
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01091-6

1 3

FTMF: Few‑shot temporal knowledge graph completion
based on meta‑optimization and fault‑tolerant mechanism

Luyi Bai1,2 · Mingcheng Zhang1 · Han Zhang1 · Heng Zhang1

Received: 15 April 2022 / Revised: 1 July 2022 / Accepted: 29 July 2022 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Traditional knowledge graph completion mainly focuses on static knowledge graph.
Although there are efforts studying temporal knowledge graph completion, they assume
that each relation has enough entities to train, ignoring the influence of long tail relations.
Moreover, many relations only have a few samples. In that case, how to handle few-shot
temporal knowledge graph completion still merits further attention. This paper aims to pro-
pose a framework for completing few-shot temporal knowledge graph. We use self-atten-
tion mechanism to encode entities, use cyclic recursive aggregation network to aggregate
reference sets, use fault-tolerant mechanism to deal with error information, and use simi-
larity network to calculate similarity scores. Experimental results show that our proposed
model outperforms the baseline models and has better stability.

Keywords Few-shot temporal knowledge graph · Long-tail relations · Meta-optimization

1 Introduction

Knowledge graphs (KGs) play an important role in artificial intelligence, and have been
applied in many applications such as event forecasting [28], intelligent question answering
[24, 39], and social network analysis [40], etc. Knowledge graph is a graph data structure,
in which edges represent relations and nodes represent entities. Because knowledge graphs
are constructed manually or semi-manually, most knowledge graphs are incomplete. For
static knowledge graphs such as WordNet [22] and Freebase [1], most models adopt vector
embedding, which vectorizes entities and relations, and graphs them to a low-dimensional
continuous space for operation. On the basis of TransE [2], researchers put forward many
variant models, such as TransH [37] and TransR [18]. These models have achieved good
results in static knowledge graph completion.

 * Luyi Bai
 baily@neuq.edu.cn

1 School of Computer and Communication Engineering, Northeastern University (Qinhuangdao),
Qinhuangdao 066004, China

2 School of Informatics, University of Leicester, Leicester LE1 7RH, UK

Published online: 4 August 2022

World Wide Web (2023) 26:1243–1270

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01091-6&domain=pdf

1 3

Recently, temporal information begins to appear in knowledge graphs. Researchers expand
and add temporal information to form a quadruple of the basis of static knowledge graphs
such as ICEWS [3] and GDELT [17]. Similarly, these temporal knowledge graphs are incom-
plete as well. An incomplete entity knowledge graph can be expressed as (?, r, o, t), (s, r, ?, t)
or (s, ?, o, t). In the task of temporal knowledge graph completion, we need to complete the
missing entities or relations. Because temporal information in temporal knowledge graph has
certain sequence constraints, there are two main ways to complete temporal knowledge graph.
One is to use the dynamic time series coding model in neural network to process temporal
information. For example, TA-TransE [5] model and TA-DistMult [5] model both use recur-
rent neural network to serialize temporal information, so that the models can process the invis-
ible time series in the future. The other is to embed temporal information on the basis of static
knowledge graph. For example, TTransE [16] model adds vectorization of temporal informa-
tion on the basis of TransE model and graphs it to the corresponding space for calculation.
These methods have achieved good performance in completing temporal knowledge graph.

However, most researches assume that each relation has enough entities to train, ignoring the
influence of long tail relation, that is, each relation only has a small number of entities. For exam-
ple, "competition" relation and "cooperation" relation have a large number of instances in knowl-
edge graph or temporal knowledge graph, but the number of "fuhrer" or "president" relation is
very small. In that case, researchers put forward the concept and method of few-shot knowledge
graph completion, such as FAAN model [30], Gmatching model [41], MateR model [37], and
FSRL [44] model. These models are developed for static knowledge graphs with few samples,
and cannot explain temporal knowledge graphs. The encoders they use cannot embed the tempo-
ral relation between entities into the models, and the information sharing between fewer entities
and the adverse effects caused by wrong information are not taken into consideration. To solve
these problems, we propose a new model denoted FTMF. The model uses self-attention mecha-
nism to aggregate the temporal information in the neighborhood to represent entities, uses cyclic
automatic aggregation network to aggregate reference machines to enhance interaction ability,
and uses fault-tolerant mechanism to reduce the influence of error information in datasets. Finally,
similarity network is used to score similarity. The main contributions are described as follows:

• Raising the concept of few-shot temporal knowledge graph completion.
• Constructing the time series neighbor encoder.
• Establishing an aggregation network of cyclic automatic encoders for processing temporal

information.
• Proposing a fault-tolerant mechanism to reduce the impact of error information.
• Carrying out experiments and obtaining good performance.

The rest of paper is organized as follows. We introduce the related work in Section 2. After
proposing problem formulation in Section 3, Section 4 describes our model in detail. Experi-
mental evaluations are given in Section 5. Section 6 concludes the paper.

2 Related work

Concerning on completing few-shot temporal knowledge graph, several categories of
approaches are related to our work according to their focuses, including static knowledge
graph completion, temporal knowledge graph completion, and few-shot knowledge graph
completion.

1244 World Wide Web (2023) 26:1243–1270

1 3

2.1 Static knowledge graph completion

Researchers have put forward many models for static knowledge graph completion. These
models can be roughly divided into two categories. The first category is translation model,
which mainly vectorizes and maps the knowledge information in static knowledge graph to
one or more low-dimensional spaces, and calculates similarity by calculating loss functions.
TransE [2] translates the triple (s, r, o) as vector into the same low-dimensional space. In
TransE model, if s + r ≈ o is true, the prediction is correct. However, TransE model only get
great performance for 1–1 relation, not good fit 1-N, N-1 and N–N relation. To address this
problem, Wang et al. [37] propose TransH, which translates subject vector to the front of the
object vector by relation and projects the subject vector and object vector onto a plane associ-
ated with the current relation. TransR [18] improves the expression ability of TransE by split-
ting the entity vector representation space and relation representation space, but it has more
parameters than TransE. In order to cut the number of parameters, Ji et al. [10] propose TransD
to dynamically obtain the projection matrix of relation by cross product calculation using a
vector related to entity and a vector related to relation. Compositional models learn compo-
sitional vector representations of entire knowledge graph. The second category is semantic
model, which mainly calculates a similarity score through the latent semantics between entity
vector and relation vector, and ranks the missing parts according to the calculated similar-
ity score. DistMult [43] uses more flexible linear mapping and assume that entities are rep-
resented as vectors, relations are represented as matrices, and think of the relation as a linear
change in the vector space. Liu et al. [19] analyze the basic structure of analogical reasoning in
knowledge graph, and adds two constraints to the representation of the relational matrix dur-
ing his learning process to improve the compositional reasoning ability of DistMult. RESCAL
[26] adopts a relation weight matrix to interact the latent features of entities, but its function is
too simple, which causes it cannot get efficient vector representations. In order to have better
representations, NTN [32] proposes a standard neural network layer combining with a bilinear
tensor layer, and HolE [25] uses a circular correlation operation to improve RESCAL model.

2.2 Temporal knowledge graph completion

Because temporal knowledge graph has the property of time series constraint, therefore,
the completion methods for temporal knowledge graphs are mainly divided into two differ-
ent types. The first one is to use the dynamic time series coding model in neural network to
process temporal information. The difficulty of this kind is how to deal with the invisible
time series in the future, because these time series are invisible and cannot be used directly
in the training process of the model. To solve this problem, researchers have also thought
of ways to solve it. For example, TA-TransE [5] model and TA-DistMult [5] model both
use recurrent neural network to serialize time information, so that the model can deal with
the invisible time series in the future. In addition, Know-Evolve [33] model proposed by
Trivedi et al. is an in-depth evaluation of the structure of knowledge semantic network,
in which quaternary coding is multivariate point processing, and entity representation can
evolve with time. In addition, RE-Net [13] model selects the neighborhood of aggregated
entities as their historical information, and uses recurrent neural network to model the time
dependence. Chrono-Transformation [29] model proposes a method of rule mining and
graph embedding to deal with temporal information in temporal knowledge graph. In addi-
tion, many tensor decomposition and neural network models are also applied to the pro-
cessing of temporal information.

1245World Wide Web (2023) 26:1243–1270

1 3

The second one is to embed the temporal information on the basis of static knowledge
graph. This kind of methods mainly expand the temporal information of the static knowl-
edge graph completion models, so that the models have the ability to complete the tem-
poral knowledge graph. These methods mainly add temporal information to calculate the
similarity score. The most classical one is that TTransE [16] adds the projection of tempo-
ral information and carries out vector calculation on the basis of TransE, and modifies the
distance calculation formula h + r ≈ t to s + r + t ≈ 0 to complete the temporal knowledge
graph. Inspired by TransH, Jiang et al. put forward a new model called HyTE [11], which
explicitly combines time in entity relation space by associating each timestamp with its cor-
responding hyperplane. There are many such ways, with the progress of technology, ten-
sor decomposition and convolution neural network have gradually matured, and is applied
to completing temporal knowledge graph. Similar to the proposed DE-Simple [21] model,
which uses multi-temporal representation embedding to process temporal information,
ConT [15] model uses tensor decomposition to deal with the relevant work, and then ATiSE
[7] model is proposed. This model is to analyze the time series, so as to deal with the tempo-
ral information accordingly. These models have achieved good completion effect in dealing
with temporal knowledge graph. After the proposed attention mechanism, Dysat [20] model
came into being. This model adopts the position coding of temporal information by self-
attention, thus embedding temporal information into vectors to complete the calculation.

