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Abstract
Ocean data exhibits interesting yet human critical features affecting all creatures around the world. 
Studies on Hydrology and Oceanology become the root of many disciplines, including global 
resource management, macro economy, environment protection, climate predictions, etc, which 
motivates our further exploration on the underlying feature behind the ocean data. However, with 
high dimensionality, large quantities, heterogeneous sources, and especially, the spatiotempo-
ral manner, the diversity between the specific knowledge required and massive data chunk puts 
forward unique challenges in data representation and knowledge mining, effectively. This paper 
tends to provide a summary of studies on these issues, including the data representation, data pro-
cessing, knowledge discovery, and algorithms on finding unique patterns on ocean environment 
changes, such as temperature, tide height, waves, salinity, etc. In detail, we comprehensively dis-
cuss about ocean spatiotemporal data processing techniques. We further summarize related repre-
sentation works on ocean spatiotemporal data, the construction of a ocean knowledge graph, and 
the management of ocean spatiotemporal data. At last, we combine and compare the collection of 
the evolution and multiple state-of-the-arts on ocean spatiotemporal data processing.

Keywords Ocean data · Spatiotemporal · Knowledge graph · Representation · Distributed 
processing

1  Introduction

Ocean environment is highly related to the ecological system and human lives, by furnish-
ing humankind with diverse resources and services. Ocean serves as oxygen supply, cli-
mate regulation, carbon sequestration, food and medicine supply, etc., which is of great 
significance to the survival and development of human society.
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With the rapid development of information technologies, data acquired from ocean 
observation platforms grows exponentially every day. Ocean data is mainly obtained 
through various observation devices from land, sea surface, underwater, aerospace, etc. It is 
an accumulation of a large amount of data from different time periods, scales and regions. 
Compared with normal data, ocean spatiotemporal data emphasizes more on the dynamic 
process. The spatiotemporal process of ocean data is mainly reflected in ocean phenomena. 
The spatiotemporal process of ocean phenomena not only exists in a certain spatial scope, 
but also holds a certain continuity in time. The characteristics of different temporal states 
are different, and the characteristics in different moments are different. Some characteris-
tics change constantly.

The spatiotemporal process of ocean environmental data acts as a primary role in ocean 
environment research. There are a variety types of ocean data, and the format and record 
type of different sources and types of data are different. In practice, it is often necessary to 
use multiple formats of data, and the different formats of data bring great inconvenience. 
After obtaining ocean data, researchers tend to process the data differently and extract val-
uable information from it. In order to obtain valuable information that meets the needs, it is 
necessary to reorganize and represent data in a readable and operable way, so that the data 
can be further exploited and utilized.

Data representation is the transfer of our experience of the actual world into the computa-
tional domain, and it is the way how data is stored, processed, and transmitted [1]. However, 
the inherent complexity of ocean data brings a great challenge to representation. The tradi-
tional representation methods are not able to present the spatial and temporal features of ocean 
in an effective way. Therefore, multiple updated and enhanced representation are proposed to 
describe the dynamic and flexible process of ocean data. Among these methods, semantic web 
[2] gradually become the main trend for representing spatiotemporal data currently.

Semantic web can be originated back to 1956, when Richens first carried out seman-
tic net or semantic network [3]. It is first used for knowledge-based system reasoning and 
problem solving. After that, MYCIN [4] was designed as an early expert diagnosis system 
base on rules. Then, RDF [5] and OWL [6] was introduced, as the core schema of semantic 
web. A series of open domain semantic web or ontology were brought in, including Cyc 
[7], Freebase [8], DBpedia [9], YAGO [10], PROSPERA [11].

In 2012, knowledge graph [12] was first introduced by Google. Since then, knowledge 
graph gained great popularity and further exploration. A knowledge fusion framework 
KnowledgeVault [13] is developed on the basis of knowledge graph for large-scale knowl-
edge. A knowledge graph is essentially a large semantic web for describing concepts, enti-
ties and their relationships in the objective world [14]. Knowledge graph provides a more 
human-like method to represent information and knowledge in the computer world. Knowl-
edge graph is labelled as large-scale, semantic-rich, high quality, structure friendly, etc.

The graph-based structure of knowledge graph can effectively represent and store the 
spatiotemporal characteristics of ocean data by entities and relationships. Geographic 
knowledge graph usually reflects spatiotemporal features in data. Typical geographic 
knowledge graph includes LinkedGeoData [15], LinedSpatiotemporalData [16], etc. In 
the construction of a ocean knowledge graph, to embed the spatiotemporal element into 
the structure, advanced theories techniques or methods are applied, including spatiotem-
poral entity recognition, spatiotemporal disambiguation, semantic extension and so on. 
In this survey, Section  2 introduces the representation methods on ocean spatiotempo-
ral data based on the characteristics, Section 3 elaborates design concept of a knowledge 
graph, Section  4 introduces the construction steps of a ocean spatiotemporal knowledge 
graph. In Section  5, ocean data processing methods of single-node and multi-node is 
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comprehensively explained. In Section 6, the performance evaluation of ocean spatiotem-
poral knowledge graph is presented, and Section 7 makes a summary to this survey.

