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Abstract
Graph clustering is a central and fundamental problem in numerous graph mining applica-
tions, especially in spatial-temporal system. The purpose of the graph local clustering is 
finding a set of nodes (cluster) containing seed node with high internal density. A series 
of works have been proposed to solve this problem with carefully designing the measuring 
metric and improving the efficiency-effectiveness trade-off. However, they are unable to pro-
vide a satisfying clustering quality guarantee. In this paper, we investigate the graph local 
clustering task and propose a End-to-End framework LearnedNibble to address the 
aforementioned limitation. In particular, we propose several techniques, including the prac-
tical self-supervised supervision manner with differential soft-mean-sweep operator, 
effective optimization method with regradient technique, and scalable inference man-
ner with Approximate Graph Propagation (AGP) paradigm and search-selective 
method. To the best of our knowledge, LearnedNibble is the first attempt to take respon-
sibility for the cluster quality and take both effectiveness and efficiency into consideration in 
an End-to-End paradigm with self-supervised manner. Extensive experiments on 
real-world datasets demonstrate the clustering capacity, generalization ability, and approxi-
mation compatibility of our LearnedNibble framework.

Keywords Graph local clustering · Self-supervised learning · Generalized PageRank · 
Conductance

1 Introduction

Graph is a powerful framework to model the complex relations and interactions of our 
world [1–4]. The analyzing methods on graph have become fundamental and crucial. 
Graph clustering serves as an admiring and essential technique for wide-range applica-
tions, including community detection [5–7], image segmentation [8–11], protein grouping 
[12, 13] and especially spatial-temporal system [14–16], thus has drawn increasing atten-
tion during the recent years in computer science together with plenty of various applied 
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research areas. However, the graph clustering faces efficiency and effectiveness challenges 
from both practical and theoretical aspects.

Locality One fundamental consensus towards efficiency challenge is that the graph clus-
tering methods should be local w.r.t. some given seed node [17–19]. The locality has 
two aspects of meanings: process and result, which are usually coupled together for their 
implicit consistency. The process aspect means the graph clustering algorithm should only 
access the data in the neighborhood of the given seed node. The requirement for the result 
being local means the graph clustering algorithm should output the result nodes set in a 
small region around the seed node.

Framework Spielman and Teng [17, 20] are the first to study the graph local clustering 
problem. They propose a two-phase framework Nibble to guarantee the locality and per-
formance of the graph clustering algorithm based on the analysis of Lovász and Simono-
vits [21, 22]. We introduce the important Nibble framework in detail in Section 2.3 and 
go through it quickly here. In the first phase, a power series 

{
�k1⃗s

}
 , which represents the 

transition probability from seed node s to other nodes with k steps, is calculated. In the sec-
ond phase, the standard sweep operation is conducted to output the node set with the first 
or global minimal conductance as the clustering result. The effectiveness of Nibble is guar-
anteed by the theoretical bounds on cluster quality [18, 23] and illustrated by empirical 
evaluations on various real networks [24–27].

Efficiency Nibble has been improved from two main aspects: measuring metric design-
ing and measurement computing, leaving the sweep process as the standard and static 
module. Andersen, Chung, and Lang [18] propose the algorithm PRNibble by assem-
bling the K-hop transition probabilities with the weight formed as α(1 − α)k determined 
by the teleport constant α, which is a widely used node proximity metric named Person-
alized PageRank [28]. Besides, PRNibble [18] also provides an efficient local operation 
to compute it named PR-Push and achieve a better efficiency and effectiveness guaran-
tee. Chung [24] extends the PRNibble with a physics-innovated metric called Heat Ker-
nel PageRank(HKPR) whose weights are formed as e

−t tk

k!
 , where the parameter t is the tem-

perature constant controlling the distribution shape. With the improved theoretical bound, 
Chung and Simpson [29] propose a randomized algorithm ApproxHK with sampling 
random walks weighted by the heat kernel coefficients to get the approximated HKPR and 
propose a sub-linear solution ClusterHKPR for the graph local clustering problem. To 
optimize the HKPR computation, Kloster and Gleich [25] attempt to get rid of the heavy and 
randomized Monte-Carlo process in the ApproxHK by forming the computing problem as 
a linear equation solving problem. They propose an efficient deterministic algorithm HK-
Relax to solve the proposed linear equation by using the coordinate relaxation technique 
and get a faster and better algorithm for graph local clustering. Recently, Yang et al. [30] 
point out that though the absolute error bound in HK-Relax is not the best choice for the 
graph local clustering task, under the perspective of the sweep process on the measure with 
degree normalization. Based on this observation, they propose the algorithm TEA to approx-
imate the HKPR vector from the seed node with relative error bound, and achieve a better 
efficient-effectiveness trade-off. Wang et  al. [27] optimize the Push operation in several 
works mentioned above by introducing the randomization and propose an efficient graph 
propagation framework AGP. AGP can simulate any weighted message passing schema and 
achieve state-of-the-art graph local clustering task performance with the HKPR weights.
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Evaluation criterion Though the techniques mentioned above achieve better efficiency and 
effectiveness-efficiency trade-off, it is ambiguous and difficult for us to evaluate their effec-
tiveness for the following two main reasons: 1) The algorithms are not developed to opti-
mize the effectiveness, and 2) the effectiveness criterion and metric are not well defined. 
We first talk about the latter evaluation criterion problem by introducing several metric of 
cluster quality. Girvan and Newman [1] bring the concept of the cluster into graph research 
to represent the nodes set in such graph organized into internal densely linked but external 
loosely connected groups, which is also known as communities in network science [3]. To 
characterize the intuition of cluster concept, several scoring functions defined on graph 
structure have been proposed [6, 31–35], among which the modularity and the con-
ductance are two essential metrics. modularity [34] metric evaluates the difference 
between the sub-graph with regard to the cluster nodes and the random graph with the 
same statistic properties. The conductance [36–38] metric directly describes the ini-
tial concept of the cluster with the Raleigh quotient form, which is formalized in Defini-
tion 3. Yang and Leskovec [39] compare a series of existing metrics on 230 real-world 
graphs with ground-truth cluster labels by defining sense-making and convincing criterion 
on goodness and robustness. They point out the conductance metric achieves the best 
performance during structural defines for graph clusters. Since high-order structures have 
advantages on revealing the real communities [40, 41], motif-conductance has been 
proposed recently and studied with a series of work [42–46]