2.3 Few‑shot knowledge graph completion

In order to obtain good performance, it is often necessary to use a large amount of data
to train the model. But in some real knowledge graphs, there are many relations and few
entities. There are three meta-learning methods, which are based on metrics, model, and
optimization. Its purpose is to use less samples to learn a new task quickly.

GMatching [41] proposes a one-shot relational learning framework, which uses the knowl-
edge extracted from the embedded model and considers the learned embedded and one-hop
graph structure to learn matching metrics. MateR [37] proposes a framework to predict the
common but challenging link with few shots in KGs, that is, to predict the new triple about a
relation only by observing several associated triples. S-shot link prediction enables the model
to learn the most important knowledge by transmitting meta-information specific to relation,
and the learning speed is faster, which corresponds to relation element and gradient element
respectively. Xiong et al. [41] propose a metric-based long tail link prediction method, that
is, when there are few sample instances of a certain relation, the subject entity is predicted by
the header entity and the relation. In FSRL [44] proposed by Zhang et al., given a small set of
reference entity pairs for each relation, learning can effectively infer the matching function of
real entity pairs. REFORM [35] proposes a new method for error perception of small sample
completion problem and a principle completion framework. Specifically, it constructs prob-
lems under the framework of less shot learning, and its goal is to accumulate meta-knowledge
among different meta-tasks, and generalize the accumulated meta-knowledge into meta-test
tasks, so as to realize the error-aware less shot knowledge graph. MTransH [27] establishes
a global phase novel and focused neighborhood aggregator, which accurately integrates the
neighborhood semantics of a few shot relations, so that it can filter noisy neighborhoods even
when the neighborhoods are extremely sparse. FAAN [30] proposes an adaptive attention
network based on adaptive entity and reference representation. Specifically, entities are mod-
eled by an adaptive neighborhood encoder to identify their task-oriented roles, and references
are modeled by an adaptive perceptual query aggregator to distinguish their contributions.

1246 World Wide Web (2023) 26:1243–1270

1 3

In addition, attention mechanisms are applied to capture fine-grained semantics of entities
and references for better representation. P-INT [42] is able to infer and utilize the expressive
encoding of the relation between two entities at the path level. In addition, P-INT can capture
fine-grained matches, and can calculate path interactions instead of simply mixing interactions
between each entity pair. MateP [12] can extract patterns with high performance through a
module called convolution pattern learner, and then accurately measure the effectiveness of
triples by matching queries and referring to patterns. FTAG [23] proposes a one-time learn-
ing framework, which is used to predict links in temporal knowledge graphs with few sam-
ples. FTAG model uses a self-attention mechanism to effectively deal with the time interaction
modeling between different entities, and then the model uses a similarity calculation network
to calculate the similarity score between a given query set and a (one-time) example.

2.4 Discussion

Different from the static knowledge graph completion methods, our model uses a temporal
neighbor encoder to complete entity embedding, considering the impact of temporal informa-
tion on the completion task. Different from the temporal knowledge graph completion methods,
our model takes the long tail relation in the temporal knowledge graph into account, and trains
the model based on meta-learning to solve the problem that there are only a few samples in
some relations. Few-shot knowledge graph completion methods does not consider the informa-
tion sharing among fewer entities and the adverse effects caused by wrong information. In our
model, self-attention mechanism is used to aggregate temporal information, a cyclic automatic
aggregation network is used to aggregate reference machines to enhance interaction ability, and
fault-tolerant mechanism is used to reduce the impact of error information in datasets, so as to
improve the completion performance on the few-shot temporal knowledge graph.

3 Problem formulation

3.1 Few‑shot temporal completion task

The representation of temporal knowledge graph is a quaternary that can be described by (s,
r, o, t), where s and o represent entities, r represents relations, and t represents timestamps. In
the task of temporal knowledge graph completion, there are mainly two kinds of tasks: com-
pleting the missing entities s or o, and completing the missing relations r between entities. In
this paper, we study the first task to complete the missing objective entity o.

3.2 Few‑shot temporal knowledge graph training

The purpose of training is to construct and train a model with only a few marked instances
for each relational class, so as to complete the temporal knowledge graph with a few samples.
The goal of meta-learning is to learn quickly from a few instances of the same concept and
gain the ability to continuously adapt to more concepts. After defining the task requirements,
meta-learning with the ability of fast training and self-learning with few samples is very suit-
able for our needs. Therefore, we use the meta-learning method based on optimizer to estab-
lish a multi-module framework to complete the task of temporal knowledge graph with few

1247World Wide Web (2023) 26:1243–1270

1 3

samples. In this meta-learning framework, we have a large number of task sets, and we need
to merge the task sets. In this context, each task corresponds to a corresponding scene, and
the number of samples is very small. In this way, we can use the information between differ-
ent tasks and share information, which can solve the problem of missing information caused
by scarce data. By using embedded shared information, we can solve the negative problem
caused by less data information in less sample data to a certain extent, improve the usability
of each task information, and improve the performance of temporal knowledge graph com-
pletion with less samples.

First of all, we have a bunch of tasks, which are divided into training set Dtrain
r

 and
test set Dtest

r
 . In the training set Dtrain

r
 , only entity pairs with few samples of relation R are

included, while in the test set Dtest
r

 , all entity pairs of relation R are included. Then we
define the loss function of relation r as the following form:

where ⊖ is a collection that represents all the parameters in the model and Qsi,r,ti
 is the

remaining candidate entities set.
Then we define the objective function of the model as the following form:

where |Dtest
r

| is the number of quad (s, r, o, t) in Dtest
r

.
In the following Sect. 3, we will talk about how to calculate and optimize the above

functions to achieve our results.

3.3 Related settings

The problem of temporal knowledge graph completion with few samples mainly comes
from the problem of scarce training data. In the previous researches on static knowledge
graph completion, the training framework with few samples based on meta-learning can
deal with the problem of static knowledge graph completion very well. On this basis, we
further extend it to the task of temporal knowledge graph completion with few samples.

Firstly, given a temporal knowledge graph, we divide the relations into two groups
according to the frequency of occurrence, which are frequent relations and sparse rela-
tions. Since the goal of our paper is temporal knowledge graph completion with few
samples, we use sparse relations to construct the task set needed for our model train-
ing. In the task set, each relation has its own corresponding test set Dtest

r
 and training

set Dtrain
r

 . A few-shot temporal knowledge graph completion task is always defined for
a specific relation. During prediction, there is usually more than one quadruple to com-
plete in a task. Under a given support set, we call the set of all quadruplets to be pre-
dicted as the query set. The query set and support set are represented as follows:

where E stands for entity collection, which contains all the entities in the dataset.

(1)L⊖

(
si, oi, ti|Qsi,r,ti

,Dtrain
r

)

(2)min⊖�T

[
∑

(
si,oi,ti,Qsi ,r,ti

)
∈Dtest

r

L⊖

(
si, oi, ti|Qsi,r,ti

,Dtrain
r

)

|Dtest
r

|

]

(3)Dtest
r

=
{
si, r, oi, ti|si, oi ∈ E

}

(4)Dtrain
r

=
{
si, r, oi, ti|si, oi ∈ E

}

1248 World Wide Web (2023) 26:1243–1270

1 3

The support set Dtrain
r

 contains a tagged instance of a task set. In each training scenario,
a relation and a quad containing the relation are selected randomly to form the support set
used by our training. We use a time-dependent approach to pick quads for the query set.
When building a query set, the quad of the query set is limited by the distance between
them and the timestamp in the supporting set, which is expressed as follows:

where ti represents the timestamp of the query instance in the current query set, and y rep-
resents the distance from its corresponding timestamp in the supporting set. The support
set Dtrain

r
 in Eq. 5 represents the set of training tuples before and after a specific time point.

The representation is shown in Figure 1, and the solid line with arrows represents the tem-
poral knowledge graph quadruple at the current timestamp.

The ultimate goal of model training is to optimize the score by using the loss func-
tion of each scenario training, so that entities are ranked according to the similarity
score in the query set, and the higher the ranking entity object should be the real entity
we need. In the whole task set, we divide all the relations into three mutually exclusive
sets to ensure that there is no overlap between their relations. In order to ensure the
accuracy and reliability of our experiment, we also require that the timestamps in the
three sets are different from each other. The representation is shown in Figure 2.

In the whole training process, all entities and relations are invisible to the outside
world. That is to say, given a temporal knowledge graph as the background and expressed
as G�

= (s, r, o, t|s, o ∈ E) , E as the entity set and r as the relation, they are closed and
visible internally in the whole training process. In this work, the background knowledge
graph G′ is a subset of the temporal knowledge graph G , and we remove the quadruplets
used for training and testing.

