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Abstract
Linking trajectories to users who generate them with deep learning techniques has been a
popular research topic in recent years, due to the large-scale trajectory data obtained by
ubiquitous GPS-enabled devices and the widespread applications served by the study, such
as route planning, next location prediction, and destination prediction. To address the TUL
(Trajectory User Linking) problem more effectively, we propose a novel semi-supervised
model TULRN (Trajectory User Linking on Road Networks) based on GNN (Graph Neural
Network) and BiLSTM (Bi-directional Long Short-Term Memory). The main difference
between our study and existing ones is that the TUL problem is extended onto road networks
in this work, where both the structure of road networks and the sequential characteristics
of trajectories will be fully utilized in a unified manner. The reason behind the extension
is that many trajectories are usually generated on road networks in real life, and based
on which we can model the relationships between trajectories and users more precisely.
Specifically, our proposed model TULRN contains four main components: (1) transforming
each trajectory into a sequence of road segments and constructing a road network-aware
trajectory sequence graph RTSG; (2) learning the representation of a node in RTSG with a
weight-aware GNN module; (3) learning the representation of a trajectory with a BiLSTM-
based module; (4) linking trajectories to users based on the embedding of each trajectory.
The extensive experiments conducted on a real-world dataset demonstrate that the proposed
model TULRN performs better than the state-of-the-art methods.
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1 Introduction

Benefiting from the ubiquitous GPS-enabled devices (e.g., mobile phones and on-board
navigation system-equipped cars), people have witnessed the unprecedented increase of tra-
jectory data in the past decade. The mobility patterns of moving individuals and groups
can be found from the trajectory data, so as to provide methods and decision-making guid-
ance for the research of location-based services, crowd management, tourism monitoring,
and other related application fields. It has become a research hot point in the field of data
mining and has attracted extensive attention from academia. Based on the large-scale tra-
jectory data, there has been a lot of work, including trajectory similarity computation [1–6],
activity trajectory search [7–10], road network-based path analysis [11–13], etc. Recently,
some researchers pay attention to trajectory user linking (TUL), due to the significant
benefits brought by it, such as making next-visit-location prediction [14–18] and friends
recommendation on location-based social networks [19].

The above-mentioned study TUL aims to find a mapping between trajectories and their
owners, and the work was firstly proposed in [20], where a Recurrent Neural Network
(RNN) based semi-supervised learning model TULER was proposed. Following this, a
novel approach called TULVAE was introduced in [21], where authors investigated trajec-
tory user linking with variational autoencoder. Then a method called TGAN was proposed
in [22], where the TUL problem was solved in an adversarial network. In recent advances, a
novel model called GNNTUL composed of a graph neural network module and a classifier
was applied to the TUL task [23]. Commonly, all of existing studies tackle the TUL prob-
lem with deep learning techniques, due to the excellent performance of these techniques in
capturing human sequential and semantic information from a large number of trajectories
ordered by timestamps. These studies have made great contributions in addressing the TUL
problem, but none of them investigate the problem on road networks. Unfortunately, in real
life, most of trajectories are generated on road networks by many different vehicles, such as
buses, cars, and taxis.

As the skeleton of a city, the road network is the “lifeline” of the entire city and the
carrier of urban social and economic activities and transportation. Comprehensive and accu-
rate road network information is an important foundation for building a smart city. People
walk through the urban road network every day, generating massive spatiotemporal tra-
jectory data. The analysis and modeling of road network-based trajectory data not only
bring an opportunity for understanding people’s movement patterns, but also provide a new
perspective for urban planning, traffic management and forecasting, and public travel. Con-
sequently, we extend the problem TUL onto road networks. Specifically, the reason for
investigating the TUL problem on road networks is threefold. (1) Although many trajec-
tories are collected from a road network in real life, there has been no work that links
trajectories to users on it, and our study can fill this gap. (2) Existing studies need to develop
methods to transform trajectories into segments before learning representations and the per-
formance of segmentation is deeply affected by their designed approaches. Different from
them, we can obtain the trajectory sequence (TS) introduced in Section 3 automatically,
based on the given map information. (3) Apart from the sample points of a trajectory, given
a road network we can employ more information, such as road segments and intersections
to enhance the performance of trajectory representation learning.
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Despite the significance of exploring trajectory user linking on road networks, the task
turns out to be challenging due to the following problem, i.e., how to fully incorporate
and utilize the topology information of a road network and the sequential characteristics of
trajectories in an effective manner for better trajectory representation learning. To address
the problem, we propose a novel semi-supervised model TULRN, which contains four main
components. (1) Construction of a road network-aware trajectory sequence graph RTSG:
we transform trajectories into a sequence of road segments after map matching based on
the location information of trajectories, then construct this graph by merging the trajectory
sequence with road network graph. (2) Node embedding: we propose a weight-aware GNN
module to learn the representation of a node in RTSG. (3) Trajectory embedding: we develop
a BiLSTM-based module to learn the representation of each trajectory. (4) Linking module:
following the embedding of trajectory, we feed the output of part (3) into a fully-connected
neural network to conduct multi-class classification with the softmax function and cross-
entropy loss function. To sum up, we make the following contributions in this work.

