
https://doi.org/10.1007/s11280-022-01089-0

Spatial-temporal fusion graph framework
for trajectory similarity computation

Silin Zhou1 ·Peng Han2 ·Di Yao3 · Lisi Chen1 ·Xiangliang Zhang4

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Trajectory similarity computation is an essential operation in many applications of spatial
data analysis. In this paper, we study the problem of trajectory similarity computation over
spatial network, where the real distances between objects are reflected by the network dis-
tance. Unlike previous studies which learn the representation of trajectories in Euclidean
space, it requires to capture not only the sequence information of the trajectory but also
the structure of spatial network. To this end, we propose GTS, a brand new framework that
can jointly learn both factors so as to accurately compute the similarity. It first learns the
representation of each point-of-interest (POI) in the road network along with the trajectory
information. This is realized by incorporating the distances between POIs and trajectory in
the random walk over the spatial network as well as the loss function. Then the trajectory
representation is learned by a Graph Neural Network model to identify neighboring POIs
within the same trajectory, together with an LSTM model to capture the sequence informa-
tion in the trajectory. On the basis of it, we also develop the GTS+ extension to support
similarity metrics that involve both spatial and temporal information. We conduct compre-
hensive evaluation on several real world datasets. The experimental results demonstrate that
our model substantially outperforms all existing approaches.

� Lisi Chen
lchen012@e.ntu.edu.sg

Silin Zhou
zhousilinxy@gmail.com

Peng Han
pengh@cs.aau.dk

Di Yao
yaodi@ict.ac.cn

Xiangliang Zhang
xzhang33@nd.edu

1 University of Electronic Science and Technology of China, Chengdu, China
2 Aalborg University, Aalborg, Denmark
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
4 University of Notre Dame, Notre Dame, USA

World Wide Web (2023) 26:1501–1523

Received: 27 June 2022 / Revised: 13 July 2022 / Accepted: 16 July 2022 /
Published online: 22 September 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01089-0&domain=pdf
mailto: lchen012@e.ntu.edu.sg
mailto: zhousilinxy@gmail.com
mailto: pengh@cs.aau.dk
mailto: yaodi@ict.ac.cn
mailto: xzhang33@nd.edu

Keywords Trajectory · Similarity search · Spatial network · Deep learning ·
Spatio-temporal

1 Introduction

Trajectory similarity computation is a fundamental operation in a wide range of real
world applications, such as route search [1–5], route planning [6–8], trajectory cluster-
ing [9–11], trajectory compression [12–14], and transportation optimizations [15–17]. A
trajectory describes the path traced by bodies moving in space over time [18] and is usu-
ally represented as a sequence of discrete locations. To measure the similarity between
two trajectories, many metrics are proposed in previous studies, such as Dynamic Time
Warping [19] (DTW), longest common subsequence [20] (LCSS), edit distance with real
penalty [21] (ERP) and edit distance on real sequences [22] (EDR). However, these metrics
require quadratic computational complexity O(n2), where n is the length of trajectories.
As a result, the high computation cost of the above similarity metrics becomes a seri-
ous problem when dealing with massive trajectory data. To resolve the problem, some
recent studies [6, 23, 24] utilized neural network based models to learn the representation
of trajectories. The similarity between trajectories could be measured by that between the
low-dimensional embedding vectors, which can be completed in linear time.

While the above approaches are effective for measuring the trajectory similarity in
Euclidean space, they cannot be applied to the problem of trajectory similarity computa-
tion over the spatial network, such as road network. In many real application scenarios,
objects are moving in spatial networks rather than in Euclidean space. In a spatial network,
Euclidean distance may lead to errors when calculating the real distance between objects.
Let us consider the example shown in Figure 1. The Euclidean distance between trajecto-
ries τ1 and τ2 is smaller than that between τ1 and τ3. But the distance on the road network
between τ1 and τ3 is actually much smaller, as there is no passage between τ1 and τ2 in the
road network.

There are several previous studies [25–28] focusing on the computation of trajectory sim-
ilarity over spatial networks. They proposed hand-crafted heuristic approaches to align the
trajectory to the spatial network to compute some user-defined similarity functions, which
still suffer from high computational overhead. However, the difficulty in adopting deep
learning-based techniques to this problem is two-fold. On the one hand, it is essential to
consider the network structure when learning the trajectory embedding, while existing solu-
tions for Euclidean space [6, 23, 24] only capture the sequence information. On the other
hand, the learning process suffers from data sparsity: due to the large problem space which
is exponential w.r.t. the number of POIs in the spatial network, the coverage of training data
might be insufficient to include all possible combinations. As a result, once a trajectory
pattern is infrequent or even missing in the training data, the trained model cannot learn a
high-quality embedding for it.

To address above issues, in this paper we propose Graph-based approach for measur-
ing Trajectory Similarity (GTS), a novel framework of trajectory representation learning
for similarity computation over spatial networks. GTS consists of three steps, namely mea-
suring trajectory similarity, learning point-of-interest (POI) representation, and generating
trajectory embedding. We start from the similarity measurement between trajectories, which
is the first step towards a robust framework for learning trajectory embedding. To reflect
the relationship between trajectories on the road network as well as the inherited properties

1502 World Wide Web (2023) 26:1501–1523

POI Road Network

1 2 3

Figure 1 Example of Trajectory Similarity Measurement over Spatial Network

of every single trajectory, we define the trajectory similarity from three aspects: POI-wise
distance, POI-Trajectory distance, and Trajectory-wise similarity.

Based on such definitions of trajectory similarity over the spatial network, we then learn
the trajectory embedding in the following two steps. We first learn the embedding of each
POI in the spatial network, which serves as a cornerstone for the embedding of trajecto-
ries. While previous works [29–31] learn the POI embedding mainly by learning its spatial
information, here we need to consider the trajectories along with the topology of the spa-
tial network. To this end, we propose a trajectory-aware random walk algorithm and a
new loss function to train a skip-gram model such that POIs co-occurring in these random
walks would produce similar embeddings. In the next step, we learn trajectory representa-
tion based on such POI embeddings. To overcome the data sparsity problem, we use Graph
Neural Network (GNN) to encode the embedding of each POI with its neighbor informa-
tion. Then a trajectory becomes a sequence of POIs and we can learn its representation with
a Long Short-Term Memory (LSTM) network. In this way, the learned representation will
contain richer information of the network structure and thus is capable to reflect various
trajectory patterns even if they are not explicitly included in the training data.

1503World Wide Web (2023) 26:1501–1523

Moreover, we further take the temporal information in trajectories into consideration and
proposed an extended approach GTS+ for trajectory similarity computation based on both
spatial and temporal information. Specifically, we discretize the time intervals into smaller
units and construct the temporal-aware graph of all POIs based on the co-occurrence of their
time units. Then we propose a novel LSTM variant termed as ST-LSTM to jointly capture
the spatial and temporal information to learn the trajectory embedding.

The main contributions of this paper are summarized as follows:

• We propose a graph-based framework GTS for the problem of trajectory similarity com-
putation over the spatial network. To the best of our knowledge, it is the first work to
solve this problem with deep learning techniques.

• We devise a trajectory-aware random walk algorithm with a new loss function to learn
the embedding of each POI in the spatial network to integrate the trajectory information
with the network structure.

• We further design a GNN-LSTM model which is robust to data sparsity and noisy in
given trajectories to learn high-quality trajectory representations.

• We propose the GTS+ framework to support trajectory similarity computation with
both spatial and temporal information.