2  Representation on ocean data

Data representation is a reflection of real-world data in a computer-readable and oper-
able version, providing an approach to analyze raw data. Simple data representation 
includes binary digits, numeric data, character data, etc. As data formats, data structure 
and data volume growing more complex, the representation methods are also required to 
be “upgraded” to different forms, including tables, graphs, vectors, functions, distribution, 
data models, etc. In terms of ocean data representation, the heterogeneity and spatiotempo-
ral characteristics should be fully depicted by the representation.

2.1  Ocean data characteristics

Ocean data is vast and diverse, including meteorology data, hydrology data, hydroacoustics 
data, seafloor topography and geomorphology, ocean chemistry data, etc. Apart from the 
characteristics of big data, that is, high volume, high variety, high velocity, high value, high 
veracity and high validity, ocean data is also characterized by multiple ocean properties. 
Major ocean data characteristics that impact ocean data representation includes:

• High volume. Various ocean observation programs cover almost all the oceans world-
wide and carry out huge amount of periodic and real-time data collection. The volume 
of ocean data is increasingly growing, and the overall volume has reached EB level.

• Heterogeneous. The sources of ocean data acquisition are from a wide range, including ocean 
surveys, observation platforms, remote sensing and so-on. The formats and quality of these data 
also vary from their observation methods, extraction models, structure, application and analy-
sis. These characteristics have made ocean data heterogeneous and high-dimensional.

• Dynamic. Ocean is an obvious dynamic system with rapid changing data flow. With 
the advancement of observation methods and devices, and the improvement of data 
processing, ocean data are collected by seconds, which results in information in ocean 
database changing constantly and the data updates getting more frequently.

• Spatiotemporal. Ocean data carries both spatial and temporal attributes inherently. In 
spatial scale, ocean data involves nearshore, offshore, polar regions, sea surface, deep 
and distant ocean data, etc. In temporal scale, ocean data includes variability ranges 
from seconds, minutes, hours, days to seasons, years even multiple centuries. Ocean 
data embodies different characteristics at different spatiotemporal levels.

Therefore, ocean sptaiotemporal data representation are required to include all these characteristics 
to describe ocean data more correctly and make a better prerequisite for further ocean data analysis.

2.2  Data representation methods

Researchers have performed different representation methods to depict spatiotemporal 
ocean data and continuously made improvements on these methods. For example, map is 
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a typical representation for spatially distributed data, but map generally only reflects the 
surface information whereas no information on deeper layers of earth. To solve this limita-
tion, Chung et al. [1] analyzed three classical presentations-probability measures, Demp-
ster-Shafer evidential belief functions and fuzzy logic functions, by applying favorability 
functions to represent information of m layers of the earth, in 1993. In [17], a spatial data 
representation with dynamic graphics was proposed, with a classification method where 
maps can incorporate dynamism [18]. In 1996, Tuohy et al. [19] proposed a geophysical 
data representation method with interval B-spline function, which facilitates data archiving 
and reduces data storage. Spline is a piecewise polynomial curve, which functions well in 
multi-dimension data interpolation. In 2010, Bibby et al. [20] proposed a hybrid represen-
tation method for ocean environment, where stationary objects are represented by point 
features and trajectories of dynamic objects are represented by cubic splines.

However, these methods either cannot present the spatiotemporal process completely or 
cannot present the dynamic process in a perfect shape. Therefore, graphed-based semantic 
web has been wildly applied to representation on ocean spatiotemporal data, for graph-
based semantic is a more proper method in representing dynamic and heterogeneous data.

The use of semantic web can be originated back to 2000s [21–23]. There have been 
several different methods to involve spatiotemporal and other features into ocean data 
representation. Raskin [21] developed a semantic web (SWEET) for geo-terminology by 
building a collection of spatiotemporal ontologies. MacGregor [22] designed a seman-
tic primitive (SEW) especially for contextualized data, to conduct abstractions on related 
resources. A mapping between semantic web and geospatial data processing standards 
were established for Spatial Data Infrastructure (SDI) [16].

In terms of information deluge in recent years, [24] presented an agile data architec-
ture (CRISIS) for real-time data representation of multi-source heterogeneous ocean data 
streams with semantic web technologies in 2018. Later, [25] presented an reorganized and 
enhanced version of [24], including an isolation of functionalities to utilize multi-source 
querying and the discovery of alarms. Wang et al. [26] designed a formalized geographic 
knowledge representation (GeoKG) that describes the evolution of spatiotemporal data. 
Ren et al. [27] propounded an unified semantic model (OEDO) to represent heterogeneous 
ocean data by metadata.

