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Abstract
Margin classifiers, such as Support Vector Machine, are usually critical in the high-stakes 
decision domains. In recent years, differential privacy has been widely employed in margin 
classifiers to protect user privacy. However, incorporating differential privacy into margin 
classifiers might adversely cause the fairness issue in the sense that differentially private 
margin classifiers have significantly different true positive rates on different groups that are 
determined by sensitive attributes (e.g. race). In order to address this issue, we are moti-
vated to identify the factor that dominates the fairness of differentially private margin clas-
sifiers based on well-designed experiments and further analysis. We first conduct an empir-
ical study on three classical margin classifiers learned via three representative differentially 
private empirical risk minimization algorithms, respectively. The empirical result shows 
that the fairness of differentially private margin classifiers strongly depends on the fairness 
of their non-private versions. We then analyze how differential privacy impacts the fairness 
of margin classifiers and confirm the empirical study results. In a general sense, our study 
shows that when non-private margin classifiers are fair, the fairness of their differentially 
private counterparts can be ensured.
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1 Introduction

Margin classifiers are playing an important role in the high-stakes decision domains 
(e.g. credit assessment) [1, 2]. Recently, to protect user privacy when training margin 
classifiers on sensitive data, a number of differentially private empirical risk minimiza-
tion (ERM) algorithms have been proposed [3–8]. Meanwhile, as an important social 
concern about machine learning, algorithmic fairness is receiving increasing attention 
from both public and academia [9, 10]. Among various machine learning models, the 
fairness of margin classifiers receives significant attention [11–15] for their wide appli-
cation in high-stakes domains protected by anti-discrimination regulations.

However, previous studies [16, 17] showed that the differentially private ERM algo-
rithms could make machine learning models unfairly treat different groups, such as 
recognizing black faces and white faces with different accuracy. Here, their studies are 
mainly empirical and lack an analysis of how differential privacy impacts the fairness of 
their studied models. As a result, we still did not know the dominant factor on the fair-
ness of the differentially private machine learning models. Identifying the dominant fac-
tor would help find a correct way to ensure the fairness of differentially private margin 
classifiers.

In this paper, we show that the fairness of non-private margin classifiers dominates 
the fairness of corresponding differentially private margin classifiers based on well-
designed experiments and further analysis. We first empirically evaluate the impact 
of three representative differentially private ERM algorithms [3–5] on the fairness of 
three classical margin classifiers: Linear support vector machine (SVM), Kernel SVM, 
and logistic regression (LR). Because in most high-stakes domains, the accuracy of the 
‘positive’ label is more important than that of the ‘negative’ label [12, 18], we use equal 
opportunity [12], which requires that different groups should have the same true posi-
tive rate (TPR), as the fairness notion. By testing three datasets widely used in the algo-
rithmic fairness field, we find that the fairness of differentially private margin classifiers 
strongly depends on the fairness of their non-private versions. In that sense, when a 
non-private margin classifier has almost the same TPR on different groups, its differen-
tially private version also has almost the same TPR on these groups. Furthermore, when 
a non-private margin classifier has a significant TPR gap between two groups, differen-
tial privacy will amplify this TPR gap.

We confirm the empirical results through a theoretical analysis of how differential 
privacy impacts the fairness of margin classifiers. Concretely, we reveal that the main 
reason for significant TPR gaps in differentially private margin classifiers is that ‘posi-
tive’ data samples of different groups have significantly different margin distributions in 
their non-private versions, which is implied by TPR gaps. By contrast, when a non-pri-
vate margin classifier has similar TPR on different groups, the ‘positive’ data samples 
from different groups will have similar margin distributions. Consequently, the negative 
impact brought by differential privacy can be largely ignored, even eliminated. We also 
show that our analysis results can be extended to other accuracy-based group fairness 
notions (e.g. equal odds [12]).

In summary, we show that if non-private margin classifiers are fair with negligible 
TPR gaps, the fairness of their differentially private counterparts can be ensured. As is 
shown in Section 5.3, when we improve the fairness of non-private margin classifiers 
with a pre-processing method [11], the TPR gaps of differentially private margin classi-
fiers are close to and even lower than those of non-private margin classifiers.
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2  Related work

Algorithmic fairness Chouldechova et al. [9] presented an overview of current studies on 
algorithmic fairness. Dwork et  al. [19] proposed the notion of individual fairness. How-
ever, because the similarity of individuals is hard to measure, a series of group fairness 
notions [12, 19, 20] have been proposed. Based on these fairness notions, several studies 
proposed the related algorithms to train fair classifiers [11–14]. All of these studies took 
margin classifiers as typical cases to verify the effectiveness of their algorithms.

Differential privacy Differential privacy has become a de facto standard to protect user 
privacy of machine learning models. Since Chaudhuri et al. [21] created a novel sensitiv-
ity analysis method for convex and continuous loss functions, many differentially private 
ERM algorithms have been developed to achieve a better privacy-utility trade-off [6, 7, 22, 
23], to make differentially private ERM algorithms more usable [5, 24] or to make a non-
convex optimization process differentially private [3, 25]. In addition, Jagielski et al. [26] 
applied differential privacy to protect the sensitive attribute (e.g. gender) of data samples 
when training a fair classifier.

Differential privacy and algorithmic fairness Cummings et al. [27] showed that perfect 
fairness and differential privacy are incompatible under non-trivial accuracy. Bagdasaryan 
et al. [16] empirically revealed that a differentially private stochastic gradient descent algo-
rithm has a disparate impact on the accuracy of different groups. Motivated by the above 
findings, some related algorithms [28–32] have been proposed to balance privacy protec-
tion and fairness on the classification problem, the selection problem, etc. However, there 
still lacks a comprehensive study on how differential privacy impacts the fairness of mar-
gin classifiers, which is critical to designing differentially private and fair margin classi-
fiers. Compared with previous studies, our study covers a wider spectrum of differentially 
private ERM algorithms. What is more, beyond the empirical study, we conduct a theoreti-
cal analysis of how differential privacy impacts the fairness of margin classifiers.

3  Preliminaries

To present the study results clearly, we list the notations involved in this paper in 
Table 1.