• We conduct an extensive set of experiments on popular real-world datasets. The results
show that our proposed methods significantly outperform the existing approaches in
terms of accuracy.

The rest of the paper is organized as follows: Section 2 surveys the related work.
Section 3 introduces necessary background knowledge and problem settings. Sections 4 and
5 propose the techniques to learn the representation of a single location and the whole tra-
jectory, respectively. Section 6 introduces how to extend the above techniques to include
temporal information and proposes the GTS+ framework accordingly. Section 7 reports the
experimental results. Section 8 concludes the paper.

2 Related work

2.1 Non-learning trajectory similarity computation

There are two categories of traditional approaches for trajectory similarity computation.
One is grid-based similarity, which uses distances in Euclidean space. Previous stud-
ies in this category rely on the distance aggregation over all points on the trajectory to
compute the similarity, such as Dynamic Time Warping [19] (DTW), longest common sub-
sequence [20] (LCSS), edit distance with real penalty [21] (ERP), edit distance on real
sequences [22] (EDR) and Hausdorff [32]. They are expensive in efficiency even with some
optimizations [33] and might suffer from noisy points in trajectories.

The other one is spatial network based similarity [26, 34], where trajectories are first
mapped to the spatial network and then the similarity is computed by applying similarity
functions on top of the transformed trajectories. Earlier approaches utilized metrics like
shortest path and set-based similarity to describe the similarity between trajectories. Shang
et al. [26] proposed a joint similarity function to consider both spatial and temporal simi-
larity as well as several indexing and pruning techniques. Wang et al. [35] defined a new
function called Longest Overlapping Road Segments to measure the similarity between
two transformed trajectories. Unfortunately, existing road-constrained trajectory measures

1504 World Wide Web (2023) 26:1501–1523

either suffer from the high computation cost or are not capable to satisfy the requirement of
real-life applications.

There are many applications regarding trajectory similarity computation. Several previ-
ous studies [3, 8, 36] aimed at accelerating the similarity search and join over trajectory
data by devising index and pruning techniques following the idea from string similarity
search [37–40]. Specifically, tree-based index structures [22, 27] , such as K-D tree or R-tree
are employed to organize the trajectories. Then, bounding-box-based pruning techniques are
proposed to eliminate unnecessary computations. Zheng et al. [41] studied the problem of
inference hidden route from known trajectories. Song et al. [15] focused on the problem of
trajectory compression based on the road network. Han et al. [42] investigated this problem
by considering only spatial information.

2.2 Deep learning based approaches

Deep learning techniques have been widely adopted to many problems related to spa-
tial data analysis [29, 42–44]. A comprehensive survey is made in [18]. Some existing
studies employ neural network models to learn the representation of trajectories and then
compute the similarity by measuring that between the embedding vectors. Li et al. [23]
adopted an encoder-decoder architecture to obtain trajectory vector representations. Yao
et al. [24, 45] further improved the performance by devising new spatial attention mecha-
nism and using pair-wise distance as guidance for learning. Zhang et al. [6] proposed several
new loss functions to improve the quality of learned embedding. All the above methods
are designed for similarity metrics in Euclidean space and cannot be directly adopted for
our problem as they fail to learn the information from the spatial network. Deep learning
techniques are also adopted for other related problems, such as clustering [9] and route
prediction [25], which have different problem settings from our work.

2.3 Graph neural networks

Recent works on the Graph Neural Network (GNN), especially graph convolutional net-
works (GCNs) [46] have attracted considerable attention, motivating the remarkable success
in various graph mining tasks in multiple domains [47, 48]. GNNs originated from the
spectral graph networks [49]. Afterwards, Kipf and Welling [46] further extended it for
semi-supervised node classification with concise form and achieved great success. Taking
account of large-scale networks, Hamilton et al. [50] approximated GCN by an inductive
representation learning framework. Later, the attention mechanism was also introduced to
adaptively specify the weights during the training process [51]. Our work took advantage
of GNN to obtain neighborhood information of each node in the spatial network so as to
overcome the data sparsity problem.

3 Preliminary

3.1 Trajectory with spatial networks

We first describe our data model. The spatial network is represented as an undirected graph
G = (V ,E). In this graph, each node v ∈ V is a POI in the spatial network, where the
representation of a road intersection or a road end with attributes latitude and longitude.
Meanwhile, each edge e = 〈vi, vj 〉 ∈ E represents the distance between two POIs vi and

1505World Wide Web (2023) 26:1501–1523

vj . An original trajectory τ = {p1, p2, . . . , pk} is composed with sequential points with
latitude and longitude. Then we mapped them into the POI set V with the nearest distance
to generate the corresponding vertex trajectory τ = {vn1, vn2, . . . , vnk} and the length of a
trajectory (denoted as |τ |) is defined as the number of POIs in it.

3.2 Spatial Similarity between trajectories

Different from previous studies using Euclidean distance, the similarity measurement in our
work should not only reflect the property of a trajectory, but also reflect the property of
the spatial network. To achieve this goal, we define trajectory similarity by considering the
distances from two aspects: POI-wise distance and POI-Trajectory distance.

The POI-wise distance is the distance between two POIs over the road network, which is
defined as the length of the shortest path between them. Given two POIs vi, vj ∈ V , if vi is
reachable from vj , we use d(vi, vj) to denote the length of shortest path, i.e. the POI-wise
distance between them.

Similarly, we define the POI-Trajectory distance as the shortest distance between the
POI and the trajectory. However, the computation of the exact value is very expensive as we
need to compute distances between the POI and all segments of this trajectory. To reduce
the computation overhead, we define the POI-Trajectory distance as the shortest POI-wise
distance between the given POI and all POIs in the trajectory. Although the computational
complexity of our definition is the same as that of the original method, the cost is much less
in practice since the distances between POIs in our definition could be reused for different
trajectories and the amortized cost would be rather low. Then given one POI v and trajectory
τ , the POI-Trajectory distance d(v, τ) from the POI to the trajectory is formulated as (1):

d(v, τ) = min
vi∈τ

d(v, vi). (1)

Based on the above definitions, we propose the cornerstone of our learning framework:
Trajectory-wise similarity. To define an effective similarity metric, the computation of
Trajectory-wise similarity should have the property of commutativity. Moreover, it should
also be negatively correlated to the actual distance between trajectories. Based on above con-
sideration, given two trajectories τ1 and τ2, we formulate the definition of Trajectory-wise
similarity between them (denoted as Sim(τ1, τ2)) in (2):

Sim(τ1, τ2) =
∑

vi∈τ1
e−d(vi ,τ2)

|τ1| +
∑

vj ∈τ2
e−d(vj ,τ2)

|τ2| , (2)

3.3 The GTS framework

With the definition in (2), we can then formally define the problem of trajectory similarity
computation over the road network with the learning method formally as Definition 1.

Definition 1 Given a road network G = (V ,E) and a trajectory set T = {τ1, τ2, . . . , τn},
∀τi ∈ T it aims at finding a trajectory τj that minimizes Sim(τi , τj) or SimST (τ1, τ2) and
i �= j .

To minimize Sim(τi , τj), we propose a two-step framework GTS shown in Figure 2.
Compared with the end-to-end model architecture, the advantage of a two-step framework
is that the training process is more stable and interpretable. The two steps will be detailed
in Sections 4 and 5, respectively.

