao et al. [17] design reverse 
multidimensional auction (RMA) mechanism to achieve social welfare maximization. The 
RMA mechanism takes into account not only the bid price of training services provided by 
employees, but also multiple attributes of each employee, including data size, EMD, and 
wireless channel requirements. Dütting et al. [18] use multiple neural networks to establish 
an auction model and deep learning to solve multi-item auction problems. The incentive 
scheme for procurement auction is designed to solve various problems, such as allocation 
of radio spectrum [19], public testing [20], display advertising [21] and customer-assisted 
cloud storage systems [22, 23]. However, none of them can be applied directly to federated 
learning because they only consider the specific attributes of their own problems. Le et al. 
[8] propose that through combinatorial auctions, each mobile user submits a bid according 
to the minimum energy cost required to complete the federated learning tasks and is paid 
through the Vickery-Clarke-Groves (VCG) payment model. Although this idea ensures the 
profits of users, the profits of federated learning platforms are still missing.

Clients selection is one of the important factors that influence incentive mechanisms. 
Domingos et al. [15] propose a q-FedAvg algorithm, which gives a higher weight for users 
with low performance when optimizing the objective function. Kang et al. [24] introduce 
reputation as a metric to measure the reliability and credibility of mobile users. In their 
multiple subjective logic model, a reliable federated learning worker selection scheme 
based on reputation is designed. Xiong et  al. [25] propose a scheme to select people 
according to reputation value for federated learning tasks and the value is calculated based 
on the local reputation opinions generated by the direct interaction and stored in an open 
access alliance block chain called reputation block chain for reputation management in a 
decentralized manner. Auction-based incentive mechanism has also been widely applied in 
federated learning tasks. For example, Ng et al. [7] use an auction incentive mechanism in 
Unmanned Aerial Vehicles, which allows the platform to have the complete bidding infor-
mation of all users, so that the platform is able to select the winners accordingly in the 
auction.

Existing literature has also explored the role of efficiency in the design of incentive 
mechanisms in federated learning tasks. Dhakal et al. [26] design a novel coded computing 
technique for federated learning that increased the convergence speed of the global model 
by nearly four times. To Address the problem of information asymmetries, Lim et al. [9] 
propose a hierarchical incentive mechanism based on multiple model owners and alli-
ances.  In addition, contract theory has also been applied to encourage high quality data 
from different types of workers. To maximize the profits of the platform in the federation, 
Zhan et  al. [10] propose an incentive mechanism based on deep reinforcement learning 
(DRL) to solve the challenge of non-shared information and the difficulty of contribution 
evaluation in federated learning. In order to maximize the profits of the users, Pandey et al. 
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[27] design a two-stage Stackelberg game to maximize the interests of both the client and 
the server. Furthermore, Feng et al. [28] propose a Stackelberg game model to study the 
interaction between servers and mobile devices, where mobile devices determine the price 
of each unit of data to maximize personal profits, while servers choose the size of training 
data to optimize their profits. Huang et al. [29] design a novel adaptive gradient descent 
differential private convolution neural network (DPAGD-CNN) algorithm to update each 
user’s training parameters, which can protect data privacy more effectively than existing 
works.

To sum up, despite that existing studies try to construct the incentive mechanisms from 
various perspectives, there are still problems to be solved. (1) Most incentive mechanisms 
focus on the profits and fairness of local users, but fail to consider the profits of the feder-
ated learning platform. It is important to explicitly consider the profits of the federated 
learning platforms because its willingness of participation cannot be fully motivated if its 
benefits can not be properly protected. (2) Most existing research assumes that the informa-
tion of local users is transparent and available for all other parties. Such an assumption is 
not realistic in application; (3) Most previous studies fail to consider the cost of time in 
their incentive mechanism, leading to a low efficiency of federated learning tasks.