4 Model

In this section, we propose a model named FTMF to complete the few-shot temporal knowl-
edge graph. FTMF model includes time series neighbor encoder module, cyclic automatic
coding aggregator module, fault-tolerant mechanism module, and similarity network mod-
ule. The framework of FTMF model is shown in Figure 3. Firstly, all connected entities of a
unified relation under a unified timestamp are encoded by neighbors, and the feature vector
representation of an entity’s temporal neighborhood is outputted. After that, the reference
set is recursively aggregated by a cyclic automatic aggregator. The relation is improved by
fault-tolerant mechanism, and a query network is outputted. Finally, the similarity score of
the reference set and the query set is calculated by using the similarity network.

(5)Dtrain
r

=
{
si, r, oi, ti|si, oi ∈ E, ti ∈

[
ti − y, ti + y

]}

Figure 1 The construction of query set and support set

1249World Wide Web (2023) 26:1243–1270

1 3

4.1 Time series neighbor encoder

In this subsection, we propose a new neighbor encoder that can compute the representa-
tion of neighbor events to improve the representation of topic entities. Entity embed-
ding based on relational information has been proposed and applied many times. It is
proved that the local coding structure of explicit graph has good performance in relation
prediction and can be applied to temporal knowledge graph completion. In the previous
neighbor encoders, such as GMatching [41], Xiong et al. propose a neighbor encoder
to enhance the embedding of entities by their one-hop neighbors; FSRL [44] designs a
relation-aware heterogeneous neighbor encoder by considering the different influences
of relational neighbors, and then encodes the features of the entity pair. All of them
adopt static encoding mode. Although these methods can achieve good performance, it
is obviously not suitable for our requirements. On this basis, we design a new encoder
that combines snapshot aggregation and continuous aggregation to represent the neigh-
bor encoding of a given entity under a certain time stamp.

In order to better represent the composition structure of entity, relation and temporal
information, we uniformly express the set of neighbors (relation, entity, time) of a given
header entity s as Nh =

{(
ri, oi, ti

)
|
(
s, ri, oi, ti

)
∈ G�

}
 , where G′ is the background tem-

poral knowledge graph, ri , oi , and ti represent the i − th relation and the corresponding
object entity and current temporal point of s , respectively.

Given the primary entity h, we define N (h) as the set of all adjacent entities con-
nected to the entity h with relation r at time t. Then the adjacent coding mainly consists

Figure 2 The representation of training set, verification set and test set on timeline

Figure 3 The framework of FTMF model

1250 World Wide Web (2023) 26:1243–1270

1 3

of snapshot aggregation and continuous aggregation. Snapshot aggregation can encode
a single-hop neighborhood at a given timestamp t, while continuous aggregation can
generate a temporal neighborhood representation based on the previous timestamp t.

Snapshot aggregation mainly aggregates the local neighborhood information of a given
specific timestamp t, and the aggregation mode and representation form are as follows:

where � is a nonlinear activation factor function, Csr
 is a normalized factor, W ∈ R2d×d and

b ∈ Rd×1 represent Learnable parameters, er and es represent relations and entities respec-
tively, [:] represents a concatenation.

Continuous aggregation can aggregate the previous l-step {t—l, ……,t—2, t—1} times-
tamps into a snapshot sequence. Here we use an attention-based encoder and decoder
model to model the sequence of events. The encoder part is used to encode the informa-
tion and capture the time-dependent information in the sequence of events effectively. The
function of this part is mainly completed by the attention layer and the position-wise layer.

The attention layer mainly projects the input sequence into a query and a set of key-
value vectors. The specific way and representation form are as follows:

where WO,W
Q

i
 , WK

i
 , and WJ

i
 are parameter matrices, and WO ∈ R2d×hdv , WQ

i
∈ R2d×dq ,

WK
i
∈ R2d×dk , WJ

i
∈ R2d×dj.

In order to be suitable for our model, we add the coding work of the corresponding posi-
tion in the input embedding of the model, so that our model can be applied to sequence
order. The purpose of using position coding is to add the relative position information or
absolute position information of each element to the input sequence of the model. The spe-
cific representation form is as follows:

where pos represents the position of the corresponding sequence, and f represents the
dimension of the corresponding sequence.

The position-wise layer is a fully connected feedforward neural network, which trans-
forms functions into matrix operations, and uses multi-layer networks to carry out iterative
operations for many times, which are applied to each sequence in the same form.

(6)�(N(s)) = �(
1

Csr

∑∑
(WT

[
er ∶ es

]
+ b))

(7)xh = [�(N(s)) ∶ es]

(8)MultiHead(Q,K, J) = [head1 ∶ ⋯ ∶ headm]W
O

(9)headi = Attention(QW
Q

i
,KWK

i
, JWJ

i
)

(10)Attention(Q,K, J) = softmax(
QKT

√
dk

)J

(11)PE(pos,2f) = sin(
pos

10000
2f

2d

)

(12)PE(pos,2f+1) = cos(
pos

10000
2f

2d

)

1251World Wide Web (2023) 26:1243–1270

1 3

In the encoder, we take the neighborhood snapshot representation sequence
x = {xt−l,⋯ , xt−2, xt−1} , the number of layers of the feedforward neural network and the
number of attention headers as the input of the encoder. By calculation, the neighbor snap-
shot sequence x of the input is finally mapped to a time-aware sequence output. The spe-
cific representation form is as follows:

where p represents the corresponding sequence output, numhead and numlayers represent the num-
ber of attention heads and the number of layers of the feedforward neural network respectively.

Therefore, we can calculate the neighborhood representation sequence of the main
entity s at time t, and the representation is as follows:

where W∗ ∈ R2dl×doutput is a parameter matrix, [:] represents a concatenation, and � is a non-
linear activation factor function.

The model diagram of the time series neighbor encoder is shown in Figure 4. All connected
entities with the same relation at the same point in time first pass through the snapshot aggrega-
tion network, then act as input to the continuous aggregation network, and the result of the output
is evaluated with the parameter matrix to finally output the feature representation of the entity.

4.2 Cyclic automatic coding aggregator

In this subsection, we design an aggregator network of cyclic automatic encoder aggregator to
perform aggregation embedding for each relation. Because the existing model does not have the
ability to deal with small sample instances interactively, we need to design a module to effec-
tively formulate the aggregation embedding of reference set Rr for each relation r and complete
the embedding of temporal information, so as to improve the performance of the model.

We can obtain the representation of
(
sk, ok, tk

)
 in the form of ϵsk ,ok ,tk =

[
ℕ(sk)⊕ ℕ(ok)

]
 ,

by applying the neighbor encoder ℕ(s) to each entity pair
(
sk, ok, tk

)
∈ Rr . Learning

to use reference set representation of entity pairs with few shots is a great challenge,
because it needs to effectively model the interaction between different entity pairs and
accumulate their expressive ability on this basis. We define the embedding of Rr by
aggregating representations of all entity pairs in Rr [4, 31] as follows:

where AG is an aggregate function. In the whole model, it plays a role in pooling operation
and feedforward neural network.

Aiming at the application of recurrent neural network aggregator in graph embed-
ding and getting good results [6], we design a cyclic automatic encoder aggregator to
deal with the interaction between few samples. Specifically, the entity pair embeddings
ϵsk ,ok ,tk ∈ Rr are sequentially fed into a recurrent autoencoder by:

(13)FNN
(
xT
)
= max

(
0, xTW1 + b1

)
W2 + b2

(14)output = [pt−l,⋯ , pt−2, pt−1]

(15)p = Attention(x, numhead, numlayers)

(16)ℕ(s) = �([pt−l ∶ ⋯ ∶ pt−2 ∶ pt−1]W
∗)

(17)f�
(
Rr

)
= AG(sk ,ok ,tk)∈Rr

{
ϵsk ,ok ,tk

}

1252 World Wide Web (2023) 26:1243–1270

1 3

where k is the size of reference set.
Both nk and dk−1 are hidden states of the decoder. nk stands for encoding, dk−1 stands

for decoding, and nk and dk−1 are calculated as follows:

where RNNencoder represents recurrent encoder and RNNdecoder represents decoder.
Combined with the above information, we define the reconstruction loss for optimiz-

ing autoencoder as:

where ϵsk ,ok ,tk is the embedding of entity pair. Under the action of recurrent neural network
aggregator, we get the decoding vector dk . The role of Lre is to merge with relation-level
losses to optimize the representation for each entity pair, thereby improving the perfor-
mance of the model.

