
Vol.:(0123456789)

World Wide Web (2023) 26:1345–1370
https://doi.org/10.1007/s11280-022-01094-3

1 3

Mining multiple sequential patterns through multi‑graph 
representation for next point‑of‑interest recommendation

Mingxin Gan1   · Caiping Tan1

Received: 3 November 2021 / Revised: 28 May 2022 / Accepted: 1 August 2022 /  
Published online: 24 August 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Next point-of-interest (POI) recommendation is important for users to help them find inter-
esting venues to visit in the near future. Most previous work on this subject has incorpo-
rated geographical and temporal information into sequential patterns to predict next POIs. 
However, few studies have considered the influence of important factors such as users’ 
reviews or POIs’ popularity on sequential patterns, nor distinguished between factors of 
different importance for prediction. In addition, the relationships between entities in loca-
tion-based social networks have been ignored in most previous work. To overcome these 
limitations, we proposed a model called MGCAN to flexibly incorporate various influen-
tial factors into different sequential patterns for next POI recommendation. We first used 
multiple graph convolutional networks and independent attention networks to model mul-
tiple sequential patterns with different influential factors. Furthermore, we designed cor-
responding modules to simultaneously capture general preferences of users and determine 
the impact of different influential factors on each user. Finally, we used multiple sequential 
patterns and the general preferences of users in the prediction module to predict the next 
POI. Experimental results on two datasets showed that the MGCAN model achieved better 
recommendation performance than benchmark models.
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1  Introduction

With the development of the Internet and mobile technology, location-based social net-
works (LBSNs) such as Yelp, Foursquare in the United States, and Dianping in China 
are becoming increasingly widespread in everyday life. On LBSNs, users upload photos 
related to venues they have visited, and share their experiences of and views on these ven-
ues with friends. However, it may be difficult for a user to quickly find interesting venues 
given the massive amount of information available. In order to solve this problem, point-
of-interest (POI) recommendation is widely used in LBSNs to help users find interesting 
venues such as restaurants, shopping malls, movie theaters and many others, and push 
information about these venues to them; this serves users and also brings opportunities to 
businesses. Thus, POI recommendation has been the subject of widespread research [1–3].

There are two types of methods for point-of-interest recommendation in existing works: 
global recommendation [4–6] and next-POI recommendation [7, 8]. Global POI recom-
mendation predicts venues that a user will probably be interested based on the overall his-
torical check-in activities of users. Next POI recommendation aims to provide personal-
ized recommendations to a user depending on where the user is likely to be next, which 
is determined based on users’ historical check-in sequences. The latter approach has more 
important practical significance than the former, because it focuses on mining user behav-
ior patterns with temporal information and predicting possible future visits. For instance, 
it suggests to a user where they can have dinner after work, or where to watch a movie 
after dinner. Thus, the topic of next POI recommendation has been extensively studied by 
researchers in recent years.

There are large numbers of sequential interactions between users and locations in 
LBSNs. The next POI visited has a strong relationship with the user’s previous behaviors, 
and there is a certain sequential dependency in the user’s interaction behaviors. For exam-
ple, a user may watch a movie after having dinner, or visit a coffee shop in a shopping 
mall after going shopping. Therefore, most next POI recommendation methods focusing on 
mining users’ sequential patterns (short-term preferences). Early methods used for recom-
mendation of the next POI mostly used a Markov chain approach, for instance, the FPMC-
LR model [9] calculated the transition probability between POIs, taking localized regions 
into consideration, to predict the next POI. However, such methods can only capture short-
term sequential dependency. To capture long-term sequential dependency, recent work has 
used recurrent neural networks (RNNs) [10] with memory mechanisms, as well as RNN 
variants [11, 12], such as long short-term memory (LSTM) units and gated recurrent units 
(GRU).Inspired by model Transformer [13], many studies have attempted to use self-
attention mechanisms to learn sequential patterns [14–16]. In addition, some models take 
various influential factors in LBSNs into account to improve the recommendation accuracy 
[4, 17, 18]. Some studies have also tried to capture rich semantic information with graph 
neural networks (GNNs) for use in POI recommendation [19, 20]. Although the existing 
methods for next POI recommendation have achieved great success, they have the follow-
ing limitations.

(1) Most previous work has incorporated geographical–temporal factors into sequential 
patterns [21–23] but has not used review information and popularity information. Users’ 
reviews of venues contain rich preference information and can reveal the different char-
acteristics of venues. Popularity represents how popular venues are, and some users usu-
ally choose to visit places that are currently popular. In particular, time-related popularity 
reveals the time periods in which a venue is more popular. For example, movie theaters 
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are more popular in the evening, whereas restaurants are more popular during mealtimes. 
Ignoring such meaningful information may lead to failure to accurately capture user inter-
ests, resulting in lower recommendation accuracy.

(2) LBSNs include a variety of rich entity relationships, such as relationships among 
users or venues, and relationships between users and venues. When time, category, etc., are 
considered as entities, there will be a richer network of relationships. Some studies have 
shown that using relationships between entities to model the higher-order features of users 
or POIs can lead to better representation. However, existing methods for next POI recom-
mendation do not use multiple entity relationships.

(3) Most previous work has involved constructing check-in sequences of users based 
on time to capture a single sequential pattern. Some studies focused on sequential depend-
encies between check-ins of a user, whereas others emphasized the relationships between 
the user’s check-in activities and target check-in behaviors. However, for different sequen-
tial patterns, there will be a different impact of the user’s historical check-in activities on 
the target behavior. For example, for a check-in sequence a → b → c → d , the relationship 
between historical check-in c and target behavior d may be closer in geographical–temporal 
sequential patterns, whereas check-in b has a greater impact on d in review sequential pat-
terns. Therefore, we should consider incorporating multiple influential factors into sequen-
tial patterns and distinguish the impact of different sequential patterns.

