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Abstract
Spatio-temporal joint prediction aims to simultaneously predict the next location and the
corresponding switch time for a cellular trajectory. An accuracy prediction requires not
only sequential information but also spatio-temporal context information. Although exist-
ing methods can utilize trajectory modeling to support the joint prediction, they fail to
learn the complicated geographical influence, temporal dependencies and various context
information. To this end, we propose a graph-contextualized multitask learning method for
spatio-temporal joint prediction. Specially, to model each location’s spatio-temporal depen-
dencies, a graph embedding module is adopted to jointly capture the geographical influence
and temporal cyclic effect by embedding three relational graphs (i.e., location-location,
location-region, and location-time) into a shared low dimensional space. Moreover, con-
sidering the impact of traffic-related contexts on trajectory movement, we design a traffic
encoder to model the dynamic of traffic flows, which comprises several spatio-temporal
blocks combining temporal gated CNN with spatial graph convolution. In addition, a
context-attention layer is proposed to fuse trajectory sequential information and traffic infor-
mation based on various background factors. Finally, GCMT is evaluated on two real-world
datasets to demonstrate its advantages.
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1 Introduction

In recent years, we are witnessing an exponential growth in cellular trajectories, with
the rapid development of mobile communication technology [1–3]. Spatio-temporal joint
prediction is an important problem in the construction of intelligent communication sys-
tem. It aims to predict the next location and the corresponding switch time for a cellular
trajectory at the same time, which is a multitask joint prediction process. It is of great signif-
icance to decide when user data will be scheduled to which base station. Besides, the joint
prediction benefits many applications such as efficient resources management in mobile
communications, location-aware advertisements and navigation services [4].

Most existing trajectory prediction methods only focus on a single task, i.e., location
prediction or time prediction. Methods of location prediction [5–7] use sequential models
(e.g., HMM and RNNs) to capture trajectories’ spatial mobility regularities to predict the
next location. Most methods of time prediction [8] utilize temporal point process (TPP) [9]
to model temporal sequence. However, these single-task methods cannot simultaneously
predict these two tasks to support the multitask requirements of trajectory prediction in
most real scenarios. To achieve the joint prediction, multitask learning based methods [10,
11] are proposed to jointly utilize spatio-temporal signals to capture the mutual influence
among these two tasks. Unfortunately, these multitask methods merely focus on the model-
ing of trajectories and ignore the importance of spatio-temporal contexts (e.g., traffic-related
contexts), and accordingly, cannot provide accuracy prediction.

Accurate spatio-temoral joint prediction for cellular trajectories remains to be challeng-
ing due to complicated spatio-temporal dependencies and various context information. First,
trajectory movement will be affected by the spatial distribution and temporal cycle of loca-
tions, because users usually tend to visit the nearby base stations and follow periodical
patterns. Aside from the above geographical influence, traffic conditions also have a great
influence on trajectory movements. Intuitively, the traffic congestion may affect the tra-
jectory’s movement speed and even the choice of the next location. Thus, traffic-related
contextual information should be taken into account to achieve accurate predictions. Finally,
trajectory prediction also requires to consider various background factors (e.g., departure
time, weekdays and weather) due to different mobility patterns. For example, the trajectories
of rush hours are more likely to encounter traffic congestion and thus require more atten-
tion to traffic context information, while daily trajectories may need to pay more attention
to sequential information. However, most studies merely model the sequential information
of trajectories without learning the spatio-temporal contexts, which results in inaccurate
predictions.

Furthermore, we find that one trajectory always has consistent travel intention, and thus
the state of a trajectory point is impacted by its follow-up points’ states. The next location
of a trajectory may be predicted inaccurately without the information of the travel intention
from the trajectory. Nevertheless, once knowing the user’s destination is airport, we can
guess that he will follow the airport road and thus predict the next location. Hence, a cellular
trajectory’s location movement is influenced by its travel intention. Meanwhile, the travel
intention of a trajectory can be predicted by a sequence of location switches. However,
existing multitask methods ignore the signal of travel intention and thus cannot utilize it for
spatio-temporal joint prediction.