• To the best of our knowledge, we are the first to extend the TUL problem onto road
networks.

• We develop a novel model TULRN to address the problem TUL effectively, by fully
utilizing the structure of a road network and sequential information of trajectories.

• We conduct extensive experiments on a real-world dataset, and the results demonstrate
that our proposed model outperforms the state-of-art approaches.

The rest of the paper is organized as follows. We introduce the related work in Section 2,
and formulate the problem in Section 3. The overview of TULRN is presented in Section 4,
and the details of TULRN are introduced in Section 5. The experiments are conducted in
Section 6 and the paper is concluded in Section 7.

2 Related work

We review related studies to our work in this section, which contain trajectory representation
learning and trajectory user linking.

2.1 Trajectory representation learning

Embedding trajectory to low-dimension representation has been a popular research topic
in spatio-temporal database, due to the wide range of applications of this study, such as
trajectory clustering [24, 25], movement behavior analysis [26], travel time and destination
prediction [27–30].

To detect trajectory clusters where within-cluster similarity occurs in different regions
and periods, Yao et al. [24] used a sliding window to extract moving behaviors and employed
a sequence-to-sequence auto-encoder to learn fixed-length deep representations. To com-
pute trajectory similarity with low sampling rates and noisy points, a method called t2vec
was proposed in [31]. A hierarchical reinforcement learning algorithm namely SeCTAR,
which can be used for navigation and object manipulation, was introduced in [32]. The
algorithm used a bottom-up approach to learn continuous representations for trajectories
without explicit need for hand-specification or subgoal information. To define the similar-
ity between two attribute-aware trajectories, an approach called MAEAT was developed by
Boonchoo et al. [33]. MAEAT was built upon a sentence embedding algorithm and directly
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learned the whole trajectory embedding via predicting the context aspect tokens. In recent
work, Fu et al. [27] explored road networks for trajectory representation learning. Their pro-
posed framework contains three main components: road network matching, road segment
representation learning, and trajectory representation learning.

2.2 Trajectory user linking

The study of trajectory user linking (TUL) aims to find a mapping between given trajectories
and users, and has been explored by some existing work.

The TUL problem was firstly introduced in [20], where authors proposed a RNN-based
semi-supervised learning model TULER starting with trajectory segmentation and check-in
embedding. Then, a softmax-based method was designed to link trajectories to their own-
ers. Following this, Zhou et al. [21] proposed a semi-supervised learning model TULVAE,
which learned the human mobility in a neural generative architecture with stochastic latent
variables that span hidden states in RNN. Considering the sparsity of human trajectories,
Miao et al. [34] proposed a novel model DeepTUL, which is composed of a feature repre-
sentation layer and a recurrent network with attention mechanism, to solve the TUL task.
DeepTUL not only combines multiple features that govern user mobility to model high-
order and complex mobility patterns, but also learns from labeled historical trajectories to
capture the multi-periodic nature of user mobility. Due to the insufficient data, Zhou et al.
[22] introduced a Trajectory Distribution Approximation(TDA) problem and proposed the
TGAN - a generative adversarial samples-based individual trajectory generation algorithm.
As an approach to enable learning users’ motion patterns and location distribution, TGAN
aims to improve the performance of identifying human mobility. Due to the discovery that
RNN-based models could not distinguish trajectories correctly when the trajectories are out
of length [35]. A conception of trajectory semantic vector had been proposed in the TULAR,
which focuses on selected parts of the source trajectories when linking. TULAR introduces
the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and
RNN, by which to reckon the weight of parts of the source trajectory. In recent work, both
users’ personalized moving preferences and the prior knowledge behind human mobility
were considered for more precisely linking in. Fan et al. [23] made it in an efficient model
GNNTUL. It also addresses the human mobility discrimination problem by utilizing graph
neural network to capture higher-order spatio-temporal information, as well as the implicit
transition patterns between check-ins from the constructed graph.

