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Abstract
Quantifying the trajectory similarity is a fundamental functionality in analysis tasks of 
spatio-temporal data. Existing classic methods compute the trajectory similarity based 
on point matching, which are unable to cope with low-quality trajectories (e.g., have non-
uniform sampling rates or noise points), especially when we take both spatial coordinates 
and the time components into account. While some studies with deep learning methods 
exist, they did not consider the time components of trajectories and the robustness of simi-
larity measure simultaneously, thus they fail to retrieve similarity-based queries in spatio-
temporal databases where time components of trajectories are also important. In practice, 
the time-aware trajectory similarity computation can be better applied to diverse scenarios, 
yet the time complexity also heavily increases. To enable efficient and robust similarity 
computation on massive-scale trajectories, we developed a novel RSTS model based on 
deep representation learning, in which we take the time components into account. Exten-
sive experiments show that our proposal constantly outperforms another two methods, and 
the similarity measure based on our RSTS model is robust to low-quality trajectories.
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1 Introduction

With the continued growth of location-tracking devices (e.g., vehicle navigation systems 
and smart phones) and GPS-enabled services (e.g., Google Maps), the volume of trajectory 
data is skyrocketing. Trajectory similarity measurement, as one of the fundamental func-
tionalities in spatio-temporal data analytics, has been extensively investigated by existing 
literature. A host of methods have been proposed [1–4] to measure trajectory similarity in 
diverse application scenarios.

Existing methods generally assume that the sampled trajectories have a uniform and 
consistent sampling rate. Two trajectories are considered to be similar if they can form a 
pairwise matching for the majority of their sample points. However, sampling rates vary 
among location-tracking devices [5] due to various reasons, including but not limited 
to battery constrains, intermittent signal disruptions, and system settings. In such cases, 
matching-based methods are proved to be ineffective. To tackle it, EDwP [3] was proposed 
to match trajectories through dynamic interpolation to cope with this issue. However, in 
most cases, trajectories are of non-uniform sampling rates, as well as other low-quality 
characters. We proceed to illustrate a toy example of exact moving route, high-quality tra-
jectory, and low-quality trajectory of a moving object. Given a moving object o, we let 
Ra be a exact moving route of o during a period of time, which is a curve that records the 
continuous locations traveled by the object. We let a high-quality trajectory of exact mov-
ing route Ra be a sequence of sampled points with high frequency. And we let a low-quality 
trajectory of exact moving route Ra be a sequence of sampled points with low frequency, 
as well as some noisy location points are included. Compared to the low-quality trajectory, 
the high-quality trajectory has more sampled location points. In addition, the high-quality 
trajectory has no noisy. The noisy location points of low-quality trajectories are generated 
due to some errors of GPS-equipped devices, making it hard to be used. Assume we con-
duct similarity join tasks between two low-quality trajectories, the join results may be inac-
curate because noisy location points may make two similar trajectories far away from each 
other, or make two trajectories of great differences close. Hence, it is important to consider 
a noise-free similarity measure to handle low-quality trajectories, such that the similarity 
of two low-quality trajectories is the same as the result of corresponding high-quality tra-
jectories. If a similarity measure is noise-free, we say it is robust.

A good similarity measure not only guarantees robustness when handling low-quality 
trajectories, but also achieve high efficiency. As a result, a robust and efficient similarity 
measure is required. To achieve this, t2vec [6] learned representations of trajectories for 
similarity measure based on deep learning methods, in which it considers the robustness of 
model, as well as its efficiency. However, temporal information of trajectories are ignored 
in t2vec model, making it unable to answer similarity-based queries in spatio-temporal 
databases because both spatial information and temporal information of trajectories are 
indispensable [7]. By taking the time dimension into account, more diverse applications 
such as time-varying traffic congestion prediction [8], staying patterns mining during ani-
mal migration, and time-varying hot routes identification [9] can be developed. As a result, 
it is of great importance to take into account time information for similarity measure.

In this light, we propose to investigate a novel problem: Given a collection of trajec-
tories T = {τ1,…,τn}, we propose to learn their representations V = {v1,…,vn} for robust 
similarity computation in both spatial and temporal dimensions. Regarding temporal 
information, we consider real-valued timestamp within 24h as inputs. Here, v ∈ ℝ

n is 
a vector in the Euclidean space. The learned representations must be able to reflect the 
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hidden spatio-temporal features of the exact moving route of trajectories. As such, the 
similarity of two trajectories based on the learned representations can be robust to low-
quality trajectories (i.e., trajectories with low-sampling rate or noise).

Deep representation learning based approaches [10–12] have yielded better preci-
sion and efficiency than traditional methods [13, 14]. Among these deep learning based 
approaches, Recurrent Neural Networks (RNNs) framework has shown great power 
to capture dependencies in the sequence processing [15]. A host of studies [16] take 
advantage of RNN framework to mine transition patterns of trajectory sequences, and 
they all achieve great performance. To the best of our knowledge, no other existing deep 
learning frameworks show stronger ability in handling trajectory sequences than RNN. 
Therefore, it is natural to consider RNN as an optimal choice in our problem.

One popular example using Recurrent Neural Networks (RNNs) is the encoder-
decoder model, which embeds a sequence into a vector with fixed dimensions. How-
ever, traditional encoder-decoder model is designed for textual data in natural language 
processing, where few noises (e.g., typos) can be found, and it did not consider time 
information. Specifically, it cannot be directly applied to solve our problem due to 
the following three reasons. First, the model inputs are sequences of discrete tokens 
while trajectories are represented by sampled points. Second, the learned vector in raw 
encoder-decoder model cannot effectively reflect the exact moving routes of trajecto-
ries especially when trajectories are of low quality. Third, the raw loss function used 
in encoder-decoder model is unable to identify the spatio-temporal features of trajecto-
ries, because it is originally designed for natural language processing [17]. To this end, 
we propose the representation-based spatio-temporal similarity computation (RSTS) 
model. The RSTS model converts each trajectory into a sequence of tokens by parti-
tioning space and time dimensions into cells. It is trained with a spatio-temporal aware 
loss function that incorporates with the triple loss. When we decode a target cell, the 
spatio-temporal aware loss function favors the decoder assigning a higher probability 
to the nearest spatio-temporal neighbors of the target cell. By performing training using 
an abundance of historical trajectories as inputs, the hidden transition patterns can be 
learned effectively. In particular, the hidden spatio-temporal features and transition pat-
tern can be reflected by the learned trajectory representation. The main contributions of 
this paper are summarized as follows.