To overcome the above limitations, we propose a novel next POI recommendation 
method, named MGCAN, which uses GNNs and attention networks to incorporate geo-
graphical–temporal factor, review factor, and popularity factor into next POI recommenda-
tion, as shown in Figure 1. Different from the existing studies, instead of directly fusing 
the embedding of various information together through concatenation or addition, we used 
different influential factors as contextual embedding independently, using multiple param-
eterized kernel functions to learn multiple sequential patterns and general preferences of 
users. As well as capturing the sequential dependencies of user’s behavior sequences, we 
additionally used multiple contextual attention mechanisms to distinguish the fine-grained 
impact of different influential factors on users’ behavior. The geographical influence factor 

Fig. 1   Overview of proposed MGCAN model
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is a unique information attribute in POI recommendation. Some previous studies used 
probability distribution functions to model geographical influence [6, 24, 25]. Others tried 
to capture the geographical relationship between POIs by deep learning techniques [20, 
26], and demonstrated the effectiveness of geographical relationship embedding among 
POIs as geographical influence. Therefore, we constructed a POI–POI graph with geo-
graphical distance correlations and used GNNs to capture higher-order connectivity among 
POIs as for geographical–temporal embedding. In addition, most of the previous studies 
combined probability statistical methods and matrix factorization to model popularity, but 
their expressive ability is limited and it is difficult to capture complex semantic informa-
tion. Therefore, we constructed a POI–time graph containing popularity information, and 
used time-aspect check-in frequency as the information of the edges in the graph. Then 
we extracted time–popularity relationships among POIs by recursively propagating nodes’ 
embedding on the graph to obtain excellent feature representations.

To summarize, our contributions are as follows. (1) We proposed a recommendation 
model, MGCAN, which used different influential factors as contextual embedding inde-
pendently to obtain multiple sequential patterns and general preferences for use in recom-
mendations. We effectively distinguished the impact of different influential factors on the 
behaviors of a user via the design of multiple contextual attention mechanisms. (2) We 
used GNNs to capture the high-level implicit relationships between nodes, in particular, 
for time-popularity relationships among POIs. We used the time-aspect check-in frequency 
as the edge information, and made full use of node information and edge information to 
obtain the better feature representation. (3) We conducted comparative experiments and 
discussed the recommendation performance and advantages of the MGCAN model, and 
revealed the improvements achieved with MGCAN compared with other methods.

The rest of this paper is structured as follows. Section 2 discusses related work on next 
POI recommendation. Section 3 describes the proposed MGCAN approach in detail. Sec-
tion 4 presents an evaluation and discussion of the method. Section 5 describes the conclu-
sions drawn from our results and proposes further work for the future.

2 � Related works

2.1 � Next POI recommendation

In contrast to traditional POI recommendation, next POI recommendation aims to help 
users find venues that they may be interested in next. This requires a focus on learning 
sequential patterns of users through mining their historical trajectories. Early work mainly 
used Markov chains to learn transition patterns between POIs, often combined with matrix 
factorization technology for next POI recommendation. For example, FPMC-LR [9] was 
the first model proposed to solve the successive POI recommendation problem, and used 
matrix factorization to incorporate personalized Markov chains and regional constraints 
of users’ behavior. LORE [27] first learned sequential feature from a historical check-
in sequence, modeled as a location–location transition graph, and then used an additive 
Markov chain on the graph to predict venues that a user would probably visit next.

Methods including matrix factorization, tensor factorization, and embedding have been 
used to predict transition probability. Feng et al. [28] used metric spaces to model distances 
between POIs for prediction of transition probability. STELLAR [29] modeled sequence 
based on a tensor decomposition framework, and captured and utilized the spatio-temporal 
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effects of check-in. However, the STELLAR model only focused on a pair of continuous 
venues and failed to model the user’s overall check-in sequence. Chang et al. [30] proposed 
the CAPE model, which utilized check-in sequence of users and text content about POIs. 
Zhang et al. [31] developed a word2vec-based framework to embed each POI into a space 
so as to learn the sequential relationship between POIs.

In recent years, the most commonly used methods have been based on neural network 
models, especially RNNs. These have obvious advantages compared with methods based 
on Markov chains and matrix factorization. RNNs have often been used to model sequen-
tial patterns in sequence-learning tasks [32, 33]. Cui et al. [10] proposed the Distance2Pre 
model, which used RNNs to capture a user’s sequential preferences and then modeled the 
distances between successive POIs to obtain spatial preferences. Wu et al. [11] proposed 
the LSPL method, which learned the contextual features of POIs and used general pref-
erences and sequential preferences of users to provide recommendations. LSTPM [34] 
is a hybrid long-term and short-term preference model that models temporal and spatial 
preferences as long-term preferences and constructs a check-in sequence based on loca-
tion distance to obtain sequential features as short-term preferences. Manotumruksa et al. 
[35] proposed CRCF, which used a GRU-based RNN component to model users’ sequence 
preferences and leveraged contextual information of check-in sequences of users. Gan et al. 
[36] proposed the DeepAssociate approach, which utilized RNNs, LSTM, and GRU to 
learn sequence patterns and explored the sequential influence by different methods.

RNNs overemphasize strongly dependent adjacent interactions; however, adjacent inter-
actions do not always have a strong dependency in the real world owing to noisy data in the 
sequence. Previous studies [37, 38] have used an attention mechanism to capture the truly 
relevant interactions in users’ sequences. In the past 2 years, many studies [14, 16, 39] have 
used self-attention to learn sequential features, demonstrating excellent performance and 
efficiency in the task of sequential recommendation. STGCN [19] required the construc-
tion of multiple graphs based on check-in time and used GNNs to extract user–region and 
user–POI periodic patterns, but it failed to consider temporal continuity. GEAPR [40] com-
bined structural context, neighbor influence, users’ attributes, and geographical influence 
to predict users’ preferences, and used an attention mechanism to distinguish the impact of 
different influential factors on users’ behavior. However, GEAPR only focused on users’ 
global preferences and did not incorporate their sequential preferences. ASGNN [41] used 
gated GNNs to model users’ behavior patterns and a personalized hierarchical attention 
network to learn the correlations between users and POIs in the check-in sequence.