Besides the cluster quality metrics based on graph topology, Emmons and Kobourov 
[47] propose the concept of information recovery metrics based on the Shannon entropy 
[48] defined on the ground-truth label of the graph cluster, including Adjusted Rand Index 
(ARI) [49] and Normalized Mutual Information (NMI) [50].

Optimization purpose In practice, graph local clustering works always take conduct-
ance and F1-Score (or ARI, NMI) as the criterion, seeing whether they could get both 
of them improved. Meanwhile, they generally achieve only one of them, which always be 
the information recovery one [25, 26, 51], making the result less convincing. Another kind 
of performance criterion is the trade-off between efficiency and effectiveness, which com-
pares the cost to achieve the same effectiveness or the measuring score with the same algo-
rithm cost, and adopted by the mainstream researches [27, 30]. However, even though the 
effectiveness would get better along with the algorithm running, we have no sense about 
the effectiveness, e.g., conductance or F1-Score, the algorithms ought to achieve 
and the appropriate time to stop the algorithm. The fundamental works of graph local clus-
tering [18, 20, 29] suffer from a similar problem. The theoretical bounds with form O(

√
Φ) 

may be less meaningful for the specific application situation whose purpose is finding the 
cluster with the best measuring score but not just with some bound guarantee.

Effectiveness To explore the solution of the evaluation dilemma and bring effectiveness 
into clustering algorithms, a series work [26, 51–53] focus on the measuring metric design-
ing in the first phase of Nibble and push a step forward in both theoretical and applied 
areas. Kloumann, Ugander, and Kleinberg [52] regard the power series of transition proba-
bilities as node features relevant to cluster and make the assembling weights a kind of lin-
ear classifier that digests these features to get the GPR space separated. They point out that 
PPR with a proper choice of the teleport constant α corresponds to the optimal classifier 
under Stochastic Block Model (SBM) [54] with the mean filed assumption [55]. Li, Chien, 
and Milenkovic [26] generalize the result by relaxing the mean-field assumption and 
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analyzing the convergence of transition probabilities to their mean-field values and propose 
a new measure form with �k

(�k+�)2
 called Inversed PageRank (IPR) for their slower decay 

speed compared with PPR. Another inspiring work upon effectiveness is the Time-Depend-
ent Personalized PageRank (TDPR) provided by Avron and Horesh [51]. Besides the new 
GPR structure, they also propose a new quality metric to evaluate the effectiveness of algo-
rithms based on the differences between the results produced by different methods. They 
show that the proposed TDPR measure performs differently from the popular PPR and 
HKPR and could cooperate with the existing measures.

1.1  Motivations and challenges

Though a series of measuring metrics have been proposed to achieve better effectiveness, 
the problem of parameter selection under given metric is still challenging, such as the tele-
port parameter α in PPR, the temperature parameter h in HKPR, and the decaying parameters 
𝜃,ϕ in IPR. Though each work could choose the best parameters for its own purpose, they 
actually have no idea how to tune the parameter to get a better result, which leads the lit-
erature usually share the same parameters with some original work to take fair comparisons. 
Yang et al. [30] share their consideration of the parameter choice for their TEA algorithm and 
claim the importance of choosing the appropriate parameter for specific graph task. Klicpera, 
Weißenberger, and Günnemann [56] try to explore the best GPR weighting parameters for the 
graph local clustering task with the adaptive diffusion paradigm [57], which is designed for 
the link-prediction tasks. However, they find it performs worse than specific PPR and HKPR 
used in most other works. Li et al. [53] set up a End-to-End learning framework Gumbel-
Softmax-based Optimization (GSO) to solve the optimization problems on graph, with the 
help of the Gumbel-Softmax technique, which could provide gradient to the sampling 
operations approximately. Though the framework is designed for all graph optimization prob-
lems, GSO would lose its ability to the massive graphs since the supervision signals in the 
graph learning problems are always sparse and GSO has O(n) parameters to train.

Motivations To this end, we summarize the aforementioned statements and analysis with 
several questions as our motivations to conduct this research.

• Though the capacity of the GPR has been studied a lot, has it been fully demonstrated 
with the existing fixed parameters?

• To achieve better effectiveness, are there measures appropriate for different circum-
stance, and how can we design them?

• To achieve better efficiency, can we avoid conducting the grid-searching operations in 
graph clustering problem?

• To be scalable, can we take advantages of the existing techniques, e.g., approximation 
or randomization?

Challenges There are several fundamental challenges for designing and solve the prob-
lems described above. We give a brief description here and answer them in Section 3.

• How to deal with the discreteness of the sweep phase of the Nibble and make it dif-
ferentiable to play a role in the End-to-End framework?

1160 World Wide Web (2023) 26:1157–1179



1 3

• How to make the conductance metric a proper supervising signal to provide the 
appropriate gradient to the training process?