• We propose a RSTS model to learn trajectory representations for spatio-temporal simi-
larity measurement, which takes both spatial and temporal components into account. 
The similarity measure based on learned representations is robust to low-quality trajec-
tories. Trajectory similarity measurement can be regarded as a fundamental functional-
ity of spatio-temporal data analytics, such as trajectory clustering, trajectory anomalous 
detection, etc. It lays a foundation for a host of applications such as discovering move-
ment patterns of football players, mining the migratory patterns of animals, and identi-
fying particular moving patterns of customers in a store to arrange goods.

• To effectively learn trajectory representations, a novel spatio-temporal aware loss func-
tion is developed. To further improve model efficacy, triple loss is applied to measure 
relative similarities among trajectories incorporated with the spatio-temporal aware 
loss function.

• The performance of our model is evaluated by extensive experiments on two real-world 
datasets. The experiment results show that the RSTS model outperforms the baselines. 
Additionally, our results confirm that RSTS model is robust to similarity measure when 
handling low-quality trajectories.
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2  Related work

Existing trajectory similarity computation methods can be divided into two categories: tra-
ditional methods (i.e., non-learning methods) and deep learning based methods. We pro-
ceed to review existing studies on traditional methods, deep learning based methods, and 
route network matching based trajectory similarity methods.

2.1  Traditional trajectory similarity measure

Trajectory similarity measurement has attracted significant attention in recent years [1, 6, 
18–26]. Most of them are based on distance aggregation between trajectory locations. A 
straightforward method is to create a one-to-one alignment among sampled points through 
the Lp-norm [27]. However, it is ineffective in local time shift: For two trajectories that 
sampled from the same trace, where one of them is slower in the first half of the distance, 
and the other is slower in the second half. To address this, DTW [28] was proposed to 
compute trajectory similarity using many-to-one mappings. In particular, DTW adapts a 
dynamic programming based manner to search all possible point combinations between 
two trajectories to find one with minimal distance. Yi et al. [28] introduced a new solu-
tion to improve efficiency. Nevertheless, the sample rate of trajectories has a significant 
influence on above similarity measure. Further, EDR [2] improved the accuracy of trajec-
tory similarity computation by alleviating the effect of noise points. To better figure out 
similarities among low-quality trajectories (i.e. noisy trajectories), LCSS [1] is developed 
to compare two trajectories with the consideration of spatial space shifting. Additionally, 
EDwP [3] was proposed to match trajectories under inconsistent and variable sampling 
rates through dynamic interpolation. Though these traditional solutions include the design 
of effective trajectory indexing structures [2, 29–31], they are still inefficient when process-
ing a large scale of trajectory database. To enable efficient similarity join on large sets of 
trajectories, some studies consider the parallel processing capabilities of modern proces-
sors [32–35]. Specifically, STS-Join [32] defines a semantic trajectory by a sequence of 
Points-of-interest (POIs) with both location and text information, and present a two-phase 
parallel search algorithm. However, non-learning based methods heavily rely on hand-
crafted features, making it fail to mine information hidden in trajectories.

2.2  Deep learning based trajectory similarity measure

Recently, there have been a lot of studies applying deep learning to speed up trajectory data 
mining tasks. These trajectory analysis tasks includes but not limited to trajectory cluster-
ing [36], anomalous trajectory detection [37], similarity measure [6, 38, 38–41], and trajec-
tory risk detection [42]. Among these studies, [36] transformed trajectories into feature 
sequences to model object movements, and applied an auto-encoder to learn quality low-
dimensional representations of trajectories. The learned fixed-length representations were 
further used for discovering groups of similar trajectories. Another study [37] proposed 
a model named Gaussian Mixture Variational Sequence AutoEncoder to enable efficient 
anomaly detection in an online manner. In addition, to handle the multimodal mobility pat-
terns, [43] used a deep multiple instance learning method by weak-supervised learning, 
and addressed the dynamic user set problems via a pairwise loss with negative sampling. 
[38] fuse the spatio-temporal characteristics with extra activity information of the activ-
ity trajectory. Specifically, [38] utilizes vectors representing these three kinds of semantic 
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information as the input of deep learning model for acquiring final trajectory representa-
tion, which is robust to low sampling. In addition, [40] proposed a trajectory representation 
learning framework called Traj2SimVec. By taking full use of the sub-trajectory informa-
tion as auxiliary supervision, the robustness of Traj2SimVec is improved. Recently, Graph 
Neural Network model was employed in GTS [44]. First, GTS learned the representation 
of each point-of-interest (POI) in the road network. Then GTS learned trajectory repre-
sentation by a Graph Neural Network model to identify neighboring POIs within the same 
trajectory, together with a LSTM model to capture the sequence information hidden in the 
trajectory.

Deep representation learning targets to automatically transform sequential information 
into low-dimensional latent vectors [45]. These low-dimensional latent vectors are called 
representation vectors. Based on representation vectors, some classical analysis tasks such 
as similarity computation, clustering, and anomaly detection can be efficiently processed. 
RNN framework of deep learning was applied in the t2vec model [6] for similarity meas-
urement. Compared with traditional methods, t2vec model achieves higher efficacy and 
robustness. However, it lacks the description of time dimension features, thus making it 
ineffective in time-aware trajectory matching. It is non-trivial to combine the spatial sim-
ilarity and temporal similarity on the basis of the original t2vec model, thus we cannot 
readily extend it or adapt any variant of it as a baseline. Different from the t2vec model, 
our RSTS model considers the time dimension in trajectory similarity measurement on the 
basis of deep learning, making it applicable to wider and more diverse scenarios [8, 9].

Another related work DeepTUL [46] focused on Trajectory-User Linking (TUL) task 
and proposed a deep learning based model, which is composed of a feature representation 
layer and a recurrent network with attention mechanism. The differences between Deep-
TUL model and ours lie in: the DeepTUL model is designed for the trajectory-user linking 
(TUL) problem, while our model is designed for trajectory-trajectory similarity computa-
tion. In particular, TUL is trained with user id labeled historical trajectories. In contrast, 
our problem does not take user information as input. Additionally, the DeepTUL model 
only captures periodicity feature of user mobility in temporal dimension. A visited user list 
Lpi,tj is used to record the users who visit location pi at timeslot tj. And in our problem, we 
focus on the real-value temporal similarities between two trajectories. As a result, the 
DeepTUL model cannot be directly used to answer our problem.

