
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01062-x

1 3

Continuous spatial keyword query processing
over geo‑textual data streams

Hongwei Liu1 · Yongjiao Sun1 · Guoren Wang2

Received: 13 April 2022 / Accepted: 27 April 2022 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Real-time processing of spatial keyword queries has been playing an indispensable role in
location-based services. In this light, we propose and study a novel problem of processing
continuous spatial keyword queries over geo-textual data streams. We define a new loca-
tion-based continuously query that enable users to define personalized spatial requirement
and textual requirement. Each query continuously feeds users with geo-textual objects that
satisfy both spatial and textual requirements set by the query. To process massive-scale
continuous spatial keyword queries efficiently, we develop a Continuous Spatial Keyword
Query Matching (CSKQM) framework that takes a stream of queries as input and applies
hierarchical dynamic grid cells to index each batch of queries. We also propose effective
index update algorithm and efficient geo-textual object matching algorithm to process mas-
sive-scale continuous spatial keyword queries simultaneously over a stream of geo-textual
objects. We conduct comprehensive experimental study on two real datasets to verify the
performance of the CSKQM framework.

Keywords  Spatial · Keyword · Geo-textual · Stream

1  Introduction

The continued proliferation of Location-based Services (LBS) enables web users and
mobile users to publish massive-scale geo-textual objects. Each geo- textual object consists
of both location information and text information. In particular, location information can
be defined as a geographical coordinate with latitude and longitude (e.g., 39° 31′ 26″ N,
116° 54′ 33″ E), or a semantic location (e.g., Peking University, Haidian, Beijing, China).

 *	 Hongwei Liu
	 ipv65g@163.com

 *	 Yongjiao Sun
	 sunyongjiao@mail.neu.edu.cn

	 Guoren Wang
	 wanggrbit@126.com

1	 College of Computer Science and Engineering, Northeastern University, Shenyang, China
2	 College of Computer Science and Engineering, Beijing Institute of Technology, Beijing, China

Published online: 11 May 2022

World Wide Web (2023) 26:889–903

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01062-x&domain=pdf

1 3

Text information can be a plain text document, a set of keywords, or a combination of
keywords and values. Additionally, a geo-textual object may contain temporal information
such as timestamp and time duration. Geo-textual data has been playing an indispensable
role in our modern daily lives. It is ubiquitous in a variety of popular location-based social
media and online map services, including but not limited to, geo-tagged microblogging
posts (e.g., geo-tweets from Twitter and geo-tagged posts from Weibo), Points of Interest
(e.g., Coffee shop in Google Maps), and local news articles. The information from Geo-
textual objects may cover a broad range of topics. For example, microblogging posts often
offer the quickest first-hand reports of bursty events [1], and geo-tagged documents may be
an early indicator of local trending news [2]. As such, it is of great importance to enable
web users and mobile users to be updated with most recent geo-textual objects in a con-
tinuous fashion.

In this paper, we study the problem of processing Continuous Spatial Keyword (CSK)
queries over a stream of geo-textual objects. Specifically, each CSK query is defined by a
region of any shapes and a set of keywords connected by AND, OR, or NOT semantics. A
CSK query continuously receives geo- textual objects from the input data stream that meet
the spatial constraint and textual constraint. In particular, spatial constraint is defined by
the spatial region, and textual constraint is defined by the Boolean keyword expression.

Efficient processing of CSK queries has the following technical challenges. First, the
number of CSK queries can be very large, it is important to develop an effective scheme
to processing massive-scale CSK queries efficiently. Second, each CSK query is required
to be processed in a real-time fashion. When a new geo-textual object from data streams
arrives, the CSK queries whose constraints can be satisfied by the new object need to be
updated instantly. Third, each CSK query may have its unique spatial region and keyword
set. Note that the query spatial region can be of any shapes, including but not limited to
circle, rectangle, triangle, star, etc. A straightforward method works as follows. Each time
when a new geo-textual object o arrives, we calculate whether the spatial and textual infor-
mation of o meets the spatial and textual constraints, respectively, of each CSK query. If
the spatial and textual information of o meets the constraints of query q, we deliver o to q
as the result. This method is very time consuming because each time a new object arrives,
we need to evaluate whether o matches each CSK query. In real-life scenarios, the number
of CSK queries can be very large, which can be million scale or even ten-million scale.
At the same time, the geo-textual objects from data streams are arriving at a high rate. As
such, we need to evaluate each CSK query against each new object. Hence, it is computa-
tionally expensive to apply the straightforward method.