3  System model

3.1  Mechanism introduction

As shown in Figure 1, in combinatorial auction stage, first, the platform acts as a buyer and 
publishes a federated learning task. Second, users who act as sellers receive information 
about the task and decide whether to participate. Then, they submit bids to the platform 
according to the cost of data transmission and local model training etc. Third, the platform 
selects the users who make the total profit of the platform and themselves greater than zero 
as winners, and adopt their bidding price as the provisional price. Next, we come to the 
bargaining stage. In this stage, the platform classifies the winners set ω into two categories 
and uses different payment methods respectively after finishing the training model.

As shown in Figure 2, there are three payment strategies for the platform in the bar-
gaining stage: (1) paying directly at the provisional price determined in the combinatorial 
auction stage; (2) proposing a new price to bargain, and (3) announcing the failure. Among 
them, we classify the winners who adopt bargaining price as category 1 winners (ω1). The 
winners who use the provisional price determined in the combinatorial auction stage are 
classified as category 2 winners (ω2). For users of ω2, the federated learning task completes 
immediately and there is no waste of time for both parties. Otherwise, the platform will 
propose a new bargaining price and wait for users to decide whether to continue bargain or 
not. Therefore, the time of the auction will be prolonged, resulting in the loss of profits for 
both the platform and users.

3.2  Hypothesis

(1) In the combinatorial auction stage [30], the platform and users (usually referred as 
bidders in the auction) have incomplete information about each other. No user knows 
other users’ estimates of task value in this stage.
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Figure 1  System model

Figure 2  Classification and trading strategy of winning users
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(2) In the bargaining stage [31], all participants submit their bidding information (includ-
ing the time of local model training and the time of data transmission) to the platform. 
Therefore, the platform has complete bidding information about the users [7]. However, 
users still do not know the private information of the platform and the bidding informa-
tion of other participants.

(3) All participants are fixed in our discussed federated learning tasks. The platform does 
not have to attract new participants.

4  Modeling analysis

4.1  Preliminary of federated learning

Suppose a federated learning platform publishes a federated learning task with N users. 
Each user submits a bid b to the platform, which includes the time of local model training 
Ti

comp, and the time of data transmission to federated learning platform Ti
com.

We use VCG mechanism in the combinatorial auction stage and Formula (2) gives the 
requirements for determining the winning user i. The purpose of the auction is to maximize 
the profit of the system, that is, to maximize the difference between the platform’s valua-
tion of the bid Si(b) and the user’s bid price Vi(b).

This model assumes that there are enough users in the auction, i.e. N is large enough so 
that there is at least one feasible solution to the optimization problem (2).

Formula (3) is the provisional price function for winners in the combinatorial auction 
stage. The provisional price will be notified to the winners of the combinatorial auction 
when it’s over. If user i wins ( i ∈ � ), the provisional price is calculated as follows

where

where I refers to the set of all users, V(I) in Formula (4) represents the maximum total sys-
tem profit generated by the participation of all users, and V(I-i) in Formula (5) denotes the 
maximum total system profit generated by users except i.

Formula (6) defines the profit of winning user i in the combinatorial auction stage, and 
Ci(b) represents the true cost of user i’s bid.

(1)b = f
(

T
comp

i
, Tcom

i

)

(2)max

n
∑

i=1

[

Si(b) − Vi(b)
]

(3)Pi = V(I) − V
(

I−i
)

+ Vi(b)

(4)V(I) = max

n
∑

k=1

(

Sk(b) − Vk(b)
)

(5)V
(

I−i
)

= max

n
∑

k∈[I−i]

(

Sk(b) − Vk(b)
)
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Formula (7) presents the profit of the platform from the federated learning task.

The system net profits brought by user i is the sum of the profit of user i (πi) and the 
platform (πs).

In the combinatorial auction stage, user i will be selected as a winner if the net profit 
he brought to the system is greater than zero, i.e. Di > 0. Then, the platform and all win-
ning users of the first stage will enter the bargaining stage. Both the platform and the 
winners hope to finish the bargaining process sooner.

