
Vol.:(0123456789)

World Wide Web (2023) 26:1271–1294
https://doi.org/10.1007/s11280-022-01085-4

1 3

Towards robust trajectory similarity computation:
Representation‑based spatio‑temporal similarity
quantification

Ziwen Chen1 · Ke Li1 · Silin Zhou1 · Lisi Chen1 · Shuo Shang1

Received: 14 May 2022 / Revised: 21 June 2022 / Accepted: 8 July 2022 /
Published online: 9 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Quantifying the trajectory similarity is a fundamental functionality in analysis tasks of
spatio-temporal data. Existing classic methods compute the trajectory similarity based
on point matching, which are unable to cope with low-quality trajectories (e.g., have non-
uniform sampling rates or noise points), especially when we take both spatial coordinates
and the time components into account. While some studies with deep learning methods
exist, they did not consider the time components of trajectories and the robustness of simi-
larity measure simultaneously, thus they fail to retrieve similarity-based queries in spatio-
temporal databases where time components of trajectories are also important. In practice,
the time-aware trajectory similarity computation can be better applied to diverse scenarios,
yet the time complexity also heavily increases. To enable efficient and robust similarity
computation on massive-scale trajectories, we developed a novel RSTS model based on
deep representation learning, in which we take the time components into account. Exten-
sive experiments show that our proposal constantly outperforms another two methods, and
the similarity measure based on our RSTS model is robust to low-quality trajectories.

Keywords Spatio-temporal data · Representation learning · Trajectory · Similarity measure

Ke Li is the contact author.

 * Ke Li
 like_like@std.uestc.edu.cn

 Ziwen Chen
 czw_czw@std.uestc.edu.cn

 Silin Zhou
 zhousilinXY@gmail.com

 Lisi Chen
 lchen012@e.ntu.edu.sg

 Shuo Shang
 jedi.shang@gmail.com

1 University of Electronic Science and Technology of China, Xiyuan Avenue, 611731 Chengdu,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01085-4&domain=pdf

1272 World Wide Web (2023) 26:1271–1294

1 3

1 Introduction

With the continued growth of location-tracking devices (e.g., vehicle navigation systems
and smart phones) and GPS-enabled services (e.g., Google Maps), the volume of trajectory
data is skyrocketing. Trajectory similarity measurement, as one of the fundamental func-
tionalities in spatio-temporal data analytics, has been extensively investigated by existing
literature. A host of methods have been proposed [1–4] to measure trajectory similarity in
diverse application scenarios.

Existing methods generally assume that the sampled trajectories have a uniform and
consistent sampling rate. Two trajectories are considered to be similar if they can form a
pairwise matching for the majority of their sample points. However, sampling rates vary
among location-tracking devices [5] due to various reasons, including but not limited
to battery constrains, intermittent signal disruptions, and system settings. In such cases,
matching-based methods are proved to be ineffective. To tackle it, EDwP [3] was proposed
to match trajectories through dynamic interpolation to cope with this issue. However, in
most cases, trajectories are of non-uniform sampling rates, as well as other low-quality
characters. We proceed to illustrate a toy example of exact moving route, high-quality tra-
jectory, and low-quality trajectory of a moving object. Given a moving object o, we let
Ra be a exact moving route of o during a period of time, which is a curve that records the
continuous locations traveled by the object. We let a high-quality trajectory of exact mov-
ing route Ra be a sequence of sampled points with high frequency. And we let a low-quality
trajectory of exact moving route Ra be a sequence of sampled points with low frequency,
as well as some noisy location points are included. Compared to the low-quality trajectory,
the high-quality trajectory has more sampled location points. In addition, the high-quality
trajectory has no noisy. The noisy location points of low-quality trajectories are generated
due to some errors of GPS-equipped devices, making it hard to be used. Assume we con-
duct similarity join tasks between two low-quality trajectories, the join results may be inac-
curate because noisy location points may make two similar trajectories far away from each
other, or make two trajectories of great differences close. Hence, it is important to consider
a noise-free similarity measure to handle low-quality trajectories, such that the similarity
of two low-quality trajectories is the same as the result of corresponding high-quality tra-
jectories. If a similarity measure is noise-free, we say it is robust.

A good similarity measure not only guarantees robustness when handling low-quality
trajectories, but also achieve high efficiency. As a result, a robust and efficient similarity
measure is required. To achieve this, t2vec [6] learned representations of trajectories for
similarity measure based on deep learning methods, in which it considers the robustness of
model, as well as its efficiency. However, temporal information of trajectories are ignored
in t2vec model, making it unable to answer similarity-based queries in spatio-temporal
databases because both spatial information and temporal information of trajectories are
indispensable [7]. By taking the time dimension into account, more diverse applications
such as time-varying traffic congestion prediction [8], staying patterns mining during ani-
mal migration, and time-varying hot routes identification [9] can be developed. As a result,
it is of great importance to take into account time information for similarity measure.

In this light, we propose to investigate a novel problem: Given a collection of trajec-
tories T = {τ1,…,τn}, we propose to learn their representations V = {v1,…,vn} for robust
similarity computation in both spatial and temporal dimensions. Regarding temporal
information, we consider real-valued timestamp within 24h as inputs. Here, v ∈ ℝ

n is
a vector in the Euclidean space. The learned representations must be able to reflect the

1273World Wide Web (2023) 26:1271–1294

1 3

hidden spatio-temporal features of the exact moving route of trajectories. As such, the
similarity of two trajectories based on the learned representations can be robust to low-
quality trajectories (i.e., trajectories with low-sampling rate or noise).

Deep representation learning based approaches [10–12] have yielded better preci-
sion and efficiency than traditional methods [13, 14]. Among these deep learning based
approaches, Recurrent Neural Networks (RNNs) framework has shown great power
to capture dependencies in the sequence processing [15]. A host of studies [16] take
advantage of RNN framework to mine transition patterns of trajectory sequences, and
they all achieve great performance. To the best of our knowledge, no other existing deep
learning frameworks show stronger ability in handling trajectory sequences than RNN.
Therefore, it is natural to consider RNN as an optimal choice in our problem.

One popular example using Recurrent Neural Networks (RNNs) is the encoder-
decoder model, which embeds a sequence into a vector with fixed dimensions. How-
ever, traditional encoder-decoder model is designed for textual data in natural language
processing, where few noises (e.g., typos) can be found, and it did not consider time
information. Specifically, it cannot be directly applied to solve our problem due to
the following three reasons. First, the model inputs are sequences of discrete tokens
while trajectories are represented by sampled points. Second, the learned vector in raw
encoder-decoder model cannot effectively reflect the exact moving routes of trajecto-
ries especially when trajectories are of low quality. Third, the raw loss function used
in encoder-decoder model is unable to identify the spatio-temporal features of trajecto-
ries, because it is originally designed for natural language processing [17]. To this end,
we propose the representation-based spatio-temporal similarity computation (RSTS)
model. The RSTS model converts each trajectory into a sequence of tokens by parti-
tioning space and time dimensions into cells. It is trained with a spatio-temporal aware
loss function that incorporates with the triple loss. When we decode a target cell, the
spatio-temporal aware loss function favors the decoder assigning a higher probability
to the nearest spatio-temporal neighbors of the target cell. By performing training using
an abundance of historical trajectories as inputs, the hidden transition patterns can be
learned effectively. In particular, the hidden spatio-temporal features and transition pat-
tern can be reflected by the learned trajectory representation. The main contributions of
this paper are summarized as follows.

• We propose a RSTS model to learn trajectory representations for spatio-temporal simi-
larity measurement, which takes both spatial and temporal components into account.
The similarity measure based on learned representations is robust to low-quality trajec-
tories. Trajectory similarity measurement can be regarded as a fundamental functional-
ity of spatio-temporal data analytics, such as trajectory clustering, trajectory anomalous
detection, etc. It lays a foundation for a host of applications such as discovering move-
ment patterns of football players, mining the migratory patterns of animals, and identi-
fying particular moving patterns of customers in a store to arrange goods.

• To effectively learn trajectory representations, a novel spatio-temporal aware loss func-
tion is developed. To further improve model efficacy, triple loss is applied to measure
relative similarities among trajectories incorporated with the spatio-temporal aware
loss function.

• The performance of our model is evaluated by extensive experiments on two real-world
datasets. The experiment results show that the RSTS model outperforms the baselines.
Additionally, our results confirm that RSTS model is robust to similarity measure when
handling low-quality trajectories.

1274 World Wide Web (2023) 26:1271–1294

1 3

2 Related work

Existing trajectory similarity computation methods can be divided into two categories: tra-
ditional methods (i.e., non-learning methods) and deep learning based methods. We pro-
ceed to review existing studies on traditional methods, deep learning based methods, and
route network matching based trajectory similarity methods.