To tackle the above issues, we propose a graph-contextualized multitask learning method
called GCMT for spatio-temporal joint prediction, which adds travel intention prediction as
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an auxiliary task on the basis of spatio-temporal joint prediction. Specifically, we design a
graph-based representation module, which constructs three relational graphs (i.e., location-
location, location-region and location-time) and embeds each vertex into a shared low
dimensional space. In this way, it can capture sequential effect, geographical influence and
temporal cyclic effect. Then, we adopt a self-attention network to effectively model long
and dense cellular trajectories. In addition, in order to capture recent traffic condition, we
adopt a traffic encoder to model traffic dynamic in traffic flow data. The encoder consists
of multiple ST-blocks, which combine temporal gated CNN with spatial graph convolution,
to jointly learn spatial and temporal dependencies. Finally, considering the influence of var-
ious background factors (e.g., departure time, weekdays and weather), a context-attention
mechanism is designed to fuse sequential information and traffic information for a more
comprehensive prediction. We summarize our contributions as follows:

• We propose a graph-contextualized multitask learning method for spatio-temporal joint
prediction, which integrates representation module, trajectory encoder, traffic encoder,
context modeling and task-specific decoder as a whole.

• We adopt a graph-based representation module to jointly capture the sequential effect,
geographical influence and temporal effect. Moreover, to learn traffic condition, a
spatio-temporal block is designed to model spatial and temporal dependencies in traffic
flow data.

• Extensive experiments on two real-world trajectory datasets show that our model
achieves the best performance among all state-of-the-art methods.

This paper is an extension of our previous work [12], and it makes the following major
improvements:

• We design a bipartite graph embedding module to embed location-location, location-
region, and location-time graphs into a shared low dimensional space, so as to jointly
study geographical and temporal effects of locations.

• We adopt a spatio-temporal block to learn traffic information in traffic flow data, which
combines temporal gated CNN with spatial graph convolution as an integration.

• We introduce a context attention mechanism to take account of various background
factors, by which our model can adaptively assign reasonable weights to sequence and
traffic information.

The remainder of this paper is organized as follows. We first introduce the related work of
trajectory prediction and multitask learning in Section 2. Then, several definitions are given
and the research problem is formulated in Section 3. In Section 4, we present our proposed
method GCMT. Finally, we conduct extensive experiments in Section 5 and conclude the
paper in Section 6.

2 Related work

2.1 Trajectory prediction

As an important part in the construction of smart city, trajectories have been studied for
many years [13–18]. Researches on trajectory prediction mainly focus on location predic-
tion task [19–21] or time prediction task [22, 23]. Most location prediction studies utilize

1651World Wide Web (2023) 26:1649–1665



learning techniques like RNNs [6, 7] to model sequential information to make predictions
in spatial domain. Considering the importance of spatial and temporal interval informa-
tion, some methods [6, 7, 24] extend the framework of RNNs. HST-LSTM [6] introduces
an add operation to existing gates of LSTM to merge spatial-temporal interval information.
Flashback [24] does flashbacks on past hidden states to consider historical records with
similar contexts. DeepMove [5] adds an attention mechanism to GRU to learn multi-level
periodicity.

In addition, a few studies [8, 23] focus on the time prediction task. RCR [8] utilizes
visitors and potential visitors’ historical check-ins to extract features, and adopts cen-
sored regression for time predictions. A recurrent spatio-temporal point process model [23]
is further proposed to utilize TPP to improve the performance. However, they require a
pre-designated next location and cannot support the time prediction for trajectories with
unknown next location.

In summary, these single-task methods neglect that trajectory prediction requires both
location and time prediction in most real scenarios, which cannot directly support the
prediction of another task or even the joint prediction.

2.2 Multitask learning

Multitask learning (MTL) [25] aims to exploit meaningful information from other related
learning tasks to solve multiple tasks at the same time, which has been successfully applied
in many fields, such as computer vision [26]. Inspired by the success, a few multitask
based methods [10, 11, 27] study the spatio-temporal joint prediction of events or POIs.
RMTPP [10] combines RNN with TPP to support the joint prediction for events. ARNPP-
GAT [27] uses graph attention networks to model user’s long term preference and combines
it with an attention-based recurrent neural point process. IRNN [11] respectively utilizes
RNN to model time and event sequence. DeepJMT [28] adopts a hierarchical RNN to cap-
ture temporal patterns and mobility regularities, which extracts location’s semantics, user’s
periodicity, and social relationships to alleviate the data sparsity problem. IAMT [12] pro-
poses an intention-aware multitask learning method, introducing travel intention prediction
as an auxiliary task on the basis of spatio-temporal joint prediction to provide long-term
intentional information. However, these methods ignore the influence of spatio-temporal
contexts on trajectory movement. Thus, we propose our method to model complicated
spatio-temporal dependencies and various context information.