Next, we embed the reference set. We aggregate all the hidden states of the encoder,
and add residual links [8] and attention weights to further expand the reference set. We
define f�

(
Rr

)
 as follows:

(18)ϵs1,o1,t1 → n → ⋯ → n → dk → ⋯ → d1

(19)nk = RNNencoder(ϵsk ,ok ,tk , nk−1)

(20)dk−1 = RNNdencoder

(
dk
)

(21)Lre(Rr) =
�

k
‖dk − ϵsk ,ok ,tk‖

2

2

(22)n
�
k = nk + ϵsk ,ok ,tk

(23)�k =
exp{�T

R

�
WRn

�
k + bR

�
}

∑
k� exp{�

T
R
(WRn

�
k� + bR)}

Figure 4 The diagram of the time series neighbor encoder

1253World Wide Web (2023) 26:1243–1270

1 3

where �R ∈ ℝ
(d×d×1) , WR ∈ ℝ

(d×d×2d) , bR ∈ ℝ
(d×d×1) (d: pre-trained embedding dimension).

The processing of the aggregation network of cyclic automatic encoders is shown in
Figure 5. We first use the steps in Eq. (18) to input the embedding of the entity pair into
the cyclic automatic encoder aggregator, and combine the loss through the action of the
encoder and decoder in Eq. (19) and Eq. (20) to obtain the final loss. The representation
of the final reference set is then obtained through the aggregate processing of the hid-
den state units. The cyclic automatic encoder is mainly composed of two parts, namely
encoder and decoder. The encoder combines the LSTM aggregation of a small number
of reference sets and the entity’s feature representation vector generation relation with a
small sample embedding. The decoder combines the LSTM aggregation of a small num-
ber of reference sets and the intermediate quantities of the entity’s feature representation
vectors to calculate the loss function.

4.3 Fault‑tolerant mechanism

Errors are common in temporal knowledge graphs with few samples, and will cause
troubles to applications. In the process of completing the temporal knowledge graph
with few samples, because the number of supported instances in each meta-training
task (each relation) is extremely limited, it cannot support enough training to ensure
the integrity. Therefore, even if there is a small amount of error information in the sup-
port set, it may have a great adverse impact on the information sharing and informa-
tion utilization among different elements. In that case, it will affect the integrity of the
temporal knowledge graph with few samples and the performance of the by-election
model. In previous studies, we propose a new inter-neighbor encoder which can gener-
ate neighborhood information. In the process of entity and time information embedding,
it can complete information embedding well and reduce the influence of periodic errors.
However, due to data reasons, there will inevitably be some wrong information in the
support set, so there may still be wrong query instances in the query set.

(24)f�(Rr) =
∑

k
�kn

�
k

Figure 5 The cyclic automatic aggregation network for reference set

1254 World Wide Web (2023) 26:1243–1270

1 3

In the model, we use Graph Convolution Neural Network (GCN) [14] to calculate each
different query instance, and generate the corresponding confidence weights of different rela-
tions, so as to reduce the inevitable error influence caused by the support set and improve the
performance of the model. In detail, since incorrect information is inevitable in the support
set, the levels of different relations should be different, and we should divide them accord-
ingly. For example, in the support set, if there are a large number of entity pairs with error
information in a relation, we need to reduce the confidence of query entity pairs belonging to
the relation, that is, the relation is unreliable. Therefore, in this way, we need to set a confi-
dence weight for each relation in the support set based on the instance information that each
relation has. Specific to the model, in the support set, we need to measure the impact of dif-
ferent instances on specific query instances, and build a query-oriented graph, in which dif-
ferent support instances are represented by nodes and their intimacy is represented by edges.
Therefore, the graph structure is different for different query instances, so we can apply it to
different query instances, which has strong flexibility and adaptability. In the process of build-
ing the query graph, we first need to embed each node, that is, different query instances. The
specific embed representation is as follows:

where esa is the embedding of the supporting instance of step a in the supporting set and esq is the
embedding of a specific query instance in the query set. �� is a fully connected layer that graphs
link input to a new embedding space. V is the final embedding matrix of a different node. In addi-
tion, ⊕ represents the link factor, and ⊙ represents the product operation between elements.

Through the above calculation, we can interact and model between different supporting
instances in the support set and specific query instances in the query set, so as to establish a
graph embedded node matrix that can retrieve novelty.

After node matrix calculation, we need to process the similarity matrix of different
nodes. The processing method is to use a fully connected layer to calculate the similarity
matrix of different nodes in the query graph and normalize it by row. The specific calcula-
tion and processing methods are as follows:

where [A]ij represents the data information of i-th row and j-th column in matrix A.
Each row in matrix A is normalized by adapting softmax function. After that, in order to

measure the credibility of each supporting instance in the support set to the query instance, we
adopt a GCN layer with remaining links for calculation processing, and the specific calcula-
tion processing method is as follows:

where Wv ∈ Rd×d and Wu ∈ Rd are learnable parameters, ÃVWv can propagate information
through different nodes in query-oriented graph, and V can be regarded as a residual link [36].

Because the node graph is a fully connected graph, it’s not necessary to spend extra layers to
calculate, so we only need one layer to propagate all information. After calculating the sigmoid

(25)va = 𝜙𝜐(esq ⊕ esa ⊕ (esa+esq)⊕ (esa⊙esq))

(26)V = (v1, v2,⋯ , vn) ∈ Rn×d

(27)[A]ij = �
(
vi
)T
�(vj)

(28)Ã = softmax(A)

(29)confidence = sigmoid((V + ÃVWv)Wu) ∈ Rn

1255World Wide Web (2023) 26:1243–1270

1 3

function, we can get a length vector, in which each element represents the confidence score of
the support instance in the support set for a specific query instance. In this case, we need to
obtain the maximum value on each row of the new matrix, thus generating the credibility weight
of a specific query instance for each relation. The specific calculation method is as follows:

where [w]i represents the confidence weight of the i-th relation for a specific query instance.
Therefore, we can quantify the reliability of the relation between specific query instances,

which can reduce the inevitable errors caused by data problems in temporal knowledge graphs.
After completing the above steps, we use the concept of energy function [2, 34, 38] to cal-

culate a unique energy fraction for each relation in the support set as follows:

where Energy represents the energy function, esq and ri represent the advance and the i-th relations
in the querying machine, We represents a trainable weight matrix, and � is an activation function.

Finally, in order to get the distribution probability of each relation, we jointly calculate the
above energy score and credibility weight, and the specific calculation method is as follows:

After that, the loss of each query instance in the query set can be calculated by cross
entropy loss in the process of meta-training, and the specific calculation method is as follows:

where bej
i
 indicates whether the i-th query instance belongs to the j-th relation, and there

are only two values of be: if it belongs, the value of be is 1, otherwise, the value of be is
0. probabilityj

i
 , which indicates the class allocation probability that the i-th query instance

in the support set is allocated to the j-th relation category, specifically refers to the class
allocation probability that the i-th query instance is allocated to the j-th relation category.

The query graph of fault-tolerant mechanism is shown in Figure 6. Firstly, the entities in
query set and support set are processed into node matrix through bucket layer, and then the
confidence level is calculated by GCN and neural network, and the confidence level is taken as
edge. Finally, a fully connected query graph is formed.

4.4 Similarity network

In this subsection, we will present how to efficiently match the reference set Rr with each
query pair

(
sl, ol, tl

)
 in the set of all query pairs of relation r. We add temporal information pro-

cessing in the matching network, which makes the similarity score calculated by the matching

(30)Confidence = reshape(confidence) ∈ Rn×d

(31)[w]i = max{[w]i1, [w]i2,⋯ , [w]id}

(32)rescorei = −Energy
(
esq, ri

)
= −�

(
Weesq

)T
�(ri)

(33)probability
�

i
=

exp(rescorei)∑n

k
exp(rescorek)

[w]i

(34)probabilityi =
probability

�

i∑n

k
probability

�

i

(35)Lr = −
1

|Dtest
r

|
∑|Dtest

r
|

i

∑n

j
be

j

i
ln(probability

j

i
)

1256 World Wide Web (2023) 26:1243–1270

1 3

network more accurate. Based on the previous work, we can obtain two embedding vectors
ϵsl,ol,tl =

[
f𝜃(sl)⊕f 𝜃(ol)⊕ f𝜃(tl)

]
 and f�

(
Rr

)
 respectively by applying the time-based relational

aware heterogeneous neighbor encoder f� and the reference set aggregator f� to the query
entity pair

(
sl, ol, tl

)
 and the reference set Rr . We adopt a recurrent processor f� to perform

multiple steps matching, in order to measure the similarity between two vectors. We define the
t − th process step as follows:

where RNNmatch is the LSTM [9] cell, and it includes the input ϵsl,ol,tl , the hidden state
gradientt and the cell state ct . gradientT is the last hidden state after T “processing” step,
and what it does is to refine embedding of query pair

(
sl, ol, tl

)
∶ ϵsl,ol,tl = gradientT.

In order to make a good calculation for the subsequent ranking optimization process,
we use their inner product results between ϵsl,ol,tl and f�(Rr) as their similarity score. The
detailed flow of the matching network is shown in Figure 7. First, the query set and LSTM
are combined to embed, then the reference set and LSTM are combined to calculate, and
finally the similarity score is obtained.