The total profit of the system is the sum of the profit of all user i (πi) and the platform 
(πs).

where ω is the set of winning users.
This model uses time discount rate r (r > 0) to measure the aversion of procrastina-

tion for both sides and the net profit of the platform in the bargaining stage is calculated 
in Formula (10).

where t1 is the bargaining time of category 1 winners ω1, t2 is the bargaining time of cat-
egory 2 winners ω2, and Pi

* is the new bargaining price of category 1 winners ω1. Since 
there is no need to bargain for category 2 winners, we have t2 = 0.

The net profit of category 1 winner in the bargaining stage can be calculated as:

The net profit of category 2 winner in the bargaining stage can be calculated as:

Here, e−rt1 represents the assumption on the negative exponential decline in utility 
over time [30–32] The time interval for each round of bargaining between the platform 
and the user is

Thus Formula (10) and (11) can be simplified as follows

(6)�i = Pi − Ci(b)

(7)�s = Si(b) − Pi

(8)Di = �i + �s

(9)

D(I) =
∑

i∈�

(

�
i
+ �

s

)

=
∑

i∈�

(

S
i(b) − C

i(b)
)

(10)�
∗

s
= e−rt1

(

∑

i∈�1

Si(b) −
∑

i∈�1

P∗

i

)

+
∑

i∈�2

Si(b) −
∑

i∈�2

Pi

(11)�
∗

i
= e−rt1

(

P∗

i
− Ci(b)

)

, i ∈ �1

(12)�
∗

i
= Pi − Ci(b), i ∈ �2

(13)t = −
1

r
log �
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where δ is the time discount factor of the bargaining period and m is the number of bar-
gaining rounds.

The major notations to describe the system are listed in Table 1.

4.2  Winner determination and bidding strategy in combinatorial auction

In this paper, a winner determination problem (WDP) model is proposed to help the plat-
form to determine the winning users and to assign the optimal number of users to platform 
in the combinatorial auction stage. Since it is impossible to know the user’ valuation infor-
mation, the subsequent bargaining stage will lead to three results. (1) Direct payment—for 
category 2 winners, the platform will pay directly with the provisional price determined in 
the combinatorial auction stage. (2) Continuing bargaining – for category 1 winners, the 
platform proposes a new bargaining price, which will make the platform more profitable. 
And (3) Announcing failure—the platform will declare the failure of the transaction to 
users who make the profit of platform negative.

(14)�
∗

s
= �

m

(

∑

i∈�1

Si(b) −
∑

i∈�1

P∗

i

)

+
∑

i∈�2

Si(b) −
∑

i∈�2

Pi

(15)�
∗

i
= �

m
(

P∗

i
− Ci(b)

)

, i ∈ �1

Table 1  Table of key notations

Symbol Definition

Tcom
n

Time consumption of data transmission to federated learning platform
T
comp
n    Time consumption of local model training

V(I) The total profit that users get from participating in the federated learning task
V
(

I−i
)

The total profit that users get from participating in the federated learning task other than i
Vi(b) User i’s bid price
Ci(b) The true cost of user i’s bid
Si(b) Platform valuation of user i’s bid
� The set of winning users
�
1

Winning users of category 1
�
2

Winning users of category 2
� Time discount factor
�i The profit of winning user i in the combinatorial auction stage
�s The profit of the platform in the combinatorial auction stage
�
∗
i

The profit of winning user i in the bargaining stage
�
∗
si

The profit earned by the platform from the winning user i during the bargaining stage
�
∗
s

The total profits of the platform during the bargaining stage
Pi Provisional price at the stage of combinatorial auction
P∗
i

The bargaining price at the stage of bargaining
m Number of bargaining rounds
Di The system net profits brought by user i
U The sum of utility brought by all winning users
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However, since the probability of the above three situations is stochastic, its corre-
sponding bidding strategy at equilibrium is unpredictable. It is impossible for the plat-
form to determine the winner set based on the criterion of platform profit maximization. 
In this case, the platform will decide winners according to the following two criteria: 
(1) the maximization of the overall profits of the whole system (profits of the platform 
and all users) and (2) incentive compatibility where each user can achieve the best profit 
to themselves just by bidding according to its true cost [22]. As mentioned earlier, For-
mula (2) gives an optimization problem of criterion (1). For criterion (2), Proposition 1 
below shows that the VCG mechanism in the auction stage is incentive compatible.

