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Abstract
With the growing popularity and application of knowledge-based artificial intelligence, the 
scale of knowledge graph data is dramatically increasing. As an essential type of query 
for RDF graphs, Regular Path Queries (RPQs) have attracted increasing research efforts, 
which explore RDF graphs in a navigational manner. Moreover, path indexes have proven 
successful for semi-structured data management. However, few techniques can be used 
effectively in practice for processing RPQ on large-scale knowledge graphs. In this paper, 
we propose a novel indexing solution named FPIRPQ (Frequent Path Index for Regular 
Path Queries) by leveraging Frequent Path Mining (FPM). Unlike the existing approaches 
to RPQs processing, FPIRPQ takes advantage of frequent paths, which are statistically 
derived from the data to accelerate RPQs. Furthermore, since there is no explicit bench-
mark targeted for RPQs over RDF graph yet, we design a micro-benchmark including 12 
basic queries over synthetic and real-world datasets. The experimental results illustrate that 
FPIRPQ improves the query efficiency by up to orders of magnitude compared to the state-
of-the-art RDF storage engine.

Keywords Knowledge graphs · Regular path queries · Path index

1 Introduction

With the proliferation of Knowledge Graphs (KG) in recent years, the applications of KGs 
have a rapid growth in diverse domains, such as biology [1–3], finance [4, 5], and educa-
tion [6, 7]. In the Semantic Web community, the Resource Description Framework (RDF) 
[8] has been extensively applied and becomes a de-facto standard format for KGs. Moreo-
ver, as an essential type of query for RDF graphs, RPQs have attracted increasing research 
efforts. RPQs explore RDF graphs in a navigational manner, which is indispensable in 
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most graph query languages. Furthermore, as the standard query language on the RDF 
graphs, SPARQL 1.1 [9] provides the property path [10] feature, which is actually an 
implementation of RPQ semantics. In addition, the result of an RPQ Q = (x,r,y) over an 
RDF graph G is a set of pairs of resources (v0,vn) such that there exists a path ρ in G from 
v0 to vn, where the label of ρ, denoted by l� , satisfies the regular expression r in Q.

Although theoretical aspects of RPQs have been well studied and several approaches are 
proposed to accelerate RPQs by leveraging prune and filter techniques [11], few methods 
can be used effectively in practice for RPQ evaluation and optimization. Moreover, the exist-
ing approaches focus more on optimizing query processing, rather than considering utilizing 
the statistical characteristics of data, resulting in the differences in query performance over 
different KGs. Compared with other methods with path index, FPIRPQ takes advantage of 
the frequent paths existing in the KGs to build the path index, which will alleviate the differ-
ence in query performance over datasets since the indexes are adaptive to the data.

In order to exploit and manage the statistical features of the data, we adopt the path 
indexing technique, which has been successfully employed in the field of semi-structured 
data management. The whole procedure of constructing the path index and further query 
processing by FPIRPQ is illustrated in Figure 1. The frequent paths that exhibit in the KG 
are utilized for constructing the index (@IL@ in Figure 1). It is worth noting that FPIRPQ 
only captures frequent paths without indexing rare paths, which will save the storage space 
required. Furthermore, for handling different kinds of queries, two tables, PST and PTS, 
are constructed to record the label strings of frequent paths, source vertices, and target 
vertices, the first two columns of which are indexed using B-tree (@IL@ in Figure 1). 
Moreover, the label strings of paths extracted from query statements are divided into sev-
eral indexed substrings to improve the query efficiency in FPIRPQ, which is described in 
detail in Section 5 (@IL@ in Figure 1). Afterwards, the processed query statements are 
executed utilizing the path index to obtain the results which match the specified paths, and 
these results are combined further to generate the relational table recording the final results 
(@IL@ in Figure 1).
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This paper is expanded on the PAIRPQ: An Efficient Path Index for Regular Path Que-
ries on Knowledge Graphs [12]. Compared to the conference version, our contributions can 
be summarized as follows:

1. We propose a novel path index method over frequent paths to accelerate RPQs, i.e., 
FPIRPQ, which makes full use of statistics of the underlying KGs. With the path indexes 
built by FPIRPQ, the label string of RPQ is separated into several indexed subparts, 
which will contribute to reducing intermediate calculations and improving query effi-
ciency.

2. In Related Work, we supplement a summary of existing algorithms of frequent graph 
pattern mining and analyze their respective advantages and disadvantages.

3. In Preliminaries, the definition of Path is added and we refine the original definition and 
its examples, which is described in more detail for better understanding.