3.1  Margin classifier

Definition 1 (Geometric margin [33]) The geometric margin �h(�) of a linear classifier 
h ∶ � → �� ⋅ � at a data sample � is its Euclidean distance to the hyperplane whose normal 
vector is �:

Margin classifier [34] Margin classifiers learn a model by optimizing a loss function that 
takes margins as inputs (e.g. maximizing the minimum margin). That is, the loss function 

�h(�) =
��� ⋅ ��
‖�‖2
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of any margin classifier can be represented as a composite function of the margin function 
and a margin loss function �(�h(�)) ∶ ℝ

p
→ ℝ

+ , where p is the dimension of input data.

3.2  Differentially private empirical risk minimization algorithms

We first introduce the definition of neighboring datasets: D and D�

∈ Dn are neighboring 
datasets if D′ and D differ in one data sample. We then introduce the definition of (�, �)-dif-
ferential privacy as follows.

Definition 2 (�, �)-differentially privacy [35]. For a random mechanism M whose input is 
D ∈ Dn and output is r ∈ R , we say M is (�, �)-differentially private if for any subset S ⊆ R , 
Pr(M(D) ∈ S) ≤ e� ⋅ Pr(M(D

�

) ∈ S) + � , where � is the privacy budget, a tunable param-
eter on the privacy-utility trade-off.

The main idea of differential privacy is to bound the influence of each data sample on 
the output to prevent attackers from inferring any information about one single data sample 
from the output. A typical way to satisfy the definition of differential privacy is by adding 
random noise sampled from a predefined distribution to the computing process. If � is 0, 
we say M is �-differentially private.

We can design differentially private ERM algorithms according to the following three 
paradigms: (1) Objective perturbation (adding random noise to loss functions); (2) Gra-
dient perturbation (adding random noise to gradients); (3) Output perturbation (adding 
random noise to the final model parameters). To comprehensively study the relationship 
between differential privacy and fairness of margin classifiers, we test three differentially 
private ERM algorithms, each of which follows one or two of the above three paradigms.

Approximate Minimal Perturbation algorithm (AMP) [4] combines the objective pertur-
bation and the output perturbation paradigms. It thus divides the total privacy budget into 
two parts (i.e. the noise of objective perturbation and the noise of output perturbation). 

Table 1  Notations involved in 
this paper

Symbol Description

D Dataset
� Loss Function
L Lipschitz constant
� Learning rate
k Batch size
T Iteration number
Λ Coefficient of L2-regularization
n Size of training dataset
�, � Privacy parameters
� Model parameters
p Feature dimension
�, � Deviation parameters
� The upper bound of gradients
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Note that even though AMP is a hybrid method, more than 99% of the privacy budget 
should be allocated to the objective perturbation phase as the authors of AMP recommend.

Differentially Private Stochastic Gradient Descent algorithm (DPSGD) [3] follows the 
gradient perturbation paradigm. It adds noise to the clipped gradients. DPSGD can be 
applied to train non-convex models because it has no assumption on the loss functions.

Private convex permutation‑based Stochastic Gradient Descent algorithm (PSGD) [5] 
follows the output perturbation paradigm. The goal of PSGD is to help incorporate differ-
ential privacy into existing machine learning systems without modifying the original sys-
tem. It adds noise to the final model parameters based on the sensitivity analysis of convex 
and continuous loss functions and the stochastic gradient descent process.

Despite adding the noise at different positions, all of the above differentially private 
ERM algorithms provide utility guarantees for convex models, which bound the difference 
between the losses of private and non-private models. They guarantee the utility by bound-
ing the Euclidean distance between the private model parameters �priv and non-private 
model parameters �∗ . As a result, we define (�, �)-deviation to quantify the deviation of 
model parameters led by differential privacy noise.

Definition 3 ((�, �)-deviation) We say a differentially private ERM algorithm is (�, �)
-deviate if it can guarantee that when trained from the same dataset, with the probability 
at least 1-� , the L2 distance between private model parameters �priv and non-private model 
parameters �∗ is less than a given value � . That is:

In Definition 3, � bounds the probability that the L2 distance between the private model 
and the original model is higher than or equal to � . We show the the deviation properties of 
the above three differentially private ERM algorithms in Lemmas 1, 2 and 3.

Lemma 1    AMP follows ( n�
Λ
+ (

√
2p log

2

�
)(

4L

Λ�3
(1 +

√
2 log

1

�1
) +

n�

Λ�2
(1 +

√
2 log

1

�2
)),�

)-deviation.

Lemma 2   PSGD follows ( 2p ln(p∕�)kTL�
n�

,�)-deviation.

Lemma 3   When applying DPSGD to optimize a Δ-strongly convex and L2-Lipchitz con-
tinuous loss function, if we set learning rate as 1

Δt
 , DPSGD follows ( 4(L

2+p�2)

Δ2T�
,�)-deviation.

The proofs of the above lemmas are shown in Appendix 1 with the pseudocodes of three 
differentially private learning algorithms.

3.3  Equal opportunity

Let D = {(�1, a1, y1),⋯ , (�n, an, yn)} be a dataset that consists of n data samples from an 
unknown distribution over (X,A) × Y  , where Y = {+1,−1} is the set of labels, A is the set 
of sensitive attributes (e.g. gender, race) and X is the set of other features in an input space. 

Pr(
‖‖‖𝜃priv − 𝜃∗

‖‖‖2 < 𝜆) ≥ 1 − 𝛼
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In this paper, we use equal opportunity [12], which requires that different groups should 
have the same true positive rate (TPR), as the fairness notion in our study.

Cummings et al. [27] has shown that perfect fairness and differential privacy are incom-
patible under non-trivial accuracy. We thus use �-True Positive Rate Disparity to measure 
the degree of fairness of a classifier.

Definition 4 �-True Positive Rate Disparity [36]. For any ai, aj ( i ≠ j ) ∈ A and 
a classifier h� , we say h� satisfies �-True Positive Rate Disparity if and only if 
|Pr{h�(�i, ai) = +1|yi = +1} - Pr{h�(�j, aj) = +1|yj = +1}| ≤ � . Here � is the maximum 
TPR difference among all groups.