3  Design of ocean spatiotemporal knowledge graph

Knowledge graphs are structured semantic knowledge bases for effectively and compre-
hensively describing concepts and the complex relationships between them in the physi-
cal world in a structured way, by aggregating a large amount of knowledge and creating 
connections between information, thus realizing quick response and knowledge reason-
ing. In terms of domain, knowledge graphs are usually divided into general knowledge 
graphs and domain knowledge graphs. General knowledge graph can be regarded as a 
structured encyclopedic knowledge base that contains a large amount of common sense 
knowledge in the real world with high convergence. Domain knowledge graph, also 
referred as industry knowledge graph or vertical knowledge graph, is usually oriented 
to a specific domain base on industry data, which has been widely used in the industrial 
field. We focus only on domain knowledge graph in connection with ocean spatiotem-
poral data in the survey. The logical structure of a knowledge graph consists of data 
layer and schema layer.
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3.1  Data layer

Data layer stores real-world data. Data forms includes structured data , demi-structured 
(XML, json), and unstructured data (images, recordings or videos).In data layer, data or 
facts are stored in RDF (Resource Description Framework). RDF provides a unified stand-
ard for describing entities and resources, which is also a method of data representation. 
RDF is formally represented as an SPO(Subject, Predict, Object) triple, which stands for 
a piece of knowledge in a knowledge graph. RDF consists of nodes and edges. Nodes rep-
resent entities/resources or attributes, and edges stand for the relations between entity and 
entity or entity and attribute. Triples can be presented as “entity-relation-entity” or “entity-
attribute-attribute value”.

Entities are the basic elements of the knowledge graph, which refer to specific names of 
people, organizations, places, dates, times, etc. Relation is a semantic relationship between 
two entities, which is an instance of the relationship defined by the schema layer. An attrib-
ute is a description of an entity and is a mapping relation between an entity and an attrib-
ute value. However, RDF is limited in representation on how to distinguish classes and 
objects and on how to define and describe the relations of classes or attributes. Based on 
RDF, researchers have developed RDFS (Resource Description Schema) [28] and OWL 
(Web Ontology Language) [6]. RDFS is a set consisted of predefined vocabulary that can 
describe RDF, while OWL is more like an extension version of RDFS that provides fast 
and agile data modeling with effective reasoning.

3.2  Schema layer

Schema layer is on top of data layer, which is the core structure of knowledge graph. 
Schema layer is managed by ontology. Schema layer acts as the conceptual model and logi-
cal foundation of the knowledge graph, and provides the specification constraint for the 
data layer. Mostly, ontology is adopted as the schema layer of knowledge graph, and the 
data layer of knowledge graph is constrained with the rules and axioms defined by ontol-
ogy. The knowledge graph can also be regarded as an instantiated ontology, and the data 
layer of the knowledge graph is an instance of the ontology. In the schema layer of the 
knowledge graph, nodes represent ontology concepts and edges represent relations between 
concepts.

3.2.1  Ontology

Ontology is originated from a branch of philosophy. In computer science and 
information technology, ontology refers to a specification vocabulary for a shared 
domain of discourse — definitions of classes, relations, functions, and other objects 
[29]. An ontology provides a shared vocabulary, which can be used to model the 
the type of objects or concepts and their properties and relations that exist within a 
given domain [30]. The purpose of ontology is to capture the knowledge in related 
domains, identify the commonly accepted vocabulary, describe the semantics of 
concepts through the relations between concepts, and provide a consensus under-
standing of the knowledge.

Knowledge in ontologies is represented formally through classes, relations, func-
tions, axioms, and instances. Perez et  al. [31] organized ontologies using a taxonomy 
that summarizes five basic modeling meta-speak.
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1. Class or concept: Class or concept refers to any transaction, such as job descriptions, 
functions, behaviors, strategies, and reasoning processes. Semantically, it represents a 
collection of objects whose definition includes the name of the concept, a collection of 
relations with other concepts, and a description of the concept in natural language.

2. Relation: Relation is the interaction between concepts in the domain, formally defined 
as a subset of the n-dimensional Cartesian product. For example, subClassOf relations.

3. Function: Function is a special type of relations. The first (n − 1) elements of the relation 
can uniquely determine the nth element, formally defined as F : C1 × C2 × ... × Cn− 1 × 
Cn. For example, memberOf is a function, memberOf(x,y) means y is the member of x.

4. Axiom: Axiom represents the eternal truth assertion, such as concept B belongs to the 
scope of concept A.

5. Instance: Instance represents elements, or in semantic, instance represents object.

There are many existing ontologies, and the process of constructing ontologies varies 
according to the consideration of their target domains and specific projects. Since there 
not exists an official standard for ontology construction, researchers have proposed a 
series of principles for constructing ontologies in practice. Some of the ontology con-
struction principles that have proved to be pragmatic. The five principles proposed by 
Gruber in 1995 [32] are the most influential. These construction principles provide the 
basic idea and framework for constructing ontologies. However, the obvious shortcom-
ing is that they only deliver a rather vague standard. It is now generally accepted that the 
process of constructing a domain-specific ontology requires the involvement of domain 
experts. Principles for ontology construction include:

1. Clarity and Objectivity : Ontologies should offer clear and objective semantic definitions 
on defined terms by objective definitions and natural language documents.

2. Completeness : Definition of the term should be complete and fully expresses the mean-
ing of the described term.

3. Coherence: The inferences drawn from the terms are compatible with the meaning of the terms 
themselves, i.e., they support reasoning consistent with their definitions without contradiction. 
The axioms defined and the documents illustrated in natural language should also be consistent.