2.1 Traditional trajectory similarity measure

Trajectory similarity measurement has attracted significant attention in recent years [1, 6,
18–26]. Most of them are based on distance aggregation between trajectory locations. A
straightforward method is to create a one-to-one alignment among sampled points through
the Lp-norm [27]. However, it is ineffective in local time shift: For two trajectories that
sampled from the same trace, where one of them is slower in the first half of the distance,
and the other is slower in the second half. To address this, DTW [28] was proposed to
compute trajectory similarity using many-to-one mappings. In particular, DTW adapts a
dynamic programming based manner to search all possible point combinations between
two trajectories to find one with minimal distance. Yi et al. [28] introduced a new solu-
tion to improve efficiency. Nevertheless, the sample rate of trajectories has a significant
influence on above similarity measure. Further, EDR [2] improved the accuracy of trajec-
tory similarity computation by alleviating the effect of noise points. To better figure out
similarities among low-quality trajectories (i.e. noisy trajectories), LCSS [1] is developed
to compare two trajectories with the consideration of spatial space shifting. Additionally,
EDwP [3] was proposed to match trajectories under inconsistent and variable sampling
rates through dynamic interpolation. Though these traditional solutions include the design
of effective trajectory indexing structures [2, 29–31], they are still inefficient when process-
ing a large scale of trajectory database. To enable efficient similarity join on large sets of
trajectories, some studies consider the parallel processing capabilities of modern proces-
sors [32–35]. Specifically, STS-Join [32] defines a semantic trajectory by a sequence of
Points-of-interest (POIs) with both location and text information, and present a two-phase
parallel search algorithm. However, non-learning based methods heavily rely on hand-
crafted features, making it fail to mine information hidden in trajectories.

2.2 Deep learning based trajectory similarity measure

Recently, there have been a lot of studies applying deep learning to speed up trajectory data
mining tasks. These trajectory analysis tasks includes but not limited to trajectory cluster-
ing [36], anomalous trajectory detection [37], similarity measure [6, 38, 38–41], and trajec-
tory risk detection [42]. Among these studies, [36] transformed trajectories into feature
sequences to model object movements, and applied an auto-encoder to learn quality low-
dimensional representations of trajectories. The learned fixed-length representations were
further used for discovering groups of similar trajectories. Another study [37] proposed
a model named Gaussian Mixture Variational Sequence AutoEncoder to enable efficient
anomaly detection in an online manner. In addition, to handle the multimodal mobility pat-
terns, [43] used a deep multiple instance learning method by weak-supervised learning,
and addressed the dynamic user set problems via a pairwise loss with negative sampling.
[38] fuse the spatio-temporal characteristics with extra activity information of the activ-
ity trajectory. Specifically, [38] utilizes vectors representing these three kinds of semantic

1275World Wide Web (2023) 26:1271–1294

1 3

information as the input of deep learning model for acquiring final trajectory representa-
tion, which is robust to low sampling. In addition, [40] proposed a trajectory representation
learning framework called Traj2SimVec. By taking full use of the sub-trajectory informa-
tion as auxiliary supervision, the robustness of Traj2SimVec is improved. Recently, Graph
Neural Network model was employed in GTS [44]. First, GTS learned the representation
of each point-of-interest (POI) in the road network. Then GTS learned trajectory repre-
sentation by a Graph Neural Network model to identify neighboring POIs within the same
trajectory, together with a LSTM model to capture the sequence information hidden in the
trajectory.

Deep representation learning targets to automatically transform sequential information
into low-dimensional latent vectors [45]. These low-dimensional latent vectors are called
representation vectors. Based on representation vectors, some classical analysis tasks such
as similarity computation, clustering, and anomaly detection can be efficiently processed.
RNN framework of deep learning was applied in the t2vec model [6] for similarity meas-
urement. Compared with traditional methods, t2vec model achieves higher efficacy and
robustness. However, it lacks the description of time dimension features, thus making it
ineffective in time-aware trajectory matching. It is non-trivial to combine the spatial sim-
ilarity and temporal similarity on the basis of the original t2vec model, thus we cannot
readily extend it or adapt any variant of it as a baseline. Different from the t2vec model,
our RSTS model considers the time dimension in trajectory similarity measurement on the
basis of deep learning, making it applicable to wider and more diverse scenarios [8, 9].

Another related work DeepTUL [46] focused on Trajectory-User Linking (TUL) task
and proposed a deep learning based model, which is composed of a feature representation
layer and a recurrent network with attention mechanism. The differences between Deep-
TUL model and ours lie in: the DeepTUL model is designed for the trajectory-user linking
(TUL) problem, while our model is designed for trajectory-trajectory similarity computa-
tion. In particular, TUL is trained with user id labeled historical trajectories. In contrast,
our problem does not take user information as input. Additionally, the DeepTUL model
only captures periodicity feature of user mobility in temporal dimension. A visited user list
Lpi,tj is used to record the users who visit location pi at timeslot tj. And in our problem, we
focus on the real-value temporal similarities between two trajectories. As a result, the
DeepTUL model cannot be directly used to answer our problem.

2.3 Road matching based trajectory similarity measure

Another similar work to our problem is road network matching based trajectory similarity
measure [44, 47–49]. Among these studies, [50] formulated a road-network-aware trajec-
tory similarity function, and designed a filtering-refine framework to solve trajectory simi-
larity search and join problem. It first applied some map matching algorithms [51–54] to
align trajectories on road network. Through map matching operation, trajectories are trans-
formed into sequences of road segments. The trajectory similarity is established based on
longest common road segments between two trajectories. However, the road mapping did
not consider time aspects. Two trajectories travel the same area but during different period
of time may be transformed into the same sequence of road segments. Wang et al. [47]
proposed a trajectory search engine called Torch for querying road network trajectory data.
After transforming each trajectory into a set of road segments and a set of crossings on the
road network, Torch computed the Longest Overlapping Road Segments to measure simi-
larity over a lightweight index structure. In addition, some deep learning based methods in

1276 World Wide Web (2023) 26:1271–1294

1 3

this area are proposed. Existing approaches first transform each trajectory into a sequence
of road segments coupled with corresponding travel time as well, which is called road
network matching . Next, road segment representation learning and trajectory representa-
tion learning are conducted to learn road segment embeddings and trajectory embeddings,
respectively. One of the most representative work [49] proposed a three-phase framework
(TremBR) to learn representations of road segments, which targets to capture the spatio-
temporal properties inherent in trajectories while constraining the learning process upon
the topological structure of the road network. However, The “time information” in TremBR
is defined as travel duration of each transformed road segments, while our proposal defines
“time information” as the location timestamps. As such, we define the concept of “time
information” in totally different ways. Recently, GTS [44] combined spatial trajectory simi-
larity learning with road network context, which achieved the state-of-the-art performance.
Nevertheless, it ignored the time information of trajectories, making it unable to meas-
ure the trajectory similarity in temporal aspects. In particular, for two trajectories that pass
through the same area at different times, GTS may regard them as similar. To the best of
our knowledge, none of existing studies in this area can be directly used to answer our
problem.

3 Problem formulation

Definition 1 (Exact moving route) An exact moving route of an object R = {s1,s2,…
,sn} is a curve that records the continuous locations traveled by the object, where si =
([p1,…,pm],t). Each location si is denoted by a multidimensional vector [p1,…,pm] that rep-
resents the spatial features (e.g., longitude and latitude), and a timestamp t denoting the
corresponding time when this location is traveled. Note that an exact moving route cannot
be captured in reality as location-tracking devices do not record locations continuously.
Inspired by [6], an appealing alternative is that we can use a trajectory with relatively high
sampling ratio to denote an exact moving route of a moving object.

Definition 2 (Trajectory) A trajectory τ = {s1,…,s|τ|} is a finite, temporally ordered
sequence of sample points that derived from the exact moving route of an object, where |τ|
is the length of the trajectory. The length (or the size) of a trajectory is the number of sam-
pling locations points. For simplicity, we can use si = ([x,y],t) to denote each discrete point
in 2D space, where the tuple [x,y] denotes the recorded spatial coordinates (e.g., longitude
and latitude) and t is the corresponding timestamp. Note that our modeling of trajectories
aligns with existing studies [3, 55].

Definition 3 (Trajectory representation) We represent a trajectory τ by a vector v ∈ ℝ
n

in the Euclidean space with the following virtues. (1) It can reflect the exact moving route
of a trajectory. (2) It can be used to measure spatio-temporal similarities among trajecto-
ries, in which a trajectory representation is close to another in the Euclidean space, and the
two respective trajectories can be considered spatially and temporally similar as well. (3) It
is robust to low-quality trajectories for spatio-temporal similarity measure in both time and
spatial dimensions.

Definition 4 (Problem statement) Given a collection of trajectories T = {τ1,…,τn}, we
aim to learn their representations V = {v1,…,vn} for robust similarity computation in both

1277World Wide Web (2023) 26:1271–1294

1 3

time dimension and spatial dimension (spatial coordinates) that satisfy the constraints
below.

(1) ∀τi,τj,τk ∈ T,vi,vj,vk ∈ V: if sims(τi,τj) ≥ sims(τi,τk) and simt(τi,τj) ≥ simt(τi,τk), then
dist(vi,vj) ≤ dist(vi,vk);

(2) ∀vi,vj,vk ∈ V: if dist(vi,vj) ≤ dist(vi,vk), then dist(v�
i
, v�

j
) ≤ dist(v�

i
, v�

k
).

For simplicity, we use sims(⋅) and simt(⋅) to denote the spatial and temporal similarities
between two trajectories, respectively. dist(⋅) denotes the vector distance (e.g., the Euclid-
ean distance), v is the trajectory representation of a raw trajectory τ, while v′ is the tra-
jectory representation of the trajectory variant �′ with noise or sample loss. There is no
explicit equations about how to compute sims(⋅) and simt(⋅). In this paper, these two nota-
tions are just used to express that our similarity measure takes both spatial information and
time components of trajectories into account. If two trajectories are spatio-temporally simi-
lar, we target to have their learned representations close in vector space.

