
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01103-5

1 3

FPIRPQ: Accelerating regular path queries on knowledge
graphs

Xin Wang1 · Wenqi Hao1 · Yuzhou Qin1 · Baozhu Liu1 · Pengkai Liu1 · Yanyan Song1 ·
Qingpeng Zhang2 · Xiaofei Wang1

Received: 22 April 2022 / Revised: 13 August 2022 / Accepted: 8 September 2022 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the growing popularity and application of knowledge-based artificial intelligence, the
scale of knowledge graph data is dramatically increasing. As an essential type of query
for RDF graphs, Regular Path Queries (RPQs) have attracted increasing research efforts,
which explore RDF graphs in a navigational manner. Moreover, path indexes have proven
successful for semi-structured data management. However, few techniques can be used
effectively in practice for processing RPQ on large-scale knowledge graphs. In this paper,
we propose a novel indexing solution named FPIRPQ (Frequent Path Index for Regular
Path Queries) by leveraging Frequent Path Mining (FPM). Unlike the existing approaches
to RPQs processing, FPIRPQ takes advantage of frequent paths, which are statistically
derived from the data to accelerate RPQs. Furthermore, since there is no explicit bench-
mark targeted for RPQs over RDF graph yet, we design a micro-benchmark including 12
basic queries over synthetic and real-world datasets. The experimental results illustrate that
FPIRPQ improves the query efficiency by up to orders of magnitude compared to the state-
of-the-art RDF storage engine.

Keywords  Knowledge graphs · Regular path queries · Path index

1  Introduction

With the proliferation of Knowledge Graphs (KG) in recent years, the applications of KGs
have a rapid growth in diverse domains, such as biology [1–3], finance [4, 5], and educa-
tion [6, 7]. In the Semantic Web community, the Resource Description Framework (RDF)
[8] has been extensively applied and becomes a de-facto standard format for KGs. Moreo-
ver, as an essential type of query for RDF graphs, RPQs have attracted increasing research
efforts. RPQs explore RDF graphs in a navigational manner, which is indispensable in

This article belongs to the Topical Collection: APWeb-WAIM 2021
Guest Editors: Yi Cai, Leong Hou U, Marc Spaniol, Yasushi Sakurai

 *	 Xiaofei Wang
	 xiaofeiwang@tju.edu.cn

Extended author information available on the last page of the article

Published online: 7 October 2022

World Wide Web (2023) 26:661–681

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01103-5&domain=pdf

1 3

most graph query languages. Furthermore, as the standard query language on the RDF
graphs, SPARQL 1.1 [9] provides the property path [10] feature, which is actually an
implementation of RPQ semantics. In addition, the result of an RPQ Q = (x,r,y) over an
RDF graph G is a set of pairs of resources (v0,vn) such that there exists a path ρ in G from
v0 to vn, where the label of ρ, denoted by l� , satisfies the regular expression r in Q.

Although theoretical aspects of RPQs have been well studied and several approaches are
proposed to accelerate RPQs by leveraging prune and filter techniques [11], few methods
can be used effectively in practice for RPQ evaluation and optimization. Moreover, the exist-
ing approaches focus more on optimizing query processing, rather than considering utilizing
the statistical characteristics of data, resulting in the differences in query performance over
different KGs. Compared with other methods with path index, FPIRPQ takes advantage of
the frequent paths existing in the KGs to build the path index, which will alleviate the differ-
ence in query performance over datasets since the indexes are adaptive to the data.

In order to exploit and manage the statistical features of the data, we adopt the path
indexing technique, which has been successfully employed in the field of semi-structured
data management. The whole procedure of constructing the path index and further query
processing by FPIRPQ is illustrated in Figure 1. The frequent paths that exhibit in the KG
are utilized for constructing the index (@IL@ in Figure 1). It is worth noting that FPIRPQ
only captures frequent paths without indexing rare paths, which will save the storage space
required. Furthermore, for handling different kinds of queries, two tables, PST and PTS,
are constructed to record the label strings of frequent paths, source vertices, and target
vertices, the first two columns of which are indexed using B-tree (@IL@ in Figure 1).
Moreover, the label strings of paths extracted from query statements are divided into sev-
eral indexed substrings to improve the query efficiency in FPIRPQ, which is described in
detail in Section 5 (@IL@ in Figure 1). Afterwards, the processed query statements are
executed utilizing the path index to obtain the results which match the specified paths, and
these results are combined further to generate the relational table recording the final results
(@IL@ in Figure 1).

v1

v4

v2 v3

v5

v8

b

a b

b

b

ac

v6 v7

v9 v10

v12v13 v11

v14

a

c

a

b

ba

a
b

a

a

a

c
b

v1

v4

v2 v3

v5

v8

v6 v7

v9 v10

v12v13 v11

v14

v1

v4

v2 v3

v5

v8

v6 v7

v9 v10

v12v13 v11

v14

a/b/a

b/a/b

a/b

b/a

path target source
a/b v3 v1

path source
a/b v1

target
v3

PST

PTS

Query statement
?x a/b/c/d/e/f | a/g/h/i/j ?y

g/h i/j

Path division
b/c d/e/f

/

a |

/ /

Knowledge graph

?x ?y

Final results

path target source
a/b/a v12 v7

path source
a/b/a v7

target
v12

PST

PTS

Frequent Path MiningQuery Processing 1

1

2

2

3

4

Fig. 1   The overflow of FPIRPQ

662 World Wide Web (2023) 26:661–681

1 3

This paper is expanded on the PAIRPQ: An Efficient Path Index for Regular Path Que-
ries on Knowledge Graphs [12]. Compared to the conference version, our contributions can
be summarized as follows:

1.	 We propose a novel path index method over frequent paths to accelerate RPQs, i.e.,
FPIRPQ, which makes full use of statistics of the underlying KGs. With the path indexes
built by FPIRPQ, the label string of RPQ is separated into several indexed subparts,
which will contribute to reducing intermediate calculations and improving query effi-
ciency.