Most early work on next POI recommendation focused on mining sequential pat-
terns, and exploring the sequential dependency of POIs in the check-in sequence or the 
correlations between POIs in the check-in sequence and target POIs. Most studies only 
incorporated geographical–temporal influence into next POI recommendation. For exam-
ple, GT-HAN [23] used geographical–temporal attention to model geographical–tempo-
ral influence, and collaborative attention to distinguish the impact of historical check-in 
activities on user preferences. Some studies also incorporated social relations into sequen-
tial patterns. For example, Yang et al. [3] used H-deepwalk to capture social relations and 
geographical influence, and further learned long- and short-term preferences for next POI 
recommendation. SSSER [42] used a metric learning method to capture the social rela-
tionships among users for next POI recommendation. Recently, some studies have shifted 
the focus to category-aware methods for next POI recommendation. The problem of data 
sparseness makes it difficult to mine user preferences from their checked-in POIs; however, 
POI category preference can be exploited to compensate for this deficiency [8]. ATCA-
GRU [43] combines GRU and an attention-based category-aware method to predict the 
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next POI category. CHA [44] uses an attention-based hierarchical category knowledge 
graph to learn POI embedding, in order to embed the check-in sequence, and further cap-
tured sequential patterns. However, there has been a lack of effective exploration and utili-
zation of other auxiliary information such as reviews, popularity, and visual contents in the 
task of next POI recommendation.

2.2 � Graph neural networks for recommendation

Traditional deep learning techniques such as RNNs and convolutional neural networks 
have shown a great advantages in capturing potential patterns of Euclidean data [45], but 
they are not suitable for processing graphics data. In order to apply deep learning technol-
ogy to graphic data, many studies have explored the use of new deep neural network tech-
nologies to process graphic data, called GNNs, such as GCNs [46]. GNNs can aggregate 
the feature information of neighbors and structural information, and have excellent repre-
sentation learning ability.

GNNs have been extensively applied in many fields including machine translation 
[47], traffic prediction [48], chemistry [49] and medicine [50]. GNNs have also been used 
for recommendation tasks in recent years. Ying et al. [51] constructed interactive graphs 
and used an efficient random walk method and GCN method to obtain nodes’ representa-
tions containing structural information in graphs, and nodes’ own feature information for 
large-scale Web-level recommendation tasks. Wu et al. [52] used dual graph attention net-
works to learn feature representations for two-fold social influence extending from the user 
domain to the item domain, which could effectively alleviate the data sparsity problem and 
obtain static and dynamic different-depth representations of users and items. Another study 
[53] used attribute graphs instead of the commonly used user–item interaction graphs. 
Gated GNNs were used to effectively aggregate attributes of different modalities of neigh-
bors to enrich presentations. Ji et al. [54] used GNNs to model relationships of users, news, 
and topics. In some studies on POI recommendation, GNNs were used to capture distance 
relationships between POIs or social relationships between users. Zhong et  al. [20] con-
structed a POI geographic relationship graph and a user social relationship graph, and then 
used GCNs to learn POIs’ location representations and users’ social representations.

These studies demonstrate that GNNs have been extensively applied in various tasks 
and fields and have exhibited excellent performance. Thus, GNNs are expected to be pow-
erful tools for processing various types of heterogeneous information and complex rela-
tionships between users and/or POIs in LBSNs.

3 � The proposed model

In this section, we describe our MGCAN model in detail. First, we illustrate the formula-
tions and definitions associated with the MGCAN model. Then, we explain the basic com-
ponents of our model, which include embedding of multiple influential factors, multiple 
sequential patterns, and learning of general preferences, and a prediction module, as shown 
in Figure 2. Specifically, we consider various influential factors in LBSNs, including geo-
graphical–temporal factors, time-popularity, and review text. Next, we use two independent 
GCNs to model the representation of POIs by a neighborhood propagation mechanism on 
two graphs, i.e., the POI–POI graph and the POI–time graph. In addition, we use multiple 
attention networks to capture sequential patterns and general preferences while learning the 
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impact of each check-in in a historical trajectory on the next predicted venue. Finally, we 
make predictions of possible POIs for each user to visit next based on their sequential pat-
terns and general preferences.

3.1 � Problem formulation

We provide a formulation and definition of the proposed method for next POI recommen-
dation in this section. The main symbols used in this paper are shown in Table 1.

Definition 1  (User): We denote by U = {u1, u2, u3,… , u|U|} a group of users in LBSNs.

Definition 2  (POI): We denote by V = {v1, v2, v3,… , v|V|} a group of venues in LBSNs. 
Each venue v includes information on the geographical location (latitude and longitude), 
relevant reviews, and popularity.

Definition 3  (Check-in): We denote by cu
t
= {u, v, t} a check-in, which indicates that user 

u visited venue v at t time.

Definition 4  (Check-in sequence): We use Lu
t
= {cu

ti−l+1
, cu

ti−l+2
, cu

ti−l+3
,… , cu

ti
} to denote a 

check-in sequence of user u, where Lu
t
 represents a list of POIs that that user u has visited 

before, in ascending order by time of visit t. l is the length of the sequence.

Definition 5  (Historical Trajectory): The historical trajectory is the continuous check-in 
sequence of a user. We denote by Su

t
= {cu

ti−s+1
, cu

ti−s+2
, cu

ti−s+3
,… , cu

ti
} a historical trajectory of 

Fig. 2   Framework of the MGCAN model
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user u before time t. s is the length of the trajectory. Trajectories of a user are generated 
from check-in sequences of the user within a certain time interval, so Su

t
 is a subset of Lu

t
 . 

Each user has multiple historical trajectories, which contain different numbers of check-ins, 
as shown in Figure 3. We transform historical trajectories of different lengths into same-
length trajectories by padding with zeros and masking off the padding in calculations.

Given a current historical trajectory Su
t
 , a long check-in sequence Lu

t
 of user u, and 

location candidates V, the goal of our MGCAN model is to predict a list of venues that 
user u is most likely to visit next.

3.2 � Multiple influential factors embedding

The influential factors embedding module consists of four parts: user–POI interaction 
embedding, geographical–temporal embedding, review feature embedding, and time-
popularity embedding, as shown in Figure 2(a).

3.2.1 � User‑POI relationship embedding

As described by Dong [55], we constructed a user–POI interaction graph, used a ran-
dom walk to generate walk-path text, and then used the doc2vec method to capture the 
feature representations of users and POIs, denoted by hu and hv, respectively. These 
random-walk-based meta-paths ensured that the pre-training presentations of users and 
POIs contained potential interaction relationships between users and POIs.