4. Maximum Monotonic Extendibility: Adding general or specialized terms to an ontology 
does not require modifying its existing conceptual definitions and content, and supports 
defining new terms based on existing concepts.

5. Minimal Ontological Commitments: Ontological commitments should be minimal and 
should hold as few constraints as possible to the modeled objects. The commitment in 
ontology refers to the consensus on how to use the shared vocabulary in a consistent 
and compatible way. In general, ontology commitments are sufficient to satisfy specific 
knowledge sharing needs, which can be ensured by defining the least constrained axioms 
and defining the vocabulary needed for communication only.

3.2.2  Spatiotemporal ontology

Spatiotemporal ontology are required to present spatial attributes and temporal attributes 
of related entities. Spatiotemporal ontology is more than just an “enhanced” ontology, it also 
needs to combine business scenarios and domain knowledge, as well as semantically and spa-
tially extended knowledge concepts, entities, and relationships based on the characteristics of 
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spatiotemporal knowledge. In addition to defining semantic linkages, spatiotemporal knowledge 
mapping must also address the description of spatial and temporal interactions, and the important 
challenge in the design of spatiotemporal knowledge mapping is how to map spatiotemporal and 
semantic relations. Galton [33] summarized that a fully spatiotemporal ontology must extend the 
field-based and object-based ontologies in spatiotemporal domains, especially with the natural 
phenomena that inhabits the data. However, spatiotemporal information processing today faces 
two major problems: challenges in information integration led by incompatible terminology, and 
a deficiency in interoperability among the different systems [34].

At present, there are two ways to design ontologies related to spatiotemporal data. The first 
one is to add or optimize spatiotemporal related entities and relations to them to extend the origi-
nal semantics, based on the existing ontologies . Bittner et al. [35] proposed an ontology theory 
that can describe dynamic spatiotemporal processes and constant enduring entities. To enhance 
the exchange and integration of semantic heterogeneous of spatiotemporal data. Bittener [34] 
specified the meanings of terms that describes the basic types of entities and relations almost 
used in every domain and developed a formal logical-based ontology using an axiomatic theory.

Some research are developed on the basis of existing open-domain ontology. YAGO2 
[36] is a spatially and temporally enhanced version built from Wikipedia, WordNet and 
GeoNames, by adding YAGO (YAGO unifies Wikipedia and WordNet [37] with high cov-
erage that significantly improving the efficiency of information extraction, which combines 
extensive lexicons in Wikipedia and taxonomy from WordNet.) a temporal dimension 
and a spatial dimension for both entities and facts. In [38], researchers provided a timely 
YAGO that also extracts temporal facts from Wikipedia. In terms of information integra-
tion, an ontology with spatiotemporal entities integrated is developed to fit dynamic phe-
nomena [39]. Kurte et al. [40] offered an ontological framework that integrates spatiotem-
poral dimensions for describing dynamic patterns. Hornsby et al. [41] proposed a method 
of tracking spatiotemporal changing based on the object identity. The semantic of this 
research applied systematic derivation to semantics associated with changes, and were able 
to extract more types of dynamic spatiotemporal changes compared to its former research. 
In [42], a structured, spatiotemporal data querying over some Open Data sets were pro-
posed, by adding geo-entities, temporal entities and links between them.

Another method is to reconstruct a unified spatiotemporal ontology. Grenon [43] proposed a 
realist formal spatiotemporal ontology, where he presented ontology as a theory that the frame-
work can be applied to various spatiotemporal domains. Carstensen [44] presented a new pro-
posal for the design of spatiotemporal ontologies which has its origin in cognitively motivated 
spatial semantics. He also leveraged selective attention to ontologies that leads to defining an 
ontological upper structure covers spatiotemporal domains. In [45], researchers developed 
ontologies that solve semantic ambiguation of spatiotemporal entities in particular. Grenon 
et al. [46] presented another modular ontology to describe the changing and dynamic features 
as well as snapshots of time. Arpinar et al. [47] provided a geospatial ontology (SWETO) that 
integrates analytics, including spatial, temporal and thematic dimensions of information.

4  Construction of ocean spatiotemporal knowledge graph

There are two methods of constructing a knowledge graph: top-down and bottom-up. 
Top-down is to define the ontology and data schema for the knowledge graph first, and 
then extract the ontology and schema information from high-quality data to add to the 
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knowledge base with the help of structured data sources such as encyclopedic websites. 
Bottom-up is to propose resource schemas from public data through certain technical 
means, select the schema with higher confidence, add them to the knowledge base after 
manual review, and then construct the top-level ontology schema afterwards.Bottom-up 
organizes entities inductively to form bottom-level concepts, and then gradually abstract 
upward to form top-level concepts. This method can be converted into a data schema 
based on existing standards, or generated based on mapping of high-quality domain data 
sources. At present, knowledge graph construction generally adopts bottom-up method, 
thus we will only talk about bottom-up in this survey.