Existing studies have made great contributions in terms of trajectory representation learn-
ing and trajectory user linking. However, linking trajectories to users on road networks has
not been investigated. Consequently, we propose the model TULRN to address the issue in
this work.

3 Preliminaries

In this section, we first present notations used throughout the paper in Table 1, then give
definitions and formulate the problem TUL.

3.1 Problem definition

Definition 1 Road Network. A road network is represented as a directed graphG = (V ,E),
where V is a set of nodes (i.e., intersections), and E is a set of edges (i.e., road segments).
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Table 1 Definitions of notations
Notation Definition

u A user

U A set of users

τ A trajectory

p A sample point in a trajectory

T S(τ) Trajectory sequence of τ

S A set of trajectories

v An intersection

v Representation of the intersection v

e A road segment

H(e) Renyi entropy of e

w(e) Weight of e

eτ Representation of the trajectory τ

Definition 2 Trajectory. Let p = (lat, lng, t) be a sample point on a road network, where
lat and lng represent the latitude and longitude respectively, t denotes the time-stamp, a
trajectory is a sequence of sample points, denoted as τ = (p1, p2, · · · , pn).

Definition 3 Trajectory Sequence. Given a trajectory τ = (p1, p2, · · · , pn) collected from
a road network, the trajectory sequence of τ is defined as T S(τ) = (vk, ei , · · · , ej , vl),
where ei is a road segment (i.e., an edge of G) and vk is an intersection (i.e., a node of G).

Consider the example in Figure 1, there are four trajectories τ1, τ2, τ3, and τ4 on road
networks, and the trajectory sequences of them are T S(τ1) = (v2, e2, v5, e7, v9, e10, v10),
T S(τ2) = (v6, e5, v5, e4, v4, e3, v3), T S(τ3) = (v7, e8, v8, e9, v9, e10, v10), and T S(τ4) =
(v11, e11, v8, e6, v4, e3, v3), respectively.

Problem formulation Given a road network G, a set of users U = {u1, u2, · · · , un} and
a set of trajectories S = {τ1, τ2, · · · , τm}(m >> n) collected from G, our proposed semi-
supervised model TULRN provides a mapping that will link each trajectory τi to a user uj :
S �−→ U .
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Figure 1 An example of trajectory sequence
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4 Overview of TULRN

The overview of our proposed model TULRN is presented in Figure 2. Observed from
which, the model contains the following four main components.

Component 1: We divide each trajectory τ into a sequence of road segments based on the
given road network and location information of trajectories, and the corresponding sequence
is denoted as T S(τ). Next, we construct a road network-aware trajectory sequence graph
RTSG by merging the trajectory sequence and road network graph.

Component 2: To fully utilize the topology information of a road network, we develop a
weight-aware GNN module to learn the presentation of a node in RTSG. Different from the
naive GNN [36], we calculate the weight for each edge based on Renyi entropy before node
sampling with the goal of enhancing the performance of node embedding.

Component 3: We develop a BiLSTM-based module to take full advantage of the sequen-
tial features involved in trajectories. The final output trajectory representation eτ will be fed
into the next module.

Component 4: A multi-class classification module, which is designed based on a fully-
connect neural network and a softmax function, is trained to link each trajectory to its owner.

5 Proposedmodel TULRN

As presented in Figure 2, we will transform each trajectory into a sequence of road segments
firstly. Before the transformation, we need to conduct road network matching, i.e., align
sample points of a trajectory onto the road network [27]. To achieve the matching effec-
tively, in this work, we adopt a state-of-the-art model [37], which is developed based on the
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Figure 2 Overview of the proposed model TULRN
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Hidden Markov Model and code available1. Notably, the core part of this study is linking
trajectories to their owners with well-designed deep learning modules, thus the details of
preprocessing (i.e., map-matching) of the input data are omitted here. After map-matching,
we obtain the trajectory sequence T S(τ) for each trajectory τ in S.