In this light, we propose a novel continuous spatial keyword query matching (CSKQM)
framework to process a large number of CSK queries effectively over a stream of geo-
textual objects. Specifically, we regard both geo-textual objects and CSK queries as data
streams and build CSK query index in an incremental manner. The CSK query index is
a hierarchical gird indexing structure that recursively partitions the underlying space into
n × n cells. In particular, we propose a cost model to determine the value of n based on
expected computation cost. For each incoming CSK query q, we iteratively find a set of
non-overlapping cells from different layers that fully cover the spatial region of q. Next, we
generate a “posting” of q, denoting the keywords of q, and store the posting under each cell
associated with the spatial region of q. We use inverted file to index the keyword informa-
tion of CSK queries. Note that each cell maintains its own inverted file, indexing the CSK
queries of which spatial regions overlap with the cell. When a new geo-textual object o
arrives, we visit all cells from different layers that cover the location of o. For each vis-
ited cell, we visit its corresponding inverted file and retrieve the postings. Each posting

890 World Wide Web (2023) 26:889–903

1 3

corresponds to a CSK query. If the posting of query q is retrieved, then o is a result of q
and we need to deliver o to q.

Our proposed CSKQM framework has the following major advantages.

–	 Scalability: Our CSKQM framework is capable of handling millions of CSK queries
simultaneously because our proposed CSK query index is capable of indexing massive-
scale CSK queries in an effective manner.

–	 Efficiency: When a new geo-textual object arrives, our CSKQM framework is able to
process each the indexed CSK query set within user interaction time and the real-time
results can be guaranteed given millions of indexed CSK queries

–	 Generalization: Our CSKQM framework allows users to issue CSK queries that have
different keywords, different connection semantics, and different shapes of spatial
regions.

Although the problem of continuous spatial keyword query processing has been exten-
sively investigated by existing studies, to the best of our knowledge, the proposals of exist-
ing studies fail to have the aforementioned three advantages simultaneously. Note that all
of the aforementioned three aspects, including salability, efficiency, and generalization, are
playing an indispensable role in continuous query processing. With the continued prolif-
eration of location-based social media and various location-based Apps, it is becoming
increasingly important to develop a scalable, efficient, and generic continuous spatial key-
word query processing mechanism.

–	 We study a new problem of processing a large number of CSK queries in a real-time
manner, where each CSK query consists of a set of query keywords connected by AND,
OR, or NOT semantics, and a query region of arbitrary shape, which can either be con-
vex shape, concave shape, or multiple shapes.

–	 We develop a CSKQM framework with a dedicated query indexing structure to organ-
ize massive-scale CSK queries effectively. Based on the indexing structure, we propose
an online query matching algorithm that is capable of finding a subset of CSK queries
that can include each new object as their results in real-time fashion.

–	 We conduct extensive experiments by using real-life datasets and the experimental
results show that our proposal is able to achieve high efficiency and high scalability.

The remaining of this paper is organized as follows. Section 2 defines the geo-textual
object, CSK query, and our problem. Section 3 details our proposed solution. Section 4
presents the experimental studies. Section 5 reviews the related work, and Sect. 6 con-
cludes the results.

2 � Problem statement

In this section, we present the definition of geo-textual objects, Continuous Spatial Key-
word (CSK) query, and our problem formulation.

Definition 1 geo‑textual object  A geo-textual object is defined by a tuple o = (ψ, ρ),
where o.ψ denotes text information, which can be modeled by a sequence of terms, and o.ρ
is a geographical point location with latitude and longitude.

891World Wide Web (2023) 26:889–903

1 3

The proposal of this paper is designed based on the scenario that the geo-textual objects
are arriving in a streaming manner. For example, it can be tweets with location information
from Twitter, geo-tagged photos with descriptions from Instagram, check-ins with text and
Point of Interests information from Foursquare, local news, etc.

Definition 2 Continuous Spatial Keyword (CSK) query  A CSK query is defined by a tri-
ple q = (w, r, s), where q.w is a set of query keywords, q.r is a geographical query region,
and s is a semantic connection term, which can be AND, OR, or NOT.