Table 1   Key symbols

Symbols Interpretation

U,V,T A group of users, the POIs, and a time interval, respectively
u,v,t User, POI, and check-in time
Lu
t
, Su

t
 The check-in sequence and historical trajectory of user u before time t

s,l The lengths of the short check-in sequence and long check-in sequence
d Dimension of embedding
β The number of heads of multi-head self-attention
hu,hv Pre-training embedding of users and POIs by metapath2vec
hGT,hRe,hTP The factor-specific embedding of POIs, i.e., geographical–temporal 

embedding, review embedding, and time–popularity embedding
ES
GT

,ES
Re
,ES

TP
 The factor-specific embedding of the short check-in sequence

EL

GT
,EL

Re
,EL

TP
 The factor-specific embedding of the long check-in sequence

hS
GT

, hS
Re
, hS

TP
 Sequential patterns based on factor-specific embedding

hL
GT

, hL
Re
, hL

TP
 General preferences based on factor-specific embedding

hS, hL  The final sequential pattern and general preferences of users
yu,t
v

 Predicted probability that user u will visit POI v at the next time t
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Fig. 3   Trajectories processing of a user
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3.2.2 � Geographical‑temporal embedding

In order to embed temporal information, we adopted the method of Zhou et al. [56]. For a his-
torical trajectory, we calculated the time interval between each check-in and the last check-in, 
and then mapped the gap lengths of intervals from [0,1),[1,2),[2,4),...,[2k,2k+ 1) to categories 
of 0,1,2,...,k + 1. Then, we performed categorical feature lookups to obtain the time interval 
embedding in a historical trajectory of user u, denoted by hT.

Most previous work has represented geographical influence via modeling Euclidean dis-
tances between two successive check-ins. However, it is hard to capture high-order relation-
ships among venues in this way. For example, if venue a has a neighbor relationship with 
venue b, venue a also has a high-order neighbor relationship with venue c, which is a neighbor 
of b. Such high-order neighbor relationships of venues can be effectively captured by GNNs. 
Therefore, in order to capture better representations for POIs, we used GCNs to aggregate 
neighbor information and capture geographical relationships in the location graph.

First, we constructed a location graph G = (V,E), where V = {v1, v2, v3,… , v|V|} indicates 
a group of POIs and E indicates the edges between each pair of POIs. The weights of the 
edges represent the similarities between each pair of POIs. The similarity is defined by the 
Gaussian radial basis function kernel:

where dist(vi,vj) indicates the distance between venue vi and vj, and η is a hyperparam-
eter used to control the level of geographic correlation. We also use an adjacency matrix 
Ag ∈ R|V|×|V| to represent the information in the location graph, where ai,j is the element in 
the i-th row and j-th column of Ag.

Then, we obtain the symmetric normalized Laplacian matrix using the following formula:

We added self-connections to the adjacency matrix to combine nodes’ own features with 
neighbor features to update nodes, i.e. Ãg.We added self-connections to the adjacency matrix 
to combine nodes’ own features with neighbors’ features to update nodes, i.e., Ãg . Next, we 
initialize a matrix Vlocation ∈ R|V|×d as the feature vector of POIs and let Vlocation be the input 
of the first layer of GCNs, which is denoted by H(0). The output of the k-th layer is as follows:

Where non-linear activation function LeakyReLU()̇ allows messages to encode positive 
signals and small negative signals [57]. Wg ∈ Rd×d and bg ∈ R1×d are two trainable parameter 
matrices. Moreover, we use three-layer graph convolution to learn the geographical embed-
ding. The geographical embedding of a POI is denoted by hG. We obtain geographical–tempo-
ral embedding by summing hT and hG; the result is denoted by hGT.

3.2.3 � Review feature embedding

Users’ comments on POIs represent their views and feelings about the venues, and users 
learn more about a venue through reviews, which help them to make decisions. In this 
work, we used pre-trained review feature embedding as feature representation of a POI 
based on the text of reviews about the POI. The review text of a POI includes all comments 

(1)ai,j = exp(−� ⋅ dist(vi, vj)),

(2)Lg = D̃
−

1

2

g ÃgD̃
−

1

2

g .

(3)H(k)
g

= LeakyReLU((Lg × H(k−1)
g

) ×Wg + bg),
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on the POI by users, which obviously results in a long text. We learned the review feature 
embedding vectors of POIs using doc2vec [58], a simple and efficient method for learning 
document information, which simultaneously considers the context and semantic informa-
tion of words, sentences, and paragraphs. We used the distributed memory model of sen-
tence vectors (PV-DM) for pre-training, as it takes the word order into consideration and 
has usually worked well for most tasks. We used hRe to represent the review feature embed-
ding of a POI trained by doc2vec.

3.2.4 � Time‑popularity embedding

Unlike general popularity, time-based popularity indicates the time periods in which a 
venue is more popular [59]. Users tend to visit venues that are popular with the public. 
Moreover, a venue usually has higher popularity during a certain period of time. For exam-
ple, restaurants are usually more popular at mealtimes, and bars are usually more popu-
lar in the evening. Therefore, we incorporated time-based popularity of POIs as a factor 
influencing users’ decisions into our POI recommendations. However, most previous work 
has directly used the frequency of visitation by users as the popularity feature of POIs but 
failed to capture the fine-grained features of POIs based on popularity. For example, movie 
theaters and bars are more suitable for evening visits, and these two types of venue have 
similar popularity. However, the relationships between venues of similar popularity have 
not been fully exploited in most studies. To alleviate this problem, we adopted GCNs to 
model fine-grained time-popularity feature embedding of POIs.

First, we constructed a frequency matrix F ∈ R|V|×T , as shown in (4). Here, fvi,Ts repre-
sents the elements of F, referring to the ratio of the number of POIs vi visited in time slot 
Ts to the total number of POIs vi visited in all time slots; and T is the number of time inter-
vals. We set 24 h as the time interval.