4.5 Target mode training

In order to acquire the reference set Rr for the query relation r, we randomly sample a set of few
positive (true) entity pairs

{(
sk, ok, tk

)
|
(
sk, r, ok, tk

)
∈ G

}
 . After that, we define the remain-

ing positive (true) entity pairs as Pϵr =
��

sl, ol, tl
�
�
�
sl, r, ol, tl

�
∈ G

⋂�
sl, ol, tl

�
∉ Rr

�
 and

use Pϵr as positive entity pairs. In addition, we contaminate the object entities and create
a group of negative (false) entity pairs Nϵr =

{(
sl, o

−
l
, tl
)
|
(
sl, r, o

−
l
, tl
)
∉ G

}
 . Thus, we can

formulate the ranking loss as:

(36)gradient
�

t
, ct = RNNmatch

(
ϵsl,ol,tl ,

[
ggradientt−1 ⊕ f𝜖

(
Rr

)]
, ct−1

)

(37)gradientt = gradient
�

t
+ ϵsl,ol,tl

Figure 6 The query graph of fault-tolerant mechanism

1257World Wide Web (2023) 26:1243–1270

1 3

where [x]+ = max[0, x] is standard hinge loss, and � is the safety margin distance, S(sl,o−l ,tl)
and S(sl,ol,tl) are the similarity scores between query pairs

(
sl, ol∕o

−
l
, tl
)
 and reference set Rr.

By taking advantage of the reconstruction loss Lre of reference set aggregator, we can
define the final objective function as follows:

where � is trade-off factor between Lrank and Lre.
In order to minimize Ljoint and optimize the model parameters, we treat each rela-

tion as a task. We design a batch sampling based on meta-training procedure. Current
temporal knowledge graphs such as GDELT and ICEWS can play a huge role in ques-
tion answering and personalized recommendation. The long-tail phenomenon in such
knowledge graphs is also very important. In some relations, there are only a small
number of samples, which increases the difficulty of knowledge graph reasoning. In
order to better complete the training of the model, for a specific knowledge graph, we
first divide the dataset according to its size and the degree of long-tail problems, and
then sample the reference set and query set from the selected experimental dataset.
The construction of the background graph and the training of the pre-trained temporal
knowledge graph embedding are completed before model training. After that, we will
complete the training of the model according to the process shown in Algorithm 1.
Firstly, the input part includes the meta-learning task set T of the relation part, the
background TKG G′ , the pre-training embedding of a few temporal knowledge graphs
and three original model parameters. When the training task is not completed, the rela-
tion in the meta-learning task set is shuffled first, then the entity pairs with small sam-
ples are selected as the reference set, and then a new time-based quadruple is created
by using the existing quadruple (lines 01–04). For L in each training task, the model
first selects a few-shot entity pair as a reference set, and extracts a set of query sets, and
then generates a set of negative entity pairs for experiments by polluting object enti-
ties. Then, according to the proposed formulas (lines 05–13), the feature vector repre-
sentation of the temporal neighborhood of the subject entity is calculated in turn. The
reconstruction loss of the optimized automatic encoder, the challenge of embedding
and formulation, the sorting loss, the loss of calculating the fault-tolerant relation, and
finally the loss function of the whole model are calculated. After that, the model needs
to update the optimizer parameters according to the calculation results until all tasks
are completed (lines 14–15). Finally, the model needs to return an optimal set of model

(38)L
rank

=
∑

r

∑
(sl,ol ,tl)∈Pϵr

∑
(sl,o−l ,tl)∈Nϵ

r

[
� + S(sl,o−l ,tl)

− S(sl,ol,tl)

]

+

(39)Ljoint = Lrank + �Lre + Lr

Figure 7 The matching network for query pair and reference set

1258 World Wide Web (2023) 26:1243–1270

1 3

parameters (line 18) based on the descent of the gradient as the model calculates. The
new parameter set will be used as an optimal parameter for training new tasks.

Algorithm 1 FTMF Meta-Training

Input: Meta-training task(relation) set ,

Background TKG ,
Pre-trained TKG embeddings,

Initial model parameters , and
01 while not done do

02 Shuffle tasks(relations) in

03 Sample few-shot entity pairs as reference set

04 Contaminate the object entity of to create

05 for do
06 Sample few-shot entity pairs as reference set

07 Sample a batch of query entity pairs

08 Pollute the object entity of

09 Calculate the feature representation of by Equation (16)

10 Calculate the reconstruction loss for optimizing autoencoder re by Equation (21)

11 Calculate the challenge and formulate the embedding by Equation (24)

12 Calculate the loss of query instances in query set by Equation (35)

13 Calculate the ranking loss by Equation (38)

14 Accumulate the loss function by the Equation (39)

15 Update parameters by Adam (adagrade) optimizer

16 end
17 end
18 return Optimal model parameters , and

5 Experiment

5.1 Experimental setup

5.1.1 Datasets pre‑processing

In the experiments, we use two public datasets. One is based on ICEWS [3] and the other
is based on GDELT [17]. Inspired by the thought of Gmatching model, we process ICEWS
and GDELT to meet the few-shot criteria. In addition, we follow the dataset partition setting
method proposed by Xiong et al. [41], in which the relations are selected with less than 500
but more than 50 triples as the few-shot task. We keep the number of entities per relation
between 50—500 by extracting the relation between the number of conforming standards in
the whole dataset. Then we control the number of relations under 100. For each set of entities
of the relation, we divide the number of entities in the training set, test set and verification set
into a ratio of 70: 15: 7. Table 1 lists the statics of the two datasets.

5.1.2 Baseline methods

In the structure of our model, the vector representation of entities and temporal neighbor
encoder are involved. Some models in related work have similar structures. Therefore, in the

1259World Wide Web (2023) 26:1243–1270

1 3

selection of baseline models, we choose the models with better performances on the target
dataset and the latest model as the experimental comparison models. In this subsection, we
mainly introduce two kinds of baseline models for comparisons.

Vector representation and relational embedding model. This kind of model is mainly to
embed the entity or the relation through modeling the relation structure. We adopt the follow-
ing models for comparative experiments: TransE [2], DistMult [43], TTransE [16], TA-TransE
[5] and TA-DistMult [5]. The parameter settings of all experimental datasets are exactly the
same as the pre-processed few-shot datasets we used.

Neighborhood coding model. This kind of model combines graph local neighborhood
encoder and matching network to learn entity embedding and predict new fact relations. We
adopt the following models for comparative experiments: RE-Net [13], GMatching [41],
MateR [37] and FSRL [44]. The parameter settings of all experimental datasets are exactly the
same as the pre-processed few-shot datasets we used.

5.1.3 Experimental parameter settings

In order to further improve the performance of the model, we carry out a pre-training process for the
data before formal training. Considering all kinds of factors, we choose Complex as the pre-training
input. For our model, we make some parameter optimization and the main parameter settings are as
follows: (i) The embedding dimension n of the two datasets is uniformly set to 100. (ii) LSTM is used
as the reference aggregator and matching processor. The hidden dimension h of LSTM is consist-
ently set to 200. (iii) For two datasets, the maximum local neighborhood number of the heterogeneous
neighborhood encoder species q is 30. (iv) In the process of updating model parameters, we choose
Adam optimizer. (v) For both datasets, we set the number of steps p in the matching cycle in the net-
work to 2. (vi) The initial learning rate λ is 0.001, and the weight attenuation a is 0.25. (vii) The edge
distance m in the objective function is set to 5.0 and the transaction factor f is set to 0.0001. (viii) In the
construction of entity candidate sets, we set the maximum size x of the two datasets to 1000.

For other models, the original optimal parameters may lose their optimal performance due
to the change of datasets. Therefore, we reproduce all other models to determine the optimal
parameters when they achieve the optimal performance, and the results obtained are all opti-
mal results. For models Gmatching, MateR, and FSRL, the optimal parameter settings are the
same as our model. The specific optimal parameter list of each model is shown in Table 2.

For the other baseline models used in the experiments, the specific optimal parame-
ters are shown in Table 3. In Table 3, λ represents the learning rate, and its candidate set
is {0.01, 0.001, 0.0001}. n repesents the latitude of vector embedding, and its candidate
set is {128,256,512}. B represents the batch size of training data, and its candidate set is
{256,512,1024}. v represents the discard probability, and its candidate set is {0.1, 0.3, 0.5}.
In addition, we retain the original parameter settings for each models’ specific parameters.

5.1.4 Experimental evaluation index

In order to evaluate the performances of our model and compare with other models, we use
some specific indicators to evaluate the results. We use the relations and entities in the training

Table 1 Statistics of ICEWS-
Few and GDELT-Few

Dataset #Ents #Quads #Relations #Tasks #Times

ICEWS-Few 7531 391,936 253 102 632
GDELT-Few 4570 270,858 225 90 485

1260 World Wide Web (2023) 26:1243–1270

1 3

data, so that the model has the ability of self-learning. On this basis, we use the verification set
and the test set to evaluate the model, so as to optimize the performance of the model. We use
the hit ratio (Hits@) and the mean reciprocal rank (MRR) to compare the performances. In the
selection of hit ratio, we chose the following three hit ratio: Hits@1, Hits@5, and Hits@10.