5.1 Construction of the graph RTSG

Following the map-matching, we construct a road network-aware trajectory sequence graph
called RTSG. Specifically, we connect each road segment of a trajectory sequence T S(τ)

to an edge in graph G, and connect each intersection of T S(τ) to a node of G. Finally, we
obtain the graph RTSG by merging all trajectory sequences with the given road network
graph.

5.2 Node embedding

For most GNN models, they only consider the node features of the graph yet ignore the
edge features. To obtain a fixed-length node sequence for learning, these methods usually
use the adjacency matrix for sampling according to the neighbors of a node, and ignore the
edge weight during the sampling. When the number of nodes in the entire graph is large,
these methods tend to sample unremarkable nodes and omit unique nodes, which will cause
a serious loss of feature information of the graph. Having observed the shortcoming of
existing work, we design a novel sampling strategy based on edge weight. Specifically, the
calculation of edge weight is presented as follows.

We claim that the edges that have been visited by users in graph RTSG are not equally
important. The edges corresponding to hot road segments are usually useless for distin-
guishing a user from others, while the edges visited by fewer users are more discriminative.
Based on this idea, we propose to compute the edge weight with entropy, which is the
expected value of the information contained in each message in relation to the importance
of the message2. Shannon entropy is a typical entropy, which is a common tool and has
been widely used in many applications [38, 39], Renyi entropy is a generalized version of it
and has proven more powerful [40]. Given a set of users U = {u1, u2, · · · , un}, the Renyi
entropy of an edge e is defined as follows:

H(e) = 1

1 − q
log

n∑

i=1

(
Nui

(e)

Mui

)q

(1)

where Nui
(e) is the number of times that ui passes through the road segment corresponding

to e, and Mui
denotes the total number of road segments that ui has visited. Following the

work [38, 40], the parameter q makes Renyi entropy much more expressive and flexible
than Shannon entropy, and it indicates entropy’s sensitivity to the number Nui

(e), and more
details are discussed in [40]. Next, we give the definition of the edge weight w(e) as follows

1https://github.com/bmwcarit/barefoot/
2https://en.wikipedia.org/wiki/Entropy
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based on H(e),

w(e) = exp
( − H(e)

)

= exp
(

− 1

1 − q
log

n∑

i=1

(
Nui

(e)

Mui

)q )

=
(

n∑

i=1

(
Nui

(e)

Mui

)q
) 1

q−1

(2)

Apart from the edge weight calculation, we construct a feature vector fi for each node ei

in RTSG based on word embedding before sampling. Next, to obtain a complex representa-
tion for each node with interactive information, we sort the edges in RTSG according to the
weights of them from large to small. During the aggregation process, we sample nodes with
different probabilities, i.e., the node with a larger weight is more likely to be sampled and
vice versa. The feature matrix F = {f1, f2, · · · , fn} provides the initial input for each sam-
pled point. Suppose that the representation of the sampling point pi (i.e., a node in RTSG)
in the k−th layer is expressed as hk

i , and {hk
N } denotes the representation of the sequence of

nodes to be sampled by pi in k-th layer, the representation of the sampling point pi in the
(k + 1)−th layer is:

hk+1
i = σ(W · Mean(hk

i ⊕ {hk
N })) (3)

Following the node embedding, we can obtain the trajectory representation based on the
trajectory sequence. By way of illustration, the red and blue dotted lines in Figure 3 denote
the trajectory sequences of τ1 and τ2 in RTSG respectively. Then, we can obtain trajectory
representation eτ1 by concatenating the embeddings of p3, p4, p5, and p7. Similarly, the
representation eτ2 is obtained by concatenating the embeddings of p7, p6, p1, and p3.

5.3 BiLSTM-based trajectory embedding

To further utilize the sequential information contained by trajectories for better representa-
tion learning, we construct a BiLSTM-based module, the input of which is the trajectory
embedding, which contains abundant topology information of a road network, learned by
weight-aware GNN module.