4. For the FPM algorithm, we describe how the FPM algorithm we proposed was inspired 
by existing algorithms and how it can be adapted to KG. Moreover, the differences 
between our algorithm and existing algorithms are analyzed in detail.

5. For the method of query processing, we introduce a novel greedy algorithm and explain 
the detail of it combined with examples.

6. In Experiments, we have first extended the micro-benchmark query set that includes 
12 queries and more experiments have been conducted on more datasets to verify the 
effectiveness and efficiency of the proposed approach. In addition, we have added a 
comparative description to provide a more detailed analysis of the experimental results.

The rest of this paper is organized as follows. We reviewed the related works in Sec-
tion 2. Section 3 provides the fundamental definitions that form the background for this 
work. We describe the path index method, i.e., FPIRPQ, for RPQs on RDF graphs in Sec-
tion 4 and introduce the greedy algorithm for query processing in detail in Section 5. Sec-
tion 6 shows the experimental results, and we conclude in Section 7.

2  Related Work

In this section, we first review the related works on the algorithm of graph mining, which 
focus mainly on mining frequent patterns from graphs. Furthermore, the existing work on 
path index and RDF storage engine applied to knowledge graphs are concluded.

2.1  Frequent graph pattern mining

With the surge of graph data, graph mining has gained much attention in the last few dec-
ades. Moreover, it has long been recognized that frequent graph-based patterns can be 
applied effectively to many significant tasks in graph database management. To mine the 
frequent connected subgraphs efficiently, gSpan [13] adopts the depth-first search strategy, 
but it is designed to handle the mining issue in the graph-transaction setting, where the 
input is a graph dataset rather than a single graph. In contrast with gSpan, SUBDUE [14] is 
proposed to mine the frequent subgraphs in a single graph. By substituting patterns with a 
single vertex, the original graph will be compressed and the efficiency of the algorithm in 
SUBDUE will be improved further by exploiting approximations. However, the poor scal-
ability of SUBDUE limits its performance on large-scale datasets. Ghazizadeh et al. [15] 
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propose an algorithm called SeuS, which utilizes a data structure summary to collapse all 
vertices of the same label together and prune infrequent candidates. While the algorithm 
shows good performance in the presence of a relatively small number of highly frequent 
subgraphs, it will be extremely expensive to compute when handling a large number of 
frequent subgraphs with low frequency. Inspired by the related works above, we propose 
a greedy algorithm to mine the frequent path on KG and support the construction of path 
index in this paper.

2.2  Path Index

There is a set of existing works on path indexing for graph query evaluation, which can be 
classified into the following categories: (1) DataGuide, (2) T-index, and (3) k-bisimilarity 
index.

DataGuide.  For a given data graph Gd, a DataGuide [16, 17] is a summary 
graph Gs where each label path of Gd has exactly one correspond-
ing data path instance in Gs, and every label path of Gs is a label 
path of Gd. Moreover, it has been proved that the process of creat-
ing a DataGuide over a source database is equivalent to the conver-
sion of a non-deterministic finite automaton (NFA) to a determinis-
tic finite automaton (DFA) [18]. Nevertheless, DataGuide requires 
a powerset construction over the underlying database, which in the 
worst case can be of exponential cost. Furthermore, DataGuides 
just follows the original structural information in the data graphs 
rather than further processing. However, the weights attached to 
different paths should be related to their frequency of occurrence 
in data graphs when constructing indexes, which is also one of the 
contributions in FPIRPQ.

T-Index.  T-index [19] (template index) is presented to answer queries for 
specified path templates. 1-index [19] is the most simple T-index, 
which is also a labeled summary graph Gs like DataGuide. The 
nodes in Gs are equivalence classes of nodes in the data graph 
Gd such that for each edge in Gd there exists an edge in Gs, which 
results that the structure of 1-index are more compact than Data-
Guide. In the 2-index, every node represents the equivalence class 
for a 2-length path. T-index, which generalises 1-index and 2-index, 
only constructs indexes on paths that are queried frequently in 
order to reduce the space required for indexing. Therefore, in order 
to identify the paths which should be indexed, query logs are indis-
pensable when building T-index, however, the query logs are not 
available in several datasets, which hinders the wider application 
of the T-index. Compared with T-index, the frequent paths required 
can be extracted from the data graphs in FPIRPQ, which increases 
the availability of FPIRPQ.