4  Empirical study

In this section, we evaluate the impact of differential privacy on the fairness of margin 
classifiers by applying AMP, DPSGD, and PSGD to train three classical margin classifiers: 
Linear SVM, Kernel SVM, and LR, respectively. We try to answer the following research 
questions: Are differentially private ERM algorithms bound to aggravate the TPR gaps of 
margin classifiers? If not, which factor dominates the aggravation of the TPR gaps? The 
answers to these questions would help find a correct way to ensure the fairness of differen-
tially private margin classifiers.

4.1  Experiment setup

Datesets We transform all data samples into one-hot encoded forms and shuffle them 
before the training process. Then we take the first 80% as the training dataset and the rest 
20% as the testing dataset. There are six datasets (Compas1, Adult [37], Default [37], Ger-
man [37], Student [37], Arrhythmia [37]) that are widely used in the algorithmic fairness 
field. Considering the size of datasets (larger than 1,000), we employ three datasets (Com-
pas, Adult, Default) in our empirical study. The overview of these three data-
sets is shown in Table  2. (1) Compas dataset contains 7,214 data samples. The binary 
label indicates whether an offender recidivates within two years after the screening. We set 
‘No Recidivism in Two Years’ as the ‘positive’ label and Race as the sensitive attribute. 
After filtering the data samples with null attributes and selecting the data samples whose 
races are African-American (black) or Caucasian (white), we obtain 5,915 data samples. 

Table 2  Overview of datasets

DataSet #Sample Sensitive Attribute Positive Label

Compas 5,915 Race No Recidivism in Two Years
Adult 45,220 Gender Income Higher than 50k Dollars
Default 30,000 Gender No Default Payment

1 https:// github. com/ propu blica/ Compas- analy sis
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(2) Adult dataset contains 45,220 data samples. The binary label indicates whether the 
income of one citizen is higher than 50k dollars. We set ‘Income Higher than 50k Dollars’ 
as the ‘positive’ label and Gender as the sensitive attribute. (3) Default dataset contains 
30,000 data samples. The binary label indicates whether one user has a default payment. 
We set ‘No Default Payment’ as the ‘positive’ label and Gender as the sensitive attribute. 
Note that even with large variances, the results of the rest three datasets give the same 
answer to the research questions with the three employed datasets. We discuss them in 
Appendix 1.

Algorithm implementation and hyperparameter configuration We implement AMP, 
DPSGD, PSGD based on the open-source code2 released by Iyengar et  al. [4]. All of 
three algorithms have at least four hyperparameters. To comprehensively study the rela-
tionship between differential privacy and fairness of margin classifiers, we conduct a grid 
search procedure to find the best hyperparameter configuration, which means that under 
the hyperparameter configuration, private models acquire the highest average test accuracy 
given a privacy budget. In addition, we independently train ten models for each hyperpa-
rameter configuration and average the TPR gaps between groups of these ten models as the 
final result. We also plot the error bars of the test results to show the statistical significance 
of our results. We list all potential values of hyperparameters in Table 3.

Privacy parameters To comprehensively study the impact of differential privacy on the 
fairness of margin classifiers, we test eight � values (from 1 to 8), which covers most pri-
vacy budget values used in practice. In addition, following the settings of previous studies 
[4, 5], we set another privacy parameter � as 1

n2
 , where n is the size of the training dataset. 

The potential values of privacy parameters are shown in Table 4.

Sample clipping All three differentially private ERM algorithms require that the loss 
functions should be L2-Lipschitz continuous [4]. We achieve it by bounding the L2 norm of 
each data sample. Before the training process, we clip the feature vector of each data sam-
ple (�i, ai) to (�i, ai) ⋅ min(1,

L

‖(�i,ai)‖2

).

Table 3  Potential hyperparameter 
values for the grid search 
procedure

Hyperparameter Potential Values

Λ (regularization factor) 0, 0.001, 0.01, 0.05
� (learning rate) 0.001, 0.01, 0.1, 1, 10
T(iteration number) 5, 10, 100, 500, 1000
f (output budget fraction of AMP) 0.001, 0.01, 0.1, 0.5
f1 (privacy budget fraction of AMP) 0.9, 0.95, 0.98, 0.99
L (clipping threshold) 0, 0.05, 0.1, 1, 10

2 https:// github. com/ sunbl aze- ucb/ dpml- bench mark
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4.2  Experimental results

Linear support vector machine We obtain the non-private baselines by training L2 regu-
larized Linear Huber SVM models [38]. Then we train differentially private Linear SVM 
models via AMP, DPSGD and PSGD on same training datasets.

As is shown in Figure  1, the average TPR gaps of all private models trained on Com-
pas and Adult datasets are larger than those of the non-private models. In contrast, the 
average TPR gaps of all private models trained on Default dataset are close to that of 
the non-private model. The TPR gap between the white samples and black samples of 
the non-private model trained on Compas dataset is about 0.117 (more than 19 times 
of Default); the TPR gaps between the male samples and female samples of the non-
private models trained on Adult and Default datasets are about 0.072 (12 times of 
Default), 0.006, respectively.

Kernel support vector machine We implement the non-private Kernel SVM and its dif-
ferentially private versions through a Fourier transform-based function approximation 
method proposed by Rahimi et  al. [39]. This method uses random cosine functions to 
approximate the kernel functions that project the original features to a high-dimension tar-
get space. Therefore, two additional parameters are involved in the Kernel SVM implemen-
tation: the dimension number of the target space, the standard variance of random cosine 
functions. We approximate the Gaussian kernel function [33] here and use a grid search 
procedure to determine the values of these two parameters. Then we train Linear SVM 
models on the projected high-dimension features.

As is shown in Figure 2, the private models trained on Compas and Adult data-
sets all have larger average TPR gaps than the non-private models. Note that the TPR 
gaps of non-private models trained on Compas and Adult datasets are about 19 and 
12 times more than that of Default dataset. While in Default dataset, the average 
TPR gaps of private models are similar to that of the non-private models. Meanwhile, 

Table 4  Potential Privacy 
parameters

Privacy Parameter Potential Values

� 1, 2, 3, 4, 5, 6, 7, 8
� 1

n2

Fig. 1  TPR gaps of non-private and differentially private SVM models  trained on Compas, Adult, and 
Default datasets
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as the privacy budget changes, the size of TPR gaps fluctuates up and down, which 
shows that the TPR gap changes are accidental errors introduced by the randomness 
of noise sampling.