3 Preliminaries

Definition 1 (Trajectory) Let L = {l1, l2, · · · , ln1} denote a set of locations. A spatio-
temporal point p is a tuple (l, t), where the location l ∈ L can refer to a base station
and the positive real number t ∈ R+ presents the timestamp switching to the location l.
A trajectory T is a time-ordered spatio-temporal point sequence T = {p1, p2, · · · , pm}.
Besides, we represent the time interval of two consecutive spatio-temporal points as τ , i.e.,
τk = tk − tk−1.

Definition 2 (Location-Location Graph) Location-Location graph is denoted as Gll = (L∪
L, Ell ). L is a set of locations and Ell is a set of edges between locations. Given a time
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interval ΔT , for each spatio-temporal point pair {(li , ti ), (lj , tj )} in trajectory T , if 0 <

tj − ti ≤ ΔT , there will be an edge eij from li to lj . The weight wij of eij is defined as the
number of times that lj is visited after li in the trajectory dataset T within the time interval
ΔT .

Location-Location graph, as a general graph, captures sequential information and loca-
tions’ spatial distribution, which can be viewed as a bipartite graph when we set a location
on one side and others on the other side. To further capture geographical and temporal effect,
we construct Location-Region and Location-Time bipartite graphs as Figure 1 shows. Con-
tinuous values (i.e., geographical area and timestamps) are transformed into discrete ones
due to the discrete vertices in graphs. We adopt a grid-based partition method [29, 30]
and divide the geographical space into N = ω × ω regions R. Besides, all timestamps are
divided into a set of time slots S based on the hours of a day.

Definition 3 (Location-Region Graph) Location-Region graph, denoted as Glr = (L ∪
R, Elr ), is a bipartite graph. L is a set of locations and R is a set of regions. Elr is a set of
edges between locations and regions. If location li is in region rj , there will be an edge eij

between them and the weight wij is set as 1; otherwise, none.

Definition 4 (Location-Time Graph) Location-Time graph, denoted as Gls = (L∪ S, Els ),
is a bipartite graph, where Els is a set of weighted edges between locations and time slots.
If location li is visited at time slot sj , there will be an edge eij between them; otherwise,
none. The weight wij is set to the frequency of location li visited during the time slot sj .

Definition 5 (Traffic Flow) Traffic flow information is described by inflow and outflow.
At a given time interval, inflow is the total number of traffic flows entering a region while
outflow is the total number of traffic flows leaving a region. At time t , we useXt ∈ RN×2 to
denote the traffic flow of N regions, where Xt [i, 0] and Xt [i, 1] are the inflow and outflow
of region i at time t .

Problem 1 (Spatio-temporal Joint Prediction) Given a set of trajectories T =
{T 1, T 2, · · · , T |T|}, where T i = {pi

1, p
i
2, · · · , pi

m} is the i-th trajectory, spatio-temporal
joint prediction aims to predict the next spatio-temporal point pi

m+1 of the trajectory T i ,
including the location identification lim+1 and the corresponding timestamp t im+1 derived
from the time interval τ i

m+1.

Figure 1 Illustration of three relational graphs
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4 Methodology

4.1 Overview

In Figure 2, we propose a graph-contextualized multitask learning model, which is made up
of five parts, i.e., representation module, trajectory encoder, traffic encoder, context model-
ing, and task-specific decoder. In the model, we design a multitask framework which adds
travel intention prediction as an auxiliary task on the basis of spatio-temporal joint pre-
diction. Specifically, we construct three relational graphs and use graph-based embedding
methods to embed each vertex into a low dimensional space. Then, we use self-attention
network to model trajectories to obtain sequential information. Meanwhile, the traffic
encoder utilizes spatio-temporal convolution network to capture traffic-related contexts. It
is constructed by two ST-blocks, which combines temporal gated CNN with spatial graph
convolution. Considering the influence of other background factors, a carefully designed
context attention layer is used to adaptively assign different weights to sequential informa-
tion and traffic information. Finally, the task-specific decoder makes the final predictions
for each task and trains the entire network with multi-task losses.