k-Bisimilarity Index.  As noted above, both the DataGuide and T-index are designed to 
answer RPQs accurately, which results in the increased size and 
complexity with little added value. To overcome the limitations of 
DataGuide and T-index, A(k)-index [20], D(k) [21], and M(k)-index 
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[22] are proposed based on k-bisimilarity. In the A(k)-index, paths 
are grouped based on their length. For queries whose correspond-
ing paths are no longer than k, we can get the exact answers by 
A(k)-index, but for the paths longer than k, only approximate results 
can be obtained using A(k)-index. Moreover, D(k)-index, which is 
an adaptive path index, exploits the query load and dynamically 
adjusts the structure of summary graph to reduce the size of the 
index and improve performance. Furthermore, to avoid excessive 
refinement on irrelevant indexes or data vertices, M(k)-index allows 
different k values for different index vertices having the same label. 
In contrast with the methods above, we not only consider the statis-
tical characteristics of the data graphs but also reduce the reliance 
on query logs, ensuring the applicability of FPIRPQ.

2.3  RDF Storage Engine

With the widespread adoption of KGs in a diverse domain, a variety of RDF storage engines 
have emerged. On the top of the relational database, Virtuoso [23] is an RDF storage 
engine that implements the management of multi-model data. Moreover, Virtuoso supports 
the query languages of SQL and the property path feature defined in SPARQL 1.1. How-
ever, due to the shortcomings of its storage features, the query efficiency over Virtuoso is 
not satisfactory. Moreover, gStore [24] is a prototype system that supports the features of 
SPARQL 1.1 and accelerates query processing by utilizing VS*-tree. Nevertheless, gStore 
only supports a subset of features in SPARQL 1.1, particularly, the property path is beyond 
the capability of the gStore system. In addition, KGDB [25] is another prototype system 
that implements the efficient storage of both RDF graphs and property graphs. Furthermore, 
KGDB realizes semantic alignment of SPARQL and Cypher, which means basic queries 
of SPARQL and Cypher are all supported, and the property path is allowed in the system. 
However, no method of query optimization for RPQs is available in KGDB, which limits the 
query efficiency of RPQs. Considering the support for property paths, Virtuoso and KGDB 
are included in the experiments to verify the effectiveness and efficiency of FPIRPQ.

3  Preliminaries

In this section, we will define the concepts of relevant background knowledge and the main 
notations used throughout this paper are illustrated in Table 1.

Definition 1 (RDF Graph) Let U, B, and L denote Uniform Resource Identifiers (URI), 
blank nodes, and literals, respectively, which are three disjoint infinite sets. Then an RDF 
triple (s,p,o) ∈ (U ∪ B) × U ×(U ∪ B ∪ L) is a statement of a fact, meaning that there exists 
a relation p between s and o or the value of property p for s is o, where s, p, and o repre-
sents the subject, predicate, and object, respectively, and an RDF graph is a finite set of 
RDF triples.

For a given RDF graph G = (V,E,Σ), V, E, and Σ represent the set of vertices, edges, 
and edge labels in G, respectively. Formally, V = {s∣(s,p,o) ∈ G}∪{o∣(s,p,o) ∈ G}, E = 
{(s,o)∣(s,p,o) ∈ G} and Σ = {p∣(s,p,o) ∈ G}. Moreover, we define an infinite set of vari-
ables Var, which is disjoint from U and L. As shown in Figure 2, the example graph is an 

665World Wide Web (2023) 26:661–681



1 3

RDF graph consisting of 20 triples, which can be denoted as G. For example, (v2, b, v5) is 
an RDF triple as well as an edge labeled with b in G, where V = {vi∣1 ≤ i ≤ 14} and ΣG = 
{�, �, �}.

Definition 2 (Path) Given an RDF graph G = (V,E,Σ), a path represents a sequence ρ = 
v0l0v1⋯vn− 1ln− 1vn, where(vi,li,vi+ 1) ∈ G for every i ∈ {0,… , n − 1} . Moreover, a path ρ can 
be seen as a set of triples in G, i.e., � = {(vi, li, vi+1) ∈ G ∣ i ∈ {0,… , n − 1}} . In addition, 
we denote the label of a path ρ by l� , which is the string l0⋯ln−1 ∈ Σ∗ . For instance, ρ = 
v1�v2�v3 is a path of the RDF graph in Figure 2, and l� = ��.