Then, we obtained an adjacency matrix with self-connections Ãtp for the POI–time fre-
quency graph as follows:

As in Section  3.2.2, we applied Ãtp to (2) to obtain Laplacian matrix, and concatenated 
the initializations of POIs and time intervals. The result, denoted by H(0)

tp ∈ R(|V|+T)×d , was 
applied to (3) to obtain the time-popularity embedding, denoted by htp.

3.3 � Multiple sequential patterns and general preferences learning

Many studies of next POI recommendation have combined long-term and short-term pref-
erences of users [11, 34, 60–62] to improve the accuracy of venue recommendations. How-
ever, the sequential pattern and general preference were usually single, and were obtained 
by directly integrating multiple types of information. In contrast to previous work, we 

(4)fvi,Ts =

∑
u∈U numu,vi ,Ts

∑
u∈U

∑
Ts∈T

numu,vi,Ts

,

(5)
[
0 F

F⊺ 0

]

,

(6)Ãtp = Atp + I.
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combined multiple fine-grained sequential patterns and general preferences of a user to 
provide recommendations.

As mentioned earlier, we consider three influence factors that have an impact on users’ 
travel decisions. We also set a unique attention module for each influential factor (e.g., geo-
graphical–temporal factor, review factor, and time-popularity factor). We construct atten-
tion networks to obtain multiple fine-grained sequential patterns and general preferences 
of a user. Moreover, we distinguish the different impacts of the geographical–temporal 
factor, review factor, and time-popularity factor on the behavior of a user by an attention 
mechanism.

3.3.1 � Multiple sequential patterns

Accurate modeling of user sequential patterns is the basis and the premise of next POI 
recommendation. Behaviors of users usually changes over time, for example, one user may 
usually visit a company in the morning, visit a restaurant at noon, and go home in the even-
ing. Another user may usually visit a company and some restaurants on weekdays, and 
entertainment venues such as movie theaters and KTVs on weekends. Therefore, we can-
not mine a user’s interest preferences at weekends from their historical behavior on week-
days. To this end, in this subsection, we use an attention network to capture the sequential 
patterns of users based on different influential factors and at different times.

First, we divide the users’ check-ins into the different historical trajectories. Two con-
secutive check-ins with a check-in interval of less than 6 hours belong to the same trajec-
tory, as a short-term sequence of users, which is defined as Su

t
= cu

ti−s+1
, cu

ti−s+2
, cu

ti−s+3
,… , cu

ti
 . 

Based on the multiple influential factor embedding hGT, hRe, hTP of POIs learned in Sec-
tion 3.2, we embed the user’s short-term check-in sequence Su

t
 . The factor-specific embed-

ding matrix of the short-term check-in sequence is denoted by ES
�
∈ Rs×d(� ∈ {GT ,Re, TP}) . 

GT,Re,TP indicates the geographical–temporal factor, review factor, and time-popularity 
factor, respectively, where d is the dimension of embedding and s is the length of the his-
torical trajectory.

Attention networks have been used for sequence modeling with promising results [13]; 
the main types are multi-head self-attention and feed-forward networks. Multi-head self-
attention effectively extracts the sequential dependency in the check-in sequence of a user. 
However, the self-attention operation is not aware of the order of POIs in the check-in 
sequence, so we use the timing signal approach [13] to encode the positional embedding 
P and add the positional embedding to the factor-specific embedding matrix of the short-
term check-in sequence ES

�
 . The check-in sequence embedding matrix with P is denoted by 

ẼS
�
(� ∈ {GT ,Re, TP}) . Then, we use self-attention to extract multiple sequential patterns of 

users as follows:

(7)headi = softmax

�
QK⊺

√
d∕h

�

V ,

(8)MultiheadAtt(ẼS
�
) = concat(head1, head2,… , headβ)W

O
,

(9)AS
�
= LayerNorm(MultiheadAtt(ẼS

�
) + ẼS

�
),
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where a set of Q,K,V is constructed from the same factor-specific embedding matrix of the 
short-term check-in sequence, i.e., Q = ẼS

�
W

Q

i
 , K = ẼS

�
WK

i
 and V = ẼS

�
WV

i
 . WQ

i
 , WK

i
 , WV

i
 , 

WO are the trained parameters, and β is the number of heads. Equation (8) is intended to 
concatenate the outputs of multi-head self-attention. Then, residual connection and layer 
normalization [63] are applied to leverage any low-level information in (9), where Layer-
Norm(⋅) is the layer normalization function.

The feed-forward network is usually applied after multi-head self-attention to introduce 
non-linearity into the model for better representation; this consists of a fully connected 
layer together with add and norm operations as follows:

where ReLU(⋅) is used to obtain the non-linear presentation, and (11) uses the Layer-
Norm(⋅) function for normalization. We finally obtain the users’ multiple sequential pat-
terns, FS

�
(� ∈ {GT ,Re, TP}).

3.3.2 � Multiple general preferences

In a process similar to that used to learn sequential patterns, as described in Section 3.3.1, 
the attention network can be used to model multiple general preferences of users. In our 
MGCAN model, the general preferences of a user are learned based on long-term check-in 
records. We perform a look-up operation on the multiple influential factor embedding (Sec-
tion 3.2) to obtain the factor-specific embedding matrix of the long-term check-in sequence 
of a user, denoted by EL

�
∈ Rl×d(� ∈ {GT ,Re, TP}) , where l is the length of the long-term 

check-in sequence.
As the general preferences of users do not focus on the order of check-in behaviors as 

much as the sequential patterns of users, we do not add the position embedding into the 
factor-specific embedding matrix of the long-term check-in sequence. Then, we respec-
tively apply EL

�
(� ∈ {GT ,Re, TP}) to (7), (8), (9), (10), and (11) to obtain the multiple 

general preferences of a user, denoted by FL

�
(� ∈ {GT ,Re, TP}).