Basically, given a stream of geo-textual objects, a CSK query q is to continuously find
targeting geo-textual objects where for each targeting geo-textual object o, its text infor-
mation (o.ψ) satisfies the textual condition set forth by q.w and q.s, and spatial informa-
tion (o.ρ) satisfies the spatial condition set forth by q.r. As such, we define the concept of
“matching”. Specifically, if a geo-textual object o satisfies both textual condition and spa-
tial condition set forth by CSK query q, then we say object o matches query q.

Definition 3 object‑query matching  Given a geo-textual object o and a CSK query q, o
matches q iff: (1) o.ψ satisfies q.w and q.s, and (2) o.ρ is covered by q.r.

In this paper, we study the problem of processing a large number of CSK queries over a
stream of geo-textual objects. Here, each CSK query is expected to receive real-time results
from the geo-textual data stream.

3 � CSK query processing

In this section, we first present the baseline solution to processing a large number of CSK
queries over a stream of geo-textual objects, which is named as Grid-based Direct Search
(Sect. 3.1). Next, we present the details of our CSKQM framework.

3.1 � Grid‑based direct search

This subsection introduce our grid-based direct search algorithm to process CSK queries. The
high-level idea works as follows. First, we partition the underlying space into n × n grid cells.
For each cell, we store the CSK queries whose spatial regions have overlapping areas with the
cell. When a new geo- textual object on arrives, we evaluate each CSK queries indexed under
the cell that covers the location of the new object. If on matches an indexed query q, we return
on as a result of q. Next, we details the query index update algorithm and the object process-
ing algorithm respectively.

3.1.1 � Query index update algorithm

Algorithm 1: GridIndexUpdate

892 World Wide Web (2023) 26:889–903

1 3

The pseudo code of the grid query index update algorithm is presented by Algorithm 1.
The inputs are CSK query set Q and grid resolution n. The output is the grid query index
for indexing queries in Q, which is denoted by G. At the beginning, we initialize the grid
index G by n × n grid cells (Line 1). Next, for each CSK query q in Q, we find a subset
of cells that overlap the spatial area of q.r (Lines 3–4). If there exists overlapping area
between the spatial area of cell c (i.e., c.r) and the spatial region of q (i.e., q.r), we index q
under c (Lines 4–9). Specifically, we generate a posting for q, which is denoted by p(q). We
set the query keyword information of p(q), denoted by p(q).w, to be q.w, and set the con-
nection semantic of p(q), denoted by p(q).s, to be q.s (Lines 6–7). Next, we add the posting
of q to c and update the grid query index (Lines 8–9). Finally, we return G as the result
(Line 10).

3.1.2 � Object processing algorithm

Algorithm 2: ObjectProcessing

The pseudo code of the geo-textual object processing algorithm is presented by Algo-
rithm 2. The inputs are the new object o from the geo-textual data stream, existing CSK
query set Q, and the grid query index G. The output is the subset of query set R ⊆ Q such
that each query q ∈ R can regard the new object o as one of its result. At the beginning, we

893World Wide Web (2023) 26:889–903

1 3

locate the cell c in G that covers the location of the new object o (Line 1). Next, we evalu-
ate each posting p indexed under c (Lines 2–7). Specifically, for each posting p we retrieve
the corresponding query qi (Line 3). If the spatial region of qi covers the location of o, we
proceed to check if qi can textually match o (Lines 4–7). Here, we first generate the text
predicate of qi based on qi.w and qi.s, which is denoted by T (Line 5). Then we check if
o.ψ matches T (Line 6). If so, we add qi into the matching query set R (Line 7). Finally, we
return R as the result (Line 8). Note that we need to deliver o to each query in R.

3.2 � Continuous spatial keyword query matching framework

The Grid-based Direct Search has the following limitations. First, it is difficult to set an
appropriate grid resolution as the spatial region of CSK queries can be varied. Although a
higher grid resolution may improve the efficiency of object processing, it may have nega-
tive effect on index update because we need more cells to index each query. In contrast, if
we set a lower grid resolution, we may save space cost and time cost of index update while
decreasing the efficiency of object processing. As such, it is impossible to set a resolution
that is feasible to all queries. To address this challenge, we develop a hierarchical grid
query indexing structure that is capable of using dynamic grid resolution to index queries
based on their spatial locations and shapes.