Proposition 1 Users get the highest profit if and only if they bid with their real cost in the 
combinatorial auction stage.

Proof Assuming that user i is in the winner set ω, Ci(b) represents the true cost of bid b of 
user i, and the profit of user i in the combinatorial auction stage is

where Ci(b) is a fixed value for user i. Users must make their bid price Vi(b) equal the true 
cost of their bid Ci(b) in order to maximize the profit of the system.

The VCG mechanism in the combinatorial auction stage ensures incentive compat-
ibility of all users. This is because users generate more profit if they bid with their real 
cost. It can be inferred from Formula (16) that any bid higher than the real cost will 
result in a negative profit for users, and rational users will not bid with a price lower 
than their real cost. Bidding with the real cost is the dominant strategy for all users.

In previous discussions on incentive compatibility, we usually assume that all users 
are required to participate in the auction. But in reality, users are free to decide whether 
to participate or not. Users are reluctant to participate in a federated learning task if 
they are not able to earn a profit. Therefore, the platform needs to ensure the profit of 
the winning users to guarantee their participation, i.e. the individual rationality of users 
needs to be considered.

Proposition 2 The proposed two-stage incentive mechanism is individually rational for all 
users.

Proof According to Dütting et al. [18], a user is individually rational if its utility is non-
negative. The utility of the winning user i can be expressed as

According to the theory of incentive compatibility, the bid price Vi(b) is equal to the 
true cost Ci(b). In VCG mechanisms, the system profit brought by user i is necessarily 

(16)

�i = Pi − Ci(b)

=
�

V(I) − V
�

I−i
�

+ Vi(b)
�

− Ci(b)

=
n
∑

k=1,k≠i

�

Sk(b) − Vk(b)
�

− V
�

I−i
�

+ Si(b) − Ci(b)

(17)Vi(b) = Ci(b)

(18)
Ui = V(I) − V

(

I−i
)

+ Vi(b) − Ci(b)

= V(I) − V
(

I−i
)
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greater than that without user i; therefore, Formula (18) is non-negative, i.e. users are 
individually rational in the combinatorial auction stage.

The combinatorial auction stage is of great significance to enhance task efficiency and 
to save the bargaining cost of the second stage. It reveals the true private information of 
users and helps to determine the winner set of the next bargaining stage in a short period 
of time. Without this stage, it is not possible to select a set of winners because the platform 
will have to bargain with each user one by one, eventually resulting in high time cost. Our 
analysis proves that the profit of the platform can be improved by introducing the bargain-
ing stage.

4.3  Winner category and pricing strategy in the bargaining stage

According to the Rubinstein bargaining model [33] where two users split a piece of cake, if 
both parties possess complete information and their time discount factors are δ1 < 0, δ2 < 0 
respectively, there is a unique Nash equilibrium in the Rubinstein’s model. The profit of the 
former is 1−�2

1−�1�2
 and the recipient’s profit is �2−�1�2

1−�1�2
 [34].

In our proposed CAB mechanism, if the platform knows the true cost Ci(b) of all win-
ners and all winners know the true platform valuation Si(b) about their bids, then Proposi-
tion 3 is derived then as below.

Proposition 3 There is a unique equilibrium in the bargaining stage and the equilibrium 
price Pi

* is

The equilibrium profit of the platform is

And the equilibrium profit of user i is

Proof In this model, the time discount factor of the platform and the winning users are the 
same, namely δ1 = δ2 < 1. While the size of the “cake” is related to the winning user i and 
equals to the total system profit Vi(b)-Ci(b), the corresponding profits of both parties in 
Formula (20) and (21) can be calculated by using the Rubinstein bargaining model. Con-
sidering the first item in (14), it can be inferred that, in the complete information scenario, 
the profit of the platform from winner i after bargaining is.