The basic processes of spatiotemporal knowledge graph is shown in Figure 1. There are 
six steps of the construction: knowledge modeling, knowledge storage, knowledge extraction, 
knowledge fusion, knowledge computation and application. It starts with raw data process-
ing, where the data may be structured, unstructured and semi-structured. Then knowledge ele-
ments, that is, entities and relations, are extracted by a series of automated or semi-automated 
techniques and are stored in the schema layer and data layer of the knowledge base.

4.1  Knowledge modeling and knowledge storage

Knowledge modeling is abstraction based on knowledge characteristics and actual demand 
of the industry, under the mode of knowledge graph. Knowledge modeling is more like the 
same process as representation, which has been discussed in Section 2.

Knowledge storage will directly influence efficiency of data querying and application. At 
present, there are generally two methods for knowledge storage. The first one is to store through 
a standardized storage format such as RDF, which has been discussed in Section 3. Another 
approach is to use graph databases for storage, and we will discuss this in Section 5 in detail.

4.2  Knowledge extraction

The entities, attributes and relations among entities are extracted from various types of data 
sources, based on which the ontological knowledge representation is formed. Knowledge 

Figure 1  Knowledge graph construction steps
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extraction is a technique to automatically extract structured information such as entities, 
relationships and entity attributes from semi-structured and unstructured data. For different 
types of data sources, the techniques used for knowledge extraction are different. For struc-
tured data (e.g. maps, gazetteers), spatial entities, attributes and their relations are auto-
matically extracted from the database by establishing mapping relations between concepts 
in the database and ontologies in knowledge graph and rule-based reasoning. For semi-
structured data (e.g. tables from webpages and list data), corresponding template extractors 
can be established to realize knowledge extraction. For unstructured data (e.g. webpage 
text or other text information), the existing knowledge graph can be used to build a training 
set by remote supervision, and the extract by using deep learning algorithms. Knowledge 
extraction includes entity extraction, relation extraction and attribute extraction.

4.2.1  Entity extraction

Entity extraction, also called named entity recognition (NER), can identify named entities 
from text database automatically. Main tasks of entity extraction is to identity the named 
entities and classify them.

DeepDive [48] is a knowledge extraction tool developed by Stanford University. It 
extracts structured knowledge from less structured data and reason statistically without 
machine learning algorithms. In [49], researchers developed knowledge extraction that 
links ontological classes to the influenza-related spatiotemporal text data on Twitter. In 
[50], an knowledge extraction approach was presented that combines temporal information 
retrieval and spatial information retrieval in text documents.

4.2.2  Relation extraction

The text corpus obtained after entity extraction is a series of discrete named entities 
(nodes). To collect semantic information, it is necessary to extract the association relations 
(edges) between entities from the related text to link multiple entities or concepts to form 
a web-based knowledge structure. According to the dependence on annotated data, entity 
relationship extraction methods can be classified into supervised learning methods, semi-
supervised learning methods, unsupervised learning methods and open extraction methods.

Supervised learning is a fundamental entity relation extraction method. The main idea 
is to train machine learning models on labeled training data and then to classify the rela-
tion of the test data. Supervised learning methods include rule based methods, feature 
based methods and kernel based methods. The rule based method needs to summarize the 
corresponding rules manually or through machine learning methods according to the dif-
ferent domains involved in the text to be processed, and then use the template matching 
method for entity relationship extraction. Spatiotemporal rule based relation extraction 
have to extract spatiotemporal relations in text corpus based on syntactical rules [51, 52]. 
Feature based method is simple and effective. The main idea is to extract useful informa-
tion (including lexical and syntactic information) from the context of relations instances as 
features, construct feature vectors, and train entity relationship extraction models by com-
puting the similarity of the feature vectors. Kernel based relation extraction includes word 
sequence kernel function methods, dependency tree kernel function methods, shortest path 
dependency tree kernel function methods, convolutional tree kernel function methods and 
the combined kernel function methods. Kernel based methods are more widely used for 
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spatiotemporal relation extraction, for its effectiveness in analyzing heterogeneous data and 
dealing with massive number of documents [53].

Semi-supervised relation extraction summarizes entity relationship sequence patterns 
from the context containing the relations, and then uses the relationship sequence patterns 
to discover more relationship seed instances to form a new set of relations. Semi-super-
vised method assist researchers in labeling professional spatiotemporal data without expert 
knowledge [54].

Unsupervised relation extraction method does not need to rely on entity relation anno-
tation corpus. It consists of two steps: relationship instance clustering and relation type 
selection. Lu et al. [55] proposed an unsupervised learning methods based on variational 
autoencoder to extract information from spatiotemporal data.

Open relation extraction can avoid manual corpus construction for specific relationship 
types, and can discover the relation type and extract relation automatically . By mapping 
high-quality entity relation instances to large-scale text, training data can be obtained from 
external domain-independent entity knowledge bases (such as DBPedia, YAGO, OpenCyc, 
FreeBase) according to text alignment. Open relation extraction is effective for intrinsic 
difficulty in training individual extractors for every single relation [56].

4.2.3  Attribute extraction

Attribute extraction is to extract the attribute information of a specific entity from different 
information sources. Data mining method can be used to mine the relations between entity 
attributes and attribute values directly from the text.