• How to get the End-to-End model trained as desired?
• How to use the trained model to infer the clustering result?
• How to make the framework compatible with the present scalable graph local clustering 

algorithms?

Motivated by these inspiring questions, we focus on the measuring metric designing 
problem under the Nibble two-phase framework and develop a End-to-End learning 
framework LearnedNibble to efficiently and effectively optimize the graph local clus-
tering target. More specifically, we model the measuring metric designing problem as the 
parameter selection task under the GPR form, whose capacity on the graph local clustering 
task has been proven in both theoretical and practical areas. We take graph topology G = 
(V,E) and the seed node u as input since the relation between the semantic context on graph 
and the cluster structure is beyond our scope. We evaluate the algorithm performance with 
the conductance metric because conductance is consistent with the initial and natu-
ral definition of the cluster and performs well in both experimental and applied circum-
stances. By solving these non-trivial challenges in an integral framework, we bring a new 
perspective and framework to the graph local clustering task.

1.2  Our contributions

We present an in-depth study on Nibble-based graph local clustering task with con-
ductance as the cluster quality metric and make the following contributions.

Supervision manner We design a differentiable learning-based soft-mean-sweep 
operator in a self-supervised manner to guide the training process.

Optimization mechanism We explore the appropriate optimization mechanism for 
the graph local clustering task and propose the regradient technique to conduct the 
optimization.

End‑to‑end framework We model the effectiveness problem of graph local clustering as a 
learning task w.r.t. GPR weighting parameters, and propose a End-to-End framework named 
LearnedNibble based on the soft-mean-sweep and the regradient technique, 
which can adaptively raise the cluster with best conductance score on different graphs.

Capacity and compatibility We illustrate the capacity of the GPR family and our Learn-
edNibble framework by conducting extensive experiments on the standard benchmarks 
of graph clustering tasks. We show that LearnedNibble gets the better effectiveness 
against all existing and commonly-used measuring metrics, e.g., PPR, HKPR and IPR, in 
all datasets. Moreover, the advantage of LearnedNibble is still kept with all levels of 
approximation, allowing it to combine with any approximated local clustering framework.

Scalability and practicality We show that the clustering manner obtained from our 
LearnedNibble can generalize to the other nodes, whether they are in the same cluster 
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as the seed node or not, with just a slight performance reduction. The generalization abil-
ity of LearnedNibble makes it scalable to massive data circumstances and practical in 
diverse graph-based tasks, including Graph Visualization and Graph Neural Networks.

1.3  Paper organization

The rest of the paper is organized as follows. We introduce some basic notations and impor-
tant techniques in Section 2, We present LearnedNibble framework in Sections 3. We 
evaluate the clustering capacity, generalization ability and approximation compatibility of 
our framework in Section 4. Finally, Section 5 discusses several interesting observations 
and shares some ideas and Section 6 concludes the paper.

2  Preliminaries

Before deriving the LearnedNibble framework in detail, we first introduce several 
important notations and techniques, and finally formalize the problem we investigate in this 
work.

2.1  Basic terminology

Let G = (V,E) be an undirected and unweighted graph, where V = {v1,v2,...,vn} denotes the 
node set with size n, and E = {e(u,v)∣u,v ∈ V } denotes the edge set with size m. We use d(u) to 
denote the node v’s degree, and use vector d = {d(u),u ∈ V } to represent degree correspond-
ing to each node. We use A to denote the adjacency matrix of G, and A(i,j) = A(j,i) = 1 if and 
only if we have e(vi,vj) ∈ E. Let D be the degree matrix of G with D(i,i) = d(vi). Besides, the 
transition probability matrix (a.k.a random walk transition matrix or random walk transition 
probabilities) for G is represented by P = D− 1A. Accordingly, Pk denotes the k-th order tran-
sition probability matrix, �k1⃗s denotes the transition probabilities of the k-hop random walk 
started from seed node s. The notations used frequently in this work are listed in Table 1.

2.2  Generalized pagerank

This part introduces the measuring metric used in this work.

Definition 1 (L-hop Transition Probability Sequence) Given a graph G and the seed node 
s, the transition probability from s to other nodes u ∈ V with k-steps can be computed as: 
pk(s,u) = Pk(s,u). By putting nodes together we get the k-hop transition probability vec-
tor of s, i.e., pk(s) = �k1⃗s =

{
pk(s, u)|u ∈ V

}
. The L-hop transition probability sequence is 

defined as the sequence of k-hop transition probability vector with the random walk length 
k ranging from 1 to L with form:

Definition 2 (Generalized PageRank) Given the L-hop transition probability sequence πL(s) 
of seed node s on graph G, the Generalized PageRank with the weighting vector w is defined as:

(1)�L(s) =
{
pk(s)|k ∈ [1, L]

}
.
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We may omit the seed node flag s and the range flag L in the expressions and use π and 
gprw in brief.

2.3  Graph local clustering

A cluster in G is a node set C ⊂ V and its quality is measured by a given criterion. We 
use the commonly-used conductance criterion in this work.

Definition 3 (Conductance) Let G = (V,E) be a undirected, unweighted graph. The vol-
ume of a node set C ⊂ V is defined as vol(C) =

∑
u∈Cd(u) . The edge boundary of a node set 

C is defined as ∂(C) = {e(u,v)|u ∈ C,v ∉ C}. The conductance of a node set C is defined as:

We introduce the Nibble two-phase framework, which is the fundamental frame-
work of graph clustering tasks, by formally introducing each phase of it.