4 Representation‑based spatio‑temporal similarity computation
model (RSTS model)

In this section, we propose a novel method to quantify the trajectory similarity by learning
the vector representation for each trajectory. The encoder-decoder model [10] for learning
representations has been extended to diverse applications, in which t2vec [6] is a seq2seq-
based model for learning trajectory representation. However, it does not measure the time
dimension for similarity computation, thus the temporal features of trajectories may not be
captured (e. g. , time-varying traffic congestion, staying patterns during animal migration,
time-varying hot routes). In this paper, we propose a representation-based spatio-tempo-
ral similarity computation (RSTS) model to quantify trajectory similarities both in spatial
coordinates and time dimension. Specifically, the encoder-decoder framework is adopted
to learn the transition patterns hidden in a host of historical trajectories. Details of generat-
ing low-quality trajectories and computing spatio-temporal similarity are presented in this
section.

4.1 Encoder‑decoder framework

Here, we introduce our encoder-decoder framework that is applied in our RSTS model.
Figure 1 illustrates a modified encoder-decoder framework used in our problem. Given two
sequences x and y, the encoder is designed to encode the features of x into a representation
vector v, while the decoder attempts to decode the features of v into sequence y. Specifi-
cally, we use RNN [13, 14] to perform this process. After encoding, the decoder squashes v
and every target input yi ∈ y into the hidden state hi by forward computation. For each layer
of the decoder, it assigns a probability to each token, which is based on the last hidden state
hi− 1 and the last input yi− 1. Here, yi is expected to possess maximum probability. In short,
given an input (x,y), the training objective of the encoder-decoder model is to maximize
the conditional probability ℙ(y|x) . By encoding x into v, y is the sequence generated under
condition vector v. As a result, the learned representation vector v can effectively reflect the
features of sequences x and y.

1278 World Wide Web (2023) 26:1271–1294

1 3

In the encoder-decoder model, the inputs are sequences of discrete tokens. Therefore,
we convert each trajectory into a sequence of numerical tokens. Our proposed method par-
titions space into discrete grids of equal size. The idea is inspired by existing model t2vec
[6]. t2vec achieved good performance on both robustness and efficiency, but it did not take
into account the time information. Our space partition is simple yet effective. Other alter-
native methods are road matching based methods. Specifically, road matching casts coor-
dinate points into road segment IDs. Road matching based methods may result in higher
accuracy, but it also requires more pre-processing computation efforts. Rather than accu-
racy, we pay special attention to robustness and efficiency of trajectory similarity measure.
In this paper, we apply grid partition to generate numerical tokens. First, we partition the
space into grid cells of equal size (e. g. , 200m × 200m) [56]. Next, we partition each space
cell into a fixed number of spatio-temporal cells based on a particular time slice count.
Specifically, we split the time dimension into a fixed number of time slices (e. g. , 500).
Consequently, each data point s = ([x,y],t) of a trajectory can be represented by a particu-
lar token. A trajectory token sequence is then obtained. Figure 2 illustrates an example
of spatio-temporal cell partitioning. The space is partitioned into M × N equal grid cells.
Given a sample point such as si = ([2,1],2), a space cell M + 2 is first assigned to it based
on its x-y coordinates, as shown in the left. A spatio-temporal cell is then given based on
its space cell M + 2 and its time slice basket t (i.e, 2). As shown in the right figure, spatio-
temporal cell 2P + M + 2 is mapped as a token of the sample point si = ([2,1],2), which is
marked with a star, where P = M × N is the number of space cells and |T| is the number of
time slices. Hence, the total number of spatio-temporal cells is P = M × N ×|T|. In our set-
tings, we treat each spatio-temporal cell as a token,1 and our model inputs are sequences of
spatio-temporal cells, which represents a batch of trajectory. Specifically, the model input

Trajectory Token Sequences

Token Embeding Layer

Trajectory Representation
Vectors

R
N
N

R
N
N

R
N
N

R
N
N

R
N
N

R
N
N

R
N
N

R
N
N

R
N
N

V

BOS y1 y2 y3 y4

y1 y2 y3 y4 EOS

x1 x2 x3 x4x1 x2 x3 x4

h1

h1

h2 h3 h4

h2 h3

h0

Fig. 1 The encoder-decoder framework

1 For simplicity, hereon we will use token and cell interchangeably to refer to a spatio-temporal cell where
the context is clear.

1279World Wide Web (2023) 26:1271–1294

1 3

consists of two kinds of trajectory token sequences. One is the low-quality trajectory (i. e. ,
trajectories with low-sampling rate or noise) and another is the corresponding high-quality
trajectory (i. e. , clean trajectories with high-sampling rate). We proceed to explain this.

4.2 Generating low‑quality trajectories

For each trajectory τ and its corresponding exact route R, our RSTS model must be able to
maximize the conditional probability ℙ(R|�) (i. e. , given a trajectory τ, the model can find
the most likely exact moving route R of τ), in which the hidden spatio-temporal features
of exact moving route can be reflected in the learned representation v. However, the exact
moving route R cannot be well captured in reality. Inspired by existing literature [6], the
trajectory τb with high sampling ratio can be used to simulate the exact route, which can
be regarded as a high-quality trajectory. And we use its corresponding trajectory variant
τa by randomly dropping and distorting certain points to replace τ. The dropping opera-
tion and distorting operation are detailed as follows. For each high-quality trajectory τb =
{s1,…,s|τ|}, the dropping operation randomly removes certain locations in τb with a pre-
defined dropping rate rd. For a trajectory, the larger the dropping rate rd is, the less the

3 4 M
0

1

2

N

X / m

0 1

M M+
1

2M 2M
+1

... ...

2

2 3 4 ...

M+
2

M+
3

M+
4 ...

2M
+2

2M
+3

2M
+4 ...

...

M+2

Y / m

0
[x, y] space cell

1
[space cell, t] token

...

|T||T|

t / s

P2

0 1

P P+
1

2P 2P
+1

...

2 ... M+
2 ...

P+
2

2P
+2 ...

...

..10 M+2

0

1

2

......

P2

0 1

P P+
1

2P 2P
+1

...

2 ... M+
2 ...

P+
2

2P
+2 ...

...

..10 M+2

0

1

2

......

.. ..

.. ..

Fig. 2 Space partition and token generation

t3t1 t5 t7

ε

t2 t4 t6

s1 s2

s3 s4

s5
s6

exact route

high-quality trajectory

low-quality trajectory

Fig. 3 Example of exact routes and trajectories

1280 World Wide Web (2023) 26:1271–1294

1 3

locations will remain. Figure 3 illustrates the relationship among exact routes, high-quality
trajectories, and low-quality trajectories. Let the red curve be an exact moving route of a
moving object. Note the exact moving route cannot be captured in reality. An example of
high-quality trajectories is denoted by a sequence of locations, marked with black dot, as
shown in Figure 3. We say it is high-quality, because it has uniform sample rate (e.g., 1
second) and no noisy points. In contrast, an example of low-quality trajectory is denoted
by a sequence of location with noise, which is marked with purple dot. Compared to high-
quality trajectories, low-quality trajectories may be unable to reflect the real information of
exact moving routes. We proceed to detail our dropping operation and distorting operation,
respectively.

Given a high-quality trajectory of uniform sample rate 100 seconds τb = {([1,2],100),
([1,3],200),([2,3],300),[3,4],400)}, and a dropping rate rd = 0.5, it is expected that half of
locations in τb are supposed to be randomly removed. An example of dropped trajectory
may be {([1,2],100),([2,3],300)}. And if we set the dropping rate to be 0.25, a dropped
trajectory may be {([1,3],200),([2,3],300),[3,4],400)}, which has larger size than that
of rd = 0.5. In addition, for trajectory τb = {s1,…,s|τ|}, the distorting operation randomly
distort certain locations in τb with a pre-defined distorting rate rt. τb is distorted by add-
ing a Gaussian noise with a pre-defined radius δs in spatial coordinates and pre-defined
radius δt in time dimension. To be more specific, we randomly distort some points ([x,y],t)
by: (1) shifting the locations [x,y] using a Gaussian noise with a radius of δs meters (e.g.,
x = x + �s × dx, dx ∼ Gaussian(0,1);y = y + �s × dy, dy ∼ Gaussian(0,1)), and (2) shifting
the time t using a Gaussian noise with a radius of δt seconds. For raw trajectory τb = {([1,
2],100),([1,3],200),([2,3],300),[3,4],400)}, if we set rd = 0,rt = 0.5, the distorted trajectory
may be {([1.1,2],105),([1,3.4],234),([2,3],299),[3,4],412)}, where the first two locations
are shifted with Gaussian noise. As rt increases, the expected ratio of shifted locations of
a trajectory increases accordingly. The processed trajectories with dropping and distorting
operations are regarded as low-quality trajectory.

After dropping and distorting operations, τa is apparently a trajectory that of low-
quality derived from τb. Thus, the final objective of our model is converted to maximum
ℙ(�b|�a) . Given a collection of (τa,τb) pairs of size n, by maximizing their joint probability ∏n

i=1
ℙ(� i

a
�� i

b
) with sequence encoder-decoder model, the transition patterns hidden in his-

torical trajectories can be learned.