2.	 In Related Work, we supplement a summary of existing algorithms of frequent graph
pattern mining and analyze their respective advantages and disadvantages.

3.	 In Preliminaries, the definition of Path is added and we refine the original definition and
its examples, which is described in more detail for better understanding.

4.	 For the FPM algorithm, we describe how the FPM algorithm we proposed was inspired
by existing algorithms and how it can be adapted to KG. Moreover, the differences
between our algorithm and existing algorithms are analyzed in detail.

5.	 For the method of query processing, we introduce a novel greedy algorithm and explain
the detail of it combined with examples.

6.	 In Experiments, we have first extended the micro-benchmark query set that includes
12 queries and more experiments have been conducted on more datasets to verify the
effectiveness and efficiency of the proposed approach. In addition, we have added a
comparative description to provide a more detailed analysis of the experimental results.

The rest of this paper is organized as follows. We reviewed the related works in Sec-
tion 2. Section 3 provides the fundamental definitions that form the background for this
work. We describe the path index method, i.e., FPIRPQ, for RPQs on RDF graphs in Sec-
tion 4 and introduce the greedy algorithm for query processing in detail in Section 5. Sec-
tion 6 shows the experimental results, and we conclude in Section 7.

2 � Related Work

In this section, we first review the related works on the algorithm of graph mining, which
focus mainly on mining frequent patterns from graphs. Furthermore, the existing work on
path index and RDF storage engine applied to knowledge graphs are concluded.

2.1 � Frequent graph pattern mining

With the surge of graph data, graph mining has gained much attention in the last few dec-
ades. Moreover, it has long been recognized that frequent graph-based patterns can be
applied effectively to many significant tasks in graph database management. To mine the
frequent connected subgraphs efficiently, gSpan [13] adopts the depth-first search strategy,
but it is designed to handle the mining issue in the graph-transaction setting, where the
input is a graph dataset rather than a single graph. In contrast with gSpan, SUBDUE [14] is
proposed to mine the frequent subgraphs in a single graph. By substituting patterns with a
single vertex, the original graph will be compressed and the efficiency of the algorithm in
SUBDUE will be improved further by exploiting approximations. However, the poor scal-
ability of SUBDUE limits its performance on large-scale datasets. Ghazizadeh et al. [15]

663World Wide Web (2023) 26:661–681

1 3

propose an algorithm called SeuS, which utilizes a data structure summary to collapse all
vertices of the same label together and prune infrequent candidates. While the algorithm
shows good performance in the presence of a relatively small number of highly frequent
subgraphs, it will be extremely expensive to compute when handling a large number of
frequent subgraphs with low frequency. Inspired by the related works above, we propose
a greedy algorithm to mine the frequent path on KG and support the construction of path
index in this paper.

2.2 � Path Index

There is a set of existing works on path indexing for graph query evaluation, which can be
classified into the following categories: (1) DataGuide, (2) T-index, and (3) k-bisimilarity
index.

DataGuide.	� For a given data graph Gd, a DataGuide [16, 17] is a summary
graph Gs where each label path of Gd has exactly one correspond-
ing data path instance in Gs, and every label path of Gs is a label
path of Gd. Moreover, it has been proved that the process of creat-
ing a DataGuide over a source database is equivalent to the conver-
sion of a non-deterministic finite automaton (NFA) to a determinis-
tic finite automaton (DFA) [18]. Nevertheless, DataGuide requires
a powerset construction over the underlying database, which in the
worst case can be of exponential cost. Furthermore, DataGuides
just follows the original structural information in the data graphs
rather than further processing. However, the weights attached to
different paths should be related to their frequency of occurrence
in data graphs when constructing indexes, which is also one of the
contributions in FPIRPQ.

T-Index.	� T-index [19] (template index) is presented to answer queries for
specified path templates. 1-index [19] is the most simple T-index,
which is also a labeled summary graph Gs like DataGuide. The
nodes in Gs are equivalence classes of nodes in the data graph
Gd such that for each edge in Gd there exists an edge in Gs, which
results that the structure of 1-index are more compact than Data-
Guide. In the 2-index, every node represents the equivalence class
for a 2-length path. T-index, which generalises 1-index and 2-index,
only constructs indexes on paths that are queried frequently in
order to reduce the space required for indexing. Therefore, in order
to identify the paths which should be indexed, query logs are indis-
pensable when building T-index, however, the query logs are not
available in several datasets, which hinders the wider application
of the T-index. Compared with T-index, the frequent paths required
can be extracted from the data graphs in FPIRPQ, which increases
the availability of FPIRPQ.

k-Bisimilarity Index.	� As noted above, both the DataGuide and T-index are designed to
answer RPQs accurately, which results in the increased size and
complexity with little added value. To overcome the limitations of
DataGuide and T-index, A(k)-index [20], D(k) [21], and M(k)-index

664 World Wide Web (2023) 26:661–681

1 3

[22] are proposed based on k-bisimilarity. In the A(k)-index, paths
are grouped based on their length. For queries whose correspond-
ing paths are no longer than k, we can get the exact answers by
A(k)-index, but for the paths longer than k, only approximate results
can be obtained using A(k)-index. Moreover, D(k)-index, which is
an adaptive path index, exploits the query load and dynamically
adjusts the structure of summary graph to reduce the size of the
index and improve performance. Furthermore, to avoid excessive
refinement on irrelevant indexes or data vertices, M(k)-index allows
different k values for different index vertices having the same label.
In contrast with the methods above, we not only consider the statis-
tical characteristics of the data graphs but also reduce the reliance
on query logs, ensuring the applicability of FPIRPQ.