3.3.3 � Distinguish of multiple influential factors

Our model uses historical trajectories based on embedding of multiple influential fac-
tors to predict the next behavior of a user. However, the user’s current historical check-ins 
have different effects on their next behavior. For example, let a(home) → b(company) → 
c(restaurant) → d(movietheater) → e(restaurant) be a user’s historical trajectory. From the 
perspective of reviews, the user’s check-in behavior e may be more related to c, because 
they all belong to the same category of venues with related review content, but neither 
the home a nor the company b has any information about reviews. From the perspective 
of location distance, the current position d may have a greater impact on behavior e of 
the user. Therefore, it is necessary to pay more attention to the important ones. We use 
a vanilla attention mechanism to distinguish the different impacts of historical check-ins 
based on different influential factors on the next behavior of a user. The attention score is 
calculated by the following formula:

(10)FFN(AS
�
) = ReLU(AS

�
W1 + b1)W2 + b2,

(11)FS
�
= LayerNorm(FFN(AS

�
) + AS

�
),
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where α is the attention weight representing the impact of each check-in in a historical 
trajectory on the next check-in behavior of a user, and hγ is the feature representation of the 
target POIs. � ∈ {S,L} , which represents sequential pattern and general preference.

Then, we perform a weighted summation to obtain the representation h of a historical 
trajectory as follows:

where F�
� i

 is the latent representation of a check-in of the feed-forward network output, and 
n is the length of a historical trajectory of a user.

We apply the output of the last feed-forward network layer FS
GT

 , FS
Re

 , FS
TP

 , FL

GT
 , FL

Re
 , FL

TP
 

and the corresponding target POI representations hGT, hRe, hTP to (12) and (13) to obtain 
hS
GT

 , hS
Re

 , hS
TP

 , hL
GT

 , hL
Re

 , hL
TP

.

3.4 � Prediction

In the prediction module, we set three parameter matrices, WGT, WRe, WTP, to incorporate 
both multiple sequential patterns and general preferences based on different influential fac-
tors. Thus, we obtain the final sequential patterns and general preferences of user u based 
on multiple influential factors as follows:

Based on the sequential patterns and general preferences of user u, we can predict the 
probability that user u will visit POI v at the next time t as follows:

where hv is obtained by a look-up operation on the pre-trained embedding of POIs.

3.5 � Training

We took the venues that the user u actually visited at the next moment as positive samples, 
and randomly selected the POIs that a user did not visit as negative samples. The predicted 
probabilities yu,t

vp
, yu,t

vn
 of positive and negative POIs were computed via the forward propa-

gation process of MGCAN. We used Bayesian personalized ranking optimization function 
[64] to train our model MGCAN as follows:

where σ is the activation function (which in this case is the softmax function), 𝜃 is the 
parameter set used for model training, and λ is the regularization parameter.

(12)� = softmax

�
F�
�
(h� )

T

√
d

�

,

(13)h�
�
=

1

n

∑n

i
�iF

�
� i
,

(14)hL = hL
GT
WGT + hL

Re
WRe + hL

TP
WTP,

(15)hS = hS
GT
WGT + hS

Re
WRe + hS

TP
WTP.

(16)yu,t
v

= (hL)⊺hv + (hS)⊺hv,

(17)L = −
�

u

�

t

�

vp ,vn
log�(yu,t

vp
− yu,t

vn
) +

�

2
‖Θ‖2
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4 � Experiments

4.1 � Experimental settings

4.1.1 � Datasets

We evaluated the recommendation performance of the MGCAN model on datasets from 
Foursquare for two cities, New York (NY) and Chicago (CH), as shown in Table 2. The 
datasets consisted of the following information: user ID, POI ID, check-in timestamp, 
location of POIs, and users’ reviews of POIs.

For each of the two experimental datasets, we eliminated both the inactive users who 
had visited fewer than 30 POIs and the unpopular POIs that had been visited by fewer 
than 30 users. For each user, as shown in Figure 3, we grouped successive check-ins into 
the same trajectory, among which each pair of successive check-ins has a time interval 
less than 6 hours, as in the work of Cheng et al. [65]. Further, we removed those trajec-
tories with fewer than five check-ins. Moreover, we defined a subdivision trajectory as a 
trajectory belonging to the above grouped trajectory that has more than five check-ins. 
Thus, as shown in Figure 3, if the grouped trajectory of a user had the minimum num-
bers of check-ins (that is, five), the user had at least three subdivision trajectories. For 
the two datasets NY and CH, we randomly divided the data of users’ trajectories sorted 
by time into a training set (80%), validation set (10%), and test set (10%).

4.1.2 � Baseline model

We compared the recommendation performance of our model MGCAN with those of 
the following baseline models.

•	 STRNN [66], a spatial temporal RNN model for predicting next venues, which models 
the differences of time intervals and geographical distances via spatial–temporal transi-
tion matrices.

•	 TMCA [67] which employs the LSTM method with two attention mechanisms to learn 
deep spatial–temporal representations. The original model considers category of venue, 
but in this paper we removed this for a better comparison.

•	 ATST-LSTM [68], which uses LSTM and an attention method to model spatio-tempo-
ral contextual information.

•	 LSTPM [34], which builds sequences with time intervals and distance interval, and 
uses LSTM to obtain model long-term and short-term preferences of users for recom-
mendation.

Table 2   Statistics of the datasets Dataset User POI Check-in Sparsity

NY 6,206 5,360 169,090 0.9949
CH 2,558 7,824 114,091 0.9943
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4.1.3 � Evaluation metrics

In this paper, two evaluation metrics, top-k recall rate (Recall@k) and normalized dis-
counted cumulative gain (NDCG@k), were used to evaluate the performance of models. 
These metrics have been frequently used in previous work on next POI recommendation 
[34, 67]. Recall@k measures the proportion of correctly predicted samples in all posi-
tive samples. NDCG@k evaluates the gap between the top-k list and the actual list. In our 
experiments, we set k = {5,10} for evaluation.

4.1.4 � Parameter settings

Our MGCAN model was implemented in Python 3.7 with the TensorFlow deep learning 
framework. We trained our MGCAN model and baselines on a computer server with four 
NVIDIA GPUs, each of which had 11,178 MiB memory.

In the sequential pattern learning, the length of the short-term historical trajectory was 
set to 50, and in the general preferences learning, the length of the long-term check-in 
record was set to 200 in our MGCAN model. We uniformly set the dimension size of the 
embedding of different influential factors and the hidden layer to 256. In the influence fac-
tor embedding module, the geographical relevance level η was set to 60 and the number of 
the GCNs layers was set to 3. In addition, we used five layers of multi-head self-attention 
with eight heads and five layers of feed-forward network blocks in the attention module. 
We chose 500 negative samples for each positive POI for training. The batch size for model 
training was set to 32. Regarding the gradient descent parameters, the initial learning rate 
was set to 0.3 × 10− 4, the decay rate is set to 0.96, and the regularization λ is set to 0.1 × 
10− 4.