As an extension of the traditional RNN, the LSTM model introduces memory cells with
different structures. The LSTM cell at each moment contains an input gate it , a forget gate
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Figure 3 An example of RTSG and trajectory sequence-based embedding
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ft , and an output gate ot . The input of the cell at the current moment will include the current
input xt , the output of the cell at the previous moment ht−1 and its state Ct−1,

it = σ(Wi · [ht−1, xt ] + bi) (4)

ft = σ(Wf · [ht−1, xt ] + bf ) (5)

ot = σ(Wo · [ht−1, xt ] + bo) (6)

Ct = ft � Ct−1 + it � tahn(WC · [ht−1, xt ] + bC) (7)

where all W and b are parameters, � is the symbol for multiplying a vector by a matrix. σ
and tahn are the activation functions. The input gate it is used to retain the information of
the previous input, the forget gate ft is used to control the forgetting degree of the previous
input, and the output gate ot is used to control the output of the next time. BiLSTM is a
combination of the forward LSTM and backward LSTM. At time t , the output trajectory
representation of BiLSTM is the concatenation of ht of the forward LSTM and ĥt of the
backward LSTM, i.e.,

eτ = Concat (ht , ĥt ) (8)

Taking full advantage of the GNN-based module in capturing topology information and
the BiLSTM-based module in capturing sequence features, we obtain the final and effective
trajectory representation, which is the input of the next linking module.

5.4 Trajectory user linking

Following the learning of trajectory representation on road networks, we link trajectories to
users who generate them, and the architecture of the linking module is presented in Figure 4.

Observed from Figure 4, two parts are involved in linking, i.e., a fully-connected Multi-
Layer Perception (MLP) and softmax. The input of MLP is the representation eτ of a
trajectory, and we assume the output of MLP is Y = (y1, y2, · · · , yn) after computing
Weτ + b, then each probability p(yi) in softmax is defined as:

p(yi) = exp(yi)∑n
j=1 exp(yj )

(9)

whereW and b denote the weight matrix and bias vector in MLP, respectively. The predicted
label is generated with ŷ= argmax p(y). Generally, trajectory user linking can be regarded

eτ

exp

MLP Softmax

Figure 4 Architecture of the linking module
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as a multi-class classification problem, we apply the cross-entropy as a loss function and
use backward propagation and Adam [41] to train our model. The cost function is given as:

J = − 1

L

L∑

i=1

gi log(p(yi)) (10)

where L is the number of trajectories used in training and gi is the one-hot represented
ground truth of the trajectory.

Continue the example in Figure 1, assume τ1 and τ3 are generated by u1, τ2 and τ4 belong
to u2, after embedding τ1, τ2, τ3, and τ4 into vectors, we use eτ1 and eτ2 to train the linking
module in Figure 4. Then, we have p(y) = (0.73, 0.27) for τ3 and p(y) = (0.32, 0.68) for
τ4 in test, which means our proposed model TULRN can make correct classification in this
case.

6 Experiment study

We conduct extensive experiments on a real-world dataset in this section. First, we present
the experimental setup, statistics of the dataset, compared methods, and evaluation metrics.
Then, we compare the performance of our proposed model TULRN with those of baselines
and discuss the impact of parameters. Notably, all algorithms are implemented with Python
3.8 and run on a Linux Server with 256GB memory.

6.1 Experimental setup

The parameters used in our experiments are presented in Table 2. The dimension of a node
in graph RTSG and the number of iterations are set to 250 and 100, respectively. Max length
of a sequence is set to 50, the batch size is 64, and the learning rate of TULRN is 0.0001.

6.2 Dataset

The road network, which contains 56201 intersections and 75268 road segments including
306954 sample points on them, is collected from the city of Beijing, and the map is pre-
sented in Figure 5. The trajectory dataset used to conduct trajectory user linking contains
10567 trajectories with 415216 samples points, generated by 493 taxis (i.e., users) from
2012-10-1 to 2012-10-7. We divide the trajectory dataset of each user into training set and
test set according to the ratio of 7:3.

Table 2 Experimental Setup
Parameter Value

embedding size 250

number of iterations 100

max length 50

batch size 64

learning rate 0.0001
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Figure 5 Road network of the city Beijing

6.3 Comparedmethods

We compare the performance of TULRN with the following state-of-the-art methods, which
are focusing on the TUL problem with trajectory data.