2.3 � RDF Storage Engine

With the widespread adoption of KGs in a diverse domain, a variety of RDF storage engines
have emerged. On the top of the relational database, Virtuoso [23] is an RDF storage
engine that implements the management of multi-model data. Moreover, Virtuoso supports
the query languages of SQL and the property path feature defined in SPARQL 1.1. How-
ever, due to the shortcomings of its storage features, the query efficiency over Virtuoso is
not satisfactory. Moreover, gStore [24] is a prototype system that supports the features of
SPARQL 1.1 and accelerates query processing by utilizing VS*-tree. Nevertheless, gStore
only supports a subset of features in SPARQL 1.1, particularly, the property path is beyond
the capability of the gStore system. In addition, KGDB [25] is another prototype system
that implements the efficient storage of both RDF graphs and property graphs. Furthermore,
KGDB realizes semantic alignment of SPARQL and Cypher, which means basic queries
of SPARQL and Cypher are all supported, and the property path is allowed in the system.
However, no method of query optimization for RPQs is available in KGDB, which limits the
query efficiency of RPQs. Considering the support for property paths, Virtuoso and KGDB
are included in the experiments to verify the effectiveness and efficiency of FPIRPQ.

3 � Preliminaries

In this section, we will define the concepts of relevant background knowledge and the main
notations used throughout this paper are illustrated in Table 1.

Definition 1 (RDF Graph)  Let U, B, and L denote Uniform Resource Identifiers (URI),
blank nodes, and literals, respectively, which are three disjoint infinite sets. Then an RDF
triple (s,p,o) ∈ (U ∪ B) × U ×(U ∪ B ∪ L) is a statement of a fact, meaning that there exists
a relation p between s and o or the value of property p for s is o, where s, p, and o repre-
sents the subject, predicate, and object, respectively, and an RDF graph is a finite set of
RDF triples.

For a given RDF graph G = (V,E,Σ), V, E, and Σ represent the set of vertices, edges,
and edge labels in G, respectively. Formally, V = {s∣(s,p,o) ∈ G}∪{o∣(s,p,o) ∈ G}, E =
{(s,o)∣(s,p,o) ∈ G} and Σ = {p∣(s,p,o) ∈ G}. Moreover, we define an infinite set of vari-
ables Var, which is disjoint from U and L. As shown in Figure 2, the example graph is an

665World Wide Web (2023) 26:661–681

1 3

RDF graph consisting of 20 triples, which can be denoted as G. For example, (v2, b, v5) is
an RDF triple as well as an edge labeled with b in G, where V = {vi∣1 ≤ i ≤ 14} and ΣG =
{�, �, �}.

Definition 2 (Path)  Given an RDF graph G = (V,E,Σ), a path represents a sequence ρ =
v0l0v1⋯vn− 1ln− 1vn, where(vi,li,vi+ 1) ∈ G for every i ∈ {0,… , n − 1} . Moreover, a path ρ can
be seen as a set of triples in G, i.e., � = {(vi, li, vi+1) ∈ G ∣ i ∈ {0,… , n − 1}} . In addition,
we denote the label of a path ρ by l� , which is the string l0⋯ln−1 ∈ Σ∗ . For instance, ρ =
v1�v2�v3 is a path of the RDF graph in Figure 2, and l� = ��.

Definition 3 (Regular Path Queries)  For a given RDF graph G = (V,E,Σ), consider Q =
(x,R,y) represents a regular path query where x and y are variables (i.e., x,y ∈ Var) and R is
a regular expression over the alphabet Σ. Moreover, the regular expression R in G can be
recursively defined as R ::= ε∣l∣R/R∣R|R∣R*, where l ∈Σ and /, |, and * represents concatena-
tion, alternation, and the Kleene ’s closure, respectively. It is also allowed that the R/R*
and ε|R can be denoted for short by R+ and R?, respectively, and L(R) denotes the language
expressed by R. Therefore, the answer set of Q under the standard semantics is defined
as {(x, y) ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)} . In addition, the set of source vertices
of path ρ is defined as S� = {x ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)} , while the set of
target vertices is T� = {y ∣ ∃ a path � in G from x to y s.t. l� ∈ L(R)}.

As shown in the example graph in Figure 2, assume that Q1 = (x,�/�,y) is the regular
path query, then (v1,v3) is in the result set of the query Q1. Similarly, (v1,v2) and (v2,v3)
are in the answer set corresponding to the query Q2 = (x,�|�,y), since both the path ρ1 =
v1� v2 and ρ2 = v2� v3 satisfy the query. Moreover, as for Kleene ’s closure (*), the query
Q3 = (x, �∗, y) can be utilized to denote that we want to query the set of vertex pairs (x,y),
where there is a path whose labels are composed of one or more � , so that (v2,v3) and
(v2,v7) are both results that satisfy the query.

Definition 4 (Frequent Path Mining)  Assume that G = (V,E,Σ) is an RDF graph and
minSup represents a minimum support threshold, the aim of frequent path mining
over G is to find a set of paths P = {�1, �2,… , �n} . P can be separated into m equiva-
lence classes C1,C2,… ,Cm , within which each path has the same label strings, assuring
that the number of paths in each equivalence class should be greater than minSup, i.e.,
|C1|, |C2|,… , |Cm| > minSup.

Table 1   List of notations Notation Description

t = (s,p,o) A triple in knowledge graph G

l� The label string of a path ρ
Sρ The set of source vertices of path ρ
Tρ The set of target vertices of path ρ
a− 1R The derivative of the regular expression R
minSup Minimum support threshold for frequent path mining
P The set of frequent paths
FL The set of label strings of frequent paths

666 World Wide Web (2023) 26:661–681

1 3

Definition 5 (Regular Expression Derivatives)  The concept of the derivative of a regular
expression is introduced to better analyze regular expressions with arbitrary logical con-
nectives. For any given regular expression R and any string u, u− 1R is used to denote the
derivative of R with respect to u, which can be calculated recursively as follows:

Using the previous two rules, the derivative with respect to an arbitrary string is
explained by the derivative with respect to a single-symbol string a. Meanwhile, consid-
ering several special forms of R (ε, ϕ and single-symbol string b), the derivative can be
computed as follows:

For the more general case, the derivative of a regular expression with an arbitrary logi-
cal connective is calculated as shown below, the proof of which is described in more detail
in [26].