Figure 2 Architecture of GCMT. It consists of representation module, trajectory encoder, traffic encoder,
context modeling and task-specific decoder
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4.2 Representationmodule

4.2.1 Bipartite graph embedding

Trajectory movement is affected by complicated geographical influences and temporal cycle
dependencies among locations. For example, at 12 a.m., users usually head to restaurants
for lunch and tend to visit nearby locations. Thus, we construct location-location graph,
location-region graph and location-time graph to jointly learn spatio-temporal information
of locations. We adopt a probabilistic model [31] to learn embeddings of heterogeneous
graph nodes.

Given a bipartite graph GAB = (VA ∪ VB, EAB), the probability of observing a bipartite
edge eij between vi ∈ VA and vj ∈ VB is computed as:

p(eij = 1) = 1

1 + exp(−(−→v T
j · −→v i))

(1)

where −→v i and
−→v j are embedding vectors of vi and vj respectively. However, (1) is only

applicable to a bipartite edge. For a weighted bipartite graph GAB , its likelihood can be
computed by:

OAB = −
∑

eij ∈EAB

wij logp(eij = 1) −
∑

eij ∈EAB

γij log(1 − p(eij = 1)) (2)

Where EAB is a set of negative edges, and γij is the weight of negative edge, wij is the
weight of its positive edge.

Directly optimizing (2) will result in high computational cost, since it requires to cal-
culate massive negative edges. Thus, we adopt a negative sampling method [32] to sample
multiple negative edges for each positive edge, and the weights of negative edges are
assumed to be equal to the weight of their corresponding positive edge. We reformulate the
objective function as:

OAB = −
∑

eij ∈EAB

wij

[
logp(eij = 1) +

M∑

k=1

Evk∼Pn(v) log(1 − p(eik = 1))
]

(3)

where M is the number of negative edges, Pn(v) ∝ d
3/4
v , and dv is the degree of vertex v.

We use asynchronous stochastic gradient algorithm (ASGD) [33] to optimize (3). To collec-
tively embed our three relational graphs into a shared low-dimension space, we minimize
the sum of all objective functions.

O = Oll + Olr + Ols (4)

All edges in Ell , Elr and Elt are firstly merged together. Considering that the weights of
edges between different graphs are not comparable, we adopt the joint embedding training
algorithm [31] to alternatively sample from the three sets of edges to update the model.
Hence, we can obtain the embedding matrices of location Ml ∈ Rn1∗d , region Mr ∈ RN∗d

and time slot Ms ∈ Rn2∗d .

4.2.2 Trajectory embedding

Both temporal and spatial sequence can provide meaningful knowledge for trajectory mod-
eling, and meaningful mobility patterns may exist in different spatial granularity. Thus,
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we embed not only spatio-temporal multi-sequence, but also spatial multi-granularity. For
trajectory T , a sequence of base stations Tl = {l1, l2, · · · , lm} and a sequence of times-
tamps Tt = {t1, t2, · · · , tm} can be directly obtained. Besides, we derive coarse-grained
region sequence Tr = {r1, r2, · · · , rm} from Tl for spatial multi-granularity modeling.
To capture temporal information, a sequence of continuous points’ time interval, i.e.,
Tτ = {τ1, τ2, · · · , τm}, is further obtained. To obtain sequences with fixed-length, we adopt
zero-padding at the end of them, e.g., Tl = {l1, l2, · · · , ln}, where n is the predefined maxi-
mum length. Then, we can retrieve the embedding of location sequence El ∈ Rn∗d through
Ml ∈ Rn1∗d , where El,i = Ml,Tl,i

, that is, selecting the specified row’s vector from Ml

according to the base station’s identification. Then, the embedding of time interval sequence
Eτ ∈ Rn∗d and region sequence Er ∈ Rn∗d can be obtained in the same way.

4.3 Trajectory encoder

Considering that cellular trajectory has strong sequentiality and dense sampling points, self-
attention network [34] is adopted to capture long-term dependencies of the whole sequence.
Since multiple heads can jointly focus on different representation subspace information, we
further use multi-head self-attention to encode trajectory sequences. The framework of the
self-attention network (SAN) is shown as Figure 3(a). After obtaining the embedding of
each sequence Etask , SAN is adopted to model the sequential information.