Logistic regression We obtain the non-private baseline by training a L2 regularized LR 
model on the same training datasets as private models. As is shown in Figure 3, the private 
models trained on Compas and Adult datasets all have larger average TPR gaps than 
the non-private models. By contrast, when the TPR gap in the non-private model is small 
(0.014 in Default dataset, about 1/11 and 1/5 of Compas and Adult datasets), the TPR 
gaps in private models are almost the same as that of the non-private model. The experi-
mental results of Compas and Adult also show that reducing the scale of private noise 
by increasing privacy budget could reduce the negative impact brought by differentially 
private ERM algorithms.

Insights By analyzing the experimental results of three classical margin classifiers 
learned via three differentially private ERM algorithms over three widely used data-
sets, we can conclude that differentially private ERM algorithms are not bound to 
have a disparate impact on the TPR of different groups. That is, when the TPR gaps 
of non-private models are small enough (such as 0.006 in Default dataset by Linear 
SVM), differential privacy will not aggravate the TPR gaps of margin classifiers. On 
the other hand, when non-private models have significant TPR gaps between groups 
(such as 0.117 in Compas dataset and 0.072 in Adult dataset by Linear SVM), all 
differentially private ERM algorithms amplify the TPR gaps. In addition, in Compas 

Fig. 2  TPR gaps of non-private and differentially private Kernel SVM models trained on  Compas220,0.9, 
 Adult245,0.1, and  Default120,0.3 datasets. The subscripts of datasets indicate the dimension of the target fea-
ture space and standard variance of kernel function approximation method

Fig. 3  TPR gaps of non-private and differentially private LR models trained on Compas, Adult, and Default 
datasets
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dataset, the number of black samples is about 1.5 times that of white samples, but the 
TPR of black samples drops much more than white samples in private models. The 
result shows that differential privacy only amplifies the bias in the dataset rather than 
discriminates against the minority group of the dataset. We will further justify this 
claim in Section 4.3.

4.3  Impact of Data Imbalance

Bagdasaryan et al. [16] stated that differential privacy noise would cause less accuracy loss 
on majority groups and more accuracy loss on minority groups in differentially private 
neural network models. In order to test whether this claim is applicable in margin classi-
fiers, we subsample the minority group of three datasets studied in Section 4 to construct 
imbalanced datasets. The details of constructed imbalanced datasets are shown in Table 5. 
Note that we set the size ratio of Compas dataset as 5:1 because it has much fewer samples 
than the other two datasets. Thus the testing results will have large variances if we set it 
as 10:1. We then train non-private and differentially private margin classifiers over these 
imbalanced datasets with the same grid search procedure used in Section 4. The testing 
results are shown in Figures  4 and  5. In Compas, where the number of black samples 
is five times that of white samples when non-private classifiers have significantly higher 
TPR on white samples, the differential privacy still enlarges the TPR gap between white 
samples and black samples. On the other hand, in Default, even though the number of 
female samples is ten times that of male samples when non-private classifiers have similar 
TPR on different groups, differential privacy has a similar impact on these groups. The 
above results show that data imbalance has little impact on the accuracy loss of differen-
tially private ERM algorithms caused on different groups.

Fig. 4  TPR gaps of non-private and differentially private SVM models trained on imbalanced  Compas, 
Adult, and Default datasets

Table 5  Overview of imbalanced 
datasets

DataSet #Sample Size ratio of the majority 
group to the minority 
group

Compas 4,245 5:1 (Black: White)
Adult 33,579 10:1 (Male: Female)
Default 19,924 10:1 (Female: Male)
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5  Analysis of impact mechanism

In this section, we analyze how differentially private ERM algorithms impact the TPR gaps 
of margin classifiers. We synthesize a two-dimensional dataset to show the intuition behind 
our analysis in Figure 6. For clarity purposes, we only illustrate the ‘positive’ samples. As 
is shown in Figure 6, in the non-private model, Group1 has a higher TPR than Group2 (i.e. 
Group1 has more true positive (TP) samples and fewer false negative (FN) samples than 
Group2 regarding the original non-private model). In the following sections, we omit the 
description of models that are associated with TP and FN data samples for the convenience 
of expression. The TPR gap between Group1 and Group2 implies different margin distri-
butions of their TP and FN data samples, i.e. the margins of TP data samples of Group2 
mainly distribute on lower values (closer to the original hyperplane), while the margins 
of FN data samples of Group1 mainly distribute on lower values (Section 5.1). When the 
private hyperplane deviates from the original hyperplane, more TP samples of Group2 
are misclassified as negative and more FN samples of Group1 are correctly classified as 
positive (Section 5.2). As a result, the TPR gap between these two groups is aggravated 
(Section 5.3).

5.1  Bridging TPR gap and margin gap

In this section, we show that if one group has a significantly higher TPR than another 
group in a non-private margin classifier, the margins of the group’s TP data samples will 

Fig. 5  TPR gaps of non-private and differentially private LR models trained on imbalanced Compas, Adult, 
and Default datasets

Original Hyperplane

The FN samples of Group1 
are classified as positive by 
the private hyperplane

Private Hyperplane

The TP samples of Group2 
are classified as  negative 
by the private hyperplane

Fig. 6  An overview of the analysis of Section 5. Each point represents a data sample. The color and shape 
of one point indicate the group and type the data sample belongs to
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distribute on higher values, while the margins of the group’s FN data samples will distrib-
ute on lower values. We first analyze the correlation between the margin and the loss of one 
data sample. The loss functions of standard linear SVM [33] and LR [33] are:

where ��T�i� = margin
�i
∗ ‖�‖2 according to Definition 1. Without loss of generality, we 

discuss the situation where yi = +1 here. By the definitions of the above loss functions, 
when a data sample �i is correctly classified (i.e. 𝜃T�i > 0 ), a larger margin implies a 
smaller value of the loss function. Conversely, when �i is wrongly classified (i.e. 𝜃T�i < 0 ), 
a smaller margin implies a smaller value of |�T�i| (i.e. −�T�i ), thus a smaller value of the 
loss function. Consequently, if the average loss of one group (refer to as ga ) is lower than 
another group (refer to as gb ), at least one of the following two situations will happen: (1) 
The correctly classified data samples of ga have a larger average margin than correctly clas-
sified data samples of gb . (2) The wrongly classified data samples of ga have a smaller aver-
age margin than wrongly classified data samples of gb . An concrete example of the above 
ga and gb is Group 1 and Group 2 in Figure 6.