(ua)−1R = a−1(u−1R) for a symbol a and a string u

�−1R = R

a−1� = �

a−1� = �

a−1b =

{
� if a = b

� otherwise

a−1(R)∗ = (a−1R)R∗

a−1(R∕S) =

{
(a−1R)S + a−1S if R can be �

(a−1R)S otherwise

a−1(R|S) = (a−1R)|(a−1S)

v1

v4

v2 v3

v5

v8

b

a b

b

b

ac

v6 v7

v9 v10

v12v13 v11

v14

a

c

a

b

ba

a b

a

a

a

cb

label number

a/a 4

a/b

b/a

8

6

b/b 2

An example graph 3-length frequent paths2-length frequent paths

... ...

label number

a 9

b

c

8

3

label number

a 9

b

c

8

3

v1

v4

v2 v3

v5

v8

v6 v7

v9 v10

v12v13 v11

v14

label number

a/a/b 2

a/b/a

b/a/a

6

4

a/b/b 2

b/a/b 5

b/b/a 1

... ...

v1

v4

v2 v3

v5

v8

v6 v7

v9 v10

v12v13 v11

v14

a/b/a

b/a/b

a/b

b/a

Fig. 2   Greedy FPM on KG

667World Wide Web (2023) 26:661–681

1 3

4 � Frequent Path Index

In this section, we describe how to construct the path index that employs the frequent paths
in graphs efficiently. For index construction, we have two steps: mining frequent paths on
KGs and building the path index.

4.1 � Frequent Path Mining

The idea of most FPM algorithms is to keep the possible substructures and return them
if they are found to exceed a given limit during recursive traversal. Inspired by this, our
algorithm also adheres to this algorithmic idea. However, as noted above, most FPM algo-
rithms are designed to handle the issue of mining in the graph-transaction setting, where
the input is a set of multiple data graphs. Meanwhile, given that our algorithm is required
to be applicable to knowledge graphs of large scale, recursive traversal of all paths would
significantly increase the execution time of the algorithm, which is why few single graph-
based FPM algorithms [27] can be directly applied to KG. For instance, the performance
of algorithm proposed by Vanetik et al. [28] has only been shown on data of very small
scale (around 100 edges). Moreover, After analyzing a large number of query logs, it is
concluded that SPARQL queries with a small number of triples (from 0 to 2) account for
a significant share of the total number of queries per dataset generally [29]. Therefore, we
propose a greedy FPM algorithm in this paper to extract the frequent paths from KGs and
limit the depth of recursion in the algorithm to improve the scalability of the algorithm.

Algorithm 1 proposes the FPM method adopted in FPIRPQ. We compute the frequent
path by a bottom-up approach, which computes first P1, then P2, and so forth up to Pk. To
identify P1, we first traverse all the triples in G to record the number of the appearance of
each edge label (line 1-3), then filter paths whose labels occur less than or equal to minSup
times (line 4). To obtain k-length frequent paths, we recursively join frequent paths from
P1 to Pk (line 6). To obtain Pi (2 ≤ i ≤ k), the JOIN operation will be executed on each pair
of label sequences l1 and l2 , where l1 ∈ FL1 and l2 ∈ FLi− 1 (line 9-10). If the number of
occurrences of the candidate paths Pcandidates obtained after the JOIN operation is greater
than minSup (line 11), the candidate paths Pcandidates would be included in the result, the
related label sequence l and the appearance of the joined path is also recorded for the the
next JOIN operation (line 12-14). In addition, due to the high proportion of SPARQL que-
ries involving a small number of triples (from 0 to 2) [29], we set k = 3 in Algorithm 1 to
minimize the execution time and complexity, which means that we only consider the path
ρ where |l�| ≤ 3 , i.e., up to 3 labels involved in the path, and this will further contribute to
improving the scalability of FPIRPQ.

Theorem 1  The time complexity of the greedy FPM algorithm on KG is bounded by
O
(
|E| + Πk

i=1
mi

)
 , where |E| is the number of edges in KG and mi is the i-length of label

sequences whose occur times are more than minSup.

Proof  (Sketch) For the FPM algorithm above, the time complexity is composed of two
parts: (1) The algorithm traverses the graph by edges and filters infrequent paths, whose
complexity is O(|E|). (2) To obtain the frequent paths with length less than or equal to k, we
join frequent paths from P1 to Pk recursively, with complexity O

(
Πk

i=1
mi

)
 , hence the overall

time complexity of the proposed algorithm is O
(
|E| + Πk

i=1
mi

)
.

668 World Wide Web (2023) 26:661–681

1 3

Example 1  As shown in Figure 2, for a given graph G and minSup = 4, Algorithm 1 will
first traverse G to count the number of occurrences of each edge in G, which are illus-
trated in the table on the left. Afterwards, the edges determined by minSup will be joined to
generate paths with a 2-length label sequence in a greedy way. Furthermore, two frequent
paths can be obtained in this process, i.e., paths whose labels are a/b and b/a, which can
be employed to generate frequent paths further. Finally, after all the paths with 3-length
label strings have been generated, two paths whose label strings are a/b/a and b/a/b
are recorded as frequent paths. After the FPM procedure is completed, all frequent paths
and their label strings counted from the tables in Figure 2 will be recorded in P and FL,
respectively.

4.2 � Index Scheme

To accelerate the RPQs by employing the frequent paths extracted from data, we propose
a path index method, i.e., FPIRPQ. Assuming that the occurrence of patterns shows a con-
sistent distribution in queries and the RDF graph, i.e., the patterns that have a significant
noticeable share of the RDF graph will also occur frequently in the queries, then with the
most frequent paths indexed, most RPQs will benefit from FPIRPQ.

Algorithm 1   Frequent path mining on KG.