2.3  Road matching based trajectory similarity measure

Another similar work to our problem is road network matching based trajectory similarity 
measure [44, 47–49]. Among these studies, [50] formulated a road-network-aware trajec-
tory similarity function, and designed a filtering-refine framework to solve trajectory simi-
larity search and join problem. It first applied some map matching algorithms [51–54] to 
align trajectories on road network. Through map matching operation, trajectories are trans-
formed into sequences of road segments. The trajectory similarity is established based on 
longest common road segments between two trajectories. However, the road mapping did 
not consider time aspects. Two trajectories travel the same area but during different period 
of time may be transformed into the same sequence of road segments. Wang et  al. [47] 
proposed a trajectory search engine called Torch for querying road network trajectory data. 
After transforming each trajectory into a set of road segments and a set of crossings on the 
road network, Torch computed the Longest Overlapping Road Segments to measure simi-
larity over a lightweight index structure. In addition, some deep learning based methods in 
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this area are proposed. Existing approaches first transform each trajectory into a sequence 
of road segments coupled with corresponding travel time as well, which is called road 
network matching . Next, road segment representation learning and trajectory representa-
tion learning are conducted to learn road segment embeddings and trajectory embeddings, 
respectively. One of the most representative work [49] proposed a three-phase framework 
(TremBR) to learn representations of road segments, which targets to capture the spatio-
temporal properties inherent in trajectories while constraining the learning process upon 
the topological structure of the road network. However, The “time information” in TremBR 
is defined as travel duration of each transformed road segments, while our proposal defines 
“time information” as the location timestamps. As such, we define the concept of “time 
information” in totally different ways. Recently, GTS [44] combined spatial trajectory simi-
larity learning with road network context, which achieved the state-of-the-art performance. 
Nevertheless, it ignored the time information of trajectories, making it unable to meas-
ure the trajectory similarity in temporal aspects. In particular, for two trajectories that pass 
through the same area at different times, GTS may regard them as similar. To the best of 
our knowledge, none of existing studies in this area can be directly used to answer our 
problem.

3  Problem formulation

Definition 1 (Exact moving route) An exact moving route of an object R = {s1,s2,…
,sn} is a curve that records the continuous locations traveled by the object, where si = 
([p1,…,pm],t). Each location si is denoted by a multidimensional vector [p1,…,pm] that rep-
resents the spatial features (e.g., longitude and latitude), and a timestamp t denoting the 
corresponding time when this location is traveled. Note that an exact moving route cannot 
be captured in reality as location-tracking devices do not record locations continuously. 
Inspired by [6], an appealing alternative is that we can use a trajectory with relatively high 
sampling ratio to denote an exact moving route of a moving object.

Definition 2 (Trajectory) A trajectory τ = {s1,…,s|τ|} is a finite, temporally ordered 
sequence of sample points that derived from the exact moving route of an object, where |τ| 
is the length of the trajectory. The length (or the size) of a trajectory is the number of sam-
pling locations points. For simplicity, we can use si = ([x,y],t) to denote each discrete point 
in 2D space, where the tuple [x,y] denotes the recorded spatial coordinates (e.g., longitude 
and latitude) and t is the corresponding timestamp. Note that our modeling of trajectories 
aligns with existing studies [3, 55].

Definition 3 (Trajectory representation) We represent a trajectory τ by a vector v ∈ ℝ
n 

in the Euclidean space with the following virtues. (1) It can reflect the exact moving route 
of a trajectory. (2) It can be used to measure spatio-temporal similarities among trajecto-
ries, in which a trajectory representation is close to another in the Euclidean space, and the 
two respective trajectories can be considered spatially and temporally similar as well. (3) It 
is robust to low-quality trajectories for spatio-temporal similarity measure in both time and 
spatial dimensions.

Definition 4 (Problem statement) Given a collection of trajectories T = {τ1,…,τn}, we 
aim to learn their representations V = {v1,…,vn} for robust similarity computation in both 
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time dimension and spatial dimension (spatial coordinates) that satisfy the constraints 
below.

(1) ∀τi,τj,τk ∈ T,vi,vj,vk ∈ V: if sims(τi,τj) ≥ sims(τi,τk) and simt(τi,τj) ≥ simt(τi,τk), then 
dist(vi,vj) ≤ dist(vi,vk);

(2) ∀vi,vj,vk ∈ V: if dist(vi,vj) ≤ dist(vi,vk), then dist(v�
i
, v�

j
) ≤ dist(v�

i
, v�

k
).

For simplicity, we use sims(⋅) and simt(⋅) to denote the spatial and temporal similarities 
between two trajectories, respectively. dist(⋅) denotes the vector distance (e.g., the Euclid-
ean distance), v is the trajectory representation of a raw trajectory τ, while v′ is the tra-
jectory representation of the trajectory variant �′ with noise or sample loss. There is no 
explicit equations about how to compute sims(⋅) and simt(⋅). In this paper, these two nota-
tions are just used to express that our similarity measure takes both spatial information and 
time components of trajectories into account. If two trajectories are spatio-temporally simi-
lar, we target to have their learned representations close in vector space.

4  Representation‑based spatio‑temporal similarity computation 
model (RSTS model)

In this section, we propose a novel method to quantify the trajectory similarity by learning 
the vector representation for each trajectory. The encoder-decoder model [10] for learning 
representations has been extended to diverse applications, in which t2vec [6] is a seq2seq-
based model for learning trajectory representation. However, it does not measure the time 
dimension for similarity computation, thus the temporal features of trajectories may not be 
captured (e. g. , time-varying traffic congestion, staying patterns during animal migration, 
time-varying hot routes). In this paper, we propose a representation-based spatio-tempo-
ral similarity computation (RSTS) model to quantify trajectory similarities both in spatial 
coordinates and time dimension. Specifically, the encoder-decoder framework is adopted 
to learn the transition patterns hidden in a host of historical trajectories. Details of generat-
ing low-quality trajectories and computing spatio-temporal similarity are presented in this 
section.