If one group has a higher TPR than another one, its ‘positive’ data samples should have 
a lower average loss than the other one. Therefore, the TPR gap between groups inevitably 
implies the margin distribution difference between their TP data samples (situation (1)) or 
their FN data samples (situation (2)), even both simultaneously. On the other hand, if two 
groups have similar TPR, their ‘positive’ samples should have a similar loss and thus have 
a similar margin distribution.

To further verify the above analysis results, we plot the frequency histograms of data 
samples’ margins to show the margin distributions of Compas and Default datasets in 
Figures  7 and  8. Because the only difference between Linear SVM and Kernel SVM is 
that the former is trained on original features and the latter is trained on projected high-
dimension features, the results of Linear SVM can be generalized to Kernel SVM. In Lin-
ear SVM and LR models trained on Compas dataset, the TPR gaps between white samples 
and black samples are about 0.117 and 0.157, respectively. Consequently, the margins of 
TP black samples mainly distribute on lower values than the white ones, while the margins 
of FN white samples mainly distribute on the lower values than the black ones. By con-
trast, in Default dataset, where the TPR gaps of two non-private margin classifiers are 

lossSVM(�, �i, yi) =

{
max(0, 1 − �T�i) yi = +1

max(0, 1 + �T�i) yi = −1

lossLR(�, �i, yi) =

{
log(1 + e−(�

T�i)) yi = +1

log(1 +
1

e−(�
T �i )

) yi = −1

Fig. 7  Margin distribution of TP samples and FN samples of Compas dataset on non-private Linear SVM 
and LR models. Subfigures (a), (b), (c), (d) represent SVM_TP, SVM_FN, LR_TP, LR_FN respectively
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both less than 0.015, the margin distributions of different groups’ TP and FN samples are 
very similar.

5.2  Impact of margin gap

We then show that when the private hyperplane deviates from the original hyperplane, the 
TP samples with smaller margins are more likely to be wrongly classified as negative, and 
the FN samples with smaller margins are more likely to be correctly classified as positive.

Theorem 1 Let m denote the margin of one data sample � to the original hyperplane whose 
normal vector is �∗ . If m is greater than �L

‖�∗‖2
 , then with the probability less than � , the pri-

vate model �priv trained by a differentially private ERM algorithm that is ( �, �)-deviate 
makes a different prediction with the original model on � , i.e.

where L is the upper bound of data samples’ L2 norm.

Proof

According to Cauchy-Schwarz inequality,

As we stated in Section 4.1, to ensure the loss functions are L2-Lipchitz continuous, the 
L2 norm of all data samples are not larger than L. Therefore,

Meanwhile, according to the deviation property of differentially private learning algo-
rithms, with the probability at least 1-�,

Pr((𝜃∗� ⋅ �)(𝜃�
priv

⋅ �) < 0) < 𝛼

(�∗� ⋅ �)(��
priv

⋅ �) =(�∗� ⋅ �)((�∗ + �priv − �∗)� ⋅ �)

=(�∗� ⋅ �)(�∗� ⋅ � + (�priv − �∗)� ⋅ �)

�(𝜃priv − 𝜃∗)� ⋅ �� ≤ ���𝜃priv − 𝜃∗
���2 ⋅ ‖�‖2 < 𝜆L

‖�‖2 ≤ L

‖‖‖𝜃priv − 𝜃∗
‖‖‖2 < 𝜆

Fig. 8  Margin distribution of TP samples and FN samples of Default dataset on non-private Linear SVM 
and LR models. Subfigures (a), (b), (c), (d) represent SVM_TP, SVM_FN, LR_TP, LR_FN respectively
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According to the definition of margin, �h(�) ≥
�L

‖�∗‖2
 implies that |�∗� ⋅ �| ≥ �L . There-

fore, the sign of (�∗� ⋅ � + (�priv − �∗)� ⋅ �) would be consistent with the sign of (�∗� ⋅ �) 
with probability at least 1-� . Thus,

According to Definition 3 and deviation properties of three differentially private ERM 
algorithms identified in Section 3.2, a smaller deviation � implies a higher � . Meanwhile, 
in Theorem  1, a smaller m implies a smaller � . Consequently, the bound of Theorem  1 
shows that a differentially private margin classifier �priv is more likely to make a different 
prediction with the non-private model on one data sample that has a lower m. As is shown 
in Figure 6, when the hyperplane deviates from its original position, the data samples that 
are closer to the original hyperplane are more likely to be classified as different classes. 
When a private model makes different predictions with the non-private model on them, 
TP samples suffer accuracy loss, while FN samples gain accuracy. Therefore, Theorem 1 
shows that the hyperplane deviation led by the differential privacy noise causes more accu-
racy losses to the TP data samples that are closer to the original hyperplane, and more 
accuracy gains to the FN data samples that are closer to the original hyperplane.

The above results can also explain why the TPR gaps of private classifiers trained by 
AMP, DPSGD, and PSGD are slightly different. As these three differentially private ERM 
algorithms have different deviation properties, which are shown in Appendix 1, they have 
slightly different impacts on the TPR gaps of trained classifiers. Meanwhile, a potential 
method to mitigate the negative impact of differentially private ERM algorithms on the 
fairness of margin classifiers is to provide a tighter analysis on the privacy cost of differen-
tially private ERM algorithms. That is, under the same privacy budget, we can train a dif-
ferentially private margin classifier with less random noise by tightly analyzing the privacy 
cost. We put it as our future work.

5.3  Deep analysis of empirical results

With the analysis results from Sections 5.1 and 5.2, we analyze the empirical results from 
Section 4 as follows.