669World Wide Web (2023) 26:661–681

1 3

When constructing frequent path index tables, the form of RPQs should be considered.
Generally speaking, common regular path queries are usually given a subject or object of the
query, which is employed as the basic part for matching the final result during query process-
ing, so the subject or object of a path should be recorded in the index table. Two relation
tables, PST and PTS, are created to handle queries with known subjects and objects, respec-
tively. Combined with the structure of the index table, B-tree is adopted for the index con-
struction to maximize the efficiency of the query.

Example 2  As illustrated in Figure 3, the frequent paths extracted from the RDF graph are
recorded in both PST and PTS, so that our proposed frequent path index can acclimate
to queries with known subjects or objects. The first two columns of PST or PTS relation
tables are indexed using the B-tree, thus, we can quickly find those paths according to the
label string and known source or target. The first column of PST and PTS records the label
string l� of the frequent path ρ mined from the RDF graphs, while the second column indi-
cates Sρ (or Tρ), and the third column is about Tρ (or Sρ).

B-tree is typically employed to improve the efficiency of equivalent and range queries
on sortable data, so it is particularly suitable for indexing ID columns that are stored in the
numeric form. Therefore, a globally unique key will be assigned to each vertex or edge in PST
and PTS when it is first processed during the traversal of KG, which guarantees the global
uniqueness of the IDs of the vertices or edges and reduces the space cost. With these IDs, the
path index in form of B-tree can be constructed easily and the storage space of FPIRPQ will
be compressed further.

Path Source Target tables (PST) Path Target Source tables (PTS)

path source
b/a v2
b/a v2

target
v6
v9

b/a v3
b/a v4

v6
v2

b/a v4
b/a v6

v9
v12

a/b v13
a/b v13

v1
v5

path source
a/b v1
a/b v1

target
v3
v5

a/b v3
a/b v7

v10
v10

a/b v9
a/b v10

v14
v11

path target
a/b v3
a/b v5

source
v1
v1

a/b v10
a/b v10

v3
v7

a/b v14
a/b v11

v9
v10

path target
b/a v6
b/a v9

source
v2
v2

b/a v6
b/a v2

v3
v4

b/a v9
b/a v12

v4
v6

a/b v1
a/b v5

v13
v13

path target
b/a/b v10
b/a/b v10

source
v2
v3

b/a/b v3
b/a/b v5

v4
v4

b/a/b v11 v6

path target
a/b/a v6
a/b/a v9

source
v1
v1

a/b/a v12
a/b/a v12

v3
v7

a/b/a v2
a/b/a v9

v13
v13

path source
b/a/b v2
b/a/b v3

target
v10
v10

b/a/b v4
b/a/b v4

v3
v5

b/a/b v6 v11

path source
a/b/a v1
a/b/a v1

target
v6
v9

a/b/a v3
a/b/a v7

v12
v12

a/b/a v13
a/b/a v13

v2
v9

path
b/a

a/b

a/b/a

b/a/b

Fig. 3   The path index of FPIRPQ

670 World Wide Web (2023) 26:661–681

1 3

5 � Query Processing

Based on the analytical research mentioned above, The majority of queries can be solved
by the indexed items. But to improve the applicability of FPIRPQ, it is necessary to design
the processing method for longer-length queries. In order to reduce the complexity of
query processing and increase the query efficiency, we only consider the first few steps
in Kleene’s closure. Moreover, the regular expression derivatives defined in Definition 5
are used for processing the other types of operators to improve the query efficiency by
prefix matching in the process of computing the final result. Furthermore, most paths in
data graph should be indexed after index construction and the path label strings extracted
from queries can be separated into subparts with lengths ranging from 1 to 3. On the top of
frequent path index, we propose a greedy path division algorithm. The algorithm can fully
utilize the information in the index to partition and assemble the paths and leverage histo-
gram of the data to obtain the optimal path division results.

Algorithm 2 proposes the path division approach utilized in this paper. For the regular
expression extracted from the query, if it contains alternation operator ‘|’, a prefix-matching
procedure is first applied to extract the prefix by the Brzozowski’s derivative to reduce
intermediate computations and speed up query processing. If the prefix of all substrings
is the same string s, the procedure will be called recursively for both the prefix s and the
modified substrings (line 2-3). Moreover, for the regular expressions that do not contain
alternation operators, the function FindBestPlan will be called and executed to generate
the optimal path division plan utilizing the frequent label strings FL≤ 3 which generated in
Algorithm 1 to obtain the final division (line 6-7).

Theorem 2  The time complexity of the path division algorithm is bounded by
O
(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
 , where n is the max length of the subparts of r sepa-

rated by alternation operators and m is the size of the set of path division plans corre-
sponded. According to the query analytical study in the paper [29], most queries are com-
posed of a small number of triples, so as the length of the substring of the path label string,
n is smaller in practice, which is acceptable.

Algorithm 2   Path division algorithm Divide ( r,FL≤3)

671World Wide Web (2023) 26:661–681

1 3

Proof  (Sketch) The time complexity of Algorithm 2 consists of three parts: (1) If there exists
alternation operator, the regular expression extracted from query is divided into subparts,
where the time complexity is O(n) . (2) The algorithm captures the longest common sub-
string of each part which are separated by alternation operators, where complexity is O

(
n2
)
 .

(3) To generate the optimal path division plan for each part, the function FindBestPlan
is called. If n ≥ 3, the complexity is O

(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
 . Hence, the over-

all time complexity of the proposed algorithm is O
(
nn−3 + m ⋅ n

(
nn−2 + 1

)
+ log (m)

)
.

Function FindBestPlan presents a greedy procedure to generate the optimal path divi-
sion plan utilizing the frequent label strings FL≤ 3. Since the process of generating division
schemes should follow the principle of selecting the longest index item possible, the initial
set of division schemes, PLS3 , should be generated using 3-length label strings of frequent
paths first (line 2). Afterwards, in order to match the remaining substrings of each division
plan in PLS3 , the 2-length label strings of frequent paths will be utilized to generate the

Function   FindBestPlan ( l, FL≤3)

672 World Wide Web (2023) 26:661–681

1 3

plan set PLS2 , where strings included in each scheme are all label strings recorded in FLk,
and are also disjoint substrings of l (line 3-10). Compared to the original label string l , the
missing substrings of each division plan PL2 in PLS2 are then complemented to generate
the complete set of division schemes PLS , where all strings in each scheme in PLS can
be combined into the complete label string l (line 12-15). In the final step of the proce-
dure, following the principle of reducing the size of the candidate set as much as possible,
the less costly join order among them should be selected, which means the join operation
should be performed as early as possible for the paths with small candidate sets, so as to
improve the query efficiency (line 16-19).