Stask = SAN(Etask) (5)

where task ∈ {l, r, τ }. Besides, we take the last point’s representation of Stask as task-
specific sequential representation, i.e., Sl,m, Sr,m, Sτ,m.

4.4 Traffic encoder

Trajectory movement is greatly affected by traffic condition. For example, traffic con-
gestion will make trajectory move slower, and thus affect the state of next movement.
Hence, we aim to model complex spatio-temporal dependencies in traffic flows to con-
sider traffic-related contexts. We select traffic flows from recent P time intervals, i.e.,
X = [Xtm−P+1, Xtm−P+2, · · · , Xtm ]. X will be fed into traffic encoder composed of
two ST-blocks and a fully-connected layer. To extract spatial and temporal correlations,
ST-block is formed by temporal gated CNN and spatial graph convolution as Figure 3(b)
shows.

Figure 3 The framework of SAN and ST-block
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4.4.1 Temporal gated CNN

Although RNNs are widely used in time series modeling, its performance is limited by the
non-parallel training procedures and time-consuming iterations. Inspired by the superiority
of CNN [35], we adopt temporal gated CNN to capture temporal dynamics of traffic flows.
Specifically, it takes historical traffic as input H ∈ RP×N×c, where c is the number of input
channels. The convolution operation with two convolution kernels Γ1, Γ2 ∈ [Rtk×c×1,o] is
adopted to integrate temporal information within tk steps, where o is the number of output
channels. These two parts are input to gating mechanism to capture long-term temporal
memory. The output Ht ∈ R(P−tk)×N×o is computed by:

Ht = (Γ1 ⊗ H) 
 σ(Γ2 ⊗ H) (6)

where 
 denotes the element-wise product, and σ is the sigmoid function for controlling
the propagation of temporal information [36].

4.4.2 Spatial graph convolution

As we all know, the current traffic condition of a region is influenced by not only its recent
time period, but also its surrounding regions due to the geographical connection. Hence,
graph convolution network is adopted to model the spatial dependencies between different
regions.

Specifically, we treat different regions as the nodes in the graph, and the adjacency matrix
A is computed according to the distances among regions.

aij =
⎧
⎨

⎩
exp

(
d2ij

σ 2

)
, if i �= j and exp

(
d2ij

σ 2

)
≥ ε,

0 , otherwise.
(7)

where aij is the weight of the edge eij , and dij is their distance. σ 2 and ε are thresholds to
control the distribution and sparsity of matrix A.

To integrate the temporal information, we use Htm obtained by the temporal gated
CNN to initialize the representation of each region. Inspired by [37], we define the graph
convolution operation in l-th layer as:

H(l+1)
s = σ(D̂− 1

2 ÂD̂− 1
2 H(l)

s W(l)) (8)

where H
(l)
s is the input of the l-th hidden layer, and H

(0)
s = Ht . Â = A + I , I is an

identity matrix. D̂ is the diagonal node degree matrix of Â and D̂ii = ∑
j Âij . W(l) is

trainable parameters, and σ(·) is a non-linear activation function (e.g., ReLU). Since a graph
convolution layer can aggregate information from 1-hop neighbors, we stack k layers to
expand the receptive field and gain information from k-hop neighbors.

Finally, we further use a fully-connected layer to obtain the current traffic condition Htm

and extract the information of current region rm to represent traffic-related contexts, i.e.,
Hc = Htm,rm .

4.5 Context modeling

So far, we have obtained trajectory sequence information and traffic-related information.
Intuitively, trajectories under different backgrounds will have different mobility patterns,
and the effect of different information may be different. For example, traffic contexts may
have a greater impact on trajectories of traffic congestion, while sequence information may
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have greater effects on daily trajectories. Hence, a context attention mechanism is proposed
to model the influence of background factors.

After trajectory and traffic encoders, we obtain two vectors Stask,m and Hc for each
task, and we respectively project these vectors to new query vectors ps and pc. Besides, we
concatenate all the background factors together as context embedding ec for trajectory T .
Then, the attention coefficients are measured by computing the similarity between query
vector and ec as follows:

ai = sof tmax(piec) = exp(piec)∑
iexp(piec)

(9)

where i ∈ {s, c}. Then we can get a new vector integrating trajectory sequence information
and traffic context information based on the attention coefficients.