According to Section  5.1, the TPR gap between groups implies different margin dis-
tributions of these groups. Concretely, the group with a higher TPR would have more TP 
data samples whose margins distribute on high values and more FN data samples whose 
margins distribute on low values. Meanwhile, as the bound of Theorem  1 shows, when 
the original hyperplane is deviated by differential privacy noise, the group with a higher 
TPR will suffer less accuracy loss on TP data samples and gain more accuracy on FN data 
samples. Therefore, the significant TPR gaps of non-private margin classifiers trained on 
Compas and Adult datasets are amplified in their differentially private versions.

By contrast, if a non-private margin classifier has almost the same TPR on different 
groups, the ‘positive’ data samples of these groups will have similar margin distributions. 
Then the TP and FN data samples of different groups will obtain similar bounds in Theo-
rem  1. As a result, the differentially private version of the margin classifier has almost 
the same TPR on these groups, too. For example, the TPR gaps of non-private classifiers 
trained on Default are close to 0. Therefore, the random noise led by differential privacy 
has little impact on the fairness of differentially private classifiers, i.e. the TPR gaps are 
close between non-private and private classifiers trained on Default.

Pr((𝜃∗� ⋅ �)(𝜃�
priv

⋅ �) < 0) < 𝛼
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To further verify the effectiveness of the above results, we use a pre-processing method 
proposed by Donini et al. [11] to mitigate the biases that exist in Compas and Adult data-
sets. Then we train non-private and private Linear SVM and LR models on debiased datasets. 
The TPR gap testing results are shown in Figure 9. When we reduce the TPR gaps of the non-
private models trained on Compas dataset from 0.117, 0.157 to 0.050, 0.050, the negative 
impact brought by differential privacy is largely mitigated, even eliminated. In Adult dataset, 
when we reduce the TPR gaps of non-private models from 0.072, 0.071 to 0.024, 0.028, the 
TPR gaps of private models are very similar to those of non-private models. These results fur-
ther show that the fairness of differentially private margin classifiers strongly depends on the 
fairness of their non-private versions.

6  Discussion and future work

Non‑convex models Currently, domains that are protected by anti-discrimination laws are 
mainly high-stakes, such as credit assessment and criminal justice. Deep learning models 
would still be far from being widely deployed in these domains due to their lack of inter-
pretability and robustness [40–42]. Therefore, we focus on the fairness of differentially pri-
vate margin classifiers in this paper. Besides, current differentially private ERM algorithms 
for non-convex models still lack rigorous utility guarantees. As a result, we put identifying 
the deviation properties of non-convex models as our future work.

Extending our results to other accuracy‑based fairness notions We have shown that 
the TPR gap of a non-private margin classifier implies the margin distribution difference 
between TP samples or FN samples of different groups. According to the qualitative analy-
sis on the loss functions of SVM and LR, we can obtain the same result with the TPR 
gap when it comes to the true negative rate gap or the total accuracy gap. That is, a true 
negative rate gap or a total accuracy gap between two groups would also imply the differ-
ent margin distributions of corresponding data samples. As Theorem 1 only assumes the 
margin of a data sample, the results of our paper can be extended to other accuracy-based 
fairness notions, including equal odds [12], which requires that the different groups should 
have the same true negative rate and true positive rate, and accuracy parity [18], which 
requires the different groups should have the same accuracy.

Fig. 9  TPR gaps of non-private and private margin classifiers trained on Compas and Adult datasets that 
have been pre-processed by the method proposed by [11]. Subfigures (a), (b), (c), (d) represent Compas 
(SVM), Compas (LR), Adult (SVM), Adult (LR) respectively
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Future work In the future, we will quantitatively analyze the correlation between the TPR 
gap and margin distribution difference among groups in the non-private margin classifier 
to understand the impact of differential privacy on the fairness of margin classifiers more 
deeply.

7  Conclusion

In this paper, we study the dominant factor on the fairness of differentially private 
margin classifiers. Through conducting a well-designed empirical study and analyzing 
how differential privacy impacts the fairness of margin classifiers, we show that the 
fairness of differentially private margin classifiers strongly depends on the fairness 
of their non-private counterparts. To summarize, we argue that if non-private margin 
classifiers are fair with negligible TPR gaps, the fairness of their differentially private 
versions can be ensured.

A: Deviation properties of AMP, PSGD, DPSGD

In this section, we identify the deviation properties of AMP, PSGD and DPSGD.

The pseudocodes of AMP are shown in Algorithm  1. According to the design of 
AMP, we identify its deviation property as follows.

Proof of Theorem  1 AMP follows 
(
n�

Λ
+ (

√
2p log

2

�
)(

4L

Λ�3
(1 +

√
2 log

1

�1
) +

n�

Λ�2
(1 +

√
2 log

1

�2
)),�)-deviation.

Proof of Theorem 1 The utility guarantee of AMP contains two parts. First, it bounds the 
distance between optimal model parameters �approx under private loss function and 
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optimal model parameters �∗ under non-private loss function. Second, it bounds the dis-
tance between private output �out and �approx . The first bound is 2n‖��‖2

Λ
 (see inequality 10 

of [4]). The second bound is n�
Λ
+ ‖‖��‖‖2(see inequality 5 of [4]). Therefore, the total 

bound of the deviation of model parameters is n(�+2‖��‖2 )
Λ

+ ������2 , where �
�
 and �

�
 are dis-

tributed as N(0, �2
1
Ip×p),N(0, �2

2
Ip×p) , here �1 = 2L

n
(1+

√
2 log

1

�1
)

�3

 , �2= n�

Λ
(1+

√
2 log

1

�2
)

�2

.

According to Lemma 2 in [43]: with probability ≥ 1 −
�

2
,

AMP thus follows (
n�

Λ
+ (

√
2p log

2

�
)(

4L

Λ�3
(1 +

√
2 log

1

�1
) +

n�

Λ�2
(1 +

√
2 log

1

�2
)),�

)-deviation.

We show the pseudocodes of PSGD in Algorithm  2. We then identify the deviation 
property of PSGD.

Proof of Lemma 2 PSGD follows ( 2p ln(p∕�)kTL�
n�

,�)-deviation.