4.2 � Results and discussions

4.2.1 � Performance comparison

The recommendation performance of our proposed MGCAN model and those of the four 
baseline models on two real-world datasets are shown in Table 3 and Figure 4.

Our model MGCAN unequivocally outperformed all the other methods on both the 
NY and CH datasets. For example, for the NY dataset, LSTPM ranked second on accu-
racy, but MGCAN significantly outperformed LSTPM by 60.50% on Recall@5, 57.07% 
on NDCG@5, 29.29% on Recall@10, and 79.51% on NDCG@10. For the CH data-
set, MGCAN significantly outperformed LSTPM by 19.92% on Recall@5, 56.14% on 
NDCG@5, 35.02% on Recall@10, and 69.02% on NDCG@10. In addition, we found 
that accuracy performance of MGCAN on NY was better than that on CH by 18.86% on 
Recall@5, 19.21% on NDCG@5, 21.11% on Recall@10, and 20.43% on NDCG@5; this 
was because, on the one hand, the average number of visits per POI in CH was less than 
that in NY, and, on the other hand, the reviews in CH were sparser than those in NY.

Among the baseline models, we noticed that LSTM-based models such as TMCA and 
LSTPM outperformed RNN-based ones. For example, for the NY dataset, TMCA outper-
formed STRNN by 85.53% on Recall@5, 110.93% on NDCG@5, 69.59% on Recall@10, 
and 80.97% on NDCG@10. For the CH dataset, TMCA outperformed STRNN by 95.60% 
on Recall@5, 134.47% on NDCG@5, 85.29% on Recall@10, and 61.90% on NDCG@10. 
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This was because the RNN-based models did not capture long-term dependencies in 
sequences, whereas the improved LSTM models captured long-term dependencies in 
sequences by controlling states of cell via gate structure. LSTPM had the best performance 
on the two datasets among the baselines, as it took the long-term and short-term prefer-
ences of users into consideration; this demonstrates the importance of modeling long-term 
preferences as well as short-term preference.

In all baseline models, temporal and geographical factors were considered. Only our 
model MGCAN took into account other influential factors to model multiple fine-grained 
sequential patterns and general preferences, enabling it to effectively distinguish the impact 
of different influential factors on the behavior of a user. The experimental results show 
that incorporation of various influential factors greatly improved performance. Moreover, 
in order to analyze the effectiveness of GCN, we constructed a variant of the model called 
MGCAN-MLP. The MGCAN-MLP model used multilayer perceptron (MLP) instead 
of GCN to learn the time-popularity embedding; its other components were the same as 

Table 3   Performance results of MGCAN and baselines

NY CH

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

STRNN 0.1133 0.0814 0.1437 0.1009 0.1068 0.0705 0.1353 0.1105
TMCA 0.2102 0.1717 0.2437 0.1826 0.2089 0.1653 0.2507 0.1789
ATST-

LSTM
0.2171 0.1825 0.2171 0.1927 0.2381 0.1831 0.2922 0.2007

LSTPM 0.3681 0.2837 0.4279 0.3031 0.3339 0.2394 0.4200 0.2673
MGCAN-

MLP
0.4525 0.4156 0.6543 0.5101 0.3857 0.3550 0.5582 0.4503

MGCAN 0.4759 0.4456 0.6868 0.5441 0.4004 0.3738 0.5671 0.4518
Improve-

ment
29.29% 57.07% 60.50% 79.51% 19.92% 56.14% 35.02% 69.02%

Fig. 4   Performance comparison
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those of MGCAN. Comparing the performance of the MGCAN with that of MGCAN-
MLP (Table  4), we found that for the NY dataset, MGCAN outperformed MGCAN-
MLP by 5.17% on Recall@5, 7.22% on NDCG@5, 4.97% on Recall@10, and 6.68% on 
NDCG@10. For the CH dataset, MGCAN outperformed MGCAN-MLP by 3.81% on 
Recall@5, 5.30% on NDCG@5, 1.59% on Recall@10, and 3.79% on NDCG@10. These 
results demonstrate that GCN captured high-order features to obtain better feature repre-
sentation, which greatly improved the recommendation performance.

4.2.2 � Impact of different influential factors

To analyze the effects of different influential factors on model performance, we designed 
ablation experiments using different combinations of influential factors in our model. 
To evaluate the effects of different components of the model, we built a series of model 
variants incorporating an increasing number of influential factors; thus, the variants of 
MGCAN were as follows.

None: without any influential factor.
GT: model with the geographical-temporal factor.
GT+R: model with geographical–temporal and review features factors.
GT+R+TP: model with geographical–temporal, review features, and time-popularity 

factors.
Table 4 shows the performance of our MGCAN model variants with different influential 

factors.
As shown in Figure 5, we found that as the number of influential factors included in the 

MGCAN model increased, the performance of the model improved greatly. First, the geo-
graphical–temporal factor is important when a user makes a decision. A user will consider 
location distance and time when traveling, and may be more likely to go to a venue that is 
close rather than one that is far away. Comparing variants GT and None, we found that the 
geographical–temporal factor provided a great improvement. For the NY dataset, adding 
the geographical–temporal factor led to improvements of 97.25%, 80.77%, 105.04%, and 
87.86% on Recall@5, NDCG@5, Recall@10, and NDCG@10, respectively. For the CH 
dataset, adding this factor led to improvements of 43.27%, 38.11%, 39.71%, and 37.00% 
on Recall@5, NDCG@5, Recall@10, and NDCG@10, respectively. These results demon-
strate the effectiveness of the geographical–temporal factor in improving recommendation 
performance.