3.2.1 � Hierarchical grid query index

Hierarchical grid query index uses different grid granularity to index the spatial informa-
tion of CSK q ueries. For each grid cell, we const ruct an inver ted file to index the text
ual infor mation of CSK queries whose query regions intersect with the cell. In particular,
when a new query arrives, we do not index it immediately. Instead, we temporarily store
it in a buffer. When the number of queries reaches the buffer size limit, we perform group
query partitioning and find an global optimal partitioning scheme to index the group of
queries in the buffer.

Figure 1 illustrates a toy example of our query partitioning scheme to the hierarchical
grid query index. Let q1, q2,…, q6 be six CSK queries and q1.r, q2.r,…, q6.r be their cor-
responding query regions, respectively. Let c1, c2,…, c9 be nine representative grid cells
from different layers. Each CSK query is indexed under a set of grid cells that altogether
cover its spatial region. Assume that the current structure of the hierarchical grid query
index is illustrated by Figure 1 where the black square denotes the underlying space and
the blue segments denote the partitioning of the grid cells. We see that q1 is indexed by c1
because q1.r intersects with c1 only, q2 is indexed by both c1 and c2 since q2.r intersects
with both c1 and c2. Likewise, we see that q3 is indexed by c5, c6, c7, c8, and c9, q6 is
indexed by c3 and c4, and q5 and q6 are indexed by the cells in light red color.

Recall that for each cell, we maintain an inverted file to index the textual information of
CSK queries. We proceed to present how to index the textual information of CSK queries.
According to the definition of the CSK query, we need to support AND, OR, and NOT
semantics. However, traditional inverted file is designed for plain text document, which is
inapplicable to indexing the aforementioned query predicates. For the purpose, we design
a novel query inverted file dedicated for the textual information of CSK queries. We design
three schemes to handle query keywords connected by AND, OR, and NOT semantics,
respectively.

894 World Wide Web (2023) 26:889–903

1 3

Specifically, given a CSK query q, if q.s is OR, we create |q.w| postings and each
posting is associated to an individual query keyword. If q.s is AND, we only create one
posting and the posting is associated the query keyword with the least frequency. If q.s
is NOT, we do not let q be indexed by inverted file. Instead, we store q separately to a
list exclusively designed for queries that have NOT semantic.

Algorithm 3 presents the pseudo code of our hierarchical grid index update scheme.
The inputs are (1) a batch of CSK queries B in the buffer; (2) the current cell c; (3) step
resolution threshold m, denoting that the cell partitioning between two consecutive lay-
ers cannot exceed m × m; (4) coverage ratio threshold θ, denoting the termination condi-
tion regarding the ratio of the query region size and the sum of cell sizes that index the
query. The output is the updated index structure that takes queries of B into considera-
tion. At the beginning, we set a initial value of resolution to be 2 × 2 (Line 1). For each
resolution from 2 × 2 to m × m, we perform the following steps. To be specific, we first
initialize the sub-index rooted at cell c to be k × k grid cells (Line 3).

Then we initialize C Ravg to be 0 (Line 4). Note that C Ravg represents the average
coverage ratio of queries in B. For each query q in B, we first initialize Cq, represent-
ing the set of cells that intersect with q.r, as an empty set (Line 6). For each cell ci in
Gc, we check if ci intersects with q.r. If so, we add ci to set Cq (Lines 8–9). Next, we
calculate the coverage ratio of q, which is denoted by C R(q). Note that C R(q) is com-
puted by dividing the area of q.r to the sum of areas of Cq (Line 10). After evaluating
all queries in B, we calculate the average coverage ratio of queries in B (Line 12). If
the average coverage ratio is no less than the pre-defined coverage threshold θ, we stop
evaluating the partitioning with finer resolution (Lines 13–14). Otherwise, we proceed
with finer resolution by increasing k by 1. If k reaches m or the average coverage ratio
is no less than the pre-defined coverage threshold θ, we stop the resolution evaluation.

q1.r

q2.r

q3.r

q4.r

q5.r

q6.rc1

c2

c3

c4

c5 c6

c7 c8

c9

Figure 1   Hierarchical grid query index

895World Wide Web (2023) 26:889–903

1 3

Next, we store the posting of each query in B to the corresponding cells. Finally, we
update G with Gc and return the updated G as the updated index.