According to the Rubinstein bargaining model, user i immediately accepts this offer, so 
there is no time cost in bargaining, i.e. m = 0. Replacing Formula (20) by Formula (22), we 
derive the platform’s bidding strategy from Formula (19).

Next, we discuss three special points that divide the winners into different categories.

(19)P∗

i
=

�Si(b) + Ci(b)

1 + �

(20)�
∗

si
=

Si(b) − Ci(b)

1 + �

(21)�
∗

i
=

�
(

Si(b) − Ci(b)
)

1 + �

(22)�
∗

si
= �

m
(

Si(b) − P∗

i

)
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(1) The first special point is the one where the profit of the platform made from the pro-
visional price in the first stage equals the new bargaining price in the second stage. If the 
platform adopts provisional price immediately, there is no time cost for bargaining and the 
profit will not be discounted. If the platform chooses to bargain with winner i, the profit of 
the platform will be discounted by δ due to the time delay. According to Proposition 3, the 
bargaining price is equal to Formula (19). According to Formula (3), (19), and (22), we 
have Formula (23) representing the first special point as below:

From Formula (23), we have

where Di = Si(b)-Vi(b) represents the net system profits brought by user i and Ui = V(I)-V(I-i) 
indicates the increase of total social welfare brought by the participation of winner i.

(2) The second special point is the one where the provisional price in the first stage 
equals the new bargaining price in the second stage, i.e.

According to Formula (25), we have

(3) The third special point refers to the one where the platform gets zero profit from 
the new bargaining price in the second stage, i.e.

The above three special points divide the winning users into three categories (see Figure 2) 
which demonstrate that despite that category 1 users ensure a positive profit for the platform, 
the platform is still willing to enter the bargaining stage since it brings more profit.

As shown in Figure 3, category 2 users are divided into two sub-categories by special 
point Pi = Pi

*: i.e. those whose provisional price is less than or equal to the bargaining 
price and those whose provisional price is greater than the bargaining price. Further-
more, it is worth mentioning that category 2 users will be paid with the provisional 
price no matter whether the provisional price is higher than the bargaining price or not. 
This is because there is time cost in the bargaining stage and the profit of the platform 
will be discounted by δ. Hence, the platform will finally choose the provisional price to 
conduct the federated learning task.

To sum up, according to the above discussion, for users of category 1, if Di ≤ (1 + δ)Ui, 
the platform will adopt bargaining strategies to increase its profit; For users of category 
2, if Di > (1 + δ)Ui, the platform will immediately pay with the provisional price.

Remark In the bargaining stage of this model, the winners still have incomplete informa-
tion about the platform. This is because after the combinatorial auction, despite that the 

(23)Si(b) −
[

V(I) − V
(

I−i
)

+ Vi(b)
]

= �

{

Si(b) −
�Si(b) + Ci(b)

1 + �

}

(24)Di = (1 + �)Ui

(25)V(I) − V
(

I−i
)

+ Vi(b) =
�Si(b) + Ci(b)

1 + �

(26)Pi = P∗

i

(27)Di = 0
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platform already knows the true valuation of the winning users (see Proposition 1), the 
winning users still have no information about the platform’s valuation of their bid Si(b).

The equilibrium price of bargaining stage shown in Proposition 3 can be used as the ref-
erence point to analyze this incomplete information scenario in the bargaining stage.

This mechanism requires that after the combinatorial auction, the provisional price will 
be immediately told to winner i. Therefore, winner i will know its profit Ui from participat-
ing in the federated learning task, i.e. winners know all the information of the above For-
mulas (23) to (27), enabling them to calculate the above three special points Di and the cor-
responding platform’s valuation of their bids Si(b) At the same time, if the platform pays 
directly with the provisional price to category 2 users, we have Di > (1 + δ)Ui. If the plat-
form proposes a new bargaining price for category 1 users, we have Si(b) > Ci(b) + (1 + δ)Ui.