5.2 Experimental comparisons

5.2.1 Experimental comparison with baselines

Verification and test performance comparisons on ICEWS-Few and GDELT-Few are pre-
sented in Table 4. In all experimental results, the pre/post scores represent experimental data
from the validation/test set, respectively. The best results of all the experiments are shown in
bold, and the best results of the comparative experiments are underlined.

As shown in Table 4, for a clearer comparison of the experimental results, they are pre-
sented in Figure 8 as well. The figure on the left shows the test results of each model on
ICEWS-Few and the figure on the right shows the test results of each model on GDELT-
Few. The performances of different models correspond to the data parts of different colors.
From Figure 8, we can clearly compare the performance of different methods under the
same data set. We can draw the following conclusions:

 i). The completion performances of the models using neighbor coding are higher obvi-
ously. It proves that using neighbor coding can solve the disadvantage of insufficient
entity embedding representation. The dataset used in the experiment is temporal knowl-
edge graph dataset. The experimental results show that the performance of temporal
knowledge graph completion method is better than that of static knowledge graph
completion method, so the temporal information in temporal knowledge graph comple-
tion task is very important. Moreover, we can better represent entities by processing
time series, and finally improve the embedding ability of entities by improving the
representation form of entities, thus improving the performance of the model, which
shows that neighbor coding is more suitable for entity embedding.

 ii). Among all the results, FTMF has better performances, which directly shows that the
combination of time series encoder, cyclic recursive aggregation network, fault-tolerant
mechanism and similarity network can enhance the representation ability of entities to a
greater extent, and at the same time reduce the adverse effects caused by error information
in temporal knowledge graph with few samples. It can further improve the completion
performance of the model.

Table 2 The optimal hyper-parameters for baseline models on both datasets

Model n λ x h q p a m f

Gmatching [41] 100 0.001 1000 200 30 2 0.25 5.0 0.0001
MateR [37] 100 0.001 1000 200 30 2 0.25 5.0 0.0001
FSRL [44] 100 0.001 1000 200 30 2 0.25 5.0 0.0001
FTMF 100 0.001 1000 200 30 2 0.25 5.0 0.0001

1261World Wide Web (2023) 26:1243–1270

1 3

5.2.2 Comparison over different relations

In order to better verify the validity and stability of our model, we set up comparative experi-
ments with different relations, where relationId represents a class of relations in a dataset. In
this group of experiments, we not only validate the overall performances of all relations, but
also evaluate the performances of each relation in the test dataset. The comparative models are
FTMF and FSRL. The datasets used in the experiments are ICEWS-Few and GDELT-Few,
and the experimental evaluation indexes used in the experiment are the same as before. The
experimental results are listed in Table 5 and Table 6. The pre/post experimental scores repre-
sent the scores of FTMF and FSRL respectively.

It can be observed from Table 5 and Table 6 that the value of variance is large. It can be explained
by the fact that the size of candidate sets corresponding to different relations is also different. The
experimental results show that the performance of our model is much better than that of FSRL on
some specific relations. It can be explained by the fact that temporal information is very important
for completion task on some task relations. In our model, the combination of time series encoder and
cyclic recursive aggregation network can effectively utilize temporal information, solve the disadvan-
tage of insufficient entity embedding representation, and improve the model performances. In addi-
tion, we can see that the less relations, the higher the scores of each index. The scores of FTMF are
higher than FSRL in most cases. At the same time, it can be observed that FTMF is more stable, has
higher fault tolerance, and is more competent for the temporal knowledge graph completion.

5.3 Ablation study

Our model is a joint learning framework composed of multiple neural network modules,
so the existence of each module has a certain impact on the performance of the model.
Therefore, we perform ablation experiments to evaluate the influence of the four differ-
ent modules. The symbolic representations of ablation experiments are presented in
Table 7. The datasets used in the experiment are ICEWS-Few and GDELT-Few, and the
experimental evaluation indexes used in the experiment are the same as before. Table 8 and
Table 9 report the results of ablation experiments on ICEWS-Few and GDELT-Few. The
meaning of the "Bold" entries is to mark the best result. In all experimental results, the pre/
post scores represent experimental data from the validation/test set, respectively.

Without time series neighbor encoder (W1) This group of experiments are conducted to
verify the effect of time series neighbor encoder. We replace it with an embedded average pool

Table 3 The optimal hyper-parameters for baseline models on each dataset

Model ICEWS-Few GDELT-Few

λ n B v λ n B v

TransE [2] 0.0001 512 512 - 0.0001 512 512 -
DistMult [43] 0.01 512 1024 - 0.01 512 1024 -
TTransE [16] 0.001 512 512 0.0 0.001 256 512 0.0
TATransE [5] 0.001 512 512 0.0 0.001 256 512 0.0
TA-DistMult [5] 0.001 512 1024 0.0 0.001 512 1024 0.0
RE-Net [13] 0.001 256 1024 0.5 0.001 256 1024 0.5

1262 World Wide Web (2023) 26:1243–1270

1 3

Ta
bl

e
4

 V
er

ifi
ca

tio
n

an
d

te
st

pe
rfo

rm
an

ce
 c

om
pa

ris
on

s o
n

IC
EW

S-
Fe

w
 a

nd
 G

D
EL

T-
Fe

w

M
od

el
D

at
as

et
: I

C
EW

S-
Fe

w
D

at
as

et
: G

D
EL

T-
Fe

w

H
its

@
1

H
its

@
5

H
its

@
10

M
R

R
H

its
@

1
H

its
@

5
H

its
@

10
M

R
R

Tr
an

sE
 [2

]
0.

06
4/

0.
14

5
0.

12
7/

0.
26

4
0.

20
8/

0.
32

1
0.

11
5/

0.
18

8
0.

16
4/

0.
08

1
0.

24
1/

0.
09

6
0.

30
6/

0.
11

7
0.

28
1/

0.
12

9
D

ist
M

ul
t [

43
]

0.
07

1/
0.

15
8

0.
14

5/
0.

29
1

0.
20

2/
0.

32
9

0.
12

6/
0.

21
3

0.
18

6/
0.

07
6

0.
26

5/
0.

10
1

0.
32

4/
0.

13
3

0.
33

4/
0.

12
5

TT
ra

ns
E

[1
6]

0.
12

6/
0.

19
6

0.
28

1/
0.

34
5

0.
31

5/
0.

38
0

0.
25

6/
0.

21
7

0.
21

5/
0.

08
8

0.
39

6/
0.

13
5

0.
42

9/
0.

20
7

0.
35

0/
0.

15
3

TA
-T

ra
ns

E
[5

]
0.

11
7/

0.
19

0
0.

28
4/

0.
35

1
0.

33
3/

0.
37

8
0.

25
5/

0.
22

2
0.

21
4/

0.
09

3
0.

38
5/

0.
14

6
0.

42
8/

0.
21

3
0.

34
9/

0.
15

2
TA

-D
ist

M
ul

t [
5]

0.
13

1/
0.

19
8

0.
29

4/
0.

33
7

0.
35

6/
0.

37
9

0.
27

3/
0.

24
6

0.
22

3/
0.

11
4

0.
39

7/
0.

14
0

0.
43

7/
0.

23
5

0.
35

1/
0.

16
7

R
E-

N
et

 [1
3]

0.
17

8/
0.

17
7

0.
33

7/
0.

36
1

0.
48

7/
0.

47
1

0.
31

8/
0.

33
0

0.
27

6/
0.

15
6

0.
40

6/
0.

24
1

0.
46

1/
0.

34
2

0.
36

6/
0.

22
9

G
M

at
ch

in
g

[4
1]

0.
25

6/
0.

20
4

0.
43

6/
0.

39
8

0.
49

3/
0.

48
3

0.
34

7/
0.

29
8

0.
26

7/
0.

14
7

0.
40

0/
0.

25
3

0.
44

1/
0.

34
1

0.
35

3/
0.

23
0

M
at

eR
 [3

7]
0.

25
0/

0.
20

8
0.

42
5/

0.
36

5
0.

51
0/

0.
50

9
0.

38
6/

0.
28

0
0.

26
5/

0.
14

3
0.

41
5/

0.
27

0
0.

43
2/

0.
36

1
0.

35
2/

0.
22

1
FS

R
L

[4
4]

0.
28

1/
0.

20
2

0.
44

3/
0.

37
7

0.
50

8/
0.

51
4

0.
37

7/
0.

29
8

0.
27

9/
0.

14
5

0.
44

8/
0.

26
4

0.
45

9/
0.

35
5

0.
36

7/
0.

22
5

FT
M

F
0.
34
3/
0.
24
4

0.
55
1/
0.
43
9

0.
59
4/
0.
57
7

0.
45
1/
0.
35
5

0.
36
6/
0.
22
8

0.
55
7/
0.
39
8

0.
60
8/
0.
46
7

0.
43
2/
0.
27
3

1263World Wide Web (2023) 26:1243–1270

1 3

layer covering all neighbors. It can be seen from Table 8 and Table 9 that the performance of
the model decreases when the relational aware heterogeneous neighbor encoder is lost.

Without cyclic autoencoder (W2) This group of experiments are conducted to verify the
effect of cyclic automatic encoder aggregator network. We replace the cyclic automatic
encoder aggregator network with an average pool operation. According to the experimental
results in Table 8 and Table 9, it can be seen that our model has better performances.