Definition 4 (Measure) Given the graph G, seed node s and the measuring metric M  , 
we use the M  to measure the proximity score of all nodes towards s on graph G and output 
the measuring score vector q = M(G, s).

Definition 5 (Sweep) Given the measuring score vector q and the quality scoring func-
tion S . Let c = (v1,...,vn) be an ordered sequence of the nodes such that q(vi)

d(vi)
≥

q(vi+1)

d(vi+1)
 . We 

scan the sequence and make the top-j elements a candidate set Cj when visit j-th element. 
We use S to evaluate the quality of the candidate set sequentially, and outputs the C* with 
best score, i.e., smallest conductance in this work, S(C∗) = S∗ as the result.

(2)���L
w
(s) = w × 𝜋L(s) =

L∑

k=1

w
k
⋅ �k

1⃗
s
.

(3)Φ(C) =
|�(C)|

min(vol(C), vol(G ⧵ C))
.

Table 1  Basic notations

Notation Description

G = (V,E) undirected connected graph with the set of vertices V and edges E
d the degree vector of vertices V of the graph G with length n, whose u-th element is the 

degree
of node u

A,D ,P the adjacency matrix, diagonal degree matrix, transition matrix of G
L The maximum number of hops during performing push operations from the seed node, set 

by
50 in this paper

πL the L-hop transition probability sequence of G, see Definition 1
w the weight vector which assemble the L-hop transition probability sequence
���

w
, ����

w
 the assembled L-hop transition probability vector, and its degree-normalized version

Φ(C) the conductance of the cluster C
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The sweep phase is demonstrated by Algorithm 1.

2.4  Approximate graph diffusion

The approximate graph diffusion(AGP) [27] framework shows a great capacity to handle 
the massive data circumstance. We make it a basic module in LearnedNibble for scal-
ability sake. AGP takes an undirected graph G, a seed node s, a propagation range level L, 
a weighted sequence w and a error guarantee parameter 𝜖 as input, outputs the estimated 
propagation vector which achieves both theoretical approximate guarantee and near-opti-
mal running time complexity. In our settings, we make the weight vector w an all-ones vec-
tor to get the estimated L-hop transition probability sequence �̂�L from the AGP process as 
the input of our LearnedNibble.

2.5  Problem formulation

With taking the effectiveness, efficiency and scalability into consideration, we formalize 
the problem investigated in this work as the End-to-End d approximate conductance 
optimization task described as follow.

Definition 6 (End-to-End Approximate Conductance Optimization) Given the graph 
G, seed node s, propagation range level L, error guarantee parameter 𝜖. The estimated L-
hop transition probability sequence �̂�L with absolute error 𝜖 is raised from the AGP. We fol-
low the Nibble two-phase framework with keeping the sweep phase fixed as a standard 
cluster proposition process based on measuring score vector q, focus on finding the appro-
priate measuring metric M  in Generalized PageRank form, i.e., w × �̂�L , to optimized the 
conductance of the proposed cluster, in an End-to-End d manner.

3  The framework

This section introduces our LearnedNibble framework with dealing with the challenges 
mentioned in Section 1.1 and to solve the problem defined as Definition 6.
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3.1  Input data

The input data is not only the material on which our training process is based but also is the 
query task for which our model should take responsibility. We use the approximated result 
output by the AGP under some error guarantee parameter 𝜖 as our input data to make our 
framework compatible with approximation and scalable on massive graphs.

3.2  Trainable parameters

We model the ML

GPR
 used in the Measure phase of LearnedNibble as an assembling method 

of estimated L-hop transition probability sequence �̂�L with trainable weighting parameters as:

Therefore, the parameter amount of LearnedNibble is L rather than O(n) [53].

3.3  Supervision manner

As mentioned in Section 1.1, the sweep phase described in Section 5 is in grid-search manner 
and thus is discrete and not differential inherently, which brings challenges to achieve the desir-
ing End-to-End d framework. With a careful investigation of the sweep phase, we divide the 
integral sweep apart into three operations, which are conducted in turn but coupled with each 
other in an ingenious way, namely the loop, selection and evaluation. We analysis 
these operations carefully in the following part to better introduce our intuition and solution.

3.3.1  Loop

The loop operation sequentially visits each element along the measuring score vector and 
conducts the following selection operation to guarantee the best result within all n cluster 
candidates. The loop operation makes the algorithm avoid the combinatorial complexity by 
reducing the check operation times from the Bell Number with parameter n to the n and 
provides the admiring locality. Nevertheless, the brute-force mechanism within the loop oper-
ation binds itself to the disappointing discreteness and makes it incompatible with the End-
to-End manner. Therefore, questions come in two aspects. 1) How to activate the selection 
operation to get the candidate node sets? 2) How to guarantee the performance? We give our 
answers to both questions in the following part.

3.3.2  Selection

Towards the questions above, we present two of our several trials here, one of which finally 
forms the LearnedNibble.

Sharp‑drop modeling We notice that Andersen and Chung [23] propose an powerful 
statement about the sweep phase, saying that whenever there is a sharp drop in the rank 
defined by a personalized PageRank vector, the location of the drop reveals a cut with 
small conductance. Inspired by this observation, we try to model the selection opera-
tion with a trainable parameter Δ. We expect it separates the measuring score vector into 
two parts, corresponding to the cluster and the rest. Unfortunately, this proposal suffers 

(4)M
L
GPR

(𝜋) = w × �̂�L = ���w.
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from the absence of the loop operation and the flexibility of the GPR measure ML

GPR
 

in Section 3.2. As a consequence of the first one, we cannot keep the learned Δ with a 
reasonable value which surely should be in the measuring score range, despite diverse 
training techniques or regularizations. Besides, we lose the connection between the GPR 
measuring score and the parameter Δ even within two consecutive learning epochs, mak-
ing the two-stage training mechanism fail. Because it makes no sense to expect the best 
separation method for one score vector suits another well, as they may vary widely.