Algorithm 3: HierarchicalIndexUpdate

4 � Experimental study

In this section, we conduct extensive experiments to evaluate the performance of our
proposal.

4.1 � Baseline

A straightforward method is presented in Sect. 3.1. It basically uses a grid- based index-
ing structure to organize CSK queries. We use it as our baseline. Note that we tune the
grid resolution based on the size of query regions.

896 World Wide Web (2023) 26:889–903

1 3

4.2 � Datasets and generation of CSK queries

We use two real-world datasets in our experiments: FQ and TE. FQ is a real-world data-
set collected from Foursquare, which contains 2 million worldwide check-ins where each
check-in has both geographical location and text document. Dataset TE is a real-world
dataset as well, which contains 10 million geo-tagged tweets. Each geo-tagged tweet has
both location and text information.

The CSK queries are generated as follows. For each geo-textual object, which is check-
in or geo-tagged tweet in FQ and TE, respectively, we randomly select a number of key-
words from the object keywords. As for the query spatial region, we generate three types
of regions: circle, square, and hexagon. We regard the location of each randomly selected
geo-textual object as the center of query spatial region, and let the size of the region be of
pre-defined size.

4.3 � Experimental settings

Our parameter settings used in the experiments are presented in Table 1. Note that we use
GDS to denote our baseline method and use CSKQM to denote the method proposed in
this paper.

4.4 � Experimental result

We proceed to present our experimental results.

4.4.1 � Effect of the number of query keywords

This set of experiments investigates the effect of the number of CSK query keywords
regarding both methods. Figure 2 shows the results on FQ and TE datasets respectively.
We could see that the runtime of geo-textual object processing for both methods exhibit
an increasing trend when we increase the number of query keywords. The reason is that
when the number of query keywords increases, the index sizes of both GDS and CSKQM
become larger. As such, it may take more time to retrieve the spatially relevant and textu-
ally relevant queries when a new object arrives.

At the same time, we find that CSKQM performs consistently better than GDS for
approximately 4X to 6X regarding the efficiency of object processing. Such significant

Table 1   Parameter settings

Parameter Setting Default

Number of query keywords 1 – 5 3
Grid resolution 1 km – 50 km On the basis of scenarios
Query region size 1km2 – 400km2 Random
Step resolution threshold m 3 – 6 4
Coverage ratio threshold θ 0.2 – 0.8 0.6
Number of CSK queries On the basis of scenarios FQ:1 M TE 5 M

897World Wide Web (2023) 26:889–903

1 3

performance improvement is resulted from the dynamic grid granularity provided by the
hierarchical partitioning scheme.

4.4.2 � Effect of query region size

Figure 3 demonstrates the results on FQ and TE respectively when we vary the size of
query spatial regions. We see that GDS performs worse when we enlarge the query region
size. The reason can be explained as follows. When the query region size becomes larger,
if the grid resolution is constant, we need to use more cells to index each CSK query. As
a result, the index size may become larger. When a new object arrives, we are expected to
compare the new objects with more postings. Hence, the runtime of object processing will
be increased. In particular, we also find that when we increase the region size from 1 km2
to 100 km2, the runtime of GDS only exhibits a slight increasing trend. In contrast, when
we proceed to increase the region size from 100 km2 to 400 km2, the runtime of GDS only
exhibits a sharp increasing trend. Such contrast can be explained by the fact that when the
region size is smaller than the cell size, GDS only needs to use a small number of cells to
index the query. However, when the query region size is significantly larger than the cell
size, the number of cells required to index a query may be proportional to the size of the
query region.

0
100
200
300
400
500

1 2 3 4 5

R
un

tim
e

(m
s)

Number of Query Keywords

GDS
CSKQM

0

500

1000

1500

2000

1 2 3 4 5

R
un

tim
e

(m
s)

Number of Query Keywords

GDS
CSKQM

Figure 2   Effect of the number of query keywords

0

300

600

900

1200

1500

1 25 100 225 400

R
un

tim
e

(m
s)

Query Region Size (km2)

GDS
CSKQM

0

1000

2000

3000

4000

1 25 100 225 400

R
un

tim
e

(m
s)

Query Region Size (km2)

GDS
CSKQM

Figure 3   Effect of query region size

898 World Wide Web (2023) 26:889–903

1 3

Compared to GDS, our proposed CSKQM does not exhibit similar performance trend.
In contrast, the object processing time of CSKQM is relatively consistent as we vary the
query region size. The reason is that CSKQM is capable of using different grid resolutions
to index CSK queries with different regwn sizes.