1506 World Wide Web (2023) 26:1501–1523

LSTM1

GNN GNN

LSTM2 LSTMn

GNNG
en

er
at
e

POI

POI
Embedding

Neighbor
Embedding

GNN
Embedding

Trajectory
Embedding

Road
Network

Trajectory

POI
Embedding

Process

Trajectory
Embedding

Process

Figure 2 Overall Framework of GTS

There are mainly three challenges in the construction of the trajectory similarity
measurement model.

1 How to utilize the information of spatial network in the perspective of trajectory, which
could be different from grid-based methods.

2 How to represent the trajectory should be considered carefully, as the trajectory
representations are closely related to the computation of trajectory similarity.

3 How to design the objective function to train the models, which should help learn the
characteristics of collected trajectory datasets.

4 POI representation learning

In this section, we will introduce a new framework TraNode2Vec for learning the POI rep-
resentation over the road network. We first give the big picture of the learning objective in
Section 4.1 and then provide more technical details in Section 4.2.

4.1 Objective function

Since we targeted learning trajectory similarity over road network, the first step is to learn a
high-quality presentation of POIs in the network. To this end, the learning objective should
be with physical significance so as to include the information of trajectories into the POI
representation. Unlike previous studies that utilized feature engineering methods based on
expert knowledge, in our work, we aim at learning trajectory-aware POI embedding via the
distance and similarity functions defined in Section 3. As a result, our approach can not only
learn the topology of the road network but also fit the distribution of existing trajectories.

The first step towards this goal is to design a proper objective function that is consistent
with the goal of learning trajectory similarity. According to our definition of Trajectory-wise
similarity, it is essential to know the distance between POIs so as to estimate the similarity.
Therefore, we aim at identifying a learning objective to help formulate a representation
where the embedding vectors of nearby POIs or belonging to the same trajectories should
also be closed to each other. In this target, there are two kinds of relationships between POIs.
The first relationship is the topology relationship between POIs in the road network, which
will influence the distances between them directly. The second one is whether two POIs

1507World Wide Web (2023) 26:1501–1523

v
t

x1

x2

x3

s

x4

Network

Trajectory

Figure 3 Illustration of the process of random walk with trajectory

belong to the same trajectory. These two relationships could be metaphysically described
as the ‘neighbors’ of POIs, in which we can model them with existing embedding methods
that are able to capture the property of neighbors.

To capture the property of ‘neighbors’, we could utilize the well-known Skip-gram [52]
approach, which is originated in the field of natural language processing. It has been
exploited in many applications to learn the representation of basic building blocks, such as
the word embeddings in the article. Given the POI set V = {v1, v2, . . . , vm}, we could get
the Skip-gram objective function for our task as (3)

max
f

∑

v∈V

logP(Ns(v)|f (v)), (3)

where f : v → Rd is the encoder to map the POI into d dimension vectors, P(·) is prob-
ability function and Ns(v) ⊆ V is the neighbors of POI v which is obtained via a random
walk algorithm described later in Section 4.2. By optimizing this objective function, the
learned embedding of given POI will have an explicit connection with those of its neighbors
(Figure 3).

One limitation of the above objective function lies in the aspect of computational effi-
ciency. To resolve this problem, we make a trade-off between accuracy and efficiency as
follows: For the given POI v, we assume that all its neighbors in Ns(v) ⊆ V are inde-
pendent, which can reduce the computational complexity of the function P(Ns(v)|f (v)).
Under this assumption, we have the objective function as (4):

P(Ns(v)|f (v)) =
∏

vi∈Ns(v)

P (vi |f (v)). (4)

Given POIs vi and v, the value of P(vi |f (v)) satisfies the following conditions: (i) the
value of probability should be ranged in [0, 1]; and (ii) the sum of all probabilities for the
given POI v should be 1. Thus we employ the softmax function that has been widely used
to compute the probability in multiple classification problems. Then we have the explicit
formulation of P(vi |f (v)) as (5)

P(vi |f (v)) = ef (vi)·f (v)

∑
vj ∈V ef (vj)·f (v)

. (5)

1508 World Wide Web (2023) 26:1501–1523

However, the computation of
∑

vj ∈V ef (vj)·f (v) is time-consuming in the training process.
The reason is that function f (·) will be updated after every epoch and the computation∑

vj ∈V ef (vj)·f (v) cannot be reused. To solve this problem, the negative sampling method
could be utilized to reduce the computation time by pair-wise loss.

4.2 Finding neighbors

Next, we discuss how to generate the set of neighbors Ns(v) of given POI v in the objective
function. Previous network embedding approaches, such as node2vec [53], find such neigh-
bors by a random walk algorithm based on the topology structure of the graph. However, in
our work, we need to not only consider the topology structure of the road network but also
the given existing trajectories.

To address this issue, we employ a random walk algorithm to find Ns(v) for given POI v

the topology structure of the road network. Given a starting POI v and the length of walks
nw , the random walks method will generate a random path with starting POI v and nw

nodes. The generation process proceeds node-wise, and every node in the path is dependent
on previous nodes. With the starting node c0 = v, we generate the i-th node ci for the
random path as (6):

P(ci = vj |ci−1 = vk) =
{πvj vk

Z
if(vi, vj) ∈ E,

0 otherwise,
(6)

where πvj vk
is the transition probability from vk to vj and Z is a normalization constant.

As our goal is to learn a trajectory-aware POI representation, we need to reflect the
influence of existing trajectories in the definition of transition probability in random walks.
The probability of the next node in previous approaches such as node2vec is only decided by
the node visited in the previous step. While this approach can capture the topology structure
of the graph, it fails to take the trajectories into consideration in our problem setting. To
ensure whether two POIs are in the same trajectory, we need to devise a random walk
algorithm where the transition probability in each step is also influenced by the starting
node of a trajectory.

To reach this goal, a straightforward solution for that is via a sampling-based method.
Instead of only considering the last node, we choose the next node according to both the pre-
vious node and starting node. The relationship between the next and previous nodes could
keep the topology structure of the graph. And the trajectory information will be maintained
in the connection between the next and starting nodes.

Based on above discussion, we define the transition probability as πvj vk
= α(vj , vk) ·

e−d(vj ,vk), where the distance in the road network between POIs in incurred in the term
d(vj , vk). And α(vj , vk) is probability of sampling defined in (7):

α(vj , vk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
p

if dvj vk
= 0 and {vk, v}∈̃τ

1 if dvj vk
= 1 and {vk, v}∈̃τ

1
q

if dvj vk
= 2 and {vk, v}∈̃τ

0 otherwise,

(7)

where dvj vk
is the path containing the least number of POIs between vj and vk , and the

operation {vk, v}∈̃τ means there is one trajectory τ ∈ τ that vk ∈ τ and v ∈ τ .

1509World Wide Web (2023) 26:1501–1523

In this way, we can ensure that all nodes in the path have a direct connection with
the starting node v. Moreover, the topology structure of the road network could also be
maintained in our sampling method.

5 Graph-based trajectory embedding

In this section, we introduce how to learn the trajectory embedding based on the POI
representation learned previously.

5.1 GNN-based representation

Although the POI representation has captured certain information from the spatial network,
we still need to incorporate it in the process of learning trajectory embedding. The reason
is that we need the information of spatial network from different aspects: In the process
of POI representation learning, the spatial network is exploited to make the embedding of
connected POIs in the spatial network similar; while in the process of learning trajectory
embedding, we need more information about node connections from the spatial network so
as to make the trajectory representation more stable and robust.