4.3  Knowledge fusion

After knowledge extraction, spatiotemporal knowledge from different data sources 
have certain complementarities and differences, such as non-uniform classification sys-
tems, ambiguities in geospatial entities, different details of feature descriptions, con-
flicted entity relations, and other information redundancy and inconsistency issues. 
Knowledge fusion is an effective way to solve the problem of knowledge graph het-
erogeneity by associating the semantic understanding of different identified entities in 
different data to the same entity.Techniques of knowledge fusion includes entity disam-
biguation, and entity linking.

Knowledge fusion is an effective method to improve the quality of knowledge, disam-
biguate knowledge and get the true value of knowledge, especially for heterogeneous data 
[57]. Spatiotemporal knowledge fusion includes more step on time series cleaning, spati-
otemporal cleaning of stale data [58] and stream data cleaning [57].

4.4  Knowledge computation

After information extraction and knowledge fusion, a series of basic fact representation 
has been acquired from raw chaotic data. The next step is to obtain a structured, networked 
knowledge system and update mechanism through knowledge computation. Main steps of 
knowledge computation involves ontology construction and knowledge reasoning. We have 
discussed ontology in Section 3. Knowledge reasoning is mainly used for completing the 
knowledge graph and verifying the quality.
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In addition to the ontology, reasoning based on general rules and common sense is 
widly used in knowledge graphs. Spatiotemporal knowledge graphs are capable of tempo-
ral reasoning and spatial reasoning. Temporal reasoning can supplement the target query 
with temporal constraints so the result meets the temporal demand. It can be regarded as 
a constraint satisfaction problem, where the variables represent temporal objects and the 
constraints between variables correspond to the temporal relations between objects. Simi-
lar to temporal reasoning, the spatial reasoning process yields the understanding of mul-
tiple spatial objects and object-embedded spatial properties. Spatial reasoning contains 
the reasoning of multiple spatial relations, such as topology, direction, distance, etc. Other 
logic-based geo-knowledge language was added in aid of declaring spatiotemporal reason-
ing [59]. Mantle et al. [60] implemented ParQR, a parallel, distributed Qualitative Spatial 
Temporal Reasoning (QSTR) with Apache Spark to reasoning through massive spatiotem-
poral data. A incorporation spatiotemporal reasoning is presented in [61], which infers spa-
tiotemporal representations over underlying ontology.

4.5  Ocean knowledge graph application

The construction of ocean spatiotemporal knowledge graph present the ocean related infor-
mation in a structured way, which helps us learn more of variation and prediction of ocean 
environment. Based on the structured ocean knowledge, more supportive and executable 
decisions can made.

5  Management of spatiotemporal ocean data

Storing and analyzing ocean and marine environmental data is an important way of under-
standing our planet and preparing us in advance for potentially adverse ocean conditions in 
the future. In addition, the marine spatiotemporal data collected from various sources (such 
as meteorological satellites, road-based weather stations, meteorological hot air balloons, 
buoys, various ships, underwater sensors, etc.) has reached the petabyte level, and tradi-
tional centralized data processing has gradually been unable to adapt the need for ocean 
spatiotemporal data management. How to store and utilize these ocean spatiotemporal big 
data is an urgent problem to be solved at present. Ocean spatiotemporal data management 
can be divided into two categories in terms of the number of nodes, namely the single-node 
storage and processing model and the distributed multi-node storage and processing model. 
The two types of models are introduced below.

5.1  Single‑node

The traditional relational database management system RDBMS is a typical single-node 
processing model. Therefore, many researchers have developed some spatiotemporal 
RDBMS that support spatiotemporal data storage based on traditional RDBMS, and have 
been widely used in the industry, such as PostGIS of PostgreSQL [62], Oracle [63], IBM 
DB2 Spatial Extemder [64], SQLite [65], MySQL Spatial [66], SpatiaLite of Microsoft 
SQL Server [67], etc. Besides, new hardware GPUs also assistant in accelerating graph 
computation [68, 69]. These spatiotemporal RDBMSs are stable, mature, and efficient, 
including efficient SQL query engines. Among them, only PostgreSQL’s PostGIS and Ora-
cle Spatial support the storage and processing of spatial raster data. PostgreSQL’s PostGIS, 
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Oracle Spatial, and SQL Server, among others, provide OGC [70] and support the full 
set of spatial relational and analytical functions defined in the ISOSQL/MM (part-3) [71] 
standard. Therefore, queries such as spatial joins, query spatial extents, etc., can be per-
formed in these databases.

However, these spatiotemporal database systems developed and expanded based on tra-
ditional RDBMS lack distributed data storage and processing capabilities like traditional 
RDBMS. These single-node data services are limited by I/O bottlenecks, lack parallel com-
puting capabilities, and are difficult to scale horizontally. As the amount of marine spati-
otemporal data increases, their corresponding latency and performance continue to decline, 
making it difficult to process PB-level marine spatiotemporal data. Moreover, the marine 
spatiotemporal data has the characteristics of complex sources, diverse structures and dif-
ferent qualities, making it difficult to model them in spatiotemporal RDBMS. Although 
traditional RDBMSs can scale horizontally through data sharding, it is still difficult to store 
data in tabular format to support distributed storage and processing of ocean data.