Second, some users make decisions by observing others’ experiences, and online 
reviews reflect a user’s experience and point of view on a POI. By incorporating the 
reviews influential factor, our model achieved improvements on Recall@5, NDCG@5, 
Recall@10, and NDCG@10 of 17.07%, 14.04%, 15.91%, 14.17% for the NY dataset, 

Table 4   Performance of MGCAN model variants with different influential factor variants

NY CH

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

None 0.1895 0.1935 0.2715 0.2310 0.2422 0.2472 0.349 0.2965
GT 0.3737 0.3498 0.5566 0.4339 0.3470 0.3114 0.4876 0.4062
GT+R 0.4375 0.3989 0.6452 0.4954 0.3743 0.3413 0.5488 0.4219
GT+R+TP 0.4759 0.4456 0.6868 0.5441 0.4004 0.3738 0.5671 0.4518
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respectively. For the CH dataset, Recall@5, NDCG@5, Recall@10, and NDCG@10 were 
improved by 7.87%, 9.60%, 12.55%, and 3.87%, respectively.

Third, time-popularity is a global attribute of venues that describes the period in which 
a venue is more popular, for example, restaurants may be more popular at noon, whereas 
movie theaters are more popular at night. Adding the time-popularity influential fac-
tor resulted in a significant improvement in recommendation performance: it improved 
Recall@5, NDCG@5, Recall@10, and NDCG@10 by 8.78%, 11.71%, 6.46%, and 
9.84% on the NY dataset, and by 6.97%, 9.52%, 3.33%, and 7.09%, on the CH dataset, 
respectively.

Owing to the importance of the geographical–temporal factor, reviews, and time-popu-
larity in decision-making, the recommendation rankings generated by the incorporation of 
different influential factors can satisfy the interests of users more effectively. Therefore, the 
recommendation quality is significantly improved.

4.2.3 � Analysis on parameter sensitivity

The number of negative samples has an impact on performance of the MGCAN model. To 
find a suitable number of negative samples, we set a series of numbers of negative samples, 
s = {1,100,200,300,400,500,600}, for experimentation. The results of experiments with 
different numbers of negative samples on the NY and CH datasets are shown in Figure 6. 
As shown in the figure, when the number of negative samples was greater than 500, the 
recommendation performance decreased on the NY dataset and tended to be stable on the 
CH dataset. Therefore, in the MGCAN model, we chose 500 negative samples for training.

The size of the embedding dimensions is an important parameter in our model. The 
larger the embedding dimensions, the better the representation ability of the model. How-
ever, when the parameter reaches a certain threshold, the model faces the over-fitting 
problem. Figure  7 shows the performance results when the embedding dimensions of 
the MGCAN model were 64, 128, 192, 256, and 320 on the NY and CH datasets. The 
results indicated that when the size of the embedding dimensions was less than 256, the 

Fig. 5   Performance of different MGCAN variants
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performance of the MGCAN model significantly increased as the embedding dimen-
sion increased; when the size of the embedding dimensions was more than 256, the per-
formance of the model decreased slightly. Therefore, in the MGCAN model, we set the 
embedding dimensions parameter to 256.

4.2.4 � Visualization of influential factors

We weighted the contributions of influential factors and historical check-ins by using atten-
tion networks to describe the effects of the geographical–temporal influential factor, review 
influential factor, and time-popularity influential factor on individual behavior. Figure  8 
shows the impact of historical check-ins with different influential factors embedding on 
current behaviors of users, where (a), (b), and (c), respectively, shows the impact of geo-
graphical–temporal, review, and time-popularity factors on users’ current behavior. We 

Fig. 6   Impact of negative samples

Fig. 7   Impact of embedding dimensions
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selected historical trajectories of 30 users and observed the impact of 50 check-ins of each 
historical trajectory on current behavior of users. In Figure  8, the X-axis represents the 
historical trajectory of a user, consisting of the 50 latest venues that the user checked into, 
and the Y-axis represents the 30 users. The attention score of each historical check-in was 

Fig. 8   Attention weights visualization of historical check-ins based on influential factors
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expressed by the color of the cell; the darker the color, the greater the weight score. The 
weight score of each cell represented the impact of each historical check-in of a user on the 
current check-in behavior of the user. For example, as shown in Figure 8(a), for the 11-th 
user, the second historical check-in had the greatest impact on current behavior, and the 
first historical check-in had the second-highest impact, whereas the other check-ins had lit-
tle impact. As shown in Figure 8(b), the historical check-ins with reviews embedding had 
different impacts on different users’ current behaviors. For the first user, the first historical 
check-in had a great impact on current behavior, and the other check-ins had little impact, 
whereas for the third user, the 49-th historical check-in had a great impact and the other 
check-ins had little impact. Similarly, as shown in Figure 8(c), historical check-ins embed-
ded by time-popularity had different impacts on different users’ current behavior.

In order to more intuitively see the impacts of different influential factors on users, we 
selected the impact of a certain historical check-in of 30 users on the current behavior of 
the users from the dimension of influential factors, as shown in Figure 9. Similar to Fig-
ure 8, the X-axis represents the 30 users, the Y-axis represents the three types of influential 
factors, and each cell represents the impact of the different influential factors on the current 
behavior of users. For the first user, the geographical–temporal factor had more impact on 
behavior. For the second user, the reviews influential factor had more weight than the other 
influential factors. For the fifth user, the time-popularity influential factor had the greatest 
effect on behavior. These results demonstrate that different influential factors have differ-
ent effects on different users. Therefore, recommendation performance could be improved 
greatly by determining the impact of different influential factors on a user.

5 � Conclusion

In this paper, we propose a MGCAN model that uses multiple GCNs and multiple atten-
tion networks to incorporate various influential factors in LBSNs, i.e., geographical–tem-
poral influence, influence of reviews, and influence of time-popularity. Specifically, we 
used GCNs to embed geographical features and time-popularity, and attention networks 
to capture multiple sequential patterns and general preferences based on different influen-
tial factors. Finally, we used sequential patterns and general preferences to predict the next 
POI. Experimental results on NY and CH datasets demonstrated that the MGCAN model 
outperformed baseline models. In particular, experiments using different combinations of 
components demonstrated the impact of different influential factors and the effectiveness 

Fig. 9   Visualization of Influential Factors’ impact on Current Behavior of Users
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of obtaining representation through the neighbor propagation mechanism. In the future, we 
plan to incorporate more influential factors,
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