• TULER. The model, which has two variants (i.e., TULER-LSTM and TULER-GRU), is
proposed in [20] and has better performance in more evaluation metrics by embedding
trajectories with LSTM, thus we reproduce the variant TULER-LSTM in this work.

• TULVAE. The approach is introduced in [21], where the TUL problem is tackled
with a semi-supervised learning framework that learns human mobility in neural
generative architecture with stochastic latent variables that span hidden states in
RNN.

• TLUTE. The method leverages a graph-based location embedding method to learn the
semantics of locations and has better performance while embedding trajectories with
LSTM compared with GRU. Consequently, we implement the method with TULTE-
LSTM.

• AdattTUL. To make adversarial mobility learning for the TUL problem, the model
AdattTUL is proposed in [42]. To train the model, multiple human preferences are
considered and an attention mechanism is used to dynamically capture the complex
relationships of user check-ins from trajectory data.

• DeepTUL. The model, which not only combines multiple features that govern user
mobility but also learns from labeled historical trajectory, is composed of a feature
representation layer and an attentive recurrent network with attention mechanism and
proposed by [34].

• GNNTUL. It is the first GNN-based human mobility learning model [23] exploiting
implicit transition patterns behind sparse user traces on social networks while extracting
users’ unique motion features and discriminating the motion traces.

Notably, we report the best performance of all compared methods in this section, by
optimizing parameters for each of them in the given dataset.
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6.4 Evaluationmetrics

The TUL task can be regarded as a multi-class classification problem. We use ACC@K and
Macro-F1 to evaluate the performance, which are common metrics in multi-class classifi-
cation area [20, 21, 23]. Specifically, ACC@K is to evaluate the accuracy of prediction and
can be represented as:

ACC@K = #correctly identif ied trajectories@K

#trajectories
(11)

and Macro-F1 is the harmonic mean of the precision (Macro-P) and recall (Macro-R) that
are averaged across all classes:

Macro-F1 = 2 × Macro − P × Macro − R

Macro − P + Macro − R
(12)

6.5 Experimental results

We present the ACC@1, ACC@5, and Macro-F1 of all methods in Table 3. Observed from
which, TULVAE performs better than TULER since it is able to capture the semantics of
mobility patterns and has incorporated unlabeled data into the training. TULER suffers from
the shallow generation in modeling sequence information although the variant LSTM is
adopted. TLUTE leverages both spatial and temporal information of trajectories to mine the
underlying movement pattern of users and utilizes the pattern to improve the performance
of TUL, thus TLUTE performs better than TULER and TULVAE. The model AdattTUL
leverages an attention mechanism in trajectory encoding to address the importance of each
road segment, which leads to the higher performance compared with that of TLUTE. Deep-
TUL performs better than all baselines except GNNTUL and the reason is that the attention
module of the model learns the multi-periodic nature of user mobility on each road segment
and generates the most related context of the current trajectory to improve the accuracy. The
recent study GNNTUL performs best in all compared methods, and the reason is that the
GNNmodule in GNNTUL captures spatial and high-order correlations among locations and
introduces non-exist by reasonable transition patterns into the encoded location embedding
vectors. Without surprise, our proposed model TULRN outperforms other methods and the
reason is twofold. (1) Compared with segmenting trajectories based on location information
in some developed methods, the trajectory sequence obtained based on road networks is
more likely to characterize the sequential behaviors of a user. (2) The topology and sequen-
tial information involved in trajectories have been fully utilized in the weight-aware GNN
module and BiLSM-based module, respectively.

Table 3 Results of all methods

Algorithm ACC@1 ACC@5 Macro-F1

TULER 24.14% 59.58% 21.61%

TULVAE 24.97% 61.45% 23.98%

TLUTE 25.16% 63.07% 25.01%

AdattTUL 27.12% 65.38% 27.85%

DeepTUL 28.86% 67.91% 28.41%

GNNTUL 29.97% 69.98% 30.21%

TULRN 32.11% 73.71% 32.67%
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Table 4 Property of compared
approaches Weight-aware GNN BiLSTM

TUL-GNN � ×
TUL-BiLSTM × �
TULRN � �

6.6 Ablation study

Specifically, we use the weight-aware GNN module in TULRN to utilize the topology
information of a road network, and use the BiLSTM-based module to utilize the sequential
features of trajectories, during the embedding of trajectories. To investigate the bene-
fits brought by these two modules separately, we develop the following baselines (i.e.,
TUL-GNN and TUL-BiLSTM), and the property of them are presented in Table 4.