The main challenge of the trajectory representation is that the search space is the enu-
meration of combination among all POIs. As a result, we cannot get sufficient training
instances to cover all possible trajectory patterns and thus it results in the data sparsity prob-
lem. To overcome this problem, we utilize graph neural networks (GNN) to incorporate
more information from the spatial network into each trajectory. The reason that we employ
GNN here is that its Laplacian regularization term in the objective function of GNN could
make the connected nodes keep the same labels and thus help alleviate the sparsity prob-
lem. Specifically, the computation of GNN incurs the information of neighbors for the given
node.

In our task, we can deal with the sparsity by utilizing more POIs with the same set of
trajectories. With the help of GNN, for each POI in one trajectory, we could impose all of
its neighboring POIs to generate trajectory embedding. In this way, there will be a larger
number of common POIs between similar trajectories. And for a given trajectory, it is easier
to find the most similar trajectory in the training set to satisfy our goal in Definition 1.

To this end, we build the graph based on the POIs imposed for each POI in the trajectory
as the input graph for GNN. Meanwhile, we could use the spatial network to construct the
adjacent graph for GNN where only POIs in the spatial network will be connected in the
adjacent graph. In this way, we can directly incorporate the spatial network to compute the
trajectory representation.

Given the POIs V = {v1, v2, . . . , vm} and weights set E, we construct the adjacent graph
G as (8):

Gij =
{
1 if (vi, vj) ∈ E

0 otherwise.
(8)

This adjacent graph G will be symmetric with diagonal element zeros.
Nevertheless, the adjacent graph G in this format still cannot accurately reflect the rela-

tionship between POIs. The reason is that values in G are not equal to the influence between
the nodes. To address this issue, we construct the Laplacian matrix A in our work with a
weight α to control the influence of neighbors as (9)

A = I + αNorm
(
G

)
, (9)

1510 World Wide Web (2023) 26:1501–1523

where I is the identity matrix and Norm(G) is the normalization function that every entry
will be divided by the �1-norm of its corresponding row vector. We use P = {p1,p2, . . . , pn}
to denote the POI embeddings V = {v1, v2, . . . , vn}, where pi = f (vi) and f (·) is the POI
embedding function learned by (3).

As every POI and its neighbors are a subset of V , we only need a subgraph from the
graph G to generate the representation by GNN. Here we use the Graph Convolutional
Network (GCN) [46] model as the encoder. Given a POI vi and its neighbors N(vi) =
{vi1 , vi2 , · · · , vik }, the representation p̃i is generated by a 1-layer GCN defined as (10)

p̃i = AiPiW, (10)

whereAi is the row vector of the adjacent matrixA for the POI vi , Pi is the stack of features
{pi , pi1; pi2; · · · ;pik } for POI vi and all its neighbors, and W is the learned parameter to
project the combined POI features into a new space.

Once the GCN-based embeddings are obtained, we could use them to construct our tra-
jectory embedding with the sequence model. Here we choose LSTM to fulfill this task.
Specifically, we use the output of the last time step as the trajectory embedding. Given the
network representation P = {p̃1, p̃2, . . . , p̃n} of a trajectory τ , we generate its embedding
E with LSTM as LSTM(P), where LSTM(·) is the operation of LSTM which will output
the embedding vector in its last timestep.

5.2 Training

With the representation of all trajectories in the training set, we then specify the objective
function. According to our definition of Trajectory-wise similarity, the goal of our task is
to find the most similar trajectory for a given trajectory. To reach this goal, we use the
dot product between the embedding vectors of trajectories to denote the similarity between
them. Suppose the embedding vectors of trajectories τi and τj are Ei and Ej , the similarity
score Sim(τi , τj) can be computed as (11).

Sim(τiτj) = E	
i Ej (11)

Since we aim at finding the most similar trajectory rather than calculating the exact
similarity score, we do not need to perform the actual similarity computation in the process
of testing. Therefore, we can decide the objective function in two ways. The first one is to
apply the regression loss that uses the true similarity to optimize (11). The second one is
using the pair-wise loss that maximizes the similarity between the most similar trajectory
and the given one. In our framework, we use pair-wise loss as the objective function, which
is also widely used in other ranking-based applications.

Then given the trajectory training set T tr , we define the loss function as (12).

max
∑

τi∈T tr ,τj ∈T tr\{τ ′
i ,τi }

1(Sim(τi , τ
′
i) > Sim(τi , τj)), (12)

where τ ′
i is the most similar trajectory for trajectory τi . And 1 is the indicator function that

equals one if the condition satisfies, otherwise it will be zero.
For a given trajectory in (12), we need to compute similarities between all other trajec-

tories and it. This process would be very time-consuming as the trajectory dataset usually
varies largely. To reduce the computation time in the training process, we randomly sample
one trajectory instead of traversing all trajectories for the given trajectory.

1511World Wide Web (2023) 26:1501–1523

6 Spatio-temporal trajectory similarity

In this section, we introduce how to learn trajectory embedding based on both spatial and
temporal information. We first define the spatio-temporal similarity metric for trajectories
in Section 6.1. Next we introduce the way to utilize temporal information in Section 6.2.
Finally we propose a spatio-temporal fusion technique to incorporate temporal information
into LSTM cells when learning the trajectory representations from the sequence of POIs in
Section 6.3.

6.1 Extended similarity with temporal information

For every POI vi ∈ τ , there is a timestamp vi .t associated with it which denotes the exact
time when the object passed the POI vi . In many applications, it is essential to also take
the temporal information into consideration when We can come up with the temporal-aware
POI-Trajectory distance following the idea of Section 3.2 as follows: Given a POI v and a
trajectory τ , the definition POI-Trajectory distance between them can be calculated as (13):

dT (v, τ) = min
vi∈τ

‖v.t − vi .t‖. (13)

Based on the temporal POI-Trajectory distance, we then propose the temporal Trajectory-
wise distance SimT (τ1, τ2) between trajectories τ1 and τ2 as (14).

SimT (τ1, τ2) =
∑

vi∈τ1
e−dT (vi ,τ2)

|τ1| +
∑

vj ∈τ2
e−dT (vj ,τ2)

|τ2| . (14)

Finally, by combining the (2) and (14), we could get the spatial-temporal Trajectory-wise
distance SimST (τ1, τ2) between trajectories τ1 and τ2 as (15):

SimST (τ1, τ2) = Sim(τ1, τ2) + SimT (τ1, τ2). (15)

6.2 Temporal-aware graph construction

We propose a new framework GTS+ to minimize the value of SimST (τ1, τ2) by extending
GTS with temporal information. To this end, it requires to first learn the temporal embedding
of each POI, and then combine it with POI embedding to learn the representation of the
whole trajectory. The first step towards this goal is to identify the temporal embedding of all
POIs. To reach this goal, we first build a histogram vector for each POI based on the time
it appeared in a trajectory. The closer two histogram vectors are, the more similar two POIs
are in the temporal aspect. The first step to build such a histogram is to divide the whole
time range into a fixed number of slots. Specifically, there are 24 slots where each slot is
corresponding to 1-hour time range of a day. Then the temporal histogram of a POI becomes
a 24-dimensional vector. Next we traverse the trajectory collection to build the histogram
for all POIs: for each POI on a trajectory, we increase the value of corresponding dimension
in the histogram according to its associated timestamp. Finally, we normalize the histogram
vector by replacing the value of each dimension to the percentage of occurrence among all
the time range, where the sum of values in all dimensions equal to 1. The diagram of this
process could be found in Figure 4.