5.2  Multi‑node

Multi-node data processing refers to the use of distributed computing technology to pro-
cess data, and distributed computing is a concept relative to centralized computing. A dis-
tributed network consists of several computers that can communicate with each other, each 
with its own processor and storage device. The huge computing tasks that were originally 
concentrated on a single node are distributed to the computers in the distributed network 
for parallel processing in a load-balanced manner.As shown in Figure 2, each cluster of a 
distributed storage system generally has a master control node, and the load balance of data 
on each node is realized through the master control node scheduling. Worker nodes send 
information about node load to the master node through heartbeat. The master node cal-
culates the workload of the worker nodes and the data to be migrated, generates migration 
tasks and puts them in the migration queue for execution.

In order to ensure the high reliability and high availability of the distributed storage 
system, multiple copies of the data of each node need to be replicated and backed up, as 
shown in Figure 3. Generally, there is only one primary replica, which can provide read/
write services, and there can be multiple backups replica, which provide read-only ser-
vices. In a distributed data processing system, data can be synchronized to multiple stor-
age nodes through a replication protocol, and data consistency between multiple copies 
can be ensured.

Use multi-node management methods for ocean spatiotemporal data, including spa-
tiotemporal databases based in part on traditional RDBMS, and new data processing 
methods. This new approach to data processing was proposed by Carlo Strozzi [72] in 
1998 and called it NoSQL. It is a brand-new database revolution, which advocates the 
use of non-relational data storage, which is very suitable for the semi-structure of ocean 
space-time data, unstructured data format and large amount of data. Although NoSQL 
can not completely replace traditional RDBMS, it has a very wide range of applications 
in the field of ocean spatiotemporal data storage and processing. For example, database 
Redis [73], Oracle NoSQL [74] based on key-value pairs. Column Family (Wide-Col-
umn) database Cassandra [75], HBase, etc. document database MongoDB [76], Couch-
base [77], etc. graph database Nebula [78], Neo4j [79], etc.

For traditional RDBMS, researchers continue to provide new extensions to meet the 
processing needs of marine spatiotemporal data. In this article, we mainly introduce the 



1493World Wide Web (2023) 26:1481–1500 

1 3

PostGIS extension of PostgreSQL, which supports OGC-compliant spatiotemporal SQL 
queries. Horizontal sharding of ocean spatiotemporal data to enable horizontal scaling 
when ocean spatiotemporal data exceeds the capacity of a single node, and read scal-
ability can also be achieved by leveraging pgpool (Pgpool-II [80]) and streaming rep-
lication. However, ocean spatiotemporal data can be distributed among multiple nodes 
through data sharding, which can effectively reduce the I/O bottleneck [81]. Balancing 
I/O bottleneck between single machines in microservices can help in reaching Quality-
of-Service (QoS) [82] goals.

In addition, there are several ways to achieve horizontal scaling and parallel acceleration 
of queries through data sharding, for example PostGIS can integrate with Citus and Post-
gresXL [83], or use PL/Proxy [84], etc. PostgreSQL has added a built-in sharding func-
tion after version 9.6, called foreign data wrapper (FDW), which enables PostgreSQL to 
access data from external source data. Therefore, ocean spatiotemporal data can be stored 
on different nodes of the cluster in a distributed manner, where each data partition can be 
accessed directly from disk or main memory through FDW. In addition, in the latest Post-
greSQL 12, the use of PostGIS 3.0 can support functions such as parallel sequence scan, 
parallel join, and parallel aggregation for parallel spatial query processing.

Traditional RDBMSs store data in tables, and it is difficult to support today’s marine 
spatiotemporal data in multiple formats from many different sources. However, research-
ers added the JSON and JSONB data types to PostgreSQL support in 2012 and 2014, 
respectively. Also, SQL/JSON compliant with the SQL-2016 standard was introduced in 

Figure 2  A cluster of distributed storage systems

Figure 3  Distributed storage system data replication
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the latest PostgreSQL 12. So now we can query and index ocean spatiotemporal data using 
JSON and JSONB in PostgreSQL [85].

Finally, spatiotemporal databases based on traditional RDBMS can consider using dis-
tributed file systems such as HDFS to support distributed processing capabilities for them-
selves, or use in-memory computing frameworks such as Spark [86] and Flink [87] to 
accelerate computing.

NoSQL database system has added distributed support at the beginning of its design, 
which has many advantages such as fault tolerance, scalability, high availability, and high 
flexibility. Currently, NoSQL that supports spatiotemporal data storage and processing 
includes Redis, Oracle NoSQL, MongoDB, Couchbase, Neo4j, Nebula, TigerGraph, Cas-
sandra, etc. Among them, Redis is a key-value storage system, which operates based on the 
Geo Set data structure constructed by Sorted Set, and implements a geohash spatial index 
that can speed up query processing. Oracle NoSQL supports a SQL-like query language 
that supports all common geometry objects, geohash indexes, and a set of operators for 
working with spatiotemporal data.