4.3 Quantizing spatio‑temporal similarity

When we intend to learn the representation v that can reflect the spatio-temporal similar-
ity of trajectories, the original encoder-decoder model and t2vec model are both ineffec-
tive for they do not model the spatial correlation or temporal correlation between cells. To
address it, we propose a spatio-temporal aware loss function to quantizing our optimization
objective. Based on our loss function, a set of triplet loss functions are also developed to
improve the results.

4.3.1 Spatio‑temporal aware loss function

While t2vec has observed that NLL loss [17] is not powerful to learn a trajectory represen-
tation, it is not time-aware. To enable powerful loss function that encourages the model to
learn robust representations, in which they can reflect the potential exact moving routes of
low-quality trajectories in both spatial coordinates and time dimension, our spatio-temporal

1281World Wide Web (2023) 26:1271–1294

1 3

aware loss function is thus established based on the closest spatial and temporal neighbors
of each target cell. Intuitively, when we intend to decode a target cell yt at time t, a neigh-
bor cell that close to yt is expected to be predicted. With this idea in mind, we can encour-
age decoder to assign more probability to a close neighbor. Specifically, if a distinct cell u
∈ V is spatially top-|Ns| closest to the target cell yt and it is in the top-|Nst| temporally clos-
est neighbors, then u is regarded as the top-|Nst| spatially and temporally closest neighbors
of the target cell yt. We use Ns and Nst to denote the spatially and spatio-temporally closest
neighbors. |Ns| is the pre-defined number of spatially closest neighbors, and |Nst| is the pre-
defined number of spatio-temporally closest neighbors of the target cell.

Example 1 An example of generating spatio-temporally closest neighbors. Assume the
space domain is already partitioned into 4 × 5 equal-size grid cells, and each grid cell
equals to 1 × 1 square meter. Assume the time domain is already divided into 9 equal-
size time buckets {[0,1),[1,2),[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9)}. Given a collection
of trajectory locations S = {s1,…,s10} = {([2,2],4.3),([2,2],4.7),([1,2],0.6),([3,2],3.2),([2,3
],5.8),([3,3],2.2),([2,1],8.7),([3,1],1.2),([1,0],5.5),([4,0],6.7)}. As shown in Figure 4, these
locations are located at corresponding grid cells in space and then fall into time buckets.
Let the number of selected spatially closest neighbors |Ns| and spatio-temporally closest
neighbors |Nst| of the target cell be 5 and 2, respectively. Generally, the value of |Ns| is no
less than that of |Nst|, because the selection of spatio-temporally closest neighbors is based
on the selected spatially closest neighbors. Let us consider s1 as a target location. It is not
hard to find that the top-5 spatially closest neighbors regarding s1 is s2,s3,s4,s5,s7. Next, we

3 4

0

1

2

3

X / m

s9

s3

2

s10

s7 s8

s1
s2

s4

s5 s6

Y / m

0 1

s3 s2 s4 s7s1 s5
0

s3 s2 s4 s7s1 s5
0 1 2 3 4 5 6 7 8 9

space cells

time buckets
Fig. 4 Example of spatio-temporally closest neighbors

1282 World Wide Web (2023) 26:1271–1294

1 3

further select the top-2 spatio-temporally closest neighbors among s2,s3,s4,s5,s7 regarding
s1. Locations s2,s3,s4,s5,s7 fall into corresponding time buckets according to their times-
tamps, as shown at the bottom of Figure 4. Thus, the top-2 spatio-temporally closest neigh-
bors of s1 are s4 and s5. As a result, If we intend to decode the cell that represents location
s1, we encourage the encoder to predict s4 and s5 as the result.

Note that in our experimental study, we give the specific values of these two param-
eters. Next, for a target cell yt, we define the weights of its Nst spatio-temporal neigh-
bor cells in (1). The rationale behind such computation can be explained as follows: To
avoid much computation, we only consider some spatio-temporally closest neighbors of
target cell, and the weights of other cells can be ignored. In addition, (1) can guarantee:
if a cell is closer to target cell yt, then it owes a larger weight. Here, parameter 𝜃 ∈ (0,1)
is a spatial distance scale constant.

Equation 2 denotes the spatio-temporal distance dist(u,yt) between two cells u and yt, which
is a linear combination of spatial distance dists(u,yt) and temporal distance distt(u,yt), where
λ ∈ [0,1] is a varying parameter for controlling the importance of the spatial and temporal
similarities. If the importance of similarity in space domain and time domian is the same,
we set λ = 0.5. Otherwise, if we focus on spatial similarity, λ is set to be a smaller value
such as 0.3. In short, the larger the λ is, the more we care about temporal similarity of two
cells. In our experiments, the Euclidean distance is applied to compute dists(u,yt) and distt(
u,yt). Note that some other distance measure such as Manhattan distance and Lp-norm dis-
tance can be applied as well. Based on the definition of the Nst spatio-temporal neighbors
and the spatio-temporal distance quantification, we formally establish our spatio-temporal
aware loss function by (3).

Here, ht denotes the hidden state at time t in the encoder-decoder framework (cf. Sec-
tion 4.1). V is the vocabulary (i. e. , spatio-temporal cells, tokens). WT is the projection
matrix that projects ht from the hidden state space into the vocabulary space (i. e. , spa-
tio-temporal cell space) and WT

u
 denotes its u-th row. The rationale behind the design of

our spatio-temporal aware loss function can be explained as follow: For a target cell, we
target to predict its spatio-temporal neighbors as the output of each layer. To quantify
this objective, our loss function encourages encoder to assign larger probability to these
spatio-temporal neighbors. If the calculated probability of spatio-temporal neighbors is
slight, the loss is large. Based on our spatio-temporal aware loss function, RSTS model
is expected to assign more probability to the Nst neighbors when we want to decode a

(1)wuyt
=

exp(−dist(u, yt)∕�)∑
u∈Nst

exp(−dist(u, yt)∕�)

(2)dist(u, yt) = (1 − �) ⋅ dists(u, yt) + � ⋅ distt(u, yt)

(3)� = −
�y�∑
t=1

∑
u∈Nst

wuyt
ℙ(yt = u�ht)

= −
�y�∑
t=1

∑
u∈Nst

wuyt

exp(WT
u
ht)∑

v∈�exp(WT
v
ht)

1283World Wide Web (2023) 26:1271–1294

1 3

target cell yt at time t, and the transition patterns hidden in historical trajectories will be
learned through sequence training.

4.3.2 Triplet loss functions

To ensure fast convergence, we refine the encoder-decoder model by applying triplet loss.
Triplet loss is firstly used to learn good embedding in face recognition [57], in which it
aims to compare two unknown faces and tell whether they are from the same person or not.
Given a set of anchors a, positive examples p and negative examples n respectively, triplet
loss is calculated by (4). Here, d(⋅) denotes the distance between two examples. The nega-
tive should be farther away than the positive by some extent, which is denoted by margin.
In face recognition, faces from the same person should be close together and form well
separated clusters. The same is true in the trajectory similarity computation: two trajecto-
ries τi,τj that derived from the same exact moving route R should have their embeddings
(i. e. , representation vector) vi, vj close together in the vector space, while two trajectories
derived from different exact moving routes should have their embeddings far away. To this
end, we generate two kinds of distinct trajectories pairs (a,p,n) for computing triplet loss.

1. Regarding each trajectory token sequence, we randomly sample tokens from it to obtain
three sub-trajectory token sequences a, p, and n such that a and p have more common
tokens. The rationale behind such selection is that two trajectories seems to be more
similar if they have a larger number of common tokens.

2. Regrading the source (i. e. , the exact moving route) of trajectories, ai and pi are derived
(down-sampled or distorted) from the same exact moving route, while ai and ni are
derived from two different exact moving routes.

4.3.3 Time complexity

RSTS model can be trained offline by Stochastic Gradient Descent (SGD) algorithm using
GPUs. Once the training is done, RSTS requires O(|τ|) time to embed a trajectory τ into a
representation vector v. Next, it takes O(|v|) time to compute the Euclidean distance of two
vectors for similarity measure. The total time complexity is O(|τ| + |v|). As a result, the
time complexity of our model is low, which is capable of handling millions of similarity
computation simultaneously, which supports a lot of trajectory analysis tasks with real-
time demands, such as trajectory clustering, outlier detection, etc.

(4)L(a, p, n) = max{d(ai, pi) − d(ai, ni) + margin, 0}

1284 World Wide Web (2023) 26:1271–1294

1 3

5 Experimental study

5.1 Experimental setup

5.1.1 Data preparation

Two real-world trajectory datasets are investigated in our experimental study. The first is
extracted from the Beijing taxi dataset (BJ) [18, 58, 59],2 which contanins trajectories of
10,000 cabs tracked over a period of one week. The second dataset3 is from the city of
Porto, Portugal (PT), which contains 1.7 million trajectories. The average sampling inter-
val in BJ is about 177 seconds with a distance of about 623 meters, while in PT each taxi
reports its location at 15 second intervals.