Ztask =
∑

i

aipi (10)

where task ∈ {l, r, τ }. Thus, we can effectively fuse trajectory sequential information and
traffic information based on the trajectory’s background factors.

4.6 Task-specific decoder

4.6.1 Fusion layer

After obtaining the sequential information and intentional information from trajectories, an
effective fusion method is required to aggregate these two information. In order to consider
the importance of each information for trajectory prediction, we design a gating mechanism
to ensure that the fusion representation can remain both knowledge with different propor-
tions, and it tends to focus more on the more informative features for current movement.
The gating mechanism can be written as follows,

Gtask,1 = sigmoid(Wtask,1Ztask + Wtask,r,1Zr + btask,1)

Gtask,2 = sigmoid(Wtask,2Ztask + Wtask,r,2Zr + btask,2)

Gtask = Gtask,1 
 Ztask + Gtask,2 
 Zr (11)

where Wtask,1, Wtask,r,1, btask,1,Wtask,2,Wtask,r,2, btask,2 are learnable parameters, and
task ∈ {l, τ }.

4.6.2 Prediction layer

Next location predictor It predicts the next location lm+1 based on the final representation
Gl , and the probability of lm+1 is calculated as follows:

Pl = sof tmax(GlWl + bl) (12)

where Wl and bl are learnable parameters.

Intention predictor Similar to the next location predictor, the probability of intention I is
also calculated based on the intentional representation Sg,m.

Pr = sof tmax(ZrWr + br) (13)

Switch time predictor We adopt TPP to model time sequences to make time prediction.
Inspired by the previous work [10], we use the output of deep neural network to calculate
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the density function f ∗(t), which calculates the probability that next location switch occurs
at time t given T .

f ∗(t) = exp{WT
t Gτ + Wτ(t − tm) + λ0 + 1

Wτ

exp(WT
t Gτ + λ0)

− 1

Wτ

exp(WT
t Gτ + Wτ(t − tm) + λ0)} (14)

where Wt, Wτ , λ0 are trainable parameters. The next switch time is computed as tm+1 =∫ ∞
tm

tf ∗(t), which can be calculated with numerical integration [38].

4.6.3 Loss layer

Location loss We apply multi-class logarithmic loss function cross entropy as our location
loss function, which is calculated by:

Ll = −l̂m+1 logPl (15)

where l̂m+1 is the one-hot represented ground truth and Pl is the predicted probability
distribution of each base station.

Time loss We define the loss function for the next switch time prediction task based on the
definition of TPP as follows:

Lτ = − log f ∗(tm+1) (16)

where f ∗(tm+1) is the density function, which is calculated by (14).

Intention loss Considering that traditional multi-class loss function treats multiple cat-
egories as independent individuals, and thus cannot capture the complicated spatial
associations among different regions, such as distance and direction consistency. Thus, a
distribution-aware loss function is designed to effectively capture the intention information.

Lr =
∑

i∈topk r Drj ,i · Pr,i∑
i∈topk r Pr,i

(17)

where topk r is a set of regions at the top k of Pr ; Drj ,i is the distance between the ground
truth rj and ri ; j = m + m ∗ 0.5, m is current trajectory’s length; Pr,i is the predicted
probability of future goal at the i-th region.

Multi-task loss The entire network is trained by minimizing the weighted loss sum of
location prediction, time prediction and intention prediction.

L(Θ) = βτLτ + βrLr + (1 − βτ − βg)Ll (18)

where Θ are all learnable parameters; βτ and βr are hyper-parameters for tuning relative
influence of Lτ and Lr .

5 Experiments

5.1 Datasets

Table 1 shows the statistics of two real cellular trajectory datasets, which are respectively
collected on June 29, 2019 in Chengdu and on June 9, 2019 in Xiamen. A base station is

1659World Wide Web (2023) 26:1649–1665



Table 1 Statistics of two datasets

Datasets # Users # Base stations # Records # Trajectories

Hangzhou 10825 13902 403867 10825

Xiamen 763 7255 683972 33583

viewed as a location that can provide signals to the area around it. If a user enters the area,
the base station identifies the user and records the corresponding time. A trajectory is a time-
ordered spatio-temporal point sequence in a taxi’s trip order. We remove the trajectories
with less than 5 points and take half length of each trajectory as its input length.