Observed from Table 5, the model TULRN performs much better than TUL-GNN and
TUL-BiLSTM, since in which both the structure of a road network and sequential charac-
teristics of trajectories are taken into account. In contrast, only one of these two features
is considered in TUL-GNN and TUL-BiLSTM. The results in Table 5 demonstrate the
effectiveness and indispensability of the weight-aware GNN module and Bi-LSTM-based
module for high-performance trajectory embedding.

6.7 Analysis of parameters

Varying embedding size The dimension of node embedding is of critical importance for
TULRN, the performance of it while varying the embedding size from 50 to 400 is pre-
sented in Figure 6(a). Observed from which, our proposed model TULRN achieves higher
ACC@1, ACC@5, and Macro-F1 with the increase of the embedding size. This is because
more latent information will be contained by the learned vectors in this progress. Addition-
ally, we observe that the ACC@1 and Macro-F1 have little change from the dimension 250
to 400, especially the ACC@5 has remained virtually unchanged. Consequently, we set the
node embedding size to 250 with the goal of saving running time and memory costs.

Varying number of iterations Another important factor to be investigated is the number of
iterations. Seen from Figure 6(b), TULRN obtains higher ACC@1, ACC@5, and Macro-
F1 with the increase of this number, since the parameters in TULRN are optimized in this
progress. Additionally, we observe that it is enough to set the number of iterations to 100, a
too large iteration number needs more running time and memory cost, and may lead to the
overfitting problem. Consequently, we set this number to 100 in this work.

Varying learning rate The performance of TULRN, while varying the learning rate from
0.001 to 0.01, is presented in Figure 7(a). Observed from which, the increase of learning

Table 5 Performance of compared approaches

Algorithm ACC@1 ACC@5 Macro-F1

TUL-GNN 29.85% 66.35% 27.25%

TUL-BiLSTM 30.12% 65.42% 28.68%

TULRN 32.11% 73.71% 32.67%
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Figure 6 Performance of TULRN w.r.t. (a) embedding size and (b) the number of iterations

rate firstly enhances the performance of TULRN, as the local optimum can be avoided in
this progress. However, the model may miss the global optimum with a too large learning
rate. Finally, this parameter is set to 0.005 in this work.

Varying dropout The results for varying dropout are presented in Figure 7(b). As expected,
the increase of dropout initially leads to the increase of the performance of TULRN, since
the problem of overfitting can be further alleviated in this progress. However, a too large
dropout may also lead to the loss of information. To obtain the best performance for
TULRN, the dropout is set to 0.025 in our experiments.

0.001 0.0025 0.005 0.0075 0.01
learning rate

0

0.2

0.4

0.6

0.8

1

(a) 

ACC@1
ACC@5
Macro-F1

0 0.025 0.05 0.075 1
dropout

0

0.2

0.4

0.6

0.8

1

(b) 

ACC@1
ACC@5
Macro-F1

Figure 7 Performance of TULRN w.r.t. (a) learning rate and (b) dropout
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7 Conclusion and future work

The problem of trajectory user linking has received increasing attention in recent years,
due to the wide range of applications underlay by the study. Despite the great contributions
made by traditional studies, there has been no work focusing on tackling the problem on
road networks. To fill the gap, we propose a novel model namely TULRN, which differs
from existing work with two characteristics: (1) a road network-aware trajectory sequence
graph called RTSG is developed to reorganize the input trajectories; (2) the structure of the
given road network and sequential information of trajectories are fully utilized during the
embedding. The experimental results conducted on a real-world dataset demonstrate that
our proposed model outperforms state-of-the-art methods. In future work, we can take the
time information into account for better trajectory representation learning. Additionally, the
TUL problem can be extended to multiple platforms, where a novel pruning strategy is
necessary to prune the search space.
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