Next we construct the temporal aware graph based on above temporal histogram of
all POIs. In the approach of learning trajectory representation from POI embeddings in
Section 4, we construct the adjacent graph G by considering the structure of spatial net-
work and learn the embedding with GNN to address the challenge of data sparsity problem

1512 World Wide Web (2023) 26:1501–1523

6:15

11:17

23:23

Count

N
orm

0.07 0.03 0.11 0.02 0.05 0.03 0.07

0:00 1:00 2:00 3:00 4:00 5:00 22:00 23:00 24:00

Figure 4 Example of Temporal Embedding

caused by large search space. Following this route, we then construct the temporal-aware
adjacent graph so as to identify the neighbors for each POI from the temporal aspect. As
the temporal histogram of POI is a fixed-length vector, the similarity between two POIs can
be calculated as the cosine similarity between their histogram vectors. Then for each POI
v, we add an edge between it and its top-K similarity POIs on the temporal aspect to con-
struct the edge set ET . The variable K can be regarded as a hyper-parameter and we set it
as 20 empirically in this work. And the graph for temporal information GT = 〈V, ET 〉 can
be constructed in the similar way of that in Section 5.1: the set of vertices is the same with
GS and the set of edges is constructed in the way introduced above. Same with GS , GT is
also symmetric with diagonal element zeros.

Now we have the spatial graph and temporal graph for POIs. Then the next problem
is to make use of them to learn the POI embeddings. To solve this problem, we provide
a joint training framework GTS+ (Joint) that requires only one GNN model to learn the
embedding of each POI. Recall that in order to build the graphs GS and GT , we need to
construct the adjacent matrixMS andMT based on the edges in the two graphs, respectively.
In the joint training framework, we construct only one graph G with the adjacent matrix
M = MS � MT , where � is the operation of element-wise product. Then we train one
GNN model to learn the embedding of each POI based on G using the same way of that
in Section 5.1. In this way, the POI embedding learned by the GNN model already carries
both spatial and temporal information. Finally, we simple feed the POIs on a trajectory into
an original LSTM model as shown in Figure 2 to learn the trajectory representation.

6.3 Fusing spatial and temporal features

Though the effectiveness of GTS+ (Joint) framework introduced above, its performance
might suffer from the lack of interaction between the spatial and temporal information. To
simultaneously learn the characteristics of trajectory from these two kinds of information,

1513World Wide Web (2023) 26:1501–1523

we propose a new ST-LSTM model instead of using the original LSTM to generate the trajec-
tory embedding. Specifically, we design a temporal gate to control the influence of temporal
information on trajectory representation. In every time step, the temporal gate can select key
information in the context according to the current POI embedding input and temporal rep-
resentations and filter useless information. Meanwhile, the vectors of temporal information
can influence the process of sequence modeling and keep the important information in the
current hidden states.

To describe the structure of ST-LSTM, we start from reviewing the structure of original
LSTM model. In each time step t , it uses the embedding vector xt of the context POI
embedding and temporal embedding vector T t corresponding to current time step as input.
The temporal embedding vector is the one-hot feature which denotes the current time slot of
the input. It has three gates: the input gate it , forget gate f t and output gate ot respectively.
The basic update equations of LSTM are as follows:

⎛

⎝
it
ft
c̃t

⎞

⎠ =
⎛

⎝
σ

σ

tanh

⎞

⎠ (W[ht−1, xt] + b), (16)

ct = ft � ct−1 + it � c̃t , (17)

ot = σ(Wo[ht−1, xt] + bo), (18)

ht = ot � tanh(ct) (19)

where ht and ct are the cell states.
Based on above update operations of LSTM, we add a temporal gate to each LSTM

cell and propose the ST-LSTM model as shown shown in Figure 5. The temporal gate is
computed by a POI’s spatial embedding xt and its temporal embedding T t . It controls the
influence of temporal specificity on trajectory representation for the current input xt . It can
be formalized as follows:

gt = σ(W xg[xt‖T t] + bg) (20)

where [·‖·] is the operation of concatenation, T t ∈ Rdt is temporal embedding; W xg ∈
Rd×(dx+dt) is the weighted matrix to be learned; bg ∈ Rdx+dt is bias. Parameter dt stands

Tt

xt

ht-1 ot

ft

ct-1

it

ctct
~

ht

gt

ct

Figure 5 The Structure of ST-LSTM Cell

1514 World Wide Web (2023) 26:1501–1523

for the dimension of temporal vector. dx is the dimension of POI embedding and d is the
dimension of hidden layer.

Correspondingly, we replace (17) and (18) with (21) and (22) in a cell of ST-LSTM.

ct = f t � ct−1 + it � gt � c̃t , (21)

ot = σ(W o[ht−1, [xt‖T t]] + bo). (22)

To apply ST-LSTM in the framework, we just need to use two separate GNN model to
learn the spatial and temporal embedding of each POI, respectively. Then we replace the
LSTM in Figure 2 with ST-LSTM and use above spatial and temporal embedding of POIs
on a trajectory as input.

7 Experiments

In this section, we will demonstrate the effectiveness of our proposed methods by conduct-
ing an extensive set of experiments. The experiment setup is introduced in Section 7.1.
Results and the corresponding analysis are presented by comparing with 4 state-of-the-
art baselines in Section 7.2. Moreover, we conduct an ablation study as well as parameter
analysis in Sections 7.3 and 7.4. Finally, the results of spatio-temporal trajectory similarity
computation are reported in Section 7.5.

7.1 Experiment setup

7.1.1 Dataset

For the road network, we use two spatial networks from different cities. One is from the
city of Beijing, namely the Beijing Road Network (BRN). The other is from the city of New
York, namely the New York Road Network (NRN)1. There are 28,342 POIs and 27,690
edges in the BRN dataset; and 95,581 POIs and 260,855 edges in the NRN dataset.

For trajectories in BRN, we use the taxi driving data [54] from the T-drive project2. The
taxi trajectories in BRN are collected by taxi id, and the time range of one trajectory may
last several days. So we split these trajectories by hour, then we could get 5,621,428 trajec-
tories in total. The average length of these trajectories is 25 by filtering the abnormal ones.
For trajectories in NRN, we use the taxi driving data from New York. There are 697,622,444
trips in the original dataset, and we randomly sample a subset of them to generate the tra-
jectory dataset. After pre-processing, there are 10,541,288 trajectories in our experiments
and the average length of them is 38. The details are summarized in Table 1. For both tra-
jectory datasets, we randomly split them into training, evaluation, and testing set with the
ratio 20%, 10%, and 70%.

To evaluate the spatio-temporal based similarity measurement, we still use the above two
datasets but perform pre-processing to incorporate temporal information as following: we
create the ground truth based on the similarity calculated from (2) and (14) that takes both
spatial and temporal information into consideration.

1https://publish.illinois.edu/dbwork/open-data/
2https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

1515World Wide Web (2023) 26:1501–1523

https://publish.illinois.edu/dbwork/open-data/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

Table 1 Statistics of datasets
Beijing New York

#POIs 28,342 95,581

#Edge 27,690 260,855

#Trajectory 5,621,428 10,541,288

Ave Length 25 38

7.1.2 Parameter setting

The details of the hyper-parameter setting are as follows. The dimension of POI embedding
is set as 128. And the parameters p and q in the sampling strategy proposed in Section 4.2
are both set as 1. We conduct a grid search to decide on the following hyper-parameters: The
dimension of GNN embedding is selected from the range {32, 64, 128, 256}; The dimension
of trajectories is also from the range {32, 64, 128, 256} in a similar manner to select the
dimension of GNN embedding. The parameter α to control the influence of neighbors in
GNN is selected from the range of [0 : 0.1 : 1]. We use Adam [55] as the optimizer to train
our proposed methods. The learning rate of Adam is set as 0.001.