Definition 3 (Regular Path Queries) For a given RDF graph G = (V,E,Σ), consider Q = 
(x,R,y) represents a regular path query where x and y are variables (i.e., x,y ∈ Var) and R is 
a regular expression over the alphabet Σ. Moreover, the regular expression R in G can be 
recursively defined as R ::= ε∣l∣R/R∣R|R∣R*, where l ∈Σ and /, |, and * represents concatena-
tion, alternation, and the Kleene ’s closure, respectively. It is also allowed that the R/R* 
and ε|R can be denoted for short by R+ and R?, respectively, and L(R) denotes the language 
expressed by R. Therefore, the answer set of Q under the standard semantics is defined 
as {(x, y) ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)} . In addition, the set of source vertices 
of path ρ is defined as S� = {x ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)} , while the set of 
target vertices is T� = {y ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)}.

As shown in the example graph in Figure 2, assume that Q1 = (x,�/�,y) is the regular 
path query, then (v1,v3) is in the result set of the query Q1. Similarly, (v1,v2) and (v2,v3) 
are in the answer set corresponding to the query Q2 = (x,�|�,y), since both the path ρ1 = 
v1� v2 and ρ2 = v2� v3 satisfy the query. Moreover, as for Kleene ’s closure (*), the query 
Q3 = (x, �∗, y) can be utilized to denote that we want to query the set of vertex pairs (x,y), 
where there is a path whose labels are composed of one or more � , so that (v2,v3) and 
(v2,v7) are both results that satisfy the query.

Definition 4 (Frequent Path Mining) Assume that G = (V,E,Σ) is an RDF graph and 
minSup represents a minimum support threshold, the aim of frequent path mining 
over G is to find a set of paths P = {�1, �2,… , �n} . P can be separated into m equiva-
lence classes C1,C2,… ,Cm , within which each path has the same label strings, assuring 
that the number of paths in each equivalence class should be greater than minSup, i.e., 
|C1|, |C2|,… , |Cm| > minSup.

Table 1  List of notations Notation Description

t = (s,p,o) A triple in knowledge graph G

l� The label string of a path ρ
Sρ The set of source vertices of path ρ
Tρ The set of target vertices of path ρ
a− 1R The derivative of the regular expression R
minSup Minimum support threshold for frequent path mining
P The set of frequent paths
FL The set of label strings of frequent paths
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Definition 5 (Regular Expression Derivatives) The concept of the derivative of a regular 
expression is introduced to better analyze regular expressions with arbitrary logical con-
nectives. For any given regular expression R and any string u, u− 1R is used to denote the 
derivative of R with respect to u, which can be calculated recursively as follows:

Using the previous two rules, the derivative with respect to an arbitrary string is 
explained by the derivative with respect to a single-symbol string a. Meanwhile, consid-
ering several special forms of R (ε, ϕ and single-symbol string b), the derivative can be 
computed as follows:

For the more general case, the derivative of a regular expression with an arbitrary logi-
cal connective is calculated as shown below, the proof of which is described in more detail 
in [26].

(ua)−1R = a−1(u−1R) for a symbol a and a string u

�−1R = R

a−1� = �

a−1� = �

a−1b =

{
� if a = b

� otherwise

a−1(R)∗ = (a−1R)R∗

a−1(R∕S) =

{
(a−1R)S + a−1S if R can be �

(a−1R)S otherwise

a−1(R|S) = (a−1R)|(a−1S)
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4  Frequent Path Index

In this section, we describe how to construct the path index that employs the frequent paths 
in graphs efficiently. For index construction, we have two steps: mining frequent paths on 
KGs and building the path index.

4.1  Frequent Path Mining

The idea of most FPM algorithms is to keep the possible substructures and return them 
if they are found to exceed a given limit during recursive traversal. Inspired by this, our 
algorithm also adheres to this algorithmic idea. However, as noted above, most FPM algo-
rithms are designed to handle the issue of mining in the graph-transaction setting, where 
the input is a set of multiple data graphs. Meanwhile, given that our algorithm is required 
to be applicable to knowledge graphs of large scale, recursive traversal of all paths would 
significantly increase the execution time of the algorithm, which is why few single graph-
based FPM algorithms [27] can be directly applied to KG. For instance, the performance 
of algorithm proposed by Vanetik et al. [28] has only been shown on data of very small 
scale (around 100 edges). Moreover, After analyzing a large number of query logs, it is 
concluded that SPARQL queries with a small number of triples (from 0 to 2) account for 
a significant share of the total number of queries per dataset generally [29]. Therefore, we 
propose a greedy FPM algorithm in this paper to extract the frequent paths from KGs and 
limit the depth of recursion in the algorithm to improve the scalability of the algorithm.