In the whole procedure of function FindBestPlan, it is essential for obtaining the opti-
mal path division plan to generate the set of division plans based on the given label string.
Therefore, The Function GeneratePlan is designed and implemented to generate a set of
division plans for a label string l with k-length substrings of frequent paths label strings.
It is worth noting that the strings in a plan are all disjoint k-length substrings of the origi-
nal label string l . For the label string whose length is equal to k, l itself is a path division
scheme if it can be found in the frequent path index (line 2-5). Moreover, if the length of
l is greater than k, all k-length substrings corresponding to frequent paths contained in l
need to be found first, which are also recorded in L

k (line 7). Then, for each string in L
k , the

Function   GeneratePlan ( l, k, FLk)

673World Wide Web (2023) 26:661–681

1 3

corresponding lr is found, which represents a label string that can be combined with l
k
 into

l . Then the Function GeneratePlan is called recursively for lr , and the division scheme is
finally generated (line 7-14).

Example 3  As shown in Figure 4, the original regular expression in the query statement will
be transformed into the final division result through three phases. The first phase is the extrac-
tion of the common prefix: this part will recursively extract the prefix from this regular expres-
sion by the Brzozowski’s derivatives to reduce intermediate computations. Next, the partition-
ing schemes are generated based on the frequent path index: based on the previously proposed
greedy path division algorithm, there are two partitioning schemes for the regular expression
b/c/d/e/f, and the first scheme, the red dashed rectangle in the top right of the figure, is chosen
based on the principle of least join cost of the partitioning scheme. The final path division
result can be obtained by assembling the path partitioning results for each subpart.

6 � Experiments

To verify the effectiveness and efficiency of FPIRPQ, we implement our method and com-
pare it with the baselines on several datasets in this section.

6.1 � Experimental Settings

FPIRPQ was implemented on the top of KGDB [25]. The system was deployed on a server,
which has a 16-core Intel Xeon Silver 4216@ 2.10 GHz CPU, with 512GB of RAM and
1920GB SSD, running a 64-bit CentOS 7.7 operating system.

Datasets.	� We evaluate our method over both benchmark and real-world
datasets. Composed of repeatable synthetic data, LUBM [30]
allows users to define the size of the dataset. To study the

Query statement
?x a/b/c/d/e/f | a/g/h/i/j ?y

?x a (b/c/d/e/f | g/h/i/j) ?y

Path
b/c
g/h
i/j

g/h i/j
Final division

b/c d/e/f
Dvision plan

/

d/e/f
c/d/e

...

...

Prefix mining
a |

/

g/h i/j

a (|)

g/h/i/j

/

b/c d/e/f

b/c/d/e/f

/

c/d/e

b/c/d/e/f

b f

/

a |

/ /
Frequent paths

Fig. 4   Path division procedure

674 World Wide Web (2023) 26:661–681

1 3

scalability of FPIRPQ, we adopted six LUBM datasets of differ-
ent sizes in the experiments. DBpedia [31] is a real-world data-
set extracted from Wikipedia, which maps information into dif-
ferent ontology classes with corresponding properties based on
Wikipedia infoboxes. To verify the effectiveness of our approach
over real data, experiments are also conducted on a subset of the
DBpedia (containing entity classes such as person, organization
and place). The statistics of the datasets are shown in Table 2.

Baselines.	� In order to verify the effectiveness and efficiency of our method,
we compared FPIRPQ against two KG databases: Virtuoso [23]
and KGDB [25]. As a hybrid database management system, Vir-
tuoso supports various data models. Moreover, as a KG database,
KGDB implements a unified storage scheme for accommodating
RDF graphs and property graphs in KGs.

Benchmark Queries.	� To measure the performance of the proposed approach of query
processing, we create 12 benchmark queries1 over synthetic data-
sets (LUBM) and real-world datasets (DBpedia) as there is no
explicit benchmark targeted for RPQs on RDF graphs yet. As
illustrated in Table 3, considering the result of FPM mentioned
in Section 4.1 and the feature of RPQ, the queries proposed are
mainly composed of chain queries, while also including star
queries and complex queries. Moreover, Based on the rules in
SPARQL 1.1 [9], the precedence of all operators in the regular
expression is maintained.

6.2 � Experimental Results

Exp 1. Index construction.	� As shown in Figure 5, the FPM time and the storage
space occupied by the indexes constructed by FPIRPQ
both increase in a linear trend with the size of the dataset
increasing. Moreover, since the index is constructed based
on the results of FPM, the storage space required for the
index constructed by FPIRPQ is also closely related to the

Table 2   Dataset overview Dataset #Triples #Vertices #Edges

LUBM10 1,316,700 207,429 630,757
LUBM20 2,782,126 437,558 1,332,030
LUBM30 4,109,002 645,957 1,967,309
LUBM40 5,495,742 864,225 2,630,657
LUBM50 6,890,640 1,082,821 3,298,814
LUBM100 13,824,536 2,179,780 8,952,366
DBpedia 23,445,441 2,257,499 6,876,041

1  https://​github.​com/​haowq​0417/​FPIRPQ

675World Wide Web (2023) 26:661–681

https://github.com/haowq0417/FPIRPQ

1 3

time of FPM. Furthermore, it can be concluded from Fig-
ure 5(a) that on the LUBM dataset, with the growth of the
data scale, the trend of increasing time and space required
to build a 3-length path index gradually decreases compared
to the 2-length path index, which proves that focusing on
shorter paths can reduce the extraction time of frequent path
indexes effectively. In addition, for DBpedia, which is the
real-world dataset, the time required to build a 2-length or
3-length path index is basically the same, which proves the
effectiveness of the greedy FPM algorithm presented in
Section 4.1.