Cramton [35] has shown that the auctioneer cannot let the winning users know and believe 
its real valuation without adopting the time delay strategy as a signal of its real valuation. How-
ever, if the time delay strategy is adopted, there will be a certain loss to the profits of both sides. 
Therefore, our proposed mechanism suggests that the platform should propose a bargaining price 
that enables both parties to finish the deal as soon as possible instead of adopting the time delay 
strategy, i.e. Si(b) = Ci(b) + (1 + δ)Ui. Bringing this value into Formula (19), the bargaining price 
can be simplified as

The above bargaining price is actually the highest price that can be offered by the 
platform so that the winners will agree the deal immediately. In addition, if we replace 
�Si(b)+Ci(b)

1+�
 in Formula (23) with Formula (28), we will get the special point Di shown in 

(24), which shows that the bargaining price in Formula (28) is more beneficial to the 

(28)P∗
i
=

�(Ci(b)+(1+�)Ui)+Ci(b)

1+�

= Ci(b) + �Ui

Figure 3  Classification of category 2 users
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platform than the provisional price Di = (1 + δ)Ui determined in the combinatorial auc-
tion stage. Theorem 1 gives the condition for the platform to declare the failure of the 
transaction.

Theorem  1 If Za < Zb and (Za-Zb) + U > 0, we have D(I) < (Za-Zb) + U. The platform will 
declare the failure of the transaction.

Proof Here, we define Za and Zb as follows

where Za denotes the profit of the platform brought by category 1 users when adopting the 
provisional price strategy, Zb denotes the profit of the platform brought by category 1 users 
after bargaining, and U represents the sum of the utility of all winners.

According to Theorem 1, the platform will declare the failure of the transaction if the 
total profit of the system is negative. In this case, we have

.
The above Formula (32) is equivalent to

Considering the definitions of Za and Zb, the above formula is equivalent to

Formula (34) is the conditions for the failure of the transaction between the two parties.

Corollary 1 If all winning users are category 1 users, the platform will adopt bargaining 
strategy; if D(I) ≤ δUi, the platform will announce the failure of the transaction.

Proof Assuming that all winners are category 1 users, if the bargaining price brings nega-
tive profits to the platform, we have

(29)Za :=
∑

i∈�1

Si(b) −
∑

i∈�1

(

Ui + Vi(b)
)

(30)Zb := �

(

∑

i∈�1

Si(b) −
∑

i∈�1

P∗

i

)

(31)
U :=

∑

i∈�

Ui

=
∑

i∈�

�

V(I) − V
�

I−i
��

(32)𝛿

(

∑

i∈𝜔1

Si(b) −
∑

i∈𝜔1

P∗

i

)

+
∑

i∈𝜔2

Si(b) −
∑

i∈𝜔2

(

Ui + Vi(b)
)

< 0

(33)𝛿

(

∑

i∈𝜔1

Si(b) −
∑

i∈𝜔1

P∗

i

)

+ (D(I) − U) <
∑

i∈𝜔1

Si(b) −
∑

i∈𝜔1

(

Ui + Vi(b)
)

(34)D(I) <
(

Za − Zb
)

+ U

(35)
∑

i∈𝜔

Si(b) −
∑

i∈𝜔

P∗

i
< 0



2364 World Wide Web (2023) 26:2351–2372

1 3

Substitute (35) with (28) and (17), we have

Therefore, the platform will announce the failure of the federated learning task if 
D(I) ≤ δUi.

Corollary 2 If all winning users are category 2 users, the platform will directly use the pro-
visional price determined in the combinatorial auction stage; if D(I) ≤ Ui, the platform will 
declare the failure of the transaction.

Proof Assuming that all winners are category 2 users, if the bargaining price brings nega-
tive profits to the platform, we have

Substitute (37) with (3) and (24), we have

Therefore, the platform will announce the failure of the federated learning task if 
D(I) ≤ Ui.