Algorithm 1 proposes the FPM method adopted in FPIRPQ. We compute the frequent 
path by a bottom-up approach, which computes first P1, then P2, and so forth up to Pk. To 
identify P1, we first traverse all the triples in G to record the number of the appearance of 
each edge label (line 1-3), then filter paths whose labels occur less than or equal to minSup 
times (line 4). To obtain k-length frequent paths, we recursively join frequent paths from 
P1 to Pk (line 6). To obtain Pi (2 ≤ i ≤ k), the JOIN operation will be executed on each pair 
of label sequences l1 and l2 , where l1 ∈ FL1 and l2 ∈ FLi− 1 (line 9-10). If the number of 
occurrences of the candidate paths Pcandidates obtained after the JOIN operation is greater 
than minSup (line 11), the candidate paths Pcandidates would be included in the result, the 
related label sequence l and the appearance of the joined path is also recorded for the the 
next JOIN operation (line 12-14). In addition, due to the high proportion of SPARQL que-
ries involving a small number of triples (from 0 to 2) [29], we set k = 3 in Algorithm 1 to 
minimize the execution time and complexity, which means that we only consider the path 
ρ where |l�| ≤ 3 , i.e., up to 3 labels involved in the path, and this will further contribute to 
improving the scalability of FPIRPQ.

Theorem  1 The time complexity of the greedy FPM algorithm on KG is bounded by 
O
(
|E| + Πk

i=1
mi

)
 , where |E| is the number of edges in KG and mi is the i-length of label 

sequences whose occur times are more than minSup.

Proof (Sketch) For the FPM algorithm above, the time complexity is composed of two 
parts: (1) The algorithm traverses the graph by edges and filters infrequent paths, whose 
complexity is O(|E|). (2) To obtain the frequent paths with length less than or equal to k, we 
join frequent paths from P1 to Pk recursively, with complexity O

(
Πk

i=1
mi

)
 , hence the overall 

time complexity of the proposed algorithm is O
(
|E| + Πk

i=1
mi

)
. 
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Example 1 As shown in Figure 2, for a given graph G and minSup = 4, Algorithm 1 will 
first traverse G to count the number of occurrences of each edge in G, which are illus-
trated in the table on the left. Afterwards, the edges determined by minSup will be joined to 
generate paths with a 2-length label sequence in a greedy way. Furthermore, two frequent 
paths can be obtained in this process, i.e., paths whose labels are a/b and b/a, which can 
be employed to generate frequent paths further. Finally, after all the paths with 3-length 
label strings have been generated, two paths whose label strings are a/b/a and b/a/b 
are recorded as frequent paths. After the FPM procedure is completed, all frequent paths 
and their label strings counted from the tables in Figure 2 will be recorded in P and FL, 
respectively.

4.2  Index Scheme

To accelerate the RPQs by employing the frequent paths extracted from data, we propose 
a path index method, i.e., FPIRPQ. Assuming that the occurrence of patterns shows a con-
sistent distribution in queries and the RDF graph, i.e., the patterns that have a significant 
noticeable share of the RDF graph will also occur frequently in the queries, then with the 
most frequent paths indexed, most RPQs will benefit from FPIRPQ.

Algorithm 1  Frequent path mining on KG.
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When constructing frequent path index tables, the form of RPQs should be considered. 
Generally speaking, common regular path queries are usually given a subject or object of the 
query, which is employed as the basic part for matching the final result during query process-
ing, so the subject or object of a path should be recorded in the index table. Two relation 
tables, PST and PTS, are created to handle queries with known subjects and objects, respec-
tively. Combined with the structure of the index table, B-tree is adopted for the index con-
struction to maximize the efficiency of the query.

Example 2 As illustrated in Figure 3, the frequent paths extracted from the RDF graph are 
recorded in both PST and PTS, so that our proposed frequent path index can acclimate 
to queries with known subjects or objects. The first two columns of PST or PTS relation 
tables are indexed using the B-tree, thus, we can quickly find those paths according to the 
label string and known source or target. The first column of PST and PTS records the label 
string l� of the frequent path ρ mined from the RDF graphs, while the second column indi-
cates Sρ (or Tρ), and the third column is about Tρ (or Sρ).