Self‑supervising To handle it, we first revisit the Nibble framework to find out the 
most essential information covered by it. Though the performance seems to be related to 
the measure result and some values like the sharp drop, we point out that the clustering 
capacity is mainly determined and represented by the order of measuring score sequence 
under the Nibble manner. Once the score of each node is fixed, the clustering result is 
almost determined. Besides, unlike most other methods, we are not pursuing to output the 
final result in just one sweep run, but exploring the appropriate measurement method for 
the specific task in the training process. Therefore, we don’t have to ask for the exact evalu-
ation on the measuring score sequence as the standard sweep does. We only need to pro-
vide some information to guide the measure ML

GPR
 to achieve better cluster discovering 

capacity by adaptive adjusting its weight parameters. Thus, we propose the mean-sweep 
technique to provide a lower-bound of the clustering capacity of the measure ML

GPR
 by sep-

arating the score sequence into two parts based on mean of itself. We formally introduce 
the mean-sweep operation with the following definition.

Definition 7 (mean-sweep) Given the measuring score vector gpr with the measure 
M

L

GPR
 . Let ���� =

1

d
��� be degree-normalized version of the gpr. We choose the nodes 

whose normalized measuring score is above the mean value, i.e.,

to be the cluster result.

Even though the mean-sweep only provides one clustering result among many possi-
ble selections, it is sufficient to guide the training process. We illustrate this statement with 
the experiment results in Section 4.

Although we have already stepped forward by providing a solution to the selection 
dilemma within the learning mechanism, the discreteness challenge still exists as the result 
proposed by mean-sweep is also a node set, which is discrete and blocks the gradient 
propagation. It leads us to the evaluation problem which is rather trivial in the standard 
sweep operation.

3.3.3  Evaluation

Following the same principle in the mean-sweep technique, we use the Sigmoid 
operator, which is widely used in the Machine Learning areas, to make the score above 
mean close to 1 and make the other close to 0. The activating operation here is not for 
bringing the system non-linearity but is an approximation of the discrete set selection 

(5)C∗ =
{
v
i
|����(v

i
) ≥ �

}
, � =

1

n

n∑

i=1

����(v
i
),

1166 World Wide Web (2023) 26:1157–1179



1 3

result. It plays a similar role as the Gumbel-Softmax operation in the GSO [53]. With 
this approximation, we propose the soft-mean-sweep module, the core element of 
our LearnedNibble framework.

Definition 8 (soft-mean-sweep) Given the measuring score vector gpr with the 
measure ML

GPR
 . Let ���� =

1

d
��� be degree-normalized version of the gpr. We normalize 

the gprd with its mean and use the Sigmoid operator to activate it, i.e.,

and make it the approximate clustering result.

Loss We get the final supervision manner for LearnedNibble by putting everything 
together. We compute the conductance in the Raleigh quotient on the result output by 
soft-mean-sweep with the matrix operation, view it as the approximate reflection on 
the clustering capacity provided by the ML

GPR
 , and set it as the supervising signal (a.k.a the 

loss) of the learning framework, i.e.,

3.4  Optimization mechanism

With the supervision manner and loss function in hands, the most important thing is 
using the supervising signal to guide the training process. Several optimizers have 
shown their capacities to be the appropriate engine of diverse learning tasks, among 
which the Adam [58] is the most widely-used one. Though being successful in plentiful 
circumstances, the Adam does not work well as expected in our graph local clustering 
task. It always misses the better solutions and sometimes keeps the wrong direction for 
a long time. We suppose one reasonable explanation of this wired situation is that the 
graph clustering task naturally has many local optimums who are close to the best one, 
which makes the Adam strapped and misled.

Regradient To mitigate the problem, we propose the regradient technique to make the 
Adam optimizer focus more on the current step and avoid being affected by the former gradients.

Definition 9 (regradient) With a parameter r which controls the restart frequency, 
we reset the Adam optimizer every r epoch by clearing its accumulated gradients. Without 
losing the generality, we fix the r to be 10 in this work.

We will present the effectiveness of the regradient technique with an ablation 
experiment in Appendix 1.

(6)c = �

(
���� −

1

n

n∑

i=1

����(v
i
)

)

(7)
� =

cT(� −�)c

min

(
cT
A
�cA, c

T

A
�c

A

) ,

cA = 0.5 ⋅ (1 + c), c
A
= 1 − cA.
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3.5  Inference manner

The last but not least thing is obtaining the model from the training process and using 
it to do the inference. In our LearnedNibble framework, the model is the measur-
ing method ML

GPR
 with learned GPR weight parameters, and the inference result is the 

clustering node set.
Most machine learning tasks obtain the final trained model with the convergence and 

the early-stop technique. As for our graph local clustering task, it is unnecessary and 
unfair to ask the model to get converged. The reasons are twofold. 1) As mentioned in the 
supervision manner in Section 3.3, we use the lower-bound of the clustering capacity to 
guide the training process, and there may be a gap between the performance reported by 
the loss and the actual ability of the model. 2) Though we aim to avoid searching the 
massive possible cases, we still share the same solution space as the former combinato-
rial optimization problem. Thus, we propose the search-select manner to obtain the 
model from the LearnedNibble.