5  Numerical simulation

In this section, we use numerical simulations to evaluate the effectiveness of our proposed 
mechanism. It is worth noting that our proposed mechanism is only applicable in the hori-
zontal federated learning tasks, where the datasets provided by users are homogeneous, 
e.g. banks need to obtain user data from multiple banks for users’ credit evaluation tasks. 
The parameters in the simulation are designed as follows: The whole system consists of 1 
platform to publish federated learning tasks and 600 mobile users ( i = 600 ) to participate 
in the task. We randomly generate the bidding price of user i Vi(b) from the interval (20, 
70) [36] and the platform’s valuation of user i Si(b) from the interval (10, 100) [37].

(36)
∑

i∈𝜔

Si(b) −
∑

i∈𝜔

(

Vi(b) + 𝛿Ui

)

< 0

(37)
∑

i∈𝜔

Si(b) −
∑

i∈𝜔

Pi < 0

(38)
∑

i∈𝜔

Si(b) −
∑

i∈𝜔

(

Vi(b) + Ui

)

< 0

Table 2  Simulation results CAB VCG UPA TIM

The individual 
rationality of users

465 465 464 300

Platform profits 6490.347 6110.237 6112.319 1768.386
Total user profits 2906.976 3287.086 3274.535 3902.62
Total system profits 9397.323 9397.323 9386.854 5671.006
System efficiency 0.775 0.775 0.758 0.5
Truthfulness 7.069 7.069 19.673 13.009
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In order to make comparisons with other baseline models, we adopt the simulation data 
used in other literatures, such as VCG [30], TIM [36], and UPA [37]. We also compare 
the results from the perspective of individual rationality [38], platform profits [10], total 
system profits [8, 17], system efficiency [18] and truthfulness [36] with the above baseline 
models. TIM mechanism iteratively selects the winners who bid with a lower average bid-
ding price. UPA mechanism first calculates the system profit that a user brings, then selects 
winning users who make the system profit greater than 0, sorts the winning users accord-
ing to the bidding price, and pays the corresponding payment. The results are shown in 
Table 2.

5.1  The individual rationality of users

As shown in Figure 4, except for UPA, all other mechanisms guarantee positive profits for 
their users. Therefore, all users are motivated to participate in the federated learning task. 
As shown in Figure 4(a)  and Figure 4(b), the profits of users in CAB are less than that 
in VCG, because our proposed mechanism provides more profits to the platform. More 
importantly, compared with Figure 4(d), the number of users of CAB and VCG is signifi-
cantly greater than that of TIM, which proves the superiority of our proposed mechanism.

Figure 4  (a) The individual rationality of CAB (b) The individual rationality of VCG (c) The individual 
rationality of UPA (d) The individual rationality of TIM
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5.2  The profits of the platform

Figure 5(a) shows the provisional price, transaction price, and platform valuation where 
the final profit of the platform [10] is equal to the platform’s valuation of user i’s bid 
minus the transaction price. As shown in Fig. 5(a), each winner will receive a price no 
more than its previous bid, and therefore the profit of the platform will be no less than 
the profit if it directly adopts the provisional price determined in the combinatorial auc-
tion stage. The results show that users will be adequately compensated and the platform 
will be more strongly motivated to participate in federated learning tasks.

Figure  5(b)  shows that the profit of the federated learning platform using our pro-
posed mechanism is always greater than or equal to that in VCG mechanism, TIM 
mechanism, or UPA mechanism. With the increase of the number of participants, the 
profits of the platform will continue to increase. The simulation results show that our 
proposed mechanism can guarantee the profit of the platform (see Figure 5(b)).

In addition, different time discount rates have different effects on the profits of the 
platform. Figure 5(c) shows that the time discount rate is negatively related to the profits 
of the federated learning platform.

Figure 5  (a) Performance under CAB (b) Platform profits under different mechanisms (c) Impact of time 
discount rate on platform profits
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5.3  The total profit of the whole system

According to Le et al. [8] and Jiao et al. [17], the total system profits are the sum of the 
profits of the platform and all users. Figure 6 shows that with the increase of the number 
of users, the total profit of the system continues to increase. Our proposed mechanism and 
traditional VCG mechanism produce the same total system profits, which are significantly 
higher than that in UPA mechanism and TIM mechanism.