Without Fault‑tolerant mechanism (W3) This group of experiments are conducted to ver-
ify the influence of fault tolerance mechanism. We removed the fault tolerance mechanism,
which means that all information, whether correct or not, will participate in the calculation.
It can be observed from Table 8 and Table 9 that our model has better performances.

Without matching network (W4) This group of experiments are conducted to verify the
effect of matching network on model performance. We cancelled LSTM and use the inner
product between query embedding and reference embedding as the similarity score. We can
observe that our model has better performance, which indicates that the circular matching net-
work has a good performance in calculating the correlation between queries and references.

5.4 Stability experiments

In this subsection, we study the influence of size K. The few-shot size represents the size of K and
K represents the size of reference set. We perform experiments on FTMF, FSRL, and GMatching
model, and set different K values for these three models. The datasets used in the experiments are
ICEWS-Few and GDELT-Few, and the experimental evaluation indexes used in the experiment
are the same as before. Experimental results are shown in Figure 9 and Figure 10.

It can be observed from Figure 9 and Figure 10 that FTMT, of FSRL, and GMatching
model have good completion performances with the increase of reference set size. It can be
explained by the fact that the number of selectable entities is increasing when the reference
set becomes larger. The loss function will be more accurate when recursive processing of
the reference set, which is conducive to improving the score ranking of entities in the can-
didate set. At the same time, the performance of FTMF is always better than the other two
models. This also shows that our proposed model has good ability in completing the few-
shot temporal knowledge graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hits@1 Hits@5 Hits@10 MRR

ICEWS-Few

TransE DistMult TTransE TA-TransE

TA-DistMult RE-Net Gmatching MateR

FSRL FTMF

0

0.1

0.2

0.3

0.4

0.5

Hits@1 Hits@5 Hits@10 MRR

GDELT-Few

TransE DistMult TTransE TA-TransE

TA-DistMult RE-Net Gmatching MateR

FSRL FTMF

Figure 8 Test performance comparisons on ICEWS-Few and GDELT-Few

1264 World Wide Web (2023) 26:1243–1270

1 3

5.5 Defects analysis

We combine time series neighbor encoder, cyclic recursive automatic aggregation network,
fault-tolerant mechanism, and similarity network to complete the task of few-shot temporal
knowledge graph. Although the proposed model has achieved good performance, there are
still some limitations:

 i). Limitations of datasets: the dataset we use is a small sample dataset that has been
processed. Therefore, when applied to other datasets, the datasets should be processed
accordingly to form the sample datasets.

Table 5 The results of FTMF
and FSRL for each relation on
ICEWS-Few

RelationId Hits@1 Hits@5 Hits@10 MRR

1 0.981/0.899 0.993/0.976 1.000/1.000 0.987/0.983
2 0.168/0.016 0.326/0.029 0.535/0.083 0.324/0.034
3 0.973/0.288 0.986/0.418 0.991/0.431 0.985/0.344
4 0.495/0.055 0.478/0.109 0.421/0.147 0.459/0.120
5 0.118/0.073 0.276/0.156 0.421/0.176 0.306/0.135
6 0.408/0.203 0.579/0.528 0.708/0.587 0.596/0.345
7 0.555/0.530 0.786/0.698 0.897/0.881 0.772/0.598
8 0.305/0.142 0.708/0.558 0.774/0.678 0.532/0.314
9 0.653/0.645 0.772/0.609 0.895/0.728 0.763/0.587
10 0.125/0.054 0.378/0.135 0.527/0.208 0.342/0.095

Table 6 The results of FTMF
and FSRL for each relation on
GDELT-Few

RelationId Hits@1 Hits@5 Hits@10 MRR

1 0.991/0.923 0.996/0.949 1.000/1.000 0.995/0.989
2 0.178/0.035 0.399/0.098 0.605/0.165 0.387/0.045
3 0.990/0.321 0.994/0.459 0.998/0.512 0.994/0.378
4 0.065/0.067 0.693/0.186 0.752/0.209 0.682/0.192
5 0.159/0.088 0.349/0.198 0.478/0.223 0.336/0.172
6 0.408/0.196 0.562/0.488 0.641/0.539 0.576/0.333
7 0.603/0.601 0.786/0.706 0.906/0.901 0.793/0.700
8 0.251/0.157 0.772/0.598 0.806/0.666 0.568/0.420
9 0.678/0.536 0.792/0.645 0.917/0.780 0.784/0.653
10 0.175/0.036 0.293/0.110 0.468/0.214 0.287/0.106

Table 7 Symbolic representations

Symbol Explanation Substitute

W1 Without time series neighbor encoder Embedded average pool layer
W2 Without cyclic autoencoder Average pool operation
W3 Without Fault-tolerant mechanism Value of be is 1
W4 Without matching network Inner product between query

and reference embedding

1265World Wide Web (2023) 26:1243–1270

1 3

 ii). Limitation of model: we propose a FTMF model for neighbor encoders of tempo-
ral sequences which requires a unified relation with connected entities at the same
time. If the number of connected entities is small, it may affect the quality of entity
embedding. In addition, the goal of fault-tolerant mechanism is to reduce the impact
of error information on entity interaction, so the less error information in dataset, the
contribution of fault-tolerant mechanism module will be reduced.

Table 8 The results of ablation
experiment on ICEWS-Few

Experiment Hits@1 Hits@5 Hits@10 MRR

W1 0.121/0.177 0.340/0.366 0.467/0.487 0.266/0.283
W2 0.297/0.200 0.493/0.417 0.531/0.533 0.398/0.324
W3 0.303/0.213 0.512/0.420 0.547/0.545 0.425/0.329
W4 0.301/0.210 0.499/0.411 0.527/0.540 0.401/0.325
FTMF 0.343/0.244 0.551/0.439 0.594/0.577 0.451/0.355

Table 9 The results of ablation
experiment on GDELT-Few

Experiment Hits@1 Hits@5 Hits@10 MRR

W1 0.167/0.142 0.412/0.258 0.501/0.376 0.326/0.255
W2 0.300/0.156 0.467/0.279 0.521/0.390 0.383/0.261
W3 0.311/0.191 0.499/0.320 0.545/0.425 0.399/0.266
W4 0.311/0.185 0.428/0.305 0.536/0.399 0.395/0.262
FTMF 0.366/0.228 0.557/0.398 0.608/0.467 0.432/0.273

0.1

0.15

0.2

0.25

0.3

0.35

2 3 4 5 6 7

H
it
s@

1

K

FTMF FSRL GMatching

0.3

0.35

0.4

0.45

0.5

0.55

2 3 4 5 6 7

H
it
s@

5

K

FTMF FSRL GMatching

0.45

0.5

0.55

0.6

0.65

2 3 4 5 6 7

H
it
s@

1
0

K

FTMF FSRL GMatching

0.25

0.3

0.35

0.4

0.45

2 3 4 5 6 7

M
R
R

K

FTMF FSRL GMatching

Figure 9 Impact of few-shot size K on ICEWS-Few

1266 World Wide Web (2023) 26:1243–1270

1 3

6 Conclusion

In this paper, we propose a new temporal knowledge graph completion model for the
task of short-sample temporal knowledge graph completion. Our model combines time
series neighbor encoder to generate the feature representation vector of an entity in time
neighborhood. The interaction between reference set instances is modeled by time-
based cyclic automatic encoder. Fault-tolerant mechanism is used to reduce the impact
of error information in datasets. Finally, we use similarity network to calculate the simi-
larity score between query set and reference set. The experimental results show that
our model has achieved remarkable results in completion ability, with the performance
reaching 17% on ICEWS-Few dataset and 46% on GDELT-Few dataset respectively. In
addition, the experimental results on different relations show that our model has a bet-
ter stability. The ablation experiments of four modules are also carried out, and each
module is indispensable. Finally, we perform the experiments of reference set size. The
results show that with the increase of reference set, the performance of the model is also
improving, and the performance of our model is always the best one.

Our model mainly focuses on few-shot temporal knowledge graph completion tasks,
and there are still some limitations as described in defects analysis Section. In the future
work, we plan to extend it to incorporate more contextual information like textual
description to improve reasoning performance.

Author contribution Luyi Bai: Conceptualization, Methodology, Formal analysis, Funding acquisition,
Writing—original draft, Writing—review & editing; Mingcheng Zhang: Investigation, Validation, Formal
analysis, Writing—original draft; Han Zhang: Validation, Formal analysis, Writing—original draft; Heng
Zhang: Writing—review & editing.

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7

H
it
s@

1

K

FTMF FSRL GMatching

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5 6 7

H
it
s@

5

K

FTMF FSRL GMatching

0.3

0.35

0.4

0.45

0.5

2 3 4 5 6 7

H
it
s@

1
0

K

FTMF FSRL GMatching

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7

M
R
R

K

FTMF FSRL GMatching

Figure 10 Impact of few-shot size K on GDELT-Few

1267World Wide Web (2023) 26:1243–1270

1 3

Funding The work was supported by the National Natural Science Foundation of China (61402087), the
Natural Science Foundation of Hebei Province (F2022501015), the Key Project of Scientific Research
Funds in Colleges and Universities of Hebei Education Department (ZD2020402), and in part by the Pro-
gram for 333 Talents in Hebei Province (A202001066).