In reality, due to device or other problems, the collected trajectory data probably have
noise or are incomplete. For both two data sets, to simulate the low-quality trajectories,
we use down-sampling with different dropping rates and randomly distort some points
by adding a Gaussian noise with a radius 50 meters in spatial coordinates and 300 sec-
onds in time dimension. To be more specific, we randomly distort some points ([x,y],t)
by: (1) shifting the locations [x,y] using a Gaussian noise with a radius of 50 meters (e.g.,
x = x + 50 × dx, dx ∼ Gaussian(0,1)), and (2) shifting the time t using a Gaussian noise
with a radius of 300 seconds. To enable effective down-sampling and distorting, we select
trajectories with length between 20 and 100. Table 1 shows our filter conditions for raw
trajectory data. After removing the spatio-temporal cells (i.e., tokens) hit by all the trajec-
tories less than 30 in BJ and 50 in PT, we get 23,742 and 349,124 hot spatio-temporal cells,
respectively. Sample points are represented by their spatio-temporal nearest hot cell (cf.
Section 4.3). To generate (τa,τb) pairs (cf. Section 4.2) as training data, we perform down-
sampling and distortion operations for each high-quality trajectory τb. For both BJ and PT,
the first 80 percent of trajectories are used for training. We first randomly dropping certain
points with a dropping rate rd = {0.1,0.2,0.3,0.4,0.5} to create τb’s sub-trajectories. Then
we distort each sub-trajectory with a distorting rate rt = {0.1,0.2,0.3,0.4,0.5}. As a result,
25 pairs (τa,τb) are generated for each original trajectory τb.

5.1.2 Baselines

To overcome the lack of ground-truth and to better evaluate the accuracy of trajec-
tory similarity of methods, existing work [55] employed the self-similarity, the cross

Table 1 Filter condition settings
of trajectories

Beijing (BJ) Porto (PT)

Longitude Range [116.25, 116.55] [-8.735, -8.156]
Latitude Range [39.830, 40.030] [40.953, 41.307]
Length Range [30, 100] [20, 100]

2 https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ t- drive- traje ctory- data- sample/
3 https:// www. kaggle. com/c/ pkdd- 15- predi ct- taxi- servi ce- traje ctory-i/ data

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data

1285World Wide Web (2023) 26:1271–1294

1 3

similarity comparisons and the precision of finding the k-NN. Recently, [6] designed
a new criterion called most similar search that can be considered as a self-similarity
variant, which is designed to measure the robustness of similarity computation methods.
For the evaluation mentioned above, the most similar search, cross similarity compari-
sons, and the k-NN precision are the best evaluation methodologies, thus we adopt them
in our experiments. To verify the performance of our proposal, we consider EDR and
EDwP as two baselines.

Edit Distance on Real sequence (EDR) Given two trajectories τ1 and τ2, the EDR between
them is the minimum number of insert, delete, or replace operations required to convert
τ1 into τ2 [2]. The cost of each operation is an constant, 1, thus the effect of outliers on
the measured distance can be alleviated, which makes it robust to noise. Given a match-
ing threshold 𝜖s of the spatial distance, a pair of trajectory points si and sj are regarded as
matching (i.e., their edit distance is 0) if and only if |si.x − sj.x|≤ 𝜖s and |si.y − sj.y|≤ 𝜖s, in
which it only considers the spatial coordinate (x,y). As a result, it cannot be directly used as
a baseline in this paper. To measure the spatio-temporal similarity, without losing any of its
virtues, we apply an EDR variant by additionally importing a temporal matching threshold
𝜖t, which is denoted by EDRt.

Here, subcost′ denotes the edit distance of a pair of trajectory points of two values, 0
and 1. Notice that subcost� = 0 if and only if |si.x − sj.x|≤ 𝜖s and |si.y − sj.y|≤ 𝜖s and |si.t −
sj.t|≤ 𝜖t.

Edit Distance with Projections (EDwP) Given two trajectories τ1 and τ2, EDwP computes
the cheapest set of edits that make them identical [3]. In particular, EDwP performs two
kinds of edits: replacement and insert. The replacement operation, denoted by rep(e1,e2),
quantifies the cost when the trajectory segment e1(s0,s1) is matched with e2(s0,s1), where s0
and s1 denote two endpoints of a segment. The insert operation introduces extra points to
aid robust matching, and it predicts the timestamp of each inserted point by linear interpo-
lation. However, the time dimension is not evaluated for trajectory similarity computation
in the EDwP. To account for the time dimension, we use dt(⋅) to denote the time distance
between two matched segments and the cost of the converted rep(e1,e2) is calculated as fol-
lows. Parameter α ∈ [0,1] controls the importance of the spatial and temporal similarities.
In remaining parts of this paper, we use EDwPt to denote this kind of EDwP variant.

Note that we do not include DTW for EDR and EDwP have been shown to outperform
it in existing literature [2, 3]. To the best of our knowledge, no existing work takes the time
components into account for trajectory similarity measure using deep learning methods
as well as guaranteeing robustness. In particular, the time information should be absolute
timestamps within 24h, thus no deep learning based baseline is available.

(5)EDRt(�1, �2) =

⎧
⎪⎪⎨⎪⎪⎩

n m = 0

m n = 0

min{EDRt(Rest(�1),Rest(�2))+

subcost�,EDRt(Rest(�1), �2)) + 1,

EDRt(�1,Rest(�2)) + 1}otherwise

(6)rep(e1, e2) + � ×
[
dt(e1.x0, e2.x0) + dt(e1.x1, e2.x1)

]

1286 World Wide Web (2023) 26:1271–1294

1 3

5.1.3 Training parameter settings

The default training parameter settings are listed in Table 2. The model training is imple-
mented in Pytorch using a Nvidia 3090 GPU (24G), the training terminated if the loss in
the validation sets does not decrease over 20,000 iterations. For the performance evalu-
ation, all baseline methods are implemented in Java and evaluated on Windows 10 plat-
form equipped with an AMD Ryzen 5 CPU (3.6GHz) and 32GB memory. Unless stated
otherwise, the experimental results are averaged over 20 independent trials with different
trajectories inputs.

5.2 Evaluation on robustness

5.2.1 Mean‑rank comparison

First, we studied the most similar search performance in proposed methods. Two sets of
distinct trajectories are randomly selected of size 100 and m from test dataset, denoted by
Q and P, respectively. Note that m is a parameter to be evaluated, and the value of m is
larger than |P| in general. Two sets of sub-trajectories DQ and D′

Q
 are then created by alter-

natively taking points from each trajectory τi ∈ Q. An example of such partition operation
is as follow. Given a trajectory τ = {s1,…,s10} (τ ∈ Q), We add two twin sub-trajectories {s
1,s3,s5,s7,s9} and {s2,s4,s6,s8,s10} into DQ and D′

Q
 , respectively. We conduct the same opera-

tion on P to get twins DP and D′
P
 . Next, for each query τa ∈ DQ we retrieve its top-k similar

trajectories in D�
Q
∪ D�

P
 and calculate the rank of its twin �′

a
 . The rationale behind most

similar search can be explain as follow: For a robust similarity measure, �′
a
 is expected to

be ranked at the top as it is generated from the same source as τa. Basically, �′
a
 and τa reflect

the same exact route of a moving object.

1. Effect of m. Figure 5(a) and (d) show the performance of the proposed method when
we vary m (i.e., the size of P) in Porto and Beijing datasets, respectively. An increasing
trend of mean ranks is observed in both EDRt and EdwPt, while the increasing trend in
RSTS is much less significant, demonstrating the stronger capability of RSTS model
in handling large data sets. For two twin trajectories τp and �′

p
 , it may be not hard to

identify them as similar. Assume we mix �′
p
 with other trajectories and form a collection

Table 2 Training parameter
settings

Beijing (BJ) Porto (PT)

Space cell size 100m 100m
Time slice number 200 300
RNN units GRU GRU
Max gradient 5 5
Batch 400 20
Hidden layer size 256 256
Embedding layer size 256 256
Dropout 0.2 0.2
Ns (cf. Section 4.3) 20 20
Nst (cf. Section 4.3) 10 10
λ (cf. Section 4.3) 0.5 0.5

1287World Wide Web (2023) 26:1271–1294

1 3

of trajectories DP, �′
p
 may be ranked at the top among DP regrading τp. However, the

larger the size of DP is, the harder a similarity measure can rank �′
p
 at the top. From the

results, even when we increase m to 50,000, the performance of RSTS model did not
show obvious degradation.

2. Effect of dropping rate. As shown in Figure 5(b) and (e), all methods degrade when the
dropping rate increases with fixed |D�

Q
∪ D�

P
| = 40K . When we vary the dropping rate

from 0.1 to 0.5, the mean rank of all methods increases. Compared with baselines, RSTS
constantly achieves the best performance. Especially when some dropped locations are
exactly representative locations, the mean rank may significantly increase. Compared
to non-learning methods, our proposal can better reduce the effect of dropped locations.
For a dropped location, EDR and EDwP cannot have a knowledge on what this loca-
tion may be, and they merely ignore it. In contrast, RSTS may guess this location by
learning from other trajectories. For example, it is observed that {si,sj,sk} is common
sub-sequence of many trajectories. For a trajectory τ that only travels si,sk, our RSTS
may embed τ into the same representation vector of those trajectories that travel not si,sk
but sj.

3. Effect of distorting rate. As shown in Figure 5(b) and (e), all methods degrade when
the distorting rate increases with fixed |D�

Q
∪ D�

P
| = 40K . When we vary the distorting

rate from 0.1 to 0.5, the mean rank of all methods increases. Compared with baselines,
RSTS constantly achieves the best performance.