	� As illustrated in Figure 5(b), for the selected datasets of LUBM, the final size
of all the indexes required is essentially the same as the space occupied by the
original data. Compared to the synthetic datasets, there is a greater variety of

Table 3.   Benchmark queries

* The solid circles represent the edge labels, the dotted circles represent the entity variables (dotted circle
with t means the entity is type-limited), the dotted squares represent the literal variables, the rings represent
the closures, and the lines with options represent the alternation operators

Fig. 5   The experimental results of time and storage space

676 World Wide Web (2023) 26:661–681

1 3

edges in the real-world dataset and the presence of a large number of low fre-
quency edges leads to a lower proportion of high frequency edges, which is the
reason why the size of the index is significantly smaller than the original graph
data. Although FPIRPQ does not predominate in terms of storage space, the
space cost of the indexes is worth compared to the improved query efficiency.

Exp 2. Query efficiency.	� As shown in Figures 6 and 7, FPIRPQ can increase the
query efficiency by two orders of magnitude for most bench-
mark queries on LUBM. Furthermore, compared to KGDB,
where no constructed path indexes, FPIRPQ improves the
query efficiency by one order of magnitude on average for
most benchmark queries on LUBM, which illustrates the
effectiveness of FPIRPQ further and explains the reason
why FPIRPQ deals with Q3 and Q8 in the same execution
time as KGDB. For DBpedia, FPIRPQ is at least twice as

Fig. 6   Query execution time on LUBM (logarithmic scale)

677World Wide Web (2023) 26:661–681

1 3

efficient at querying as KGDB and more than three times as
efficient as Virtuoso.

The difference in query performance between LUBM and DBpedia stems from the
fact that on DBpedia, the generated frequent paths account for a greater proportion of
the results of high-frequency edge join operations, and there is a smaller variety of
frequent paths compared to LUBM, which reduces the effect of FPIRPQ on query per-
formance improvement.

The advantages of FPIRPQ can be fully demonstrated for longer regular path que-
ries involving the JOIN operations of multiple tables and queries containing closure
operators. For queries containing the operator of alternation, however, the need to per-
form the UNION operation of two intermediate resultant relational tables will influence
the query efficiency of FPIRPQ, which is the reason why the advantage of FPIRPQ
over KGDB is reduced for the queries of Q9 and Q10. Even so, we can observe from
the overall experimental results that due to the presence of frequent path indexes, the
reduction in query time increases with the growth of the data scale, which also proves
the effectiveness of Algorithm 2.

In Virtuso, to accommodate the data of KG, three-column tables are built since all
the data need to be stored in the form of triples. Furthermore, based on the tables,
five indexes including PSOG, POSG, SP, OP, and GS(S, P, O, and G stand for subject,
property, object, and graph, respectively.), are constructed in Virtuoso to accelerate
query processing. Therefore, it is obvious that Virtuoso requires more time to han-
dle the queries involving multiple edges, since more time-consuming JOIN operations
of relation tables with more rows are required. Compared with Virtuoso, the signifi-
cantly improved query efficiency of KGDB is closely related to the type-based storage
scheme adopted, where all the data is classified and stored according to the types of
vertices or edges. Moreover, FPIRPQ adopts B-tree for constructing the frequent path
index on the top of KGDB, which further improved the query efficiency.

Fig. 7   Query execution time on DBpedia (logarithmic scale)

678 World Wide Web (2023) 26:661–681

1 3

7 � Conclusion

In this paper, FPIRPQ, a novel approach based on the frequent path index is proposed to
accelerate RPQs on knowledge graphs. To make full use of the statistics of underlying
KGs, we propose a greedy FPM algorithm for extracting frequent paths. Moreover, in order
to improve the efficiency of query processing, the Brzozowski’s derivatives is utilized to
divide the label strings of paths into parts and a greedy algorithm employing the path index
effectively for further division is proposed. Furthermore, we propose micro-benchmarks
including 12 basic queries over synthetic and real-world datasets to measure the perfor-
mance of FPIRPQ. The experimental results show that FPIRPQ improves the query effi-
ciency by up to orders of magnitude compared to the state-of-the-art methods.

Acknowledgments  This work is expanded on the PAIRPQ: An Efficient Path Index for Regular Path Que-
ries on Knowledge Graphs [12], and is supported by National Key Research and Development Program of
China (2019YFE0198600); the National Natural Science Foundation of China (61972275).

Author contributions  Xin Wang and Wenqi Hao are the major contributors in writing the manuscript and
preparing the pictures. Yuzhou Qin and Baozhu Liu participate in the experiments and analyze the results.
All authors read and approve the final manuscript.

Funding  This work is supported by National Key Research and Development Program of China
(2019YFE0198600); the National Natural Science Foundation of China (61972275).

Data availability  The queries (Q1 ∼ Q12) designed on LUBM and DBpedia are are available in GitHub
(https://​github.​com/​haowq​0417/​FPIRPQ), and all the other data generated or analyzed during this study are
included in this published article.

Declarations 

Human and animal ethics  Not applicable

Ethics approval and consent to participate  Not applicable

Consent for publication  Not applicable

Competing interests  The authors declare that they have no known competing financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.