7.1.3 Evaluation metric

Following previous studies, we use the hitting ratio in the top K list (HR@K) as the metric
in our experiments to show the performance of different methods. The definition of HR@K
is set as (23)

HR@K = 1

|T te|
∑

τ∈T te

|LT
τ @K ∩ LR

τ |
|LR

τ | (23)

where T te is the test set of trajectories, |·| is the set cardinality,LT
τ @K is the list of predicted

most similar trajectories for a given trajectory τ with length K , and LR
τ is the set of most

similar trajectory in the training set for the given trajectory τ where LR
τ = {τ ′}.

7.1.4 Baseline

As our work is the first deep learning-based method for trajectory similarity over the spatial
network, we extend four state-of-the-art methods to similar research problems in our exper-
iments as baselines to show the performance of our method. The details of these methods
are summarized as follows:

• Traj2vec [9]: They use a sequence-to-sequence model to learn the representation of the
trajectory. Mean square error is utilized as the loss function to optimize their method.

• Siamese [56]: This method is a time series learning approach based on the Siamese
network. They use the cross-entropy as the objective function to train the framework.
We set the backbone of their Siamese network with LSTM and use the similar setting
as [24] to support trajectory similarity computation.

• NeuTraj [24]: This method revised the structure of LSTM to learn the embeddings of
the grid in the process of training their framework. To support our task, we replace the
grid with POIs in their framework.

1516 World Wide Web (2023) 26:1501–1523

• Traj2SimVec [6]: This method employs a new loss for learning the trajectory similarity
by point matching. We apply their model to the road network in a similar way to learn
the similarity between trajectories.

For the evaluation of spatio-temporal based similarity measurement, we extend the above
approaches in a similar way: we initialize the temporal embedding with one-hot representa-
tion and feed it into an MLP layer. Then we concatenate the output of the MLP layer with
that of the POI embedding to formulate the input of the above models.

7.2 Experimental results

The experiment results on the two datasets could be found in Tables 2 and 3. From these
results, we present our observations and corresponding analysis as follows.

Firstly, our method outperforms all other methods on all metrics and this could verify the
superiority of our method. The main reason is that our framework can utilize the information
from the road network, where others only consider the information of the grid.

Specifically, our method significantly outperforms NeuTraj. The improvements come
from two aspects: (i) The embedding generation of POIs is independent from the trajectory
similarity learning in our method, where NeuTraj learns them simultaneously; and (ii) Neu-
Traj utilizes the regression loss to learn the actual similarity between two trajectories, while
GTS can learn the partial ordering relationship between trajectories. These two factors both
improve the performance of trajectory similarity computation.

Moreover, one additional reason why GTS is better than Traj2SimVec is that we use the
dot product of embedding vectors to compute the similarity between two trajectories, where
Traj2SimVec uses theL2-norm of absolute the difference between embedding vectors. Using
dot product to compute the similarity is inspired by collaborative filtering in the field of
recommendation, which has been proved more effective than the linear operation as it could
propagate the information between indirectly connected samples efficiently.

Finally, the advantage of GTS over Siamese lies in that the cross-entropy loss in Siamese
cannot learn the partial ordering relationship between similar and dissimilar trajectories.
And the objective of Siamese is to make the similarity between the similar trajectories as
large as possible. Nevertheless, this optimization process will lead to overfitting. At the
same time, the loss function of GTS can avoid this problem as its value will be zero if the
predicted similarity between similar trajectories is larger than that between dissimilar ones.

7.3 Ablation study

The main components and contributions of our work are that we propose a new way to
generate the POI embeddings and utilize GNN to learn the trajectory embeddings. To show

Table 2 Results on Beijing dataset (Bold numbers indicate the best performance.)

Method HR@1 HR@5 HR@10 HR@20 HR@50

Traj2vec 5.82% 10.57% 18.64% 28.83% 40.07%

Siamese 6.33% 13.25% 20.17% 32.61% 45.58%

NeuTraj 7.72% 19.78% 27.54% 39.63% 53.57%

Traj2SimVec 7.81% 20.42% 29.17% 40.14% 56.75%

GTS 9.21% 25.00% 35.48% 48.07% 66.12%

1517World Wide Web (2023) 26:1501–1523

Table 3 Results on New York dataset (Bold numbers indicate the best performance.)

Method HR@1 HR@5 HR@10 HR@20 HR@50

Traj2vec 4.95% 9.33% 16.13% 24.57% 37.24%

Siamese 5.23% 11.12% 18.75% 27.74% 42.16%

NeuTraj 6.15% 15.57% 23.28% 30.18% 48.43%

Traj2SimVec 6.31% 17.03% 26.46% 32.52% 50.55%

GTS 8.43% 21.64% 32.53% 41.69% 58.17%

the effects of these two techniques in our framework, we give the ablation experiment in
Table 4. The settings of these methods are summarized as follows:

• GTS/POI: In this method, we did not utilize our POI embedding as the input for the
trajectory similarity model. The embedding matrix is randomly initialized and trained
along with other components in the framework.

• GTS/GNN: Instead of applying GNN on POIs for further encoding, we just use our
POI embedding as the input for the LSTM to get the trajectory embedding.

From the results in Table 4, we can obtain the following conclusions and analysis:
First, we find that utilizing our POI embedding could significantly improve the perfor-

mance. As the objective function of the trajectory, similarity cannot directly constrain the
POI embedding in GTS/POI, and the POI embedding learned in this process will be random
without explainable physical significance. Then the relationship between POI embeddings
will be uncertain, and the combinations of POIs cannot reflect the spatial topology of exist-
ing trajectories on the spatial network. The two-step strategy for the trajectory similarity
learning in our framework could address this problem: The POI embedding learned in the
first step would include the information of both the spatial network and existing trajectories
in the training data. Then the combinations of them will lead to more reasonable trajectory
patterns.

Moreover, we observe that the GNN can definitely improve the performance of our
framework. By applying GNN on POI embeddings, it provides richer information of the
spatial network. The reason is that the adjacent graph in GNN has the same topology struc-
ture as the spatial network. Moreover, the data sparsity problem in the trajectory dataset can
also be alleviated with the help of GNN. For each node in the network, the GNN can help
impose all of its connected POIs to generate trajectory embedding. In this way, the num-
ber of common POIs between similar trajectories will be larger. For a given trajectory, it is
easier to find its most similar trajectory in the training set.

Table 4 Ablation Experiment (Bold numbers indicate the best performance.)

Method Pr@1 Pr@5 Pr@10 Pr@20 Pr@50

GTS/POI 8.07% 21.38% 30.54% 41.01% 58.55%

GTS/GNN 8.80% 24.15% 33.28% 45.57% 63.31%

GTS 9.21% 25.00% 35.48% 48.07% 66.12%

1518 World Wide Web (2023) 26:1501–1523

7.4 Parameter analysis

We also conduct the parameter analysis to provide more insights into some components in
our framework. From the results in Figure 6, we have the following observations:

As shown in Figure 6(a), we could see that the results vary greatly with different values
of parameter α. This serves as evidence that the usage of GNN has a significant influence
on the performance of learning trajectory similarity. GNN would incur the information of
neighbors for the given sample. The performance is the best when α = 0.1, which means the
relationship between a given POI and its neighbors achieves the best state for the trajectory
similarity learning. When α = 0.0, the GNN will be equivalent to MLP, where there are
no neighbors for any given POI. By comparing the results between α = 0.1 and α =
0.0, we could conclude that for a given POI, gathering its neighborhood information in an
appropriate way will help improve the performance. However, when the value of α is too
large, the performance will become worse. The main reason is that in this case, the weights
in the adjacent graph cannot reflect the actual relationship between POIs.