Definition 10 (search-select) Given the L-hop transition probability sequence π 
and training process of the LearnedNibble with T epochs, i.e., RT =

{
M1, ...,MT

}
 , 

where Mi is the measuring method with trained weight vector wi, i.e., Mi(�) = wi × � . We 
compute the exact clustering capacity Φi of Mi by conducting the standard sweep opera-
tion on the measure result of each Mi as described in Algorithm 1. We select the M∗ with 
the best Φ* as the final model. We use the M∗ obtained from the training process RT on 
graph G to answer the query of any seed node s ∈ G.

3.6  Framework overview

We present our LearnedNibble framework in this part with Algorithm 2 and Algorithm 3. 
The Initialization module which has not been mentioned is described in Appendix 1.
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4  Experiments

This section evaluates the performance of our LearnedNibble in three aspects: 1) the 
clustering capacity concerning conductance optimization, 2) the generalization ability from 
training seed nodes to the whole graph, 3) and the compatibility with the approximation. 
We report the key results here and discuss additional results in Appendix 1.

Datasets We conduct our experiments on commonly-used benchmark graphs with ground-
truth labels, including DBLP, Amazon, PubMed, CiteSeer and Cora. The statistics of 
the datasets are listed in Appendix 1 with Table 4.

Metric We use the conductance as the evaluation metric and the optimization target of 
our framework since the information recovery metrics could conflict with our optimization 
purpose. We investigate the conductance of the ground-truth clusters in Figure  2 in 
Appendix 1.

Competitors We set the existing GPR instances with different specific weighting par-
adigm, like PPR, HKPR and IPR, as part of our competitors. Another competitor is the 
MEAN weighting operation since the result proposed by any method should be better than 
this trivial one. The last competitor we set for our LearnedNibble is the most recent 
GSO [53] as for its applicability for all graph optimization tasks. The considerations and 
the comparison methods are presented in Appendix 1.

4.1  Training settings

Training data We select 5 seed nodes from different clusters whose size is larger than 
100 randomly from each graph to form the training seed node sets. We set the propagation 
range L = 50. We vary the approximation parameter 𝜖 in [0,10− 4,10− 5,10− 6]. 𝜖 = 0 means 
we use the exact L-hop transition probability sequence rooted at the seed node.

Initialization method We use the RAW  weighting vector, which is a one-hot vector with 
the seed node index non-zero as the initial weight for the training process since the other 
initialization methods are our competitors. The analysis of the initialization sensitivity is 
presented in Appendix 1
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Training method We set the training budget T = 2,000, the regradient step e = 10 and 
the learning rate lr = 1.

4.2  Clustering capacity

This section investigates the clustering capacity of LearnedNibble with no approxima-
tion. The results are presented with Table 2. It is surprising to see that the trivial MEAN 
beats all GPR instances in all datasets. Moreover, our LearnedNibble shows much bet-
ter performance compared with all competitors. The GSO seems to learn nothing from the 
training process, and we will omit it for the following comparisons. The specific settings 
and detailed results are presented in Appendix 1.

4.3  Generalization ability

We present the generalization ability of LearnedNibble with no approximation in this 
part by reporting basic statistics of the conductances in test samples. The results are listed 
in Table 3. First, the final model obtained from LearnedNibble is useful as it gets even 
better performances when transferred to other nodes, no matter within the cluster or the 
whole graph. See the last column of Table 3. Then, the mean and the std. columns prove 
that the model achieves a satisfying performance wvector in our situatioith having strong 
confidence to find a cluster with relatively small conductance. We talk about some 
other interesting observations in Section 5.

4.4  Approximation compatibility

The approximation compatibility of LearnedNibble is presented in this section with 
four different approximation levels. Figure 1 combines all information together. We report 
4 results of total 10 results(5 datasets and 2 generalizations for each) for the convenience 
sake, where the * represents the in-cluster generalization results. The other results 
are presented in Appendix 1. The x-axis is the approximation level with parameter 𝜖. The 
y-axis is the conductance value. The thick horizontal line is the training results. The 
boxplot represents the transferring results. Though the clustering capacity and the generali-
zation ability of the LearnedNibble would be weakened with the approximation level 
up, it is still rather satisfying for the most time since the conductance values are rather 
small with variance well-bounded.

Table 2  Clustering capacity

‡  The values with ‡ are the best among baselines
*  The values with * and in bold are the best results

Dataset PPR HKPR IPR MEAN GSO GPR(ours)

DBLP 0.1104 0.1125 0.1307 0.0958‡ 0.4985 0.0380*

Amazon 0.0566 0.0561 0.0828 0.0494‡ 0.4977 0.0159* 
PubMed 0.0830 0.0861 0.0990 0.0681‡ 0.4995 0.0391*

CiteSeer 0.0363 0.0358 0.0482 0.0280‡ 0.5016 0.0187*

Cora 0.0812 0.0792 0.0878 0.0685‡ 0.4948 0.0305* 
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5  Discussions

Though the experiments result in Section 4.3 and Appendix 1 shows positive evidence for 
sharing the similar clustering method for all nodes on the same graph, some weird but 
interesting phenomena have got our attention. 1) The in-cluster generalization performance 
is worse than the in-graph one in PubMed and Cora. 2) The performance gap between 
the in-cluster and in-graph is large in DBLP and Amazon. 3) We can get better results for 

Table 3  Generalization ability

 The rows with * are in-graph tests, and the others are in-cluster tests

Dataset Train Test-Mean Test-Std. Test-Max. Test-Min.