5.4  The influence of time

In this experiment, we analyze the impact of bargaining time on the price, profit and equilib-
rium of the platform and user i in the bargaining stage. As we can see from Figure 7(a) to Fig-
ure 7(d), the platform will decreases its bargaining price in the bargaining process as t (the num-
ber of bargaining rounds) increases. The bargaining process stops when the bargaining price 
equals to the bidding price of the user (the user gets zero profit). Therefore, with the increase of 
bargaining time t, the profit of user i decreases and the profit of platform increases. In addition, 
with the decrease of time discount factor, the profit of user i declines increasingly faster and 
the bargaining process stops faster. According to Proposition 3, due to the discount factor δ, a 
rational user will immediately agree to the bargaining price proposed by the platform instead of 
adopting the time delay strategy, because there is no time loss. Therefore, the user i is willing to 
finish the bargaining stage as soon as possible to maximize its profit.

5.5  System efficiency

According to Dütting et al. [18], we use the proportion of users who eventually reach a deal 
with the platform to measure system efficiency. Intuitively, the efficiency of the system [36] 
depends on the bidding price of the users and the valuation of the platform. If users bid 
far below the platform’s valuation, there will be few successful transactions, resulting in 

Figure 6  Total profits of the sys-
tem under different mechanisms
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Figure 7  (a) The price and profit when δ = 0.8 (b) The price and profit when δ = 0.6 (c) The price and profit 
when δ = 0.4 (d) The price and profit when δ = 0.2
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a reduction of the overall system efficiency. As shown in Figire 8(a), we compare the sys-
tem efficiency of four mechanisms: CAB, VCG, UPA, and TIM, and the simulation results 
show that the system efficiency of CAB and VCG is the highest, while TIM has the lowest 
system efficiency. As shown in Figure 8(b), with the increase of users, the average system 
profit is always greater than 0 and becomes more stable.

5.6  Truthfulness

A mechanism is truthful if and only if every participant gets the highest profit when it reports 
true value. Figure 9(a) shows a randomly chosen winner i who bids with Vi(b) = Ci(b) = 45.57 
and receives a profit of πi = 7.069. It suggests that user i cannot increase its profit by using 
any other bid prices. Figure 9(b) shows a different scenario that user i fails the auction when 
it bids truthfully, i.e. Vi(b) = Ci(b) = 44.105. Thus, user i will not participate in this task and 
get zero profit. Figure 9(b) also shows that even if user i bids incorrectly, its profits won’t be 
greater than 0. The following figures show truthfulness of different mechanisms.

6  Conclusion

In this paper, we propose a two-stage federated learning incentive mechanism based on 
combinatorial auction and bargaining. The properties of this mechanism are proved by 
theoretical analysis and numerical simulation. Compared with the traditional mecha-
nisms, our proposed mechanism has following advantages: (1) Our mechanism ensures 
profit maximization of the whole system; (2) Due to the existence of the bargaining 
stage, our mechanism ensures that the profit of the platform is higher than that of other 
baseline mechanisms; (3) This mechanism considers time value of mobile users and 
therefore promotes the efficiency of user selection process; (4) We demonstrate that the 
proposed mechanism satisfies individual rationality, incentive compatibility and truth-
fulness of both the platform and users. Numerical results also proved our analysis.

Figure 8  (a) Normalized system efficiency (b) Average system profits
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(g) (h)

The truthfulness of TIM

Figure 9  Truthfulness in different mechanisms
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In the future work, in order to improve the benefits of the federated learning platform 
and achieve reliable federated learning, researchers could consider more factors that 
affect sthe efficiency of the federated learning platform, such as geographical location, 
seller’s reputation and so on. The conclusions of this study can also be applied in other 
similar tasks, like crowdsourcing.
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