5.2.2 Cross similarity comparison

A good similarity measure should not only identify the trajectory variables derived from
the same exact moving route, but should also preserve the distance between different tra-
jectories, regardless of their sampling strategy. Here, we adopt cross distance deviation in
existing literature [18, 55] as an evaluation criterion, denoted by csd, which is calculated

Fig. 5 Most similar search when varying the size of P (i.e., m), the dropping rate rd, and the distorting rate
rt

1288 World Wide Web (2023) 26:1271–1294

1 3

by (7). Here, τb and �b′ are two distinct original trajectories, and d(�b, �b�) can be regarded
as the ground-truth between the exact moving routes of τb and �b′ , thus a small csd indi-
cates that the measured distance is much close to the ground-truth. τa(r) and �a� (r) are two
variants of τb and �b′ , respectively, which is obtained by down-sampling operation (or dis-
torting operation) with a dropping rate (or distorting rate) r.

To calculate the mean cross similarity distance, we randomly select 10,000 trajectory
pairs (�b, �′b) from the test datasets. Due to the space limit, we only show the results of
Porto. Tables 3 and 4 show the csd performance as we vary the values of dropping rate rd
and distorting rate rt, from 0.1 to 0.5, respectively. It is observed that our RSTS model is
constantly outperforms EDRt and EDwPt, which demonstrates that our evaluated similarity
is much closer to the ground-truth. As we increase the dropping rate from 0.1 to 0.5, the
cross similarity distance increases accordingly. In addition, the effect of dropping operation
regarding cross similarity distance is slightly larger than that of distorting operation. It is
worth noting that EDwPt results in a smaller csd than RSTS at times, it is probably because
EDwPt is designed to be able to cope with non-uniform sampling rates as well.

5.2.3 k‑NN precision comparison

We investigated the k-NN precision performance of the proposed methods. The rationale
behind this measure can be explained as follows: A robust similarity computation should
be able to adapt to low-quality trajectories (i.e., trajectories with low-sampling rate or
noise) and yield similar results to those high-quality trajectories (e.g., non-distorted) if they
are derived from the same exact moving routes.

In our experiment, two sets of distinct trajectories of size 100 and 10,000 are randomly
selected from the test datasets, denoted by Q and DB, respectively. The query Q and data-
base DB can be regarded as high-quality trajectories. For each query τi ∈ Q, we find its
k-nearest trajectories in database DB as its ground-truth. In the next, we generate a pair
of low-quality trajectories Q′ and DB′ by randomly dropping (or distorting) some points
with dropping (resp. distorting) rate rd (resp. rt) from Q and DB. Then, k-NN query is per-
formed on the low-quality datasets (i.e., Q′ and DB′) in the same way. We calculate the

(7)csd =
|d(�a(r), �a� (r)) − d(�b, �b�)|

d(�b, �b�)

Table 3 Mean csd when varying
dropping rate rd

rd 0.1 0.2 0.3 0.4 0.5

EDRt 0.019 0.120 0.220 0.319 0.408
EDwPt 0.021 0.035 0.047 0.058 0.073
RSTS 0.018 0.037 0.043 0.068 0.083

Table 4 Mean csd when varying
distorting rate rt

rt 0.1 0.2 0.3 0.4 0.5

EDRt 0.020 0.033 0.085 0.083 0.096
EDwPt 0.019 0.027 0.054 0.065 0.078
RSTS 0.021 0.038 0.037 0.045 0.067

1289World Wide Web (2023) 26:1271–1294

1 3

mean ratio of common k-NN as precision. From Figure 6 we observe that the precision of
all methods decreases as we vary rd or rt. When we vary rt from 0.3 to 0.4, the performance
of EDRt and EDwPt greatly degrades. And it is clear that RSTS constantly shows the best
performance.

5.2.4 Evaluation on efficiency

The time complexity of computing similarity over two trajectories τa and τb using our RSTS
model is O(|τa| + |τb| + |v|). To be specific, embedding taua and taub into representation vectors
through encoder network requires O(|τa| + |τb|) time, respectively. And computing the Euclid-
ean distance between two vectors requires O(|v|) time. Similar to RSTS, EDR and EDwP are
both robust to trajectory data. However, the time complexity of EDR is O(|τa|×|τb|) [60]. For

Fig. 6 k-NN results when varying the dropping rate rd and the distorting rate rt for k = 100, 200, 300

Fig. 7 Evaluation on efficiency

1290 World Wide Web (2023) 26:1271–1294

1 3

EDwP, the time complexity is O((|τa| + |τb|)2), making it unable to support real-time applica-
tions for massive-scale trajectory data.

To evaluate the efficiency of above proposals, we compare the CPU time as we vary
the number of trajectory pairs from 10,000 to 50,000. Given two collections of trajectories
(Q1 and Q2) of equal size N, we compute the similarity between each pair of trajectories
< 𝜏i, 𝜏

�
i
> (i ∈ [1,N]) , where τi ∈ Q1 and ��

i
∈ Q2 . Figure 7 shows the efficiency performance

on Beijing and Porto data sets, respectively. Compared to EDR and EDwP, the CPU time of
RSTS is decreased by about an order of magnitude.

6 Conclusion

We proposed a novel RSTS model to learn trajectory representation for spatio-temporal simi-
larity measure, which takes the time components into account. By applying our spatio-tempo-
ral aware loss function, the transition patterns hidden in historical trajectories will be learned
through sequence training, and the hidden spatio-temporal features can be reflected by the
representation vector, which can be used to trajectory similarity measure. Compared to high-
quality trajectories, low-quality trajectories generally have more irregular sampling rates and
more noise points. As a result, we cannot directly compute the similarity between low-quality
trajectories. Given a low-quality trajectory, our RSTS model targets to generate a high-quality
trajectory by learning from other trajectories, and the hidden patterns of learned high-quality
trajectories are stored in the representation vector. As a result, the similarity measure using
representation vectors is based on the learned high-quality trajectories, which alleviates the
effect of data noise. Extensive experiments confirmed that the trajectory similarity measure
based on our learned representations is robust to low-quality trajectories.

Acknowledgements We also acknowledge the editorial committee’s support and all anonymous review-
ers for their insightful comments and suggestions, which improved the content and presentation of this
manuscript.

Author contributions All authors contributed to the study conception and model design. Ziwen Chen and
Ke Li worked on the full manuscript. The first draft of the manuscript was written by Ziwen Chen and Ke
Li. Lisi Chen and Shuo Shang wrote the Section 1–2. Ziwen Chen and Ke Li prepared the Section 3–5. The
expermental study was conducted by Silin Zhou. All authors commented on previous versions of the manu-
script. All authors proof-read and approved the final manuscript.

Funding This work was supported by the NSFC (U2001212, U21B2046, 62032001, and 61932004).

Data availability All datasets used in this paper are open datasets.

Declarations

Competing interests We declare that authors have no known competing interests or personal relationships
that might be perceived to determine the discussion report in this paper.

References

 1. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In:
Agrawal, R., Dittrich, K.R. (eds.) Proceedings of the 18th International Conference on Data Engi-
neering. https:// doi. org/ 10. 1109/ ICDE. 2002. 994784. IEEE Computer Society (2002)

https://doi.org/10.1109/ICDE.2002.994784

1291World Wide Web (2023) 26:1271–1294

1 3

 2. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In:
Özcan, F. (ed.) Proceedings of the ACM SIGMOD International Conference on Management of
Data. https:// doi. org/ 10. 1145/ 10661 57. 10662 13, pp 491–502. ACM (2005)

 3. Ranu, S., P, D., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories
under inconsistent sampling rates. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman, G.M.
(eds.) 31st IEEE International Conference on Data Engineering, ICDE 2015. https:// doi. org/ 10.
1109/ ICDE. 2015. 71133 51, pp 999–1010. IEEE Computer Society (2015)

 4. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Nascimento, M.A., Özsu,
M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) (e)Proceedings of the Thir-
tieth International Conference on Very Large Data Bases, VLDB 2004. https:// doi. org/ 10. 1016/
B978- 01208 8469-8. 50070-X, http:// www. vldb. org/ conf/ 2004/ RS21P2. PDF, pp 792–803. Morgan
Kaufmann (2004)

 5. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories.
In: IEEE 28th International Conference on Data Engineering (ICDE 2012). https:// doi. org/ 10. 1109/
ICDE. 2012. 42, pp 1144–1155. IEEE Computer Society (2012)

 6. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory simi-
larity computation. In: 34th IEEE International Conference on Data Engineering, ICDE. https:// doi.
org/ 10. 1109/ ICDE. 2018. 00062, pp 617–628 (2018)

 7. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajec-
tories. In: VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases.
http:// www. vldb. org/ conf/ 2000/ P395. pdf, pp 395–406. Morgan Kaufmann (2000)

 8. Sun, S., Chen, J., Sun, J.: Traffic congestion prediction based on GPS trajectory data. Int. J. Distrib-
uted Sens Netw. 15(5). https:// doi. org/ 10. 1177/ 15501 47719 847440(2019)