B-tree is typically employed to improve the efficiency of equivalent and range queries 
on sortable data, so it is particularly suitable for indexing ID columns that are stored in the 
numeric form. Therefore, a globally unique key will be assigned to each vertex or edge in PST 
and PTS when it is first processed during the traversal of KG, which guarantees the global 
uniqueness of the IDs of the vertices or edges and reduces the space cost. With these IDs, the 
path index in form of B-tree can be constructed easily and the storage space of FPIRPQ will 
be compressed further.
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5  Query Processing

Based on the analytical research mentioned above, The majority of queries can be solved 
by the indexed items. But to improve the applicability of FPIRPQ, it is necessary to design 
the processing method for longer-length queries. In order to reduce the complexity of 
query processing and increase the query efficiency, we only consider the first few steps 
in Kleene’s closure. Moreover, the regular expression derivatives defined in Definition 5 
are used for processing the other types of operators to improve the query efficiency by 
prefix matching in the process of computing the final result. Furthermore, most paths in 
data graph should be indexed after index construction and the path label strings extracted 
from queries can be separated into subparts with lengths ranging from 1 to 3. On the top of 
frequent path index, we propose a greedy path division algorithm. The algorithm can fully 
utilize the information in the index to partition and assemble the paths and leverage histo-
gram of the data to obtain the optimal path division results.

Algorithm 2 proposes the path division approach utilized in this paper. For the regular 
expression extracted from the query, if it contains alternation operator ‘|’, a prefix-matching 
procedure is first applied to extract the prefix by the Brzozowski’s derivative to reduce 
intermediate computations and speed up query processing. If the prefix of all substrings 
is the same string s, the procedure will be called recursively for both the prefix s and the 
modified substrings (line 2-3). Moreover, for the regular expressions that do not contain 
alternation operators, the function FindBestPlan will be called and executed to generate 
the optimal path division plan utilizing the frequent label strings FL≤ 3 which generated in 
Algorithm 1 to obtain the final division (line 6-7).

Theorem  2 The time complexity of the path division algorithm is bounded by 
O
(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
 , where n is the max length of the subparts of r sepa-

rated by alternation operators and m is the size of the set of path division plans corre-
sponded. According to the query analytical study in the paper [29], most queries are com-
posed of a small number of triples, so as the length of the substring of the path label string, 
n is smaller in practice, which is acceptable.

Algorithm 2  Path division algorithm Divide ( r,FL≤3)
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Proof (Sketch) The time complexity of Algorithm 2 consists of three parts: (1) If there exists 
alternation operator, the regular expression extracted from query is divided into subparts, 
where the time complexity is O(n) . (2) The algorithm captures the longest common sub-
string of each part which are separated by alternation operators, where complexity is O

(
n2
)
 . 

(3) To generate the optimal path division plan for each part, the function FindBestPlan 
is called. If n ≥ 3, the complexity is O

(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
 . Hence, the over-

all time complexity of the proposed algorithm is O
(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
. 

Function FindBestPlan presents a greedy procedure to generate the optimal path divi-
sion plan utilizing the frequent label strings FL≤ 3. Since the process of generating division 
schemes should follow the principle of selecting the longest index item possible, the initial 
set of division schemes, PLS3 , should be generated using 3-length label strings of frequent 
paths first (line 2). Afterwards, in order to match the remaining substrings of each division 
plan in PLS3 , the 2-length label strings of frequent paths will be utilized to generate the 

Function  FindBestPlan ( l, FL≤3)
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plan set PLS2 , where strings included in each scheme are all label strings recorded in FLk, 
and are also disjoint substrings of l (line 3-10). Compared to the original label string l , the 
missing substrings of each division plan PL2 in PLS2 are then complemented to generate 
the complete set of division schemes PLS , where all strings in each scheme in PLS can 
be combined into the complete label string l (line 12-15). In the final step of the proce-
dure, following the principle of reducing the size of the candidate set as much as possible, 
the less costly join order among them should be selected, which means the join operation 
should be performed as early as possible for the paths with small candidate sets, so as to 
improve the query efficiency (line 16-19).

In the whole procedure of function FindBestPlan, it is essential for obtaining the opti-
mal path division plan to generate the set of division plans based on the given label string. 
Therefore, The Function GeneratePlan is designed and implemented to generate a set of 
division plans for a label string l with k-length substrings of frequent paths label strings. 
It is worth noting that the strings in a plan are all disjoint k-length substrings of the origi-
nal label string l . For the label string whose length is equal to k, l itself is a path division 
scheme if it can be found in the frequent path index (line 2-5). Moreover, if the length of 
l is greater than k, all k-length substrings corresponding to frequent paths contained in l 
need to be found first, which are also recorded in L

k (line 7). Then, for each string in L
k , the 

Function  GeneratePlan ( l, k, FLk)
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corresponding lr is found, which represents a label string that can be combined with l
k
 into 

l . Then the Function GeneratePlan is called recursively for lr , and the division scheme is 
finally generated (line 7-14).