4.4.3 � Effect of step resolution threshold

Figure 4 presents the performance result of CSKQM when we vary the step resolution
threshold m from 3 to 6. We see that the time cost of object processing decreases when we
increase the step resolution threshold. The reason is that when we increase the step resolu-
tion threshold, it is more likely for a query to be partitioned and represented by a set of
fine-grained cells. As such, queries are indexed in a more precise way, which in turn may
enhance the efficiency of object processing.

4.4.4 � Effect of coverage ratio threshold

Figure 4 presents the performance result of CSKQM when we vary the coverage ratio
threshold θ from 0.2 to 0.8. We see that the performance of CSKQM becomes better on
both datasets when we increase the step resolution threshold. The reason is that when we
incease the step resolution threshold, it denotes that we impose a more rigorous require-
ment in query region partitioning. As such, the spatial region of each query may be repre-
sented more precisely (Figure 5).

4.4.5 � Effect of the number of indexed queries

Finally, we evaluate the object processing performance when we increase the number
of indexed queries. From Figure 6 we see that both methods performs worse when we
increase the number of indexed queries. The reason is quite straightforward. When the
number of indexed queries mounts up, the postings list maintained by each cell is expected
to be longer. We also find that CSKQM performs consistently better than GDS for at least
5X.

0

30

60

90

120

3 4 5 6

R
un

tim
e

(m
s)

Step Resolution Threshold, m

CSKQM

0

50

100

150

200

250

300

3 4 5 6

R
un

tim
e

(m
s)

Step Resolution Threshold, m

CSKQM

Figure 4   Effect of the step resolution threshold, m 

899World Wide Web (2023) 26:889–903

1 3

5 � Related work

In this section, we investigate relevant related studies regarding spatial keyword search
and location-based continuous query processing.

5.1 � Spatial keyword search

The problem of spatial keyword search can be defined as processing spatial keyword
queries over a collection of geo-textual objects. A spatial keyword query consists of
both spatial query component and textual query component. A spatial query component
can be a region, a distance threshold, and spatial proximity. A textual query compo-
nent can be a Boolean textual predicate and a set of keywords. Based on the spatial
and textual information, spatial keyword queries can be classified as Boolean Range
query, Boolean k-NN query, and Top-k k-NN query. Efficient processing of spatial key-
word queries has been extensively studied by existing works [3–13]. Some surveys and
experimental studies regarding spatial keyword search techniques can be found as well
[14–16]. Recently, some studies focus on pattern mining over sequential geo-textual
data, which is named as semantic trajectory data [17–19]. These studies have wide and
practical applications and they are on the basis of spatial keyword search techniques.

0
30
60
90

120
150

0.2 0.4 0.6 0.8

R
un

tim
e

(m
s)

Coverage Ratio Threshold

CSKQM

0

100

200

300

400

0.2 0.4 0.6 0.8

R
un

tim
e

(m
s)

Coverage Ratio Threshold

CSKQM

Figure 5   Effect of coverage ratio threshold, θ 

0
100
200
300
400
500
600

0.5M 1.0M 1.5M 2.0M

R
un

tim
e

(m
s)

Number of Indexed Queries

GDS
CSKQM

0

1000

2000

3000

4000

2M 4M 6M 8M 10M

R
un

tim
e

(m
s)

Number of Indexed Queries

CSKQM

Figure 6   Effect of the number of indexed queries

900 World Wide Web (2023) 26:889–903

1 3

However, the aforementioned studies regard geo-textual objects as a collection of
static data or a group of items with low-frequent updates. Moreover, their queries are
one-time queries, which means that each query is only responsible for the results at the
snapshot when the query is issued. In contrast, our problem is to handle a stream of
geo-textual objects and the CSK queries defined in this paper may continuously receive
up-to-date results over time. No sensible way exists to use the methods proposed by
aforementioned studies for our problem.