 9. Gomes, G.A.M., dos Santos, E.M., Vidal, C.A, da Silva, T.L.C., de Macêdo, J.A.F.: Real-time dis-
covery of hot routes on trajectory data streams using interactive visualization based on GPU. Com-
put. Graph. 76, 129–141 (2018). https:// doi. org/ 10. 1016/j. cag. 2018. 09. 008

 10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector
space. In: ICLR (Workshop Poster) (2013)

 11. Bütepage, J., Black, M.J., Kragic, D., Kjellström, H.: Deep representation learning for human
motion prediction and classification. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. https:// doi. org/ 10. 1109/ CVPR. 2017. 173, pp 1591–1599 (2017)

 12. Yao, H., Zhang, S., Hong, R., Zhang, Y., Xu, C., Tian, Q.: Deep representation learning with part
loss for person re-identification. IEEE Trans. Image Process. 28(6), 2860–2871 (2019). https:// doi.
org/ 10. 1109/ TIP. 2019. 28918 88

 13. Rumhar, D., offry. Hnon‡, Wams, R.: Learning representations by back-propagating errors. Nature
(1986)

 14. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10),
1550–1560 (1990)

 15. Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., Wang, B., Liu, T.: Sequential click predic-
tion for sponsored search with recurrent neural networks. In: Brodley, C. E., Stone, P (eds.) Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. http:// www. aaai. org/
ocs/ index. php/ AAAI/ AAAI14/ paper/ view/ 8529, pp 1369–1375. AAAI Press, Québec City (2014)

 16. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human mobility via
trajectory embeddings. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI. ijcai.org. https:// doi. org/ 10. 24963/ ijcai. 2017/ 234, pp
1689–1695 (2017)

 17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems. http:// papers. nips. cc/ paper/ 5346- seque nce- to- seque nce- learn ing- with- neural-
netwo rks, pp 3104–3112 (2014)

 18. Wang, H., Su, H., Zheng, K., Sadiq, S.W., Zhou, X.: An effectiveness study on trajectory similarity
measures. In: ADC. CRPIT, vol. 137, pp 13–22 (2013)

 19. Cancela, B., Ortega, M., Fernández, A., Penedo, M.G.: Trajectory similarity measures using
minimal paths. In: Image Analysis and Processing - ICIAP 2013 - 17th International Conference,
Naples, Italy, September 9-13, 2013. Proceedings, Part I. Lecture Notes in Computer Science.
https:// doi. org/ 10. 1007/ 978-3- 642- 41181- 6∖_ 41, vol. 8156, pp 400–409 (2013)

 20. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Chirkova,
R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007. https:// doi. org/ 10. 1109/ ICDE. 2007. 367927, pp 816–825. IEEE Com-
puter Society (2007)

https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1109/ICDE.2015.7113351
https://doi.org/10.1109/ICDE.2015.7113351
https://doi.org/10.1016/B978-012088469-8.50070-X
https://doi.org/10.1016/B978-012088469-8.50070-X
http://www.vldb.org/conf/2004/RS21P2.PDF
https://doi.org/10.1109/ICDE.2012.42
https://doi.org/10.1109/ICDE.2012.42
https://doi.org/10.1109/ICDE.2018.00062
https://doi.org/10.1109/ICDE.2018.00062
http://www.vldb.org/conf/2000/P395.pdf
https://doi.org/10.1177/1550147719847440
https://doi.org/10.1016/j.cag.2018.09.008
https://doi.org/10.1109/CVPR.2017.173
https://doi.org/10.1109/TIP.2019.2891888
https://doi.org/10.1109/TIP.2019.2891888
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8529
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8529
https://doi.org/10.24963/ijcai.2017/234
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://doi.org/10.1007/978-3-642-41181-6∖_41
https://doi.org/10.1109/ICDE.2007.367927

1292 World Wide Web (2023) 26:1271–1294

1 3

 21. Chen, L., Shang, S., Jensen, C.S., Yao, B., Zhang, Z., Shao, L.: Effective and efficient reuse of past
travel behavior for route recommendation. In: Teredesai, A, Kumar, V., Li, Y., Rosales, R., Terzi, E.,
Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD. https:// doi. org/ 10. 1145/ 32925 00. 33308 35, pp 488–498. ACM (2019)

 22. Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial
networks. Proc. VLDB Endow. 10(11), 1178–1189 (2017). https:// doi. org/ 10. 14778/ 31376 28. 31376 30

 23. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest.
IEEE Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017). https:// doi. org/ 10. 1109/ TKDE. 2017. 26855
04

 24. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in
spatial networks. VLDB J. 23 (3), 449–468 (2014). https:// doi. org/ 10. 1007/ s00778- 013- 0331-0

 25. Chen, L., Shang, S., Guo, T.: Real-time route search by locations. In: The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2020. https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 5396, pp 574–581.
AAAI Press (2020)

 26. Zhang, C., Han, J., Shou, L., Lu, J., Porta, T.L.: Splitter: Mining fine-grained sequential patterns in
semantic trajectories. Proc. VLDB Endow. 7(9), 769–780 (2014). https:// doi. org/ 10. 14778/ 27329 39.
27329 49

 27. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet,
D.B. (ed.) Foundations of Data Organization and Algorithms, 4th International Conference, FODO’93,
Chicago, Illinois, USA, October 13-15, 1993, Proceedings. Lecture Notes in Computer Science.
https:// doi. org/ 10. 1007/3- 540- 57301- 1∖_5, vol. 730, pp 69–84 (1993)

 28. Yi, B., Jagadish, H. V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping.
In: Proceedings of the Fourteenth International Conference on Data Engineering. https:// doi. org/ 10.
1109/ ICDE. 1998. 655778, pp 201–208. IEEE Computer Society (1998)

 29. Cai, Y., Ng, R. T.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: Weikum, G.,
König, A.C., Deßloch, S. (eds.) Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. https:// doi. org/ 10. 1145/ 10075 68. 10076 36, pp 599–610. ACM (2004)

 30. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip
recommendation. In: Rundensteiner, E.A., Markl, V., Manolescu, I., Amer-Yahia, S., Naumann, F., Ari,
I. (eds.) 15th International Conference on Extending Database Technology. https:// doi. org/ 10. 1145/
22475 96. 22476 16, pp 156–167. ACM (2012)

 31. Zheng, K., Shang, S., Yuan, N. J., Yang, Y.: Towards efficient search for activity trajectories. In:
Jensen, C.S., Jermaine, C.M., Zhou, X. (eds.) 29th IEEE International Conference on Data Engineer-
ing. https:// doi. org/ 10. 1109/ ICDE. 2013. 65448 28, pp 230–241. IEEE Computer Society (2013)

 32. Chen, L., Shang, S., Jensen, C. S., Yao, B., Kalnis, P.: Parallel semantic trajectory similarity join. In:
36th IEEE International Conference on Data Engineering, ICDE 2020. https:// doi. org/ 10. 1109/ ICDE4
8307. 2020. 00091, pp 997–1008. IEEE (2020)

 33. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Parallel trajectory similarity joins in
spatial networks. VLDB J. 27(3), 395–420 (2018). https:// doi. org/ 10. 1007/ s00778- 018- 0502-0

 34. Chen, L., Shang, S., Feng, S., Kalnis, P.: Parallel subtrajectory alignment over massive-scale trajectory
data. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intel-
ligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. https:// doi. org/ 10. 24963/
ijcai. 2021/ 497, pp 3613–3619 (2021)

 35. Shang, S., Chen, L., Zheng, K., Jensen, C.S., Wei, Z., Kalnis, P.: Parallel trajectory-to-location join.
IEEE Trans. Knowl. Data Eng. 31(6), 1194–1207 (2019). https:// doi. org/ 10. 1109/ TKDE. 2018. 28547
05

 36. Yao, D., Zhang, C., Zhu, Z., Huang, J., Bi, J.: Trajectory clustering via deep representation learning.
In: 2017 International Joint Conference on Neural Networks, IJCNN. https:// doi. org/ 10. 1109/ IJCNN.
2017. 79663 45, pp 3880–3887. IEEE (2017)

 37. Liu, Y., Zhao, K., Cong, G., Bao, Z.: Online anomalous trajectory detection with deep generative
sequence modeling. In: 36th IEEE International Conference on Data Engineering, ICDE. https:// doi.
org/ 10. 1109/ ICDE4 8307. 2020. 00087, pp 949–960 (2020)

 38. Zhang, Y., Liu, A., Liu, G., Li, Z., Li, Q.: Deep representation learning of activity trajectory similar-
ity computation. In: 2019 IEEE International Conference on Web Services, ICWS. https:// doi. org/ 10.
1109/ ICWS. 2019. 00059, pp 312–319 (2019)