Example 3 As shown in Figure 4, the original regular expression in the query statement will 
be transformed into the final division result through three phases. The first phase is the extrac-
tion of the common prefix: this part will recursively extract the prefix from this regular expres-
sion by the Brzozowski’s derivatives to reduce intermediate computations. Next, the partition-
ing schemes are generated based on the frequent path index: based on the previously proposed 
greedy path division algorithm, there are two partitioning schemes for the regular expression 
b/c/d/e/f, and the first scheme, the red dashed rectangle in the top right of the figure, is chosen 
based on the principle of least join cost of the partitioning scheme. The final path division 
result can be obtained by assembling the path partitioning results for each subpart.

6  Experiments

To verify the effectiveness and efficiency of FPIRPQ, we implement our method and com-
pare it with the baselines on several datasets in this section.

6.1  Experimental Settings

FPIRPQ was implemented on the top of KGDB [25]. The system was deployed on a server, 
which has a 16-core Intel Xeon Silver 4216@ 2.10 GHz CPU, with 512GB of RAM and 
1920GB SSD, running a 64-bit CentOS 7.7 operating system.

Datasets.  We evaluate our method over both benchmark and real-world 
datasets. Composed of repeatable synthetic data, LUBM [30] 
allows users to define the size of the dataset. To study the 

Query statement
?x  a/b/c/d/e/f  |  a/g/h/i/j  ?y

?x a ( b/c/d/e/f  |  g/h/i/j ) ?y

Path
b/c
g/h
i/j

g/h i/j
Final division

b/c d/e/f
Dvision plan

/

d/e/f
c/d/e

...

...

Prefix mining
a |

/

g/h i/j

a ( | ) 

g/h/i/j

/

b/c d/e/f

b/c/d/e/f

/

c/d/e

b/c/d/e/f

b f

/

a |

/ /
Frequent paths

Fig. 4  Path division procedure
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scalability of FPIRPQ, we adopted six LUBM datasets of differ-
ent sizes in the experiments. DBpedia [31] is a real-world data-
set extracted from Wikipedia, which maps information into dif-
ferent ontology classes with corresponding properties based on 
Wikipedia infoboxes. To verify the effectiveness of our approach 
over real data, experiments are also conducted on a subset of the 
DBpedia (containing entity classes such as person, organization 
and place). The statistics of the datasets are shown in Table 2.

Baselines.  In order to verify the effectiveness and efficiency of our method, 
we compared FPIRPQ against two KG databases: Virtuoso [23] 
and KGDB [25]. As a hybrid database management system, Vir-
tuoso supports various data models. Moreover, as a KG database, 
KGDB implements a unified storage scheme for accommodating 
RDF graphs and property graphs in KGs.

Benchmark Queries.  To measure the performance of the proposed approach of query 
processing, we create 12 benchmark queries1 over synthetic data-
sets (LUBM) and real-world datasets (DBpedia) as there is no 
explicit benchmark targeted for RPQs on RDF graphs yet. As 
illustrated in Table  3, considering the result of FPM mentioned 
in Section 4.1 and the feature of RPQ, the queries proposed are 
mainly composed of chain queries, while also including star 
queries and complex queries. Moreover, Based on the rules in 
SPARQL 1.1 [9], the precedence of all operators in the regular 
expression is maintained.

6.2  Experimental Results

Exp 1. Index construction.  As shown in Figure  5, the FPM time and the storage 
space occupied by the indexes constructed by FPIRPQ 
both increase in a linear trend with the size of the dataset 
increasing. Moreover, since the index is constructed based 
on the results of FPM, the storage space required for the 
index constructed by FPIRPQ is also closely related to the 

Table 2  Dataset overview Dataset #Triples #Vertices #Edges

LUBM10 1,316,700 207,429 630,757
LUBM20 2,782,126 437,558 1,332,030
LUBM30 4,109,002 645,957 1,967,309
LUBM40 5,495,742 864,225 2,630,657
LUBM50 6,890,640 1,082,821 3,298,814
LUBM100 13,824,536 2,179,780 8,952,366
DBpedia 23,445,441 2,257,499 6,876,041

1 https:// github. com/ haowq 0417/ FPIRPQ
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time of FPM. Furthermore, it can be concluded from Fig-
ure 5(a) that on the LUBM dataset, with the growth of the 
data scale, the trend of increasing time and space required 
to build a 3-length path index gradually decreases compared 
to the 2-length path index, which proves that focusing on 
shorter paths can reduce the extraction time of frequent path 
indexes effectively. In addition, for DBpedia, which is the 
real-world dataset, the time required to build a 2-length or 
3-length path index is basically the same, which proves the 
effectiveness of the greedy FPM algorithm presented in 
Section 4.1.