Data availability Not applicable.

Declarations

Ethical approval and consent to participate Not applicable.

Human and animal ethics Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no potential conflicts of interest with respect to the research,
authorship, and publication of this article.

References

 1. Bollacker K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In: Proceedings of Special Interest Group on
Management of Data, pp. 1247–1250 (2008)

 2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings
for modeling multi-relational data. In: Proceedings of Neural Information Processing Systems, pp.
2787–2795 (2013)

 3. Boschee, E., Lautenschläger, J., O’Brien, S., Shellman, S.M., Starz, J., Ward, M.D.: ICEWS coded
event data. Harvard Dataverse 12 (2015). https:// doi. org/ 10. 7910/ DVN/ 28075

 4. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal
sentence representations from natural language inference data. In: Proceedings of Empirical Meth-
ods in Natural Language Processing, pp. 670–680 (2017)

 5. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowl-
edge graph completion. In: Proceedings of Empirical Methods in Natural Language Processing, pp.
4816–4821 (2018)

 6. Hamilton, W.L., Ying, Z.H., Leskovec, J.: Inductive representation learning on large graphs. In:
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
1025–1035 (2021)

 7. Hasanzadeh, A., Hajiramezanali, E., Narayanan, K., et al.: Variational Graph Recurrent Neural Net-
works. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 10700–
10710 (2019)

 8. He, K., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

 9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
 10. Ji, G.L., He, S.Z., Xu, L.L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping

matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 687–696 (2015)

 11. Jiang, T.S., Liu, T.Y., Ge, T., Sha, L., Li, S.J., Chang, B.B., Sui, Z.F.: Encoding temporal informa-
tion for time-aware link prediction. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2350–2354 (2016)

 12. Jiang, Z., Gao, J., Lv, X.: MetaP: Meta Pattern Learning for One-Shot Knowledge Graph Comple-
tion. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 2232–2236 (2021)

 13. Jin, W., Zhang, C.L., Szekely, P., Ren, X.: Recurrent event network for reasoning over temporal
knowledge graphs. arXiv preprint arXiv:1904.05530 (2019)

 14. Kipf , T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
Proceedings of the 5th International Conference on Learning Representations, pp. 1–14 (2017)

1268 World Wide Web (2023) 26:1243–1270

https://doi.org/10.7910/DVN/28075

1 3

 15. Kumar, S., Zhang, X., Leskovec, J.: Learning dynamic embeddings from temporal interactions.
arXiv preprint arXiv.1812.02289. (2018)

 16. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Proceedings of the The
Web Conference, pp. 1771–1776 (2018)

 17. Leetaru, K., Schrodt, P.A.: GDELT: global data on events, location, and tone. In: Proceedings of
ISA Annual Convention, pp. 1–49 (2013)

 18. Lin, Y.K., Liu, Z.Y., Sun, M.S., Liu, Y., Zhu, X.: Learning entity and relation embeddings for
knowledge graph completion. In: Proceedings of Twenty-ninth AAAI Conference on Artificial
Intelligence, pp. 2181–2187 (2015)

 19. Liu, H.X., Wu, Y.X., Yang, Y.M.: Analogical inference for multi-relational embeddings. In: Pro-
ceedings of International Conference on Machine Learning, pp. 2168–2178 (2017)

 20. Ma, Y., Tresp, V., Daxberger, E.A.: Embedding models for episodic knowledge graphs. J. Web
Semant. 59, 1–26 (2019)

 21. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recogn.
97(107000), 1–16 (2020)

 22. Miller, A.: WordNet: A lexical database for English. Commun. ACM 38(11), 39–41 (1995)
 23. Mirtaheri, M., Rostami, M., Ren, X., et al.: One-shot learning for temporal knowledge graphs.

arXiv preprint arXiv.2010.12144 (2020)
 24. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-Time Dynamic

Network Embeddings. In: Proceedings of the The Web Conference, pp. 969–976 (2018)
 25. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of

30th AAAI Conference on Artificial Intelligence, pp.1955–1961 (2016)
 26. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data.

In: Proceedings of International Conference on Machine Learning, pp. 809–816 (2011)
 27. Niu, G., Li, Y., Tang, C., et al.: Relational Learning with Gated and Attentive Neighbor Aggregator for

Few-Shot Knowledge Graph Completion. In: Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 213–222 (2021)

 28. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: Learning representations over dynamic graphs.
In: Proceedings of the 7th International Conference on Learning Representations, pp. 1–25 (2019)

 29. Sadeghian, A., Rodriguez, M., Wang, D.Z., Colas, A.: Temporal reasoning over event knowledge
graphs. In: Proceedings of Workshop on Knowledge Base Construction, Reasoning and Mining, pp.
6669–6683 (2016)

 30. Sheng, J., Guo, S., Chen, Z., Yue, J.W., Wang, L.H., Liu, T.W., Xu, H.B.: Adaptive Attentional Net-
work for Few-Shot Knowledge Graph Completion. In: Proceedings of Empirical Methods in Natural
Language Processing, pp. 1681–1691 (2020)

 31. Snell, J., Swersky, K., Zemel, R.S.: Prototypical Networks for Few-shot Learning. In: Proceedings of
Neural Information Processing Systems, pp. 4077–4087 (2017)

 32. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge
base completion. In: Proceedings of Advances in Neural Information Processing Systems, pp. 926–934
(2013)

 33. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning for dynamic knowl-
edge graphs. In: Proceedings of International Conference on Machine Learning. PMLR, pp. 3462–
3471 (2017)

 34. Trouillon, T., Welbl, J., Riedel, S., et al.: Complex embeddings for simple link prediction. In: Proceed-
ings of the 33rd International Conference on Machine Learning. PMLR, pp. 2071–2080 (2016)

 35. Wang, S., Huang, X., Chen, C., et al.: REFORM: Error-Aware Few-Shot Knowledge Graph Comple-
tion. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Man-
agement, pp. 1979–1988 (2021)

 36. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

 37. Wang, Z., Zhang, J.W., Feng, J.L., Chen, Z.: Knowledge graph embedding by translating on hyper-
planes. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1112–1119 (2014)

 38. Xiao, H., Huang, M., Hao, Y., et al.: Transg: A generative mixture model for knowledge graph embed-
ding. The Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
pp. 2316–2325 (2016)

 39. Xiong, C.M., Merity, S., Socher, R.: Dynamic Memory Networks for Visual and Textual Question
Answering. In: Proceedings of International Conference on Machine Learning. PMLR, 2016, pp.
2397–2406 (2016)

 40. Xiong, C., Zhong, V., Socher, R.: Dynamic coattention networks for question answering. In: Proceed-
ings of the 5th International Conference on Learning Representations, pp. 1–14 (2017)

1269World Wide Web (2023) 26:1243–1270

1 3

 41. Xiong, W., Yu, M., Chang, S., Guo, X.X., Wang, W.Y.: One-shot relational learning for knowledge
graphs. In: Proceedings of Empirical Methods in Natural Language Processing, pp. 1980–1990 (2018)

 42. Xu, J., Zhang, J., Ke, X., et al.: P-INT: A Path-based Interaction Model for Few-shot Knowledge Graph
Completion. In: Proceedings of the Association for Computational Linguistics. EMNLP 2021, pp.
385–394 (2021)

 43. Yang, B., Yih, W., He, X.D., Gao, J.F., Deng, L.: Embedding entities and relations for learning and
inference in knowledge bases. In: Proceedings of International Conference on Learning Representa-
tions, pp. Poster (2015)

 44. Zhang, C.X., Yao, H.X., Huang, C., Jing, M., Li, Z.H., Chawla, N.V.: Few-shot knowledge graph com-
pletion. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3041–3048 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

1270 World Wide Web (2023) 26:1243–1270

	FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism
	Abstract
	1 Introduction
	2 Related work
	2.1 Static knowledge graph completion
	2.2 Temporal knowledge graph completion
	2.3 Few-shot knowledge graph completion
	2.4 Discussion

	3 Problem formulation
	3.1 Few-shot temporal completion task
	3.2 Few-shot temporal knowledge graph training
	3.3 Related settings

	4 Model
	4.1 Time series neighbor encoder
	4.2 Cyclic automatic coding aggregator
	4.3 Fault-tolerant mechanism
	4.4 Similarity network
	4.5 Target mode training

	5 Experiment
	5.1 Experimental setup
	5.1.1 Datasets pre-processing
	5.1.2 Baseline methods
	5.1.3 Experimental parameter settings
	5.1.4 Experimental evaluation index

	5.2 Experimental comparisons
	5.2.1 Experimental comparison with baselines
	5.2.2 Comparison over different relations

	5.3 Ablation study
	5.4 Stability experiments
	5.5 Defects analysis

	6 Conclusion
	References