Proof of Lemma 2 The sensitivity of PSGD is 2kTL�
n

 (see Corollary 1 in [5]). As the noise is 
directly added on the final model, the Euclidean distance between private model and non-
private model is the L2 norm of the noise, which is distributed as Gamma distribution Γ(p, 
2kTL�

n�
 ). According to Theorem 2 in [5]: for the noise vector � , whose L2 norm is distributed 

according to the Gamma distribution Γ(p,Δ) , we have that with probability at least 1-� , 
‖�‖2 ≤ pΔln(

p

�
) . Therefore, PSGD follows ( 2p ln(p∕�)kTL�

n�
,�)-deviation.

We then identify the deviation property of DPSGD under a strong convexity and conti-
nuity assumption on loss functions. The pseudocodes of DPSGD are shown in Algorithm 3.

‖‖��‖‖2 ≤ �s

√
2p log

2

�
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Proof of Lemma 3 When applying DPSGD to optimize a Δ-strongly convex and L2-Lipchitz 
continuous loss function, if we set learning rate as 1

Δt
 , DPSGD follows ( 4(L

2+p�2)

Δ2T�
,�)-deviation.

Proof of Lemma 3 Let Gt as the gradient at iteration t , according to Theorem 2.4 of [22],

Then according to Lemma 1 of [44],

Finally, according to Markov inequality,

The deviation properties of AMP, PSGD and DPSGD show that � is inversely proper-
tional to � . Therefore, they deviate private hyperplane from the original hyperplane little with 
high probability.

B: Empirical Results of the Rest Three Datasets

We train Linear SVM, Kernal SVM and LR models on German, Student, 
Arrhythmia datasets under the same setting with that of Section 4. The test results 
are shown in Figures 10, 11 and 12. Even though with large variances, from the aver-
age results, we can find that when a significant TPR gap exists in the non-private 
model, the private models will have larger TPR gaps. On the other hand, when the 
TPR gaps of non-private models are negligible, the private models will have similar, 
even smaller, TPR gaps with the non-private models. We then explain why the TPR 
gaps of margin classifiers trained on these three datasets have such large variances.

The overview of German, Student, Arrhythmia datasets is shown in Table 6. 
The sizes of these three datasets are all less than or equal to 1,000. Consequently, the 
sizes of their testing datasets are less than or equal to 200. Even though labels are bal-
anced distributed and different groups have the same number of data samples, the number 

�[‖‖Gt
‖‖
2

2
] ≤ L2 + p�2

�[‖‖�t − �∗‖‖2] ≤
4(L2 + p�2)

Δ2t

Pr(
‖‖‖�priv − �∗

‖‖‖2 ≤
4(L2 + p�2)

Δ2T�
) ≥ 1 − �
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Fig. 10  TPR gaps of non-private and differentially private SVM models  trained on German, Student, and 
Arrhythmia datasets

Fig. 11  TPR gaps of non-private and differentially private Kernel SVM models trained on  German185,0.3, 
 Student225,0.1, and  Arrhythmia390,0.3 datasets. The subscripts of datasets indicate the dimension of the target 
feature space and standard variance of kernel function approximation method

Fig. 12  TPR gaps of non-private and differentially private LR models  trained on German, Student, and 
Arrhythmia datasets

Table 6  Overview of supplementary datasets

DataSet #Sample Sensitive Attribute Positive Label

German 1,000 Gender Good Credit Risk
Student 649 Gender Course Grade Higher than 10
Arrhythmia 452 Gender No Cardiac Arrhythmia
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of ‘positive’ samples of each group in testing datasets is less than or equal to 50. Therefore, 
the inversion of one data sample’s prediction changes the TPR of the corresponding group 
by at least 2%. As a result, the test results of these datasets are greatly impacted by the ran-
domness of noise sampling, and all have large variances.

Acknowledgements This paper is supported by the National Key R&D Program of China 
(2019YFE0103800) and Natural Science Foundation of China (U1836207). We thank Professor X. Sean 
Wang, Chuanwang Wang for their insightful comments.

References

 1. de Paula, D.A.V., Artes, R., Ayres, F., Minardi, A.: Estimating credit and profit scoring of a brazil-
ian credit union with logistic regression and machine-learning techniques. RAUSP Manage. J. 54, 
321–336 (2019)

 2. Zhang, L., Hu, H., Zhang, D.: A credit risk assessment model based on svm for small and medium 
enterprises in supply chain finance. Financ. Innov. 1(14), 1–21 (2015)

 3. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep 
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 308–318 (2016)

 4. Iyengar, R., Near, J.P., Song, D., Thakkar, O., Thakurta, A., Wang, L.: Towards practical differ-
entially private convex optimization. In: Proceedings of 2019 IEEE Symposium on Security and 
Privacy (SP), pp. 299–316. IEEE (2019)

 5. Wu, X., Li, F., Kumar, A., Chaudhuri, K., Jha, S., Naughton, J.: Bolt-on differential privacy for 
scalable stochastic gradient descent-based analytics. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, pp. 1307–1322 (2017)

 6. Yu, D., Zhang, H., Chen, W., Liu, T.-Y.: Do not let privacy overbill utility: Gradient embedding 
perturbation for private learning. In: ICLR 2021 (2021)

 7. Zhou, Y., Wu, S., Banerjee, A.: Bypassing the ambient dimension: Private {sgd} with gradient sub-
space identification. In: International Conference on Learning Representations (2021)

 8. Huang, X., Ding, Y., Jiang, Z.L., Qi, S., Wang, X., Liao, Q.: Dp-fl: a novel differentially private 
federated learning framework for the unbalanced data. World Wide Web 23(4), 2529–2545 (2020)

 9. Chouldechova, A., Roth, A.: A snapshot of the frontiers of fairness in machine learning. Commun. 
ACM 63(5), 82–89 (2020)

 10. Ranjbar Kermany, N., Zhao, W., Yang, J., Wu, J., Pizzato, L.: A fairness-aware multi-stakeholder 
recommender system. World Wide Web 24(6), 1995–2018 (2021)

 11. Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J., Pontil, M.: Empirical risk minimization 
under fairness constraints. In: Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems. NIPS’18, pp. 2796–2806. Curran Associates Inc., (2018)

 12. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in 
Neural Information Processing Systems, pp. 3315–3323 (2016)