  As illustrated in Figure 5(b), for the selected datasets of LUBM, the final size 
of all the indexes required is essentially the same as the space occupied by the 
original data. Compared to the synthetic datasets, there is a greater variety of 

Table 3.  Benchmark queries

* The solid circles represent the edge labels, the dotted circles represent the entity variables (dotted circle 
with t means the entity is type-limited), the dotted squares represent the literal variables, the rings represent 
the closures, and the lines with options represent the alternation operators

Fig. 5  The experimental results of time and storage space
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edges in the real-world dataset and the presence of a large number of low fre-
quency edges leads to a lower proportion of high frequency edges, which is the 
reason why the size of the index is significantly smaller than the original graph 
data. Although FPIRPQ does not predominate in terms of storage space, the 
space cost of the indexes is worth compared to the improved query efficiency.

Exp 2. Query efficiency.  As shown in Figures  6 and  7, FPIRPQ can increase the 
query efficiency by two orders of magnitude for most bench-
mark queries on LUBM. Furthermore, compared to KGDB, 
where no constructed path indexes, FPIRPQ improves the 
query efficiency by one order of magnitude on average for 
most benchmark queries on LUBM, which illustrates the 
effectiveness of FPIRPQ further and explains the reason 
why FPIRPQ deals with Q3 and Q8 in the same execution 
time as KGDB. For DBpedia, FPIRPQ is at least twice as 

Fig. 6  Query execution time on LUBM (logarithmic scale)
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efficient at querying as KGDB and more than three times as 
efficient as Virtuoso.

The difference in query performance between LUBM and DBpedia stems from the 
fact that on DBpedia, the generated frequent paths account for a greater proportion of 
the results of high-frequency edge join operations, and there is a smaller variety of 
frequent paths compared to LUBM, which reduces the effect of FPIRPQ on query per-
formance improvement.

The advantages of FPIRPQ can be fully demonstrated for longer regular path que-
ries involving the JOIN operations of multiple tables and queries containing closure 
operators. For queries containing the operator of alternation, however, the need to per-
form the UNION operation of two intermediate resultant relational tables will influence 
the query efficiency of FPIRPQ, which is the reason why the advantage of FPIRPQ 
over KGDB is reduced for the queries of Q9 and Q10. Even so, we can observe from 
the overall experimental results that due to the presence of frequent path indexes, the 
reduction in query time increases with the growth of the data scale, which also proves 
the effectiveness of Algorithm 2.

In Virtuso, to accommodate the data of KG, three-column tables are built since all 
the data need to be stored in the form of triples. Furthermore, based on the tables, 
five indexes including PSOG, POSG, SP, OP, and GS(S, P, O, and G stand for subject, 
property, object, and graph, respectively.), are constructed in Virtuoso to accelerate 
query processing. Therefore, it is obvious that Virtuoso requires more time to han-
dle the queries involving multiple edges, since more time-consuming JOIN operations 
of relation tables with more rows are required. Compared with Virtuoso, the signifi-
cantly improved query efficiency of KGDB is closely related to the type-based storage 
scheme adopted, where all the data is classified and stored according to the types of 
vertices or edges. Moreover, FPIRPQ adopts B-tree for constructing the frequent path 
index on the top of KGDB, which further improved the query efficiency.

Fig. 7  Query execution time on DBpedia (logarithmic scale)
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7  Conclusion

In this paper, FPIRPQ, a novel approach based on the frequent path index is proposed to 
accelerate RPQs on knowledge graphs. To make full use of the statistics of underlying 
KGs, we propose a greedy FPM algorithm for extracting frequent paths. Moreover, in order 
to improve the efficiency of query processing, the Brzozowski’s derivatives is utilized to 
divide the label strings of paths into parts and a greedy algorithm employing the path index 
effectively for further division is proposed. Furthermore, we propose micro-benchmarks 
including 12 basic queries over synthetic and real-world datasets to measure the perfor-
mance of FPIRPQ. The experimental results show that FPIRPQ improves the query effi-
ciency by up to orders of magnitude compared to the state-of-the-art methods.
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