4.1  Encoder‑decoder framework

Here, we introduce our encoder-decoder framework that is applied in our RSTS model. 
Figure 1 illustrates a modified encoder-decoder framework used in our problem. Given two 
sequences x and y, the encoder is designed to encode the features of x into a representation 
vector v, while the decoder attempts to decode the features of v into sequence y. Specifi-
cally, we use RNN [13, 14] to perform this process. After encoding, the decoder squashes v 
and every target input yi ∈ y into the hidden state hi by forward computation. For each layer 
of the decoder, it assigns a probability to each token, which is based on the last hidden state 
hi− 1 and the last input yi− 1. Here, yi is expected to possess maximum probability. In short, 
given an input (x,y), the training objective of the encoder-decoder model is to maximize 
the conditional probability ℙ(y|x) . By encoding x into v, y is the sequence generated under 
condition vector v. As a result, the learned representation vector v can effectively reflect the 
features of sequences x and y.
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In the encoder-decoder model, the inputs are sequences of discrete tokens. Therefore, 
we convert each trajectory into a sequence of numerical tokens. Our proposed method par-
titions space into discrete grids of equal size. The idea is inspired by existing model t2vec 
[6]. t2vec achieved good performance on both robustness and efficiency, but it did not take 
into account the time information. Our space partition is simple yet effective. Other alter-
native methods are road matching based methods. Specifically, road matching casts coor-
dinate points into road segment IDs. Road matching based methods may result in higher 
accuracy, but it also requires more pre-processing computation efforts. Rather than accu-
racy, we pay special attention to robustness and efficiency of trajectory similarity measure. 
In this paper, we apply grid partition to generate numerical tokens. First, we partition the 
space into grid cells of equal size (e. g. , 200m × 200m) [56]. Next, we partition each space 
cell into a fixed number of spatio-temporal cells based on a particular time slice count. 
Specifically, we split the time dimension into a fixed number of time slices (e. g. , 500). 
Consequently, each data point s = ([x,y],t) of a trajectory can be represented by a particu-
lar token. A trajectory token sequence is then obtained. Figure  2 illustrates an example 
of spatio-temporal cell partitioning. The space is partitioned into M × N equal grid cells. 
Given a sample point such as si = ([2,1],2), a space cell M + 2 is first assigned to it based 
on its x-y coordinates, as shown in the left. A spatio-temporal cell is then given based on 
its space cell M + 2 and its time slice basket t (i.e, 2). As shown in the right figure, spatio-
temporal cell 2P + M + 2 is mapped as a token of the sample point si = ([2,1],2), which is 
marked with a star, where P = M × N is the number of space cells and |T| is the number of 
time slices. Hence, the total number of spatio-temporal cells is P = M × N ×|T|. In our set-
tings, we treat each spatio-temporal cell as a token,1 and our model inputs are sequences of 
spatio-temporal cells, which represents a batch of trajectory. Specifically, the model input 
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Fig. 1  The encoder-decoder framework

1 For simplicity, hereon we will use token and cell interchangeably to refer to a spatio-temporal cell where 
the context is clear.
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consists of two kinds of trajectory token sequences. One is the low-quality trajectory (i. e. , 
trajectories with low-sampling rate or noise) and another is the corresponding high-quality 
trajectory (i. e. , clean trajectories with high-sampling rate). We proceed to explain this.

4.2  Generating low‑quality trajectories

For each trajectory τ and its corresponding exact route R, our RSTS model must be able to 
maximize the conditional probability ℙ(R|�) (i. e. , given a trajectory τ, the model can find 
the most likely exact moving route R of τ), in which the hidden spatio-temporal features 
of exact moving route can be reflected in the learned representation v. However, the exact 
moving route R cannot be well captured in reality. Inspired by existing literature [6], the 
trajectory τb with high sampling ratio can be used to simulate the exact route, which can 
be regarded as a high-quality trajectory. And we use its corresponding trajectory variant 
τa by randomly dropping and distorting certain points to replace τ. The dropping opera-
tion and distorting operation are detailed as follows. For each high-quality trajectory τb = 
{s1,…,s|τ|}, the dropping operation randomly removes certain locations in τb with a pre-
defined dropping rate rd. For a trajectory, the larger the dropping rate rd is, the less the 
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locations will remain. Figure 3 illustrates the relationship among exact routes, high-quality 
trajectories, and low-quality trajectories. Let the red curve be an exact moving route of a 
moving object. Note the exact moving route cannot be captured in reality. An example of 
high-quality trajectories is denoted by a sequence of locations, marked with black dot, as 
shown in Figure 3. We say it is high-quality, because it has uniform sample rate (e.g., 1 
second) and no noisy points. In contrast, an example of low-quality trajectory is denoted 
by a sequence of location with noise, which is marked with purple dot. Compared to high-
quality trajectories, low-quality trajectories may be unable to reflect the real information of 
exact moving routes. We proceed to detail our dropping operation and distorting operation, 
respectively.

Given a high-quality trajectory of uniform sample rate 100 seconds τb = {([1,2],100),
([1,3],200),([2,3],300),[3,4],400)}, and a dropping rate rd = 0.5, it is expected that half of 
locations in τb are supposed to be randomly removed. An example of dropped trajectory 
may be {([1,2],100),([2,3],300)}. And if we set the dropping rate to be 0.25, a dropped 
trajectory may be {([1,3],200),([2,3],300),[3,4],400)}, which has larger size than that 
of rd = 0.5. In addition, for trajectory τb = {s1,…,s|τ|}, the distorting operation randomly 
distort certain locations in τb with a pre-defined distorting rate rt. τb is distorted by add-
ing a Gaussian noise with a pre-defined radius δs in spatial coordinates and pre-defined 
radius δt in time dimension. To be more specific, we randomly distort some points ([x,y],t) 
by: (1) shifting the locations [x,y] using a Gaussian noise with a radius of δs meters (e.g., 
x = x + �s × dx, dx ∼ Gaussian(0,1);y = y + �s × dy, dy ∼ Gaussian(0,1) ), and (2) shifting 
the time t using a Gaussian noise with a radius of δt seconds. For raw trajectory τb = {([1,
2],100),([1,3],200),([2,3],300),[3,4],400)}, if we set rd = 0,rt = 0.5, the distorted trajectory 
may be {([1.1,2],105),([1,3.4],234),([2,3],299),[3,4],412)}, where the first two locations 
are shifted with Gaussian noise. As rt increases, the expected ratio of shifted locations of 
a trajectory increases accordingly. The processed trajectories with dropping and distorting 
operations are regarded as low-quality trajectory.