 13. Mandal, D., Deng, S., Jana, S., Wing, J., Hsu, D.J.: Ensuring fairness beyond the training data. In: 
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 18445–18456 (2020)

 14. Roh, Y., Lee, K., Whang, S.E., Suh, C.: Fairbatch: Batch selection for model fairness. In: Interna-
tional Conference on Learning Representations (2021)

 15. Hu, R., Zhu, X., Zhu, Y., Gan, J.: Robust svm with adaptive graph learning. World Wide Web 
23(3), 1945–1968 (2020)

 16. Bagdasaryan, E., Poursaeed, O., Shmatikov, V.: Differential privacy has disparate impact on model 
accuracy. In: Advances in Neural Information Processing Systems, pp. 15479–15488 (2019)

 17. Farrand, T., Mireshghallah, F., Singh, S., Trask, A.: Neither private nor fair: Impact of data imbalance on util-
ity and fairness in differential privacy. In: Proceedings of the 2020 Workshop on Privacy-Preserving Machine 
Learning in Practice. PPMLP’20, pp. 15–19. Association for Computing Machinery, (2020)

 18. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal justice risk assess-
ments: The state of the art. Sociol. Meth. Res. 50(1), 3–44 (2021)

 19. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)

1220 World Wide Web (2023) 26:1201–1221



1 3

 20. Hebert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for the (Compu-
tationally-identifiable) masses. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1939–1948 (2018)

 21. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. 
Journal of Machine Learning Research 12(3) (2011)

 22. Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: Efficient algorithms and tight error 
bounds. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 464–473. IEEE (2014)

 23. Su, D., Cao, J., Li, N., Bertino, E., Lyu, M., Jin, H.: Differentially private k-means clustering and a 
hybrid approach to private optimization. ACM Trans. Priv. Sec. (TOPS) 20(4), 1–33 (2017)

 24. Jain, P., Kothari, P., Thakurta, A.: Differentially private online learning. In: Proceedings of Conference 
on Learning Theory, pp. 24–1 (2012)

 25. Bu, Z., Dong, J., Long, Q., Su, W.J.: Deep learning with gaussian differential privacy. Harvard data 
science review 2020(23) (2020)

 26. Jagielski, M., Kearns, M., Mao, J., Oprea, A., Roth, A., Sharifi-Malvajerdi, S., Ullman, J.: Differentially 
private fair learning. In: International Conference on Machine Learning, pp. 3000–3008. PMLR (2019)

 27. Cummings, R., Gupta, V., Kimpara, D., Morgenstern, J.: On the compatibility of privacy and fairness. 
In: Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization. 
UMAP’19 Adjunct, pp. 309–315. Association for Computing Machinery, (2019)

 28. Ding, J., Zhang, X., Li, X., Wang, J., Yu, R., Pan, M.: Differentially private and fair classification via 
calibrated functional mechanism. In: Proceedings of the AAAI Conference on Artificial Intelligence, 
vol. 34, pp. 622–629 (2020)

 29. Khalili, M.M., Zhang, X., Abroshan, M., Sojoudi, S.: Improving fairness and privacy in selection prob-
lems. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

 30. Mozannar, H., Ohannessian, M.I., Srebro, N.: Fair learning with private demographic data. arXiv pre-
print arXiv: 2002. 11651 (2020)

 31. Tran, C., Fioretto, F., Hentenryck, P.V.: Differentially private and fair deep learning: A lagrangian dual 
approach. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference 
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational 
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 9932–9939 (2021)

 32. Xu, D., Du, W., Wu, X.: Removing disparate impact of differentially private stochastic gradient descent 
on model accuracy. arXiv preprint arXiv: 2003. 03699 (2020)

 33. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning, (2012)
 34. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Large margin classifiers: convex loss, low noise, and conver-

gence rates. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1173–1180 (2004)
 35. Dwork, C.: Differential privacy. In: Proceedings of Automata, Languages and Programming, 33rd 

International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Part II, pp. 1–12 (2006)
 36. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & 

disparate impact: Learning classification without disparate mistreatment. In: Proceedings of the 26th 
International Conference on World Wide Web. WWW ’17, pp. 1171–1180. International World Wide 
Web Conferences Steering Committee, (2017)

 37. Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http:// archi ve. ics. uci. edu/ ml
 38. Cherkassky, V., Ma, Y.: Practical selection of svm parameters and noise estimation for svm regression. 

Neural Netw. 17(1), 113–126 (2004)
 39. Rahimi, A., Recht, B.: Uniform approximation of functions with random bases. In: 2008 46th Annual 

Allerton Conference on Communication, Control, and Computing, pp. 555–561 (2008)
 40. Heaven, D.: Why deep-learning ais are so easy to fool. Nature, 163–166 (2019)
 41. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use inter-

pretable models instead. Nature Machine Intelligence, 206–215 (2019)
 42. Xue, M., He, C., Wang, J., Liu, W.: One-to-n & n-to-one: Two advanced backdoor attacks against deep 

learning models. IEEE Transactions on Dependable and Secure Computing (2020)
 43. Dasgupta, S., Schulman, L.: A probabilistic analysis of em for mixtures of separated, spherical gauss-

ians. J. Mach. Learn. Res. 8, 203–226 (2007)
 44. Rakhlin, A., Shamir, O., Sridharan, K.: Making gradient descent optimal for strongly convex stochas-

tic optimization. In: Proceedings of the 29th International Coference on International Conference on 
Machine Learning. ICML’12, pp. 1571–1578. Omnipress, (2012)

1221World Wide Web (2023) 26:1201–1221

http://arxiv.org/abs/2002.11651
http://arxiv.org/abs/2003.03699
http://archive.ics.uci.edu/ml

	Towards Understanding the fairness of differentially private margin classifiers
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Margin classifier
	3.2 Differentially private empirical risk minimization algorithms
	3.3 Equal opportunity

	4 Empirical study
	4.1 Experiment setup
	4.2 Experimental results
	4.3 Impact of Data Imbalance

	5 Analysis of impact mechanism
	5.1 Bridging TPR gap and margin gap
	5.2 Impact of margin gap
	5.3 Deep analysis of empirical results

	6 Discussion and future work
	7 Conclusion
	Acknowledgements 
	References