 39. Yao, D., Cong, G., Zhang, C., Bi, J.: Computing trajectory similarity in linear time: A generic seed-
guided neural metric learning approach. In: 35th IEEE International Conference on Data Engineering,
ICDE. https:// doi. org/ 10. 1109/ ICDE. 2019. 00123, vol. 730, pp 1358–1369 (2019)

https://doi.org/10.1145/3292500.3330835
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.1109/TKDE.2017.2685504
https://doi.org/10.1109/TKDE.2017.2685504
https://doi.org/10.1007/s00778-013-0331-0
https://ojs.aaai.org/index.php/AAAI/article/view/5396
https://doi.org/10.14778/2732939.2732949
https://doi.org/10.14778/2732939.2732949
https://doi.org/10.1007/3-540-57301-1∖_5
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1145/1007568.1007636
https://doi.org/10.1145/2247596.2247616
https://doi.org/10.1145/2247596.2247616
https://doi.org/10.1109/ICDE.2013.6544828
https://doi.org/10.1109/ICDE48307.2020.00091
https://doi.org/10.1109/ICDE48307.2020.00091
https://doi.org/10.1007/s00778-018-0502-0
https://doi.org/10.24963/ijcai.2021/497
https://doi.org/10.24963/ijcai.2021/497
https://doi.org/10.1109/TKDE.2018.2854705
https://doi.org/10.1109/TKDE.2018.2854705
https://doi.org/10.1109/IJCNN.2017.7966345
https://doi.org/10.1109/IJCNN.2017.7966345
https://doi.org/10.1109/ICDE48307.2020.00087
https://doi.org/10.1109/ICDE48307.2020.00087
https://doi.org/10.1109/ICWS.2019.00059
https://doi.org/10.1109/ICWS.2019.00059
https://doi.org/10.1109/ICDE.2019.00123

1293World Wide Web (2023) 26:1271–1294

1 3

 40. Zhang, H., Zhang, X., Jiang, Q., Zheng, B., Sun, Z., Sun, W., Wang, C.: Trajectory similarity learning
with auxiliary supervision and optimal matching. In: Bessiere, C. (ed.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. https:// doi. org/ 10. 24963/
ijcai. 2020/ 444, pp 3209–3215 (2020)

 41. Yang, C., Chen, L., Wang, H., Shang, S.: Towards efficient selection of activity trajectories based
on diversity and coverage. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Elev-
enth Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, Feb-
ruary 2-9, 2021. https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 16149, pp 689–696 (2021)

 42. Zhao, Y., Chen, Q., Cao, W., Yang, J., Xiong, J., Gui, G.: Deep learning for risk detection and tra-
jectory tracking at construction sites. IEEE Access 7, 30905–30912 (2019). https:// doi. org/ 10. 1109/
ACCESS. 2019. 29026 58

 43. Fan, Z., Chen, Q., Jiang, R., Shibasaki, R., Song, X., Tsubouchi, K.: Deep multiple instance learning
for human trajectory identification. In: Kashani, F.B., Trajcevski, G., Güting, R.H., Kulik, L., Newsam,
S.D. (eds.) Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems. https:// doi. org/ 10. 1145/ 33471 46. 33593 42, pp 512–515 (2019)

 44. Han, P., Wang, J., Yao, D., Shang, S., Zhang, X.: A graph-based approach for trajectory similarity
computation in spatial networks. In: Zhu, F., Ooi, B.C., Miao, C. (eds.) KDD ’21: The 27th ACM SIG-
KDD Conference on Knowledge Discovery and Data Mining. https:// doi. org/ 10. 1145/ 34475 48. 34673
37, pp 556–564. ACM (2021)

 45. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https:// doi. org/ 10. 1109/ TPAMI.
2013. 50

 46. Miao, C., Wang, J., Yu, H., Zhang, W., Qi, Y.: Trajectory-user linking with attentive recurrent net-
work. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS. https:// dl. acm.
org/ doi/ abs/ 10. 5555/ 33987 61. 33988 64, pp 878–886. International Foundation for Autonomous Agents
and Multiagent Systems (2020)

 47. Wang, S., Bao, Z., Culpepper, J.S., Xie, Z., Liu, Q., Qin, X.: Torch: A search engine for trajectory data.
In: Collins-Thompson, K., Mei, Q., Davison, B.D., Liu, Y., Yilmaz, E. (eds.) The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR. https:// doi. org/
10. 1145/ 32099 78. 32099 89, pp 535–544. ACM (2018)

 48. Xia, Y., Wang, G., Zhang, X., Kim, G. B., Bae, H.: Spatio-temporal similarity measure for network
constrained trajectory data. Int. J. Comput. Intell. Syst. 4(5), 1070–1079 (2011). https:// doi. org/ 10.
1080/ 18756 891. 2011. 97278 55

 49. Fu, T., Lee, W.: Trembr: Exploring road networks for trajectory representation learning. ACM Trans.
Intell. Syst. Technol. 11(1), 10–11025 (2020). https:// doi. org/ 10. 1145/ 33617 41

 50. Yuan, H., Li, G.: Distributed in-memory trajectory similarity search and join on road network. In:
35th IEEE International Conference on Data Engineering, ICDE. https:// doi. org/ 10. 1109/ ICDE. 2019.
00115, pp 1262–1273. IEEE (2019)

 51. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparseness. In: Agrawal,
D., Aref, W.G., Lu, C., Mokbel, M.F., Scheuermann, P., Shahabi, C., Wolfson, O. (eds.) 17th ACM
SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS,
2009. https:// doi. org/ 10. 1145/ 16537 71. 16538 18, pp 336–343. ACM (2009)

 52. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate
GPS trajectories. In: Agrawal, D., Aref, W.G., Lu, C., Mokbel, M.F., Scheuermann, P., Shahabi, C.,
Wolfson, O. (eds.) 17th ACM SIGSPATIAL International Symposium on Advances in Geographic
Information Systems, ACM-GIS. https:// doi. org/ 10. 1145/ 16537 71. 16538 20, pp 352–361. ACM (2009)

 53. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Böhm,
K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P., Ooi, B.C. (eds.) Proceedings of the 31st Inter-
national Conference on Very Large Data Bases. http:// www. vldb. org/ archi ves/ websi te/ 2005/ progr am/
paper/ fri/ p853- braka tsoul as. pdf, pp 853–864. ACM (2005)

 54. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.: An interactive-voting based map matching algorithm.
In: Hara, T., Jensen, C.S., Kumar, V., Madria, S., Zeinalipour-Yazti, D. (eds.) Eleventh International
Conference on Mobile Data Management, MDM. https:// doi. org/ 10. 1109/ MDM. 2010. 14, pp 43–52.
IEEE Computer Society (2010)

 55. Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for similarity-based anal-
ysis. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIG-
MOD. https:// doi. org/ 10. 1145/ 24636 76. 24653 03, pp 833–844 (2013)

https://doi.org/10.24963/ijcai.2020/444
https://doi.org/10.24963/ijcai.2020/444
https://ojs.aaai.org/index.php/AAAI/article/view/16149
https://doi.org/10.1109/ACCESS.2019.2902658
https://doi.org/10.1109/ACCESS.2019.2902658
https://doi.org/10.1145/3347146.3359342
https://doi.org/10.1145/3447548.3467337
https://doi.org/10.1145/3447548.3467337
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://dl.acm.org/doi/abs/10.5555/3398761.3398864
https://dl.acm.org/doi/abs/10.5555/3398761.3398864
https://doi.org/10.1145/3209978.3209989
https://doi.org/10.1145/3209978.3209989
https://doi.org/10.1080/18756891.2011.9727855
https://doi.org/10.1080/18756891.2011.9727855
https://doi.org/10.1145/3361741
https://doi.org/10.1109/ICDE.2019.00115
https://doi.org/10.1109/ICDE.2019.00115
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1145/1653771.1653820
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
https://doi.org/10.1109/MDM.2010.14
https://doi.org/10.1145/2463676.2465303

1294 World Wide Web (2023) 26:1271–1294

1 3

 56. Güting, R.H., Schneider, M.: Realm-based spatial data types: The ROSE algebra. VLDB J. 4(2), 243–
286 (1995)

 57. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clus-
tering. In: CVPR, pp 815–823 (2015)

 58. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
https:// doi. org/ 10. 1145/ 20204 08. 20204 62, pp 316–324 (2011)

 59. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based
on taxi trajectories. In: 18th ACM SIGSPATIAL International Symposium on Advances in Geographic
Information Systems, ACM-GIS 2010. https:// doi. org/ 10. 1145/ 18697 90. 18698 07, pp 99–108 (2010)

 60. Su, H., Liu, S., Zheng, B., Zhou, X., Zheng, K.: A survey of trajectory distance measures and perfor-
mance evaluation. VLDB J. 29(1), 3–32 (2020). https:// doi. org/ 10. 1007/ s00778- 019- 00574-9

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/2020408.2020462
https://doi.org/10.1145/1869790.1869807
https://doi.org/10.1007/s00778-019-00574-9

	Towards robust trajectory similarity computation: Representation-based spatio-temporal similarity quantification
	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional trajectory similarity measure
	2.2 Deep learning based trajectory similarity measure
	2.3 Road matching based trajectory similarity measure

	3 Problem formulation
	4 Representation-based spatio-temporal similarity computation model (RSTS model)
	4.1 Encoder-decoder framework
	4.2 Generating low-quality trajectories
	4.3 Quantizing spatio-temporal similarity
	4.3.1 Spatio-temporal aware loss function
	4.3.2 Triplet loss functions
	4.3.3 Time complexity

	5 Experimental study
	5.1 Experimental setup
	5.1.1 Data preparation
	5.1.2 Baselines
	5.1.3 Training parameter settings

	5.2 Evaluation on robustness
	5.2.1 Mean-rank comparison
	5.2.2 Cross similarity comparison
	5.2.3 k-NN precision comparison
	5.2.4 Evaluation on efficiency

	6 Conclusion
	Acknowledgements
	References