5.2 � Location and content based continuous query processing

Existing studies model the problem of continuous content-based query processing as the
problem of publish/subscribe. A host of studies that target the problem of developing effi-
cient publish/subscribe algorithms [1, 20–24]. A traditional publish/subscribe framework
consists of publisher component and subscriber component. Specifically, publisher com-
ponent can be regarded as a stream of items while subscriber component can be regarded
as a set of subscribers where each subscriber continuously receives targeting items from
the publisher side. Over the last decade, some studies enable subscribers to defined their
location-based requirements, which is called location-based publish/subscribe [25–33].

However, the aforementioned publish/subscribe framework has the following limita-
tions. First, it has specific requirements towards the shape of query spatial region. Second,
it only supports limited textual connection semantics. It is an open problem regarding how
to support all of the three major textual connection semantics, namely AND, OR, and NOT
semantics.

6 � Conclusions

We consider the problem of processing a large number of CSK queries over a stream of
geo-textual objects. We define a new type of location-based continuous query that sup-
ports arbitrary shape of query spatial regions and supports all of the three major textual
connection semantics, including AND, OR, and NOT semantics. To process a large num-
ber of CSK queries efficiently, we develop a CSKQM framework that takes a stream of
CSK queries as input and use hierarchical dynamic grid cells to index each batch of CSK
queries. We also propose effective index update algorithm and efficient geo-textual object
matching algorithm to process massive-scale CSK queries simultaneously over a stream
of geo-textual objects. The experimental results on two real-world datasets show that our
proposal, CSKQM framework, is capable of achieving a runtime reduction of 70%-85%
compared with baseline.

Acknowledgements  The work is supported by the National Natural Science Foundation of China (Grant
No. 61972077), LiaoNing Revitalization Talents Program (Grant No. XLYC2007079), the Science and
Technology Plan Project of Shen Fu Reform and Innovation demonstration Zone in 2021 (Big Data Deep
Analysis Platform for New Energy Vehicles).

Author contribution  Hongwei Liu: Algorithm design and development, and paper writing
Yongjiao Sun: Experimental study
Guoren Wang: Algorithm design, and paper proofreading
All authors reviewed the manuscript.

901World Wide Web (2023) 26:889–903

1 3

Funding  The work is supported by the National Natural Science Foundation of China (Grant No.
61972077), LiaoNing Revitalization Talents Program (Grant No. XLYC2007079), the Science and Technol-
ogy Plan Project of Shen Fu Reform and Innovation demonstration Zone in 2021 (Big Data Deep Analysis
Platform for New Energy Vehicles).

Data Availability  Not applicable.

Declarations 

Ethical approval and consent to participate  Not applicable.

Human and animal ethics  Not applicable.

Consent for publication  Not applicable.

Competing interests  The authors declare that they have no competing interests.

References

	 1.	 Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.: Top-k publish-subscribe for social annotation of
news. PVLDB 6(6), 385–396 (2013)

	 2.	 Chen, L.,Cong, G., Cao, X., Tan, K.-L.: Temporal spatial-keyword top-k publish/subscribe. In ICDE,
pp 255–266. (2015)

	 3.	 Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In ICDE, pp. 656–665.
(2008)

	 4.	 Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. In
PVLDB, pp. 337–348. (2009)

	 5.	 Rocha-Junior, J.B., Gkorgkas, O., Jonassen S., Nørv˚ag, K.: Efficient processing of top-k spatial key-
word queries. In SSTD, pp. 205–222. (2011)

	 6.	 Zhang,D., Tan, K.-L., Tung, A.K.H.: Scalable top-k spatial keyword search. In EDBT, pp. 359–370.
(2013)

	 7.	 Zhang,C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: Efficient top k spatial keyword
search. In ICDE, pp. 901–912. (2013)

	 8.	 Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query
processing. In ICDE, pp. 541–552. (2011)

	 9.	 Yang, C., Chen, L., Shang, S., Zhu, F., Liu, L., Shao, L.: Toward efficient navigation of massive-scale
geo-textual streams. In IJCAI, pp. 4838–4845. (2019)

	10.	 Li, M., Chen, L., Cong, G., Gu, Y., Yu, G.: Efficient processing of location-aware group preference
queries. In CIKM, pp. 559–568. ACM (2016)

	11.	 Kalamatianos, G., Fakas, G.J., Mamoulis, N.: Proportionality in spatial keyword search. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June 20–25, 2021, pp.
885–897. ACM (2021)

	12.	 Jiajie, Xu., Sun, J., Zhou, R., Liu, C., Yin, L.: CISK: an interactive framework for conceptual inference
based spatial keyword query. Neurocomputing 428, 368–375 (2021)