Couchbase and MongoDB are a distributed document-oriented high-performance 
NoSQL database management system that natively supports processing spatiotemporal 
data. Both Couchbase’s GeoCouch [88] extension and MongoDB support common Geo-
JSON objects such as point, linestring, polygon, and collections. Couchbase’s GeoCouch 
extension is developed based on T-Trees, allowing BBox to perform spatiotemporal queries 
and supporting SQL-like The query language N1QL. MongoDB does not have a SQL-like 
query language, but provides a set of spatiotemporal operators such as nearSphere, geoInt-
ersect and geoNear to perform spatial queries.

Nebula Graph [78] is an open-source, distributed, and easily scalable native graph data-
base that can carry ultra-large datasets with hundreds of billions of points and trillions 
of edges, and provides millisecond-level queries. It adopts a shared-nothing architecture. 
It supports scaling up and down without stopping the database service. It introduced full 
support for Geospatial Data in version 2.6, including storage, computation, and indexing 
of oceanic spatiotemporal data. Nebula Graph currently supports marine spatiotemporal 
data of the Geography type, which models geographic location information represented by 
pairs of latitude and longitude coordinates in the earth space coordinate system. It also sup-
ports the efficient SQL-like query language nGQL. It also supports spatiotemporal func-
tion query operations (contain, cover, intersect, and so on) on common geometric objects 
(point, linestring, polygon, and collections).

6  Performance evaluation on spatiotemporal ocean data

In terms of the massive volume of spatiotemporal data, the processing of spatiotemporal 
data becomes a key problem. Performance evaluation on saptiotemporal data mainly con-
siders its interactive performance, which reflects in response time, and system scalability.

In [89], an evaluation on distributed spatial database GeoMesa and ElasticSearch is 
conducted based on number of records returned and response time concerning num-
ber of records, area of query polygons and size of temporal window, respectively, where 
the results show that GeoMesa queries outperform ElasticSearch queries. Yu et  al. [90] 
implemented a spatiotemporal computing frame work GeoSpark and proves it outperforms 
SpatialHadoop in spatial co-location, in terms of response time. Researchers also design 
benchmarks specially for evaluation of spatiotemporal databases such as SEQUOIA [91] 
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and Paradise Geo-Spatial [92]. Makris et  al. [93] evaluated the spatiotemporal data per-
formance of NoSQL database MongoDB and open source RDBMS-PostgreSQL, where 
results reveal a better performance of PostgreSQL in all queries compared with MongoDB. 
In [94], researchers conduct performance evluation on five Spark based spatial analytics 
systems (Magellan, SpatialSpark, Simba, LocationSpark, GeoSpark) with different spatial 
queries and datatypes. Among these, GeoSpark was proved to be the most complet spatial 
analytic system with all queries and data types supported.

7  Summary

The dramatically high-rate growth of ocean data have lead to the challenge of ocean data 
processing. The inherent heterogeneity, spatiotemporal involved and constant changing of 
ocean data lead to difficulty in representing ocean data as well. While traditional meth-
ods no longer functional satisfy the ocean data processing demand, graph-based structure 
of data processing are extensively adopted. In this survey, we systematically illustrate the 
processing methods on ocean spatiotemporal data. We discuss about data representation 

Table 1  Summary of data processing methods on ocean spatiotemporal data

Name Method & Type Contributes in

SWEET [21] Ontology extension Representation, querying
SEW [22] Semantic primitive invention Situated data management
Janowicz et al. [16] Semantic extension SDI
CRISIS [24, 25] Semantic web tech Knowledge interoperability
GeoKG [26] Ontology design Representation
OEDO [26] Ontology design Representation, querying
Bittner [34] Axiomatic formalisation Geo-entity relations
YAGO2 [36] Ontology extension Representation, integration
Timely YAGO [38] Knowledge extraction Representation, querying
Vasseur et al. [39] Ontology design Integration
Hornsby et al. [41] Semantic primitive Representation, reasoning
Kurte et al. [40] Ontology design Disaster monitoring
Neumaier[42] Entity extension Representation, querying
Grenon [43] Ontology design Representation, reasoning
Carstensen [44] Ontology design, selective attention Representation
Kauppinen et al. [45] Ontology design Semantic ambiguation
SWETO [47] Ontology design Entity extraction
Jayawardhana et al. [49] Semantic mapping Entity extraction
Rule-based [51, 52] Supervise learning Relation extraction
Kernel-based [53] Supervise learning Relation extraction
Chen et al. [54] Semi-supervised learning Relation extraction
Lu et al. [55] Unsupervised learning Relation extraction
Zhou et al. [57] Data cleaning Knowledge fusion
Raffaeta et al. [59] Ontology design Knowledge computing
Batsakis [61] Ontology design Knowledge computing
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methods, design and construction of ocean knowledge graphs. Main methods on spatiotem-
poral data representation and knowledge graph construction are summarized in the table 
below (Table 1). In addition, we compare different management techniques of ocean spa-
tiotemporal knowledge as well as performance evaluation on ocean spatiotemporal data.
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