DBLP 0.0380 0.0806 0.0396 0.1675 0.0102
DBLP* 0.0380 0.1705 0.0201 0.2016 0.1174
Amazon 0.0159 0.0184 0.0080 0.0406 0.0090
Amazon* 0.0159 0.0178 0.0090 0.0481 0.0062
PubMed 0.0391 0.1502 0.0965 0.3906 0.0367
PubMed* 0.0391 0.0727 0.0369 0.2266 0.0363
CiteSeer 0.0187 0.0417 0.0732 0.4444 0.0111
CiteSeer* 0.0187 0.0675 0.1045 0.3333 0.0050
Cora 0.0304 0.1019 0.0416 0.1949 0.0256
Cora* 0.0304 0.0804 0.0199 0.1188 0.0261

Figure 1  Capacity and ability with approximation. (a) DBLP* (b) Amazon* (c) CiteSeer (d) Cora
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some nodes even not been optimized in nearly all situations. These observations get us to 
consider the basis of the generalization and the information attached to the graph.

Topology consistency The most critical assumption we should have to transfer one model 
to other situations is the consistency. As for graph clustering tasks concerning the topology 
structure optimization metric like conductance, the topology consistency of different 
parts of graph should be evaluated and checked firstly, which is another interesting question.

Data representativeness As described in Section  4.1, we only use 5 randomly chosen 
nodes as our training data, which may not be so representative for the graph. Thus, select-
ing suitable nodes as training data may be a fundamental problem.

Information‑topology compatibility Recall that we have pointed out the conflict between 
topology-based metrics and information-based metrics in Section 1 and Appendix 1, the 
information attached to the graph as labels or other context on nodes or edges may provide 
somewhat different and independent information compared to the topology. As a result, the 
generalization in the so-called same cluster could be meaningless and even more challeng-
ing. Undoubtedly, taking advantage of both topology and information of graph is one of the 
most crucial but challenging problems in the graph mining area.

6  Conclusions

In this paper, we take in-depth research on the graph local clustering task and propose a 
novel learning-based framework LearnedNibble by solving a series of non-trivial chal-
lenges. To the best of our knowledge, LearnedNibble is the first one to take responsi-
bility for the cluster quality and take both the effectiveness and efficiency into considera-
tion in an End-to-End paradigm with self-supervised manner. Our experiments 
demonstrate that the clustering capacity of L-hop transition probability sequence is under-
estimated with only using the fixed weighting structures and parameters to assemble, and 
can be taken better advantage by our LearnedNibble framework. Besides the perfor-
mance improvements on the cluster quality, our framework shows great generalization abil-
ity and approximation compatibility, making itself practical in many situations.

Appendix A: additional experiments

Data sources We obtain the DBLP, Amazon from the Stanford Network Analysis 
Project(SNAP) [59], and the rest from their original works [60, 61]. We present the basic 
information of the datasets used in our experiments in Table 4, and take a view of the con-
ductances of the ground-truth clusters with Figure 2. We can see that the conductance 
of the labeling clusters are rather large, which should make the information-based metrics 
conflict with the structure-based metrics, as we note in the following part.

Competitor considerations Since the effectiveness challenge has not been studied much 
and little work targets the conductance metric as we do, the competitor of our Learn-
edNibble may not be any specific research result or algorithm. Besides, the work we 
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present here does not aim to beat any baseline but reveals the capacity of GPR measure 
family and explore the possibility and method to realize them, with being compatible to the 
mainstream approximate algorithms.

Comparisons For GPR instances, we evaluate them by grid-searching a bunch of param-
eters with 2,000 trials for each, which is also the training budget for LearnedNibble, 
and take the best performance as their clustering capacities. Specifically, we set the α ∈ 
[0, 1, 0.0005] for PPR, h ∈ [1, 20, 0.01] for HKPR, 𝜃 ∈ [0, 1, 0.005] and vary the power of 
𝜃 which determines the ϕ in [1, 5, 20, 50, 100] for IPR. For MEAN, we directly compute 
its exact conductance by the standard sweep operation. For GSO, we set the training 
budget of 200,000 for it since it has much much more parameters to train.

A.1 Training details

We make the LearnedNibble have the full accessibility of the graph adjacency matrix 
in the training phase but keep the algorithm local in the inference phase as other comput-
ing-based graph local clustering algorithms. The reason we make the algorithm not thor-
oughly local is twofold. 1) First, we should use the whole graph data since the topology is 
integrated and should not be sampled as the data points in the Euclidean space. 2) Second, 
we are looking forward to seeing that the framework have a good generalization ability to 

Table 4  Statistics of graph 
datasets

*  cmts is the community numbers

Dataset n m cmts* 

DBLP 317,080 1,049,866 13,477
Amazon 334,863 925,872. 75,149
PubMed 19,717 44,338 3
CiteSeer 3,312 4,732 6
Cora 2,708 5,429 7

Figure 2  Conductance of the ground-truth of clusters

1173World Wide Web (2023) 26:1157–1179



1 3

the whole graph, which is the crucial character we may depend on to develop the scalabil-
ity and practicality of LearnedNibble while making the algorithm local seems weird 
and maybe conflict with the purpose.

For the trainable weighting parameters, we normalize the weight vector w to be one-norm 
||x||1 = 1 in the inference phase but keep it free in the training phase for numerical stability sake.

A.2 Clustering capacity details

Comparisons We report the average conductance of the 5 training seed nodes with the 
final model in each datasets with Table 2. The first 4 columns are the GPR family instances 
and the trivial MEAN pooling operation. The GSO column represents the GSO [53] frame-
work. The last column with title GPR is our LearnedNibble framework.

Results with approximation in detail We report the results of different datasets in turn 
and list them with Table 5.