5.2 Baselines

To evaluate the effectiveness of GCMT for two main tasks, we respectively compare it
with single-task methods for location prediction (STRNN, DeepMove, HST-LSTM, and
Flashback), single-task methods for time prediction (Avg, THP) and multi-task methods
(RMTPP, IRNN, ARNPP-GAT, IAMT).

– STRNN [7]. It uses distance-specific and time-specific matrices to extend standard
RNN framework for location prediction.

– DeepMove [5]. It combines a historical attention mechanism with GRU to predict the
next location over lengthy and sparse trajectories.

– HST-LSTM [6]. It adopts an add operation on three existing gates of LSTM to consider
geographic distance and time interval.

– Flashback [24]. It does flashbacks on past hidden states of RNN to consider historical
points with similar context for next location prediction.

– Avg. It takes the average value of historical spatio-temporal points’ time interval as the
predicted result.

– THP [39]. It introduces a transformer-based architecture into Hawkes process to make
time predictions for event sequence.

– RMTPP [10]. It utilizes RNN to construct intensity function of recurrent point process,
which is used for events’ spatio-temporal joint prediction.

– IRNN [11]. It adopts two unshared RNNs to respectively model the event and time
sequence, and combines with TPP for the joint prediction.

– ARNPP-GAT [27]. It utilizes GAN to model user long-term preferences and adopts
attention-based recurrent point process for next check-in inference. GAN is removed
due to the lack of user social graph in our datasets.

– IAMT [12]. It adds travel intention prediction as an auxiliary task to provide long-term
mobility information for spatio-temporal joint prediction.

5.3 Parameter setup andmetrics

All methods are implemented with PyTorch. We randomly select 70% of our datasets for
training, and the remaining 10% and 20% for validation and test. For parameter setup, M

is set as 5 and kernel size of CNN is 3. We select the previous 6 intervals traffic flow
data (60 minutes). Other settings are the same as IAMT [12]. To evaluate the performance
for location prediction, we use four widely metrics: Accuracy (ACC), Mean Reciprocal
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Table 2 Performance comparison results for next location prediction

Datasets Hangzhou Xiamen

Method ACC MRR Recall macro-F1 ACC MRR Recall macro-F1

STRNN 0.0471 0.0833 0.0254 0.0118 0.3143 0.4665 0.1836 0.1479

DeepMove 0.0480 0.0970 0.0222 0.0138 0.3375 0.4914 0.1708 0.1434

HSTLSTM 0.0476 0.0886 0.0220 0.0115 0.3156 0.4686 0.1818 0.1482

Flashback 0.0513 0.0956 0.0261 0.0203 0.3411 0.4883 0.2062 0.1737

RMTPP 0.0483 0.0961 0.0228 0.0150 0.3213 0.4784 0.1770 0.1498

IRNN 0.0559 0.0986 0.0253 0.0146 0.3422 0.4901 0.2069 0.1731

ARNPP 0.0619 0.1077 0.0339 0.0215 0.3497 0.5186 0.2103 0.1745

IAMT 0.0721 0.1302 0.0424 0.0279 0.3783 0.5458 0.2321 0.1988

GCMT-E 0.0767 0.1507 0.0449 0.0291 0.3852 0.5624 0.2398 0.2044

GCMT-T 0.0776 0.1499 0.0429 0.0288 0.3879 0.5641 0.2386 0.2031

GCMT-C 0.0795 0.1511 0.0456 0.0297 0.3897 0.5658 0.2419 0.2064

GCMT 0.0844 0.1536 0.0472 0.0311 0.3974 0.5712 0.2496 0.2153

The bold entries shows the experimental results of our model, which outperforms all baselines

Rank (MRR), Recall, and macro-F1. Besides, Mean Absolute Error (MAE) and Root Mean-
Squared Error (RMSE) are used to evaluate models for time prediction. To be fair, each
method is run three times and the average value is taken as the final result.