References

	 1.	 Ernst, P., Meng, C., Siu, A., Weikum, G.: Knowlife: A knowledge graph for health and life sciences.
IEEE Computer Society (2014)

	 2.	 Shi, L., Li, S., Yang, X., Qi, J., Pan, G., Zhou, B.: Semantic health knowledge graph: semantic integra-
tion of heterogeneous medical knowledge and services. BioMed research international 2017 (2017)

	 3.	 Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge graph
from electronic medical records. Scientific Reports 7(1), 1–11 (2017)

	 4.	 Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment analysis for stock
price prediction. In: Proceedings of the 52nd Hawaii International Conference on System Sciences
(2019)

	 5.	 Ulicny, B.: Constructing knowledge graphs with trust. In: 4Th International Workshop on Methods for
Establishing Trust of (Open) Data, Bentlehem, USA (2015)

	 6.	 Chen, P., Lu, Y., Zheng, V.W., Chen, X., Yang, B.: Knowedu: a system to construct knowledge graph
for education. Ieee Access 6, 31553–31563 (2018)

679World Wide Web (2023) 26:661–681

https://github.com/haowq0417/FPIRPQ

1 3

	 7.	 Grévisse, C., Manrique, R., Mariño, O., Rothkugel, S.: Knowledge graph-based teacher support for
learning material authoring. In: Colombian Conference on Computing, pp 177–191. Springer (2018)

	 8.	 Consortium, W.W.W., et al.: Rdf 1.1 concepts and abstract syntax (2014)
	 9.	 Consortium, W.W.W., et al.: Sparql 1.1 query language (2013)
	10.	 Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: Sparql with property paths. In: International

Semantic Web Conference, pp 3–18. Springer (2015)
	11.	 Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed pregel-based provenance-aware

regular path query processing on rdf knowledge graphs. World Wide Web, 1–32 (2019)
	12.	 Liu, B., Wang, X., Liu, P., Li, S., Wang, X.: Pairpq: An efficient path index for regular path queries on

knowledge graphs. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM)
Joint International Conference on Web and Big Data, pp 106–120. Springer (2021)

	13.	 Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: 2002 IEEE International Confer-
ence on Data Mining, 2002. Proceedings, pp 721–724. IEEE (2002)

	14.	 Holder, L.B., Cook, D.J., Djoko, S., et al.: Substucture discovery in the subdue system. In: KDD Work-
shop, pp. 169–180, Washington, DC, USA (1994)

	15.	 Ghazizadeh, S., Chawathe, S.S.: Seus: Structure extraction using summaries. In: International Confer-
ence on Discovery Science, pp 71–85. Springer (2002)

	16.	 Goldman, R., Widom, J.: Dataguides: Enabling Query Formulation and Optimization in Semistruc-
tured Databases. Technical report, Stanford (1997)

	17.	 Goldman, R.: Approximate dataguides. workshop on query processing for semistructured data and
non-standard data formats. http://​www-​db.​stanf​ord.​edu/​pub/​papers/​adg.​ps (1999)

	18.	 Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computa-
tion. Acm Sigact News 32(1), 60–65 (2001)

	19.	 Milo, T., Suciu, D.: Index structures for path expressions. In: International Conference on Database
Theory, pp 277–295. Springer (1999)

	20.	 Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for indexing paths in
graph-structured data. In: Proceedings 18th International Conference on Data Engineering, pp 129–
140. IEEE (2002)

	21.	 Chen, Q., Lim, A., Ong, K.W.: D (k)-index: An adaptive structural summary for graph-structured data.
In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp
134–144 (2003)

	22.	 He, H., Yang, J.: Multiresolution indexing of xml for frequent queries. In: Proceedings. 20th Interna-
tional Conference on Data Engineering, pp 683–694. IEEE (2004)

	23.	 Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: Networked Knowledge-Networked
Media, pp 7–24. Springer (2009)

	24.	 Das, S., Agrawal, D., El Abbadi, A.: G-store: A scalable data store for transactional multi key access in
the cloud. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp 163–174 (2010)

	25.	 Liu, B., Wang, X., Liu, P., Li, S., Zhang, X., Yang, Y.: Knowledge graph database system with unified
model and query languages. Ruan Jian Xue Bao/Journal of Software (in Chinese) 32(3), 781–804 (2021)

	26.	 Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM (JACM) 11(4), 481–494
(1964)

	27.	 Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.S.: Mining top-k large structural patterns in a massive
network. Proceedings of the VLDB Endowment 4(11), 807–818 (2011)

	28.	 Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from semistructured data.
In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 458–465. IEEE
(2002)

	29.	 Bonifati, A., Martens, W., Timm, T.: An analytical study of large sparql query logs. VLDB J. 29(2),
655–679 (2020)

	30.	 Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. Journal of Web
Semantics 3(2-3), 158–182 (2005)

	31.	 Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey,
M., Van Kleef, P., Auer, S., et al.: Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web 6(2), 167–195 (2015)

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and applicable law.

680 World Wide Web (2023) 26:661–681

http://www-db.stanford.edu/pub/papers/adg.ps

1 3

Authors and Affiliations

Xin Wang1 · Wenqi Hao1 · Yuzhou Qin1 · Baozhu Liu1 · Pengkai Liu1 · Yanyan Song1 ·
Qingpeng Zhang2 · Xiaofei Wang1

	 Xin Wang
	 wangx@tju.edu.cn

	 Wenqi Hao
	 haowenqi@tju.edu.cn

	 Yuzhou Qin
	 yuzhou_qin@tju.edu.cn

	 Baozhu Liu
	 liubaozhu@tju.edu.cn

	 Pengkai Liu
	 liupengkai@tju.edu.cn

	 Yanyan Song
	 songyanyan1895@tju.edu.cn

	 Qingpeng Zhang
	 qingpeng.zhang@cityu.edu.hk

1	 College of Intelligence and Computing, Tianjin University, Tianjin, China
2	 School of Data Science, City University of Hong Kong, Hong Kong, China

681World Wide Web (2023) 26:661–681

	FPIRPQ: Accelerating regular path queries on knowledge graphs
	Abstract
	1 Introduction
	2 Related Work
	2.1 Frequent graph pattern mining
	2.2 Path Index
	2.3 RDF Storage Engine

	3 Preliminaries
	4 Frequent Path Index
	4.1 Frequent Path Mining
	4.2 Index Scheme

	5 Query Processing
	6 Experiments
	6.1 Experimental Settings
	6.2 Experimental Results

	7 Conclusion
	Acknowledgments
	References