After dropping and distorting operations, τa is apparently a trajectory that of low-
quality derived from τb. Thus, the final objective of our model is converted to maximum 
ℙ(�b|�a) . Given a collection of (τa,τb) pairs of size n, by maximizing their joint probability ∏n

i=1
ℙ(� i

a
�� i

b
) with sequence encoder-decoder model, the transition patterns hidden in his-

torical trajectories can be learned.

4.3  Quantizing spatio‑temporal similarity

When we intend to learn the representation v that can reflect the spatio-temporal similar-
ity of trajectories, the original encoder-decoder model and t2vec model are both ineffec-
tive for they do not model the spatial correlation or temporal correlation between cells. To 
address it, we propose a spatio-temporal aware loss function to quantizing our optimization 
objective. Based on our loss function, a set of triplet loss functions are also developed to 
improve the results.

4.3.1  Spatio‑temporal aware loss function

While t2vec has observed that NLL loss [17] is not powerful to learn a trajectory represen-
tation, it is not time-aware. To enable powerful loss function that encourages the model to 
learn robust representations, in which they can reflect the potential exact moving routes of 
low-quality trajectories in both spatial coordinates and time dimension, our spatio-temporal 
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aware loss function is thus established based on the closest spatial and temporal neighbors 
of each target cell. Intuitively, when we intend to decode a target cell yt at time t, a neigh-
bor cell that close to yt is expected to be predicted. With this idea in mind, we can encour-
age decoder to assign more probability to a close neighbor. Specifically, if a distinct cell u 
∈ V is spatially top-|Ns| closest to the target cell yt and it is in the top-|Nst| temporally clos-
est neighbors, then u is regarded as the top-|Nst| spatially and temporally closest neighbors 
of the target cell yt. We use Ns and Nst to denote the spatially and spatio-temporally closest 
neighbors. |Ns| is the pre-defined number of spatially closest neighbors, and |Nst| is the pre-
defined number of spatio-temporally closest neighbors of the target cell.

Example 1 An example of generating spatio-temporally closest neighbors. Assume the 
space domain is already partitioned into 4 × 5 equal-size grid cells, and each grid cell 
equals to 1 × 1 square meter. Assume the time domain is already divided into 9 equal-
size time buckets {[0,1),[1,2),[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9)}. Given a collection 
of trajectory locations S = {s1,…,s10} = {([2,2],4.3),([2,2],4.7),([1,2],0.6),([3,2],3.2),([2,3
],5.8),([3,3],2.2),([2,1],8.7),([3,1],1.2),([1,0],5.5),([4,0],6.7)}. As shown in Figure 4, these 
locations are located at corresponding grid cells in space and then fall into time buckets. 
Let the number of selected spatially closest neighbors |Ns| and spatio-temporally closest 
neighbors |Nst| of the target cell be 5 and 2, respectively. Generally, the value of |Ns| is no 
less than that of |Nst|, because the selection of spatio-temporally closest neighbors is based 
on the selected spatially closest neighbors. Let us consider s1 as a target location. It is not 
hard to find that the top-5 spatially closest neighbors regarding s1 is s2,s3,s4,s5,s7. Next, we 

3 4
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Fig. 4  Example of spatio-temporally closest neighbors
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further select the top-2 spatio-temporally closest neighbors among s2,s3,s4,s5,s7 regarding 
s1. Locations s2,s3,s4,s5,s7 fall into corresponding time buckets according to their times-
tamps, as shown at the bottom of Figure 4. Thus, the top-2 spatio-temporally closest neigh-
bors of s1 are s4 and s5. As a result, If we intend to decode the cell that represents location 
s1, we encourage the encoder to predict s4 and s5 as the result.

Note that in our experimental study, we give the specific values of these two param-
eters. Next, for a target cell yt, we define the weights of its Nst spatio-temporal neigh-
bor cells in (1). The rationale behind such computation can be explained as follows: To 
avoid much computation, we only consider some spatio-temporally closest neighbors of 
target cell, and the weights of other cells can be ignored. In addition, (1) can guarantee: 
if a cell is closer to target cell yt, then it owes a larger weight. Here, parameter 𝜃 ∈ (0,1) 
is a spatial distance scale constant.

Equation 2 denotes the spatio-temporal distance dist(u,yt) between two cells u and yt, which 
is a linear combination of spatial distance dists(u,yt) and temporal distance distt(u,yt), where 
λ ∈ [0,1] is a varying parameter for controlling the importance of the spatial and temporal 
similarities. If the importance of similarity in space domain and time domian is the same, 
we set λ = 0.5. Otherwise, if we focus on spatial similarity, λ is set to be a smaller value 
such as 0.3. In short, the larger the λ is, the more we care about temporal similarity of two 
cells. In our experiments, the Euclidean distance is applied to compute dists(u,yt) and distt(
u,yt). Note that some other distance measure such as Manhattan distance and Lp-norm dis-
tance can be applied as well. Based on the definition of the Nst spatio-temporal neighbors 
and the spatio-temporal distance quantification, we formally establish our spatio-temporal 
aware loss function by (3).

Here, ht denotes the hidden state at time t in the encoder-decoder framework (cf. Sec-
tion 4.1). V is the vocabulary (i. e. , spatio-temporal cells, tokens). WT is the projection 
matrix that projects ht from the hidden state space into the vocabulary space (i. e. , spa-
tio-temporal cell space) and WT

u
 denotes its u-th row. The rationale behind the design of 

our spatio-temporal aware loss function can be explained as follow: For a target cell, we 
target to predict its spatio-temporal neighbors as the output of each layer. To quantify 
this objective, our loss function encourages encoder to assign larger probability to these 
spatio-temporal neighbors. If the calculated probability of spatio-temporal neighbors is 
slight, the loss is large. Based on our spatio-temporal aware loss function, RSTS model 
is expected to assign more probability to the Nst neighbors when we want to decode a 

(1)wuyt
=

exp(−dist(u, yt)∕�)∑
u∈Nst

exp(−dist(u, yt)∕�)

(2)dist(u, yt) = (1 − �) ⋅ dists(u, yt) + � ⋅ distt(u, yt)

(3)� = −
�y�∑
t=1

∑
u∈Nst

wuyt
ℙ(yt = u�ht)

= −
�y�∑
t=1

∑
u∈Nst

wuyt

exp(WT
u
ht)∑

v∈�exp(WT
v
ht)
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target cell yt at time t, and the transition patterns hidden in historical trajectories will be 
learned through sequence training.

4.3.2  Triplet loss functions

To ensure fast convergence, we refine the encoder-decoder model by applying triplet loss. 
Triplet loss is firstly used to learn good embedding in face recognition [57], in which it 
aims to compare two unknown faces and tell whether they are from the same person or not. 
Given a set of anchors a, positive examples p and negative examples n respectively, triplet 
loss is calculated by (4). Here, d(⋅) denotes the distance between two examples. The nega-
tive should be farther away than the positive by some extent, which is denoted by margin. 
In face recognition, faces from the same person should be close together and form well 
separated clusters. The same is true in the trajectory similarity computation: two trajecto-
ries τi,τj that derived from the same exact moving route R should have their embeddings 
(i. e. , representation vector) vi, vj close together in the vector space, while two trajectories 
derived from different exact moving routes should have their embeddings far away. To this 
end, we generate two kinds of distinct trajectories pairs (a,p,n) for computing triplet loss.

1. Regarding each trajectory token sequence, we randomly sample tokens from it to obtain 
three sub-trajectory token sequences a, p, and n such that a and p have more common 
tokens. The rationale behind such selection is that two trajectories seems to be more 
similar if they have a larger number of common tokens.

2. Regrading the source (i. e. , the exact moving route) of trajectories, ai and pi are derived 
(down-sampled or distorted) from the same exact moving route, while ai and ni are 
derived from two different exact moving routes.

4.3.3  Time complexity

RSTS model can be trained offline by Stochastic Gradient Descent (SGD) algorithm using 
GPUs. Once the training is done, RSTS requires O(|τ|) time to embed a trajectory τ into a 
representation vector v. Next, it takes O(|v|) time to compute the Euclidean distance of two 
vectors for similarity measure. The total time complexity is O(|τ| + |v|). As a result, the 
time complexity of our model is low, which is capable of handling millions of similarity 
computation simultaneously, which supports a lot of trajectory analysis tasks with real-
time demands, such as trajectory clustering, outlier detection, etc.

(4)L(a, p, n) = max{d(ai, pi) − d(ai, ni) + margin, 0}
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5  Experimental study

5.1  Experimental setup

5.1.1  Data preparation

Two real-world trajectory datasets are investigated in our experimental study. The first is 
extracted from the Beijing taxi dataset (BJ) [18, 58, 59],2 which contanins trajectories of 
10,000 cabs tracked over a period of one week. The second dataset3 is from the city of 
Porto, Portugal (PT), which contains 1.7 million trajectories. The average sampling inter-
val in BJ is about 177 seconds with a distance of about 623 meters, while in PT each taxi 
reports its location at 15 second intervals.

In reality, due to device or other problems, the collected trajectory data probably have 
noise or are incomplete. For both two data sets, to simulate the low-quality trajectories, 
we use down-sampling with different dropping rates and randomly distort some points 
by adding a Gaussian noise with a radius 50 meters in spatial coordinates and 300 sec-
onds in time dimension. To be more specific, we randomly distort some points ([x,y],t) 
by: (1) shifting the locations [x,y] using a Gaussian noise with a radius of 50 meters (e.g., 
x = x + 50 × dx, dx ∼ Gaussian(0,1) ), and (2) shifting the time t using a Gaussian noise 
with a radius of 300 seconds. To enable effective down-sampling and distorting, we select 
trajectories with length between 20 and 100. Table 1 shows our filter conditions for raw 
trajectory data. After removing the spatio-temporal cells (i.e., tokens) hit by all the trajec-
tories less than 30 in BJ and 50 in PT, we get 23,742 and 349,124 hot spatio-temporal cells, 
respectively. Sample points are represented by their spatio-temporal nearest hot cell (cf. 
Section 4.3). To generate (τa,τb) pairs (cf. Section 4.2) as training data, we perform down-
sampling and distortion operations for each high-quality trajectory τb. For both BJ and PT, 
the first 80 percent of trajectories are used for training. We first randomly dropping certain 
points with a dropping rate rd = {0.1,0.2,0.3,0.4,0.5} to create τb’s sub-trajectories. Then 
we distort each sub-trajectory with a distorting rate rt = {0.1,0.2,0.3,0.4,0.5}. As a result, 
25 pairs (τa,τb) are generated for each original trajectory τb.

5.1.2  Baselines

To overcome the lack of ground-truth and to better evaluate the accuracy of trajec-
tory similarity of methods, existing work [55] employed the self-similarity, the cross 

Table 1  Filter condition settings 
of trajectories

Beijing (BJ) Porto (PT)

Longitude Range [116.25, 116.55] [-8.735, -8.156]
Latitude Range [39.830, 40.030] [40.953, 41.307]
Length Range [30, 100] [20, 100]

2 https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ t- drive- traje ctory- data- sample/
3 https:// www. kaggle. com/c/ pkdd- 15- predi ct- taxi- servi ce- traje ctory-i/ data

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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similarity comparisons and the precision of finding the k-NN. Recently, [6] designed 
a new criterion called most similar search that can be considered as a self-similarity 
variant, which is designed to measure the robustness of similarity computation methods. 
For the evaluation mentioned above, the most similar search, cross similarity compari-
sons, and the k-NN precision are the best evaluation methodologies, thus we adopt them 
in our experiments. To verify the performance of our proposal, we consider EDR and 
EDwP as two baselines.

Edit Distance on Real sequence (EDR) Given two trajectories τ1 and τ2, the EDR between 
them is the minimum number of insert, delete, or replace operations required to convert 
τ1 into τ2 [2]. The cost of each operation is an constant, 1, thus the effect of outliers on 
the measured distance can be alleviated, which makes it robust to noise. Given a match-
ing threshold 𝜖s of the spatial distance, a pair of trajectory points si and sj are regarded as 
matching (i.e., their edit distance is 0) if and only if |si.x − sj.x|≤ 𝜖s and |si.y − sj.y|≤ 𝜖s, in 
which it only considers the spatial coordinate (x,y). As a result, it cannot be directly used as 
a baseline in this paper. To measure the spatio-temporal similarity, without losing any of its 
virtues, we apply an EDR variant by additionally importing a temporal matching threshold 
𝜖t, which is denoted by EDRt.

Here, subcost′ denotes the edit distance of a pair of trajectory points of two values, 0 
and 1. Notice that subcost� = 0 if and only if |si.x − sj.x|≤ 𝜖s and |si.y − sj.y|≤ 𝜖s and |si.t − 
sj.t|≤ 𝜖t.

Edit Distance with Projections (EDwP) Given two trajectories τ1 and τ2, EDwP computes 
the cheapest set of edits that make them identical [3]. In particular, EDwP performs two 
kinds of edits: replacement and insert. The replacement operation, denoted by rep(e1,e2), 
quantifies the cost when the trajectory segment e1(s0,s1) is matched with e2(s0,s1), where s0 
and s1 denote two endpoints of a segment. The insert operation introduces extra points to 
aid robust matching, and it predicts the timestamp of each inserted point by linear interpo-
lation. However, the time dimension is not evaluated for trajectory similarity computation 
in the EDwP. To account for the time dimension, we use dt(⋅) to denote the time distance 
between two matched segments and the cost of the converted rep(e1,e2) is calculated as fol-
lows. Parameter α ∈ [0,1] controls the importance of the spatial and temporal similarities. 
In remaining parts of this paper, we use EDwPt to denote this kind of EDwP variant.

Note that we do not include DTW for EDR and EDwP have been shown to outperform 
it in existing literature [2, 3]. To the best of our knowledge, no existing work takes the time 
components into account for trajectory similarity measure using deep learning methods 
as well as guaranteeing robustness. In particular, the time information should be absolute 
timestamps within 24h, thus no deep learning based baseline is available.

(5)EDRt(�1, �2) =

⎧
⎪⎪⎨⎪⎪⎩

n m = 0

m n = 0

min{EDRt(Rest(�1),Rest(�2))+

subcost�,EDRt(Rest(�1), �2)) + 1,

EDRt(�1,Rest(�2)) + 1}otherwise

(6)rep(e1, e2) + � ×
[
dt(e1.x0, e2.x0) + dt(e1.x1, e2.x1)

]
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5.1.3  Training parameter settings

The default training parameter settings are listed in Table 2. The model training is imple-
mented in Pytorch using a Nvidia 3090 GPU (24G), the training terminated if the loss in 
the validation sets does not decrease over 20,000 iterations. For the performance evalu-
ation, all baseline methods are implemented in Java and evaluated on Windows 10 plat-
form equipped with an AMD Ryzen 5 CPU (3.6GHz) and 32GB memory. Unless stated 
otherwise, the experimental results are averaged over 20 independent trials with different 
trajectories inputs.

5.2  Evaluation on robustness

5.2.1  Mean‑rank comparison

First, we studied the most similar search performance in proposed methods. Two sets of 
distinct trajectories are randomly selected of size 100 and m from test dataset, denoted by 
Q and P, respectively. Note that m is a parameter to be evaluated, and the value of m is 
larger than |P| in general. Two sets of sub-trajectories DQ and D′

Q
 are then created by alter-

natively taking points from each trajectory τi ∈ Q. An example of such partition operation 
is as follow. Given a trajectory τ = {s1,…,s10} (τ ∈ Q), We add two twin sub-trajectories {s
1,s3,s5,s7,s9} and {s2,s4,s6,s8,s10} into DQ and D′

Q
 , respectively. We conduct the same opera-

tion on P to get twins DP and D′
P
 . Next, for each query τa ∈ DQ we retrieve its top-k similar 

trajectories in D�
Q
∪ D�

P
 and calculate the rank of its twin �′

a
 . The rationale behind most 

similar search can be explain as follow: For a robust similarity measure, �′
a
 is expected to 

be ranked at the top as it is generated from the same source as τa. Basically, �′
a
 and τa reflect 

the same exact route of a moving object.

1. Effect of m. Figure 5(a) and (d) show the performance of the proposed method when 
we vary m (i.e., the size of P) in Porto and Beijing datasets, respectively. An increasing 
trend of mean ranks is observed in both EDRt and EdwPt, while the increasing trend in 
RSTS is much less significant, demonstrating the stronger capability of RSTS model 
in handling large data sets. For two twin trajectories τp and �′

p
 , it may be not hard to 

identify them as similar. Assume we mix �′
p
 with other trajectories and form a collection 

Table 2  Training parameter 
settings

Beijing (BJ) Porto (PT)

Space cell size 100m 100m
Time slice number 200 300
RNN units GRU GRU 
Max gradient 5 5
Batch 400 20
Hidden layer size 256 256
Embedding layer size 256 256
Dropout 0.2 0.2
Ns (cf. Section 4.3) 20 20
Nst (cf. Section 4.3) 10 10
λ (cf. Section 4.3) 0.5 0.5
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of trajectories DP, �′
p
 may be ranked at the top among DP regrading τp. However, the 

larger the size of DP is, the harder a similarity measure can rank �′
p
 at the top. From the 

results, even when we increase m to 50,000, the performance of RSTS model did not 
show obvious degradation.

2. Effect of dropping rate. As shown in Figure 5(b) and (e), all methods degrade when the 
dropping rate increases with fixed |D�

Q
∪ D�

P
| = 40K . When we vary the dropping rate 

from 0.1 to 0.5, the mean rank of all methods increases. Compared with baselines, RSTS 
constantly achieves the best performance. Especially when some dropped locations are 
exactly representative locations, the mean rank may significantly increase. Compared 
to non-learning methods, our proposal can better reduce the effect of dropped locations. 
For a dropped location, EDR and EDwP cannot have a knowledge on what this loca-
tion may be, and they merely ignore it. In contrast, RSTS may guess this location by 
learning from other trajectories. For example, it is observed that {si,sj,sk} is common 
sub-sequence of many trajectories. For a trajectory τ that only travels si,sk, our RSTS 
may embed τ into the same representation vector of those trajectories that travel not si,sk 
but sj.

3. Effect of distorting rate. As shown in Figure 5(b) and (e), all methods degrade when 
the distorting rate increases with fixed |D�

Q
∪ D�

P
| = 40K . When we vary the distorting 

rate from 0.1 to 0.5, the mean rank of all methods increases. Compared with baselines, 
RSTS constantly achieves the best performance.

5.2.2  Cross similarity comparison

A good similarity measure should not only identify the trajectory variables derived from 
the same exact moving route, but should also preserve the distance between different tra-
jectories, regardless of their sampling strategy. Here, we adopt cross distance deviation in 
existing literature [18, 55] as an evaluation criterion, denoted by csd, which is calculated 

Fig. 5  Most similar search when varying the size of P (i.e., m), the dropping rate rd, and the distorting rate 
rt
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by (7). Here, τb and �b′ are two distinct original trajectories, and d(�b, �b� ) can be regarded 
as the ground-truth between the exact moving routes of τb and �b′ , thus a small csd indi-
cates that the measured distance is much close to the ground-truth. τa(r) and �a� (r) are two 
variants of τb and �b′ , respectively, which is obtained by down-sampling operation (or dis-
torting operation) with a dropping rate (or distorting rate) r.

To calculate the mean cross similarity distance, we randomly select 10,000 trajectory 
pairs ( �b, �′b ) from the test datasets. Due to the space limit, we only show the results of 
Porto. Tables 3 and 4 show the csd performance as we vary the values of dropping rate rd 
and distorting rate rt, from 0.1 to 0.5, respectively. It is observed that our RSTS model is 
constantly outperforms EDRt and EDwPt, which demonstrates that our evaluated similarity 
is much closer to the ground-truth. As we increase the dropping rate from 0.1 to 0.5, the 
cross similarity distance increases accordingly. In addition, the effect of dropping operation 
regarding cross similarity distance is slightly larger than that of distorting operation. It is 
worth noting that EDwPt results in a smaller csd than RSTS at times, it is probably because 
EDwPt is designed to be able to cope with non-uniform sampling rates as well.

5.2.3  k‑NN precision comparison

We investigated the k-NN precision performance of the proposed methods. The rationale 
behind this measure can be explained as follows: A robust similarity computation should 
be able to adapt to low-quality trajectories (i.e., trajectories with low-sampling rate or 
noise) and yield similar results to those high-quality trajectories (e.g., non-distorted) if they 
are derived from the same exact moving routes.

In our experiment, two sets of distinct trajectories of size 100 and 10,000 are randomly 
selected from the test datasets, denoted by Q and DB, respectively. The query Q and data-
base DB can be regarded as high-quality trajectories. For each query τi ∈ Q, we find its 
k-nearest trajectories in database DB as its ground-truth. In the next, we generate a pair 
of low-quality trajectories Q′ and DB′ by randomly dropping (or distorting) some points 
with dropping (resp. distorting) rate rd (resp. rt) from Q and DB. Then, k-NN query is per-
formed on the low-quality datasets (i.e., Q′ and DB′ ) in the same way. We calculate the 

(7)csd =
|d(�a(r), �a� (r)) − d(�b, �b� )|

d(�b, �b� )

Table 3  Mean csd when varying 
dropping rate rd

rd 0.1 0.2 0.3 0.4 0.5

EDRt 0.019 0.120 0.220 0.319 0.408
EDwPt 0.021 0.035 0.047 0.058 0.073
RSTS 0.018 0.037 0.043 0.068 0.083

Table 4  Mean csd when varying 
distorting rate rt

rt 0.1 0.2 0.3 0.4 0.5

EDRt 0.020 0.033 0.085 0.083 0.096
EDwPt 0.019 0.027 0.054 0.065 0.078
RSTS 0.021 0.038 0.037 0.045 0.067
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mean ratio of common k-NN as precision. From Figure 6 we observe that the precision of 
all methods decreases as we vary rd or rt. When we vary rt from 0.3 to 0.4, the performance 
of EDRt and EDwPt greatly degrades. And it is clear that RSTS constantly shows the best 
performance.

5.2.4  Evaluation on efficiency

The time complexity of computing similarity over two trajectories τa and τb using our RSTS 
model is O(|τa| + |τb| + |v|). To be specific, embedding taua and taub into representation vectors 
through encoder network requires O(|τa| + |τb|) time, respectively. And computing the Euclid-
ean distance between two vectors requires O(|v|) time. Similar to RSTS, EDR and EDwP are 
both robust to trajectory data. However, the time complexity of EDR is O(|τa|×|τb|) [60]. For 

Fig. 6  k-NN results when varying the dropping rate rd and the distorting rate rt for k = 100, 200, 300

Fig. 7  Evaluation on efficiency
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EDwP, the time complexity is O((|τa| + |τb|)2), making it unable to support real-time applica-
tions for massive-scale trajectory data.

To evaluate the efficiency of above proposals, we compare the CPU time as we vary 
the number of trajectory pairs from 10,000 to 50,000. Given two collections of trajectories 
(Q1 and Q2) of equal size N, we compute the similarity between each pair of trajectories 
< 𝜏i, 𝜏

�
i
> (i ∈ [1,N]) , where τi ∈ Q1 and ��

i
∈ Q2 . Figure 7 shows the efficiency performance 

on Beijing and Porto data sets, respectively. Compared to EDR and EDwP, the CPU time of 
RSTS is decreased by about an order of magnitude.

6  Conclusion

We proposed a novel RSTS model to learn trajectory representation for spatio-temporal simi-
larity measure, which takes the time components into account. By applying our spatio-tempo-
ral aware loss function, the transition patterns hidden in historical trajectories will be learned 
through sequence training, and the hidden spatio-temporal features can be reflected by the 
representation vector, which can be used to trajectory similarity measure. Compared to high-
quality trajectories, low-quality trajectories generally have more irregular sampling rates and 
more noise points. As a result, we cannot directly compute the similarity between low-quality 
trajectories. Given a low-quality trajectory, our RSTS model targets to generate a high-quality 
trajectory by learning from other trajectories, and the hidden patterns of learned high-quality 
trajectories are stored in the representation vector. As a result, the similarity measure using 
representation vectors is based on the learned high-quality trajectories, which alleviates the 
effect of data noise. Extensive experiments confirmed that the trajectory similarity measure 
based on our learned representations is robust to low-quality trajectories.
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