5.4 Performance comparison

5.4.1 Next location prediction

From the results in Table 2, we can find that our model achieves the best performance among
all baselines. Specifically, traditional single-task based methods (STRNN, DeepMove, HST-
LSTM, and Flashback) perform worse than our model GCMT. The reason is that the mutual
influence of spatio-temporal signals in a trajectory is neglected in these methods. In addi-
tion, GCMT performs better than multi-task methods (RMTPP, IRNN, ARNPP-GAT, and
IAMT), which is due to the fact that they ignore complex spatio-temporal contexts. The
superior of our model proves that trajectory movement is also influenced by complicated
spatio-temporal dependencies and various context information. Besides, Hangzhou dataset
has more base stations and fewer records than Xiamen, and thus it is more sparse and
difficult to train a good model to learn trajectory movement, which results in the worse
performance in Hangzhou.

5.4.2 Next switch time prediction

Table 3 shows that our model achieves the best performance. In detail, GCMT improves
the performance of single-task methods (Avg and THP), because it jointly utilizes spatio-
temporal signals for collaborative trajectory modeling. Besides, although multi-task base-
lines (RMTPP, IRNN, ARNPP-GAT and IAMT) utilize both spatio-temporal signals, they
ignore the travel speed of a trajectory will be affected by spatio-temporal dependencies of
locations and traffic-related contextual information, thus performing worse than GCMT.
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Table 3 Performance comparison results for next switch time prediction

Datasets Hangzhou Xiamen

Method MAE RMSE MAE RMSE

Avg 2.45 3.88 2.76 4.97

THP 2.36 3.22 2.51 3.51

RMTPP 2.25 3.24 2.38 3.27

IRNN 2.22 3.15 2.32 3.21

ARNPP-GAT 2.17 3.12 2.29 3.16

IAMT 2.08 3.04 2.21 3.03

GCMT-E 1.95 2.88 2.09 2.98

GCMT-T 2.06 2.95 2.18 3.02

GCMT-C 1.97 2.91 2.12 3.01

GCMT 1.89 2.84 2.05 2.96

The bold entries shows the experimental results of our model, which outperforms all baselines

5.5 Ablation study

We compare GCMT with variants to study the usefulness of each component.

– GCMT-E removes the graph embedding, which uses a lookup layer to transform one-
hot vectors of sequence into dense vector representations.

– GCMT-T removes the traffic encoder, which ignores the traffic-related contextual
information.

– GCMT-C removes context attention mechanism, which sums trajectory sequence
representation and traffic context representation.

As shown in Tables 2 and 3, all variants perform better than baselines, which confirms the
advantage of our methods. In detail, GCMT-E performs worse than GCMT, indicating that
graph-based embedding can effectively extract geographical and temporal cyclic effect. The
comparison of GCMT-T and GCMT proves that traffic contexts are important for accu-
racy spatio-temporal joint prediction. Besides, GCMT outperforms GCMT-C, which shows
that the context attention mechanism can fuse sequence information and traffic information
according to trajectory’s various background factors. GCMT successfully achieves the best
result by utilizing complicated spatio-temporal contexts.

5.6 Effect of different grid granularity

Figure 4 shows the performance of GCMT with grid granularity ω from
{50, 100, 150, 200, 250} on next location prediction task. We can see that on Hangzhou
dataset, when ω is less than 100, the performance increases as the number increases,
because the direction reflected by future region is too large to provide useful information.
Besides, when ω is greater than 100 on Hangzhou and 50 on Xiamen, increasing the num-
ber may result in a slight performance degradation, because the future region is too small
to be accurately predicted and the predicted direction may have large deviations. Finally,
the grid granularity is set as 100 on Hangzhou and 50 on Xiamen.
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Figure 4 Effects of different grid granularity

6 Conclusion

In this paper, we study the spatio-temporal joint prediction for cellular trajectories and pro-
pose a graph-contextualized multitask learning method which can learn the complicated
spatio-temporal context information. Specifically, we introduce graph embedding module
to utilize geographical influence and temporal cyclic effect to obtain meaningful repre-
sentation for each location. To capture traffic-related contextual information, we combine
temporal gated CNN and spatial graph convolution to learn the dynamic of traffic flows. In
addition, a context attention mechanism is well-designed to fuse sequence information and
traffic information according to trajectory’s background factors. Finally, extensive experi-
ment results on two real trajectory datasets have verified that GCMT can achieve accuracy
spatio-temporal joint prediction.
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