Figure 6 Results of different parameters

1519World Wide Web (2023) 26:1501–1523

The effect of the trajectory embedding dimension could be found in Figure 6(b). It is
obvious that the dimension of trajectory embedding decides how much information they
can contain in the training process. If the dimension is too small, it will lead to the underfit-
ting problem, where the model cannot fit the training dataset well. Meanwhile, if the value
is too large, it may cause the overfitting problem, where the model cannot achieve good
performance on the test dataset. The overfitting problem could be resolved by many other
technologies, such as our pair-wise loss and GNN component. And that’s the reason why
we could obtain a good performance when the dimension of trajectory embedding is large.

7.5 Evaluate the GTS+ framework

Finally, we report the results of computing trajectory similarity-based both spatial and
temporal information. Based on the techniques introduced in Section 6, we proposed 3
approaches:

• GTS+ (Concat) is the method that first learns the temporal embedding of each POI with
GAT based on the graph constructed in Section 6.2 and then composes the embedding of
each POI by concatenating its spatial and temporal embeddings. Finally, the trajectory
representation is learned with the original LSTM network.

• GTS+ (Joint) is the method that jointly learns the spatial and temporal information of
each POI with one GAT network introduced in the last paragraph of Section 6.2.

• GTS+ (ST-LSTM) is the method that uses spatial and temporal embedding of each POI
as the input and employs a ST-LSTM network introduced in Section 6.3 to learn the
trajectory representation.

The experimental results are shown in Table 5. We have the following observations:
Firstly, the three GTS+ based approaches have a better overall performance than state-of-
the-art methods. The reason is that previous approaches fail to capture both the structure of
the spatial network and temporal representation. Meanwhile, with our graph-based method,
GTS+ can learn such information in the learned trajectory embedding. Thus it can achieve
promising results in spatial-temporal based trajectory similarity computation.

Secondly, GTS+ (Contact) performs the worst among the three approaches. The reason
is that it cannot properly merge spatial and temporal information. Since the two embeddings
are learned in two different vector spaces, directly concatenating them might lead to some
noises. The GTS+ (ST-LSTM) and GTS+ (Joint) methods significantly outperform GTS+

Table 5 Evaluation Results: Spatial and Temporal Information (Bold numbers indicate the best
performance.)

New York Beijing

HR@1 HR@5 HR@10 HR@20 HR@50 HR@1 HR@5 HR@10 HR@20 HR@50

Traj2vec 3.11 9.83 11.95 18.63 28.93 2.76 8.63 12.81 17.37 26.58

Siamese 3.28 10.56 13.22 19.47 30.28 2.98 8.78 13.45 18.44 28.23

NeuTraj 3.75 11.21 15.52 21.13 33.89 3.43 9.54 14.21 20.51 31.90

Traj2SimVec 3.86 11.95 16.41 23.77 36.53 3.54 9.66 14.73 21.07 33.84

GTS+ (Concat) 4.60 13.13 19.77 28.32 43.07 4.08 11.87 17.31 25.83 41.77

GTS+ (ST-LSTM) 6.68 14.51 21.84 33.17 46.53 5.14 14.57 20.58 26.54 42.54

GTS+ (Joint) 6.74 14.94 22.11 33.54 46.88 5.15 14.63 20.64 26.48 42.10

1520 World Wide Web (2023) 26:1501–1523

(Contact) as they employ reasonable approaches for information fusion. For example, on
the New York dataset for the results of HR@50, the results of Concat, ST-LSTM and Joint
is 43.07, 46.53, 46.88, respectively.

Thirdly, the performance of GTS+ (ST-LSTM) is comparable with that of GTS+ (Joint).
But the overall performance of GTS+ (Joint) is slightly better. The reason might be that
although ST-LSTM can effectively make use of the spatial and temporal embedding of
POIs, such embeddings are still learned from two different GAT models. Due to the poten-
tial issues in data sparsity and vector space alignment, the quality of spatial and temporal
embedding themselves is somewhat limited. At the same time, GTS+ (Joint) can combine
the spatial and temporal information with only one GAT in an earlier stage when learning
the POI embedding. It is proved to be a simple but effective approach for this kind of task.

8 Conclusion

In this paper, we proposed the first deep learning-based framework for trajectory similarity
computation over the spatial network. Compared with existing approaches, our framework
is able to capture underlying route information of the trajectories by considering the struc-
ture of the spatial network, thus being robust to the number of available training instances
and noisy points introduced by system errors. To this end, our GTS framework first employs
a trajectory-aware random walk scheme to learn the representation of each POI in the
spatial network. Then it utilizes a GNN-based model combined with LSTM to learn the
trajectory representation for similarity computation. We further extend the framework to
incorporate temporal information into the similarity computation and design a joint training
approach. Experimental results on several popular real-life datasets show the superiority of
our framework in terms of effectiveness.

Acknowledgements This work was supported by the NSFC (No. U21B2046). We acknowledge the editorial
committee’s support and all anonymous reviewers for their insightful comments and suggestions, which
improved the content and presentation of this manuscript.

Author Contributions All authors contributed to the study conception and model design. Silin Zhou and
Pen Han worked on the full manuscript. The first draft of the manuscript was written by Silin Zhou and Pen
Han. Silin Zhou, Peng Han, and Lisi Chen wrote Sections 1–2. Silin Zhou and Pen Han prepared Sections
3–5. The experimental study was conducted by Di Yao and Xiangliang Zhang. All authors commented on
previous versions of the manuscript. All authors have proofread and approved the final manuscript.

Funding This work was supported by the NSFC (No. U21B2046).

Data Availability All datasets used in this paper are open datasets.

Declarations

Competing interests We declare that authors have no known competing interests or personal relationships
that might be perceived to determine the discussion report in this paper.

References

1. Chen, L., Shang, S., Guo, T.: Real-time route search by locations. In: AAAI, pp. 574–581 (2020)

1521World Wide Web (2023) 26:1501–1523

2. Chen, L., Shang, S., Jensen, C.S., Yao, B., Zhang, Z., Shao, L.: Effective and efficient reuse of past travel
behavior for route recommendation. In: SIGKDD, pp. 488–498 (2019)

3. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE
Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017)

4. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE,
pp. 230–241 (2013)

5. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip
recommendation. In: EDBT, pp. 156–167 (2012)

6. Zhang, H., Zhang, X., Jiang, Q., Zheng, B., Sun, Z., Sun, W., Wang, C.: Trajectory similarity learning
with auxiliary supervision and optimal matching. In: IJCAI, pp. 3209–3215 (2020)

7. Chen, L., Shang, S., Feng, S., Kalnis, P.: Parallel subtrajectory alignment over massive-scale trajectory
data. In: IJCAI, pp. 3613–3619 (2021)

8. Shang, S., Chen, L., Zheng, K., Jensen, C.S., Wei, Z., Kalnis, P.: Parallel trajectory-to-location join.
IEEE Trans. Knowl. Data Eng. 31(6), 1194–1207 (2019)

9. Yao, D., Zhang, C., Zhu, Z., Hu, Q., Wang, Z., Huang, J., Bi, J.: Learning deep representation for
trajectory clustering. Expert Syst. J. Knowl. Eng 35(2) (2018)

10. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over
trajectories. IEEE Trans. Knowl. Data Eng., 1974–1988 (2014)

11. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In:
ICDE, pp. 242–253 (2013)

12. Zhao, Y., Shang, S., Wang, Y., Zheng, B., Nguyen, Q.V.H., Zheng, K.: REST: a reference-based
framework for spatio-temporal trajectory compression. In: SIGKDD, pp. 2797–2806 (2018)

13. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online
amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng.,
2827–2841 (2016)

14. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: error-bounded
trajectory compression on the go. In: ICDE, pp. 987–998 (2015)

15. Song, R., Sun, W., Zheng, B., Zheng, Y.: PRESS: A novel framework of trajectory compression in road
networks. PVLDB 7(9), 661–672 (2014)

16. Yang, C., Chen, L., Wang, H., Shang, S.: Towards efficient selection of activity trajectories based on
diversity and coverage. In: AAAI, pp. 689–696 (2021)

17. Liu, Y., Ao, X., Dong, L., Zhang, C., Wang, J., He, Q.: Spatiotemporal activity modeling via hierarchical
cross-modal embedding. IEEE Trans. Knowl. Data Eng. 34(1), 462–474 (2022)

18. Atluri, G., Karpatne, A., Kumar, V.: Spatio-temporal data mining: A survey of problems and methods.
ACM Comput. Surv. 51(4), 83–18341 (2018)

19. Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping.
In: ICDE, pp. 201–208 (1998)

20. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE,
pp. 673–684 (2002)

21. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)
22. Chen, L., Özsu, M.T., Oria, V.: Robust and Fast Similarity Search for Moving Object Trajectories. In:

SIGMOD, pp. 491–502 (2005)
23. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity

computation. In: ICDE, pp. 617–628 (2018)
24. Yao, D., Cong, G., Zhang, C., Bi, J.: Computing trajectory similarity in linear time: a generic seed-guided

neural metric learning approach. In: ICDE, pp. 1358–1369 (2019)
25. Li, X., Cong, G., Cheng, Y.: Spatial transition learning on road networks with deep probabilistic models.

In: ICDE, pp. 349–360 (2020)
26. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial

networks. PVLDB 10(11), 1178–1189 (2017)
27. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency

study. In: SIGMOD, pp. 255–266 (2010)
28. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in

spatial networks. VLDB J., 449–468 (2014)
29. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized point-of-interest

recommendation. In: IJCAI, pp. 2484–2490 (2020)
30. Tang, J., Wang, K.: Personalized Top-N sequential recommendation via convolutional sequence embed-

ding. In: WSDM, pp. 565–573 (2018)
31. Feng, S., Cong, G., An, B., Chee, Y.M.: Poi2vec: Geographical latent representation for predicting future

visitors. In: AAAI, pp. 102–108 (2017)

1522 World Wide Web (2023) 26:1501–1523

32. Atev, S., Miller, G., Papanikolopoulos, N.P.: Clustering of vehicle trajectories. IEEE Trans. Intell. Trans.
Syst. 11(3), 647–657 (2010)

33. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover, M.B., Zhu, Q., Zakaria,
J., Keogh, E.J.: Searching and mining trillions of time series subsequences under dynamic time warping.
ACM SIGKDD, pp. 262–270 (2012)

34. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Parallel trajectory similarity joins in
spatial networks. VLDB J., 395–420 (2018)

35. Wang, S., Bao, Z., Culpepper, J.S., Xie, Z., Liu, Q., Qin, X.: Torch: a search engine for trajectory data.
In: SIGIR, pp. 535–544 (2018)

36. Chen, L., Shang, S., Jensen, C.S., Yao, B., Kalnis, P.: Parallel semantic trajectory similarity join. In:
ICDE, pp. 997–1008 (2020)

37. Yang, J., Zhang, Y., Zhou, X., Wang, J., Hu, H., Xing, C.: A hierarchical framework for top-k location-
aware error-tolerant keyword search. In: ICDE, pp. 986–997 (2019)

38. Wu, J., Zhang, Y., Wang, J., Lin, C., Fu, Y., Xing, C.: Scalable metric similarity join using mapreduce.
In: ICDE, pp. 1662–1665 (2019)

39. Zhang, Y., Wu, J., Wang, J., Xing, C.: A transformation-based framework for KNN set similarity search.
IEEE Trans. Knowl. Data Eng. 32(3), 409–423 (2020)

40. Wang, J., Lin, C., Li, M., Zaniolo, C.: Boosting approximate dictionary-based entity extraction with
synonyms. Inf. Sci. 530, 1–21 (2020)

41. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. In:
ICDE, pp. 1144–1155 (2012)

42. Han, P., Wang, J., Yao, D., Shang, S., Zhang, X.: A graph-based approach for trajectory similarity
computation in spatial networks. In: SIGKDD, pp. 556–564 (2021)

43. Han, P., Shang, S., Sun, A., Zhao, P., Zheng, K., Kalnis, P.: AUC-MF: Point of interest recommendation
with AUC maximization. In: ICDE, pp. 1558–1561 (2019)

44. Zhao, K., Zhang, Y., Yin, H., Wang, J., Zheng, K., Zhou, X., Xing, C.: Discovering subsequence patterns
for next POI recommendation. In: IJCAI, pp. 3216–3222 (2020)

45. Yao, D., Cong, G., Zhang, C., Meng, X., Duan, R., Bi, J.: A linear time approach to computing time
series similarity based on deep metric learning. IEEE Transactions on Knowledge and Data Engineering
(2020)

46. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR
(2017)

47. Li, J., Rong, Y., Cheng, H., Meng, H., Huang, W., Huang, J.: Semi-supervised graph classification: a
hierarchical graph perspective. In: WWW, pp. 972–982 (2019)

48. Chen, Y., Wu, L., Zaki, M.J.: Reinforcement learning based graph-to-sequence model for natural
question generation. In: ICLR (2020)

49. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on
graphs. In: ICLR (2014)

50. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS,
pp. 1024–1034 (2017)

51. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention Networks.
In: ICLR (2018)

52. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed Representations of Words and
Phrases and Their Compositionality. In: NIPS, pp. 3111–3119 (2013)

53. Grover, A., Leskovec, J.: Node2vec: Scalable Feature Learning for Networks. In: ACM SIGKDD,
pp. 855–864 (2016)

54. Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social networking service among user, location and
trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

55. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ICLR (2015)
56. Pei, W., Tax, D.M.J., van der Maaten, L.: Modeling time series similarity with siamese recurrent

networks. CoRR 1603.04713 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

1523World Wide Web (2023) 26:1501–1523

http://arxiv.org/abs/1603.04713

	Spatial-temporal fusion graph framework for trajectory similarity computation
	Abstract
	Introduction
	Related work
	Non-learning trajectory similarity computation
	Deep learning based approaches
	Graph neural networks

	Preliminary
	Trajectory with spatial networks
	Spatial Similarity between trajectories
	The GTS framework

	POI representation learning
	Objective function
	Finding neighbors

	Graph-based trajectory embedding
	GNN-based representation
	Training

	Spatio-temporal trajectory similarity
	Extended similarity with temporal information
	Temporal-aware graph construction
	Fusing spatial and temporal features

	Experiments
	Experiment setup
	Dataset
	Parameter setting
	Evaluation metric
	Baseline

	Experimental results
	Ablation study
	Parameter analysis
	Evaluate the GTS+ framework

	Conclusion
	References