	13.	 Chen, X., Jiajie, Xu., Zhou, R., Zhao, P., Liu, C., Fang, J., Zhao, L.: S2r-tree: a pivot-based indexing
structure for semantic-aware spatial keyword search. GeoInformatica 24(1), 3–25 (2020)

	14.	 Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evalua-
tion. In PVLDB, pp. 217–228. (2013)

	15.	 Chen, L., Shang, S., Yang, C., Li, J.: Spatial keyword search: a survey. GeoInformatica 24(1), 85–106
(2020)

	16.	 Chen, Z., Chen, L., Cong, G., Jensen, C.S.: Location- and keyword- based querying of geo-textual
data: a survey. VLDB J. 30(4), 603–640 (2021)

	17.	 Zhang, C., Han, J., Shou, L., Jiajun, Lu., La Porta, T.: Splitter: Mining fine-grained sequential patterns
in semantic trajectories. Proc VLDB Endow 7(9), 769–780 (2014)

	18.	 Renhe, J., Jing, Z., Tingting, D., Yoshiharu, I., Chuan, X., Yuya, S.: A density-based approach for min-
ing movement patterns from semantic trajectories. In TENCON 2015–2015 IEEE Region 10 Confer-
ence, pp. 1–6. IEEE (2015)

902 World Wide Web (2023) 26:889–903

1 3

	19.	 Shan, Z., Sun, W., Zheng, B.: Extract human mobility patterns powered by city semantic diagram.
IEEE Transactions on Knowledge and Data Engineering, (2020)

	20.	 Pripuˇzi´c, K., Zarko, I.P., Aberer, K.: Top-k/w publish/subscribe: Finding k most relevant publications
in sliding time window w. DEBS, pp. 127–138. (2008)

	21.	 Haghani, P., Michel, S., Aberer, K.: Evaluating top-k queries over incomplete data streams. In CIKM,
pp. 877–886. (2009)

	22.	 Haghani, P., Michel, S., Aberer, K.: The gist of everything new: Personalized top-k processing over
web 2.0 streams. In CIKM, pp. 489–498. (2010)

	23.	 Chen, L., Cong, G.: Diversity-aware top-k publish/subscribe for text stream. In SIGMOD, p. 347–362.
(2015)

	24.	 Machanavajjhala, A., Vee, E., Garofalakis, M., Shanmugasundaram, J.: Scalable ranked publish/sub-
scribe. PVLDB 1(1), 451–462 (2008)

	25.	 Li,G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In KDD, pp. 802–810. (2013)
	26.	 Chen, L., Cong, G., Cao, X.: An efficient query indexing mechanism for filtering geo-textual data. In

SIGMOD, pp. 749–760. (2013)
	27.	 Chen, L., Cui, Y., Cong, G., Cao, X.: SOPS: A system for efficient processing of spatial-keyword pub-

lish/subscribe. PVLDB 7(13), 1601–1604 (2014)
	28.	 Chen, L., Shang, S., Jensen, C.S., Jianliang, Xu., Kalnis, P., Yao, B., Shao, L.: Top-k term publish/

subscribe for geo-textual data streams. VLDB J 29(5), 1101–1128 (2020)
	29.	 Chen, L., Shang, S.: Approximate spatio-temporal top-k publish/subscribe. World Wide Web 22(5),

2153–2175 (2019)
	30.	 Chen, L., Shang, S., Zhang, Z., Cao, X., Jensen, C.S., Kalnis, P.: Location-aware top-k term publish/

subscribe. In ICDE, pp. 749–760. IEEE Computer Society (2018)
	31.	 Chen, Z., Cong, G., Zhang, Z., Fu, T.Z.J., Chen, L.: Distributed publish/subscribe query processing on

the spatio-textual data stream. In ICDE, pp. 1095–1106. IEEE Computer Society (2017)
	32.	 Wang, X., Zhang, W., Zhang, Y., Lin, X., Huang, Z.: Top-k spatial-keyword publish/subscribe over

sliding window. VLDB J. 26(3), 301–326 (2017)
	33.	 Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Ap-tree: efficiently support location-aware pub-

lish/subscribe. VLDB J. 24(6), 823–848 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

903World Wide Web (2023) 26:889–903

	Continuous spatial keyword