A.3 Generalization ability details

Comparisons To see more clearly, we report the generalization abilities of our Learn-
edNibble framework with competitors in two aspects. 1)In-Cluster: We do inference on 

Table 5  Comparisons with 
approximations

‡  The values with ‡ are the best among baselines
*  The values with * and in bold are the best results

Dataset 𝜖 PPR HKPR IPR MEAN GPR

DBLP 0.000000 0.1104 0.1125 0.1307 0.0958‡ 0.0380*

0.000001 0.1755 0.1791 0.2033 0.1454‡ 0.0918*

0.000010 0.2599 0.2656 0.2457 0.2376‡ 0.1080*

0.000100 0.2612 0.2665 0.2461 0.2410‡ 0.1386*

Amazon 0.000000 0.0566 0.0561 0.0828 0.0494‡ 0.0159* 
0.000001 0.1017 0.0984 0.1405 0.0780‡ 0.0605* 
0.000010 0.1497 0.1450 0.1616 0.1179‡ 0.0709* 
0.000100 0.1869 0.1831 0.1820 0.1647‡ 0.0815* 

PubMed 0.000000 0.0830 0.0861 0.0990 0.0681‡ 0.0391* 
0.000001 0.0840 0.0870 0.1023 0.0685‡ 0.0388* 
0.000010 0.1343 0.1385 0.1797 0.1028‡ 0.0825* 
0.000100 0.2397 0.2498 0.2188‡ 0.2542 0.2082* 

CiteSeer 0.000000 0.0363 0.0358 0.0482 0.0280‡ 0.0187* 
0.000001 0.0363 0.0359 0.0488 0.0280‡ 0.0184* 
0.000010 0.0380 0.0371 0.0562 0.0288‡ 0.0236* 
0.000100 0.0718 0.0697 0.0805 0.0496‡ 0.0343* 

Cora 0.000000 0.0812 0.0792 0.0878 0.0685‡ 0.0305* 
0.000001 0.0813 0.0794 0.0878 0.0685‡ 0.0312* 
0.000010 0.0837 0.0812 0.0891 0.0685‡ 0.0378* 
0.000100 0.0929 0.0905 0.0964 0.0733‡ 0.0592* 
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the node randomly selected within the same cluster as the training seed nodes. It’s repre-
sented by the c columns in Table 3. 2)In-Graph: We do inference on the node randomly 
selected from the whole graph. It’s represented by the g columns in Table 3. We report the 
average conductance of the 50 testing nodes with the final model in each dataset.

Results with approximation We report the results of different datasets in turn with both 
in-cluster and in-graph situations, which have not been shown in Section 4 with Figure 3.

Figure 3  Generalization ability with approximation. (a) DBLP (b) Amazon (c) PubMed (d) PubMed* (e) 
CiteSeer (f) Cora*
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A.4 Parameter sensitivity

Initialization comparisons We test the sensitivity of different initializations by training 
our LearnedNibble framework from different starting weights. Specifically, we use the 
PPR weighting vector with teleport constant α = 0.1 to challenge our model. We use the 
IPR weighting vector with 𝜃 = 0.99,ϕ = 0.9910 for IPR testing. The comparison results 
of different datasets are listed in Table 6. We can see that the training with different ini-
tialization methods achieves similar but slightly different performances. The trivial MEAN 
and RAW  initializations perform a little better, and the IPR with theoretical advantage also 
plays well in some cases.

Regradient and locality regularization We investigate the regradient technique 
proposed in this work by conducting the ablation experiments. At the same time, we 
test the performance of the popular locality regularization term used in Graph Neural 
Networks(GNN), which keeps the information diffusion local with the minimizing the 
2-norm of the difference between the graph signal after propagating and the initial 
signal which is the one-hot vector in our situation, i.e., ||gpr − �⃗1

s
||. The results under 

the exact settings with 𝜖 = 0 of both are presented by Table  7. We can see that the 
regradient sets with R = 1 shows better performance than its comparisons with 
R = 0, and the training settings with R = 1; L = 0 corresponding to the experiments 
with regradient technique and without the commonly-used locality regularization 
achieves the best performance in all situations.

Table 6  Initialization sensitivity

*  The values with * and in bold are the best results

Dataset 𝜖 PPR IPR MEAN RAW 

DBLP 0.000000 0.0431 0.0456 0.0351* 0.0380
0.000001 0.1015 0.1034 0.0904* 0.0918
0.000010 0.1368 0.1344 0.1023* 0.1080
0.000100 0.1709 0.1738 0.1386* 0.1386*

Amazon 0.000000 0.0160 0.0153* 0.0170 0.0159
0.000001 0.0745 0.0680 0.0661 0.0605*

0.000010 0.0825 0.0772 0.0761 0.0709*

0.000100 0.0989 0.0869 0.0934 0.0815*

PubMed 0.000000 0.0386 0.0398 0.0343* 0.0391
0.000001 0.0388 0.0401 0.0362* 0.0388
0.000010 0.0822 0.0777* 0.0839 0.0825
0.000100 0.2201 0.2265 0.2083 0.2082*

CiteSeer 0.000000 0.0217 0.0183 0.0168* 0.0187
0.000001 0.0212 0.0194 0.0189 0.0184*

0.000010 0.0242 0.0241 0.0220* 0.0236
0.000100 0.0375 0.0354 0.0349 0.0343*

Cora 0.000000 0.0343 0.0325 0.0407 0.0305*

0.000001 0.0329 0.0323 0.0430 0.0312*

0.000010 0.0410 0.0377* 0.0449 0.0378
0.000100 0.0619 0.0601 0.0594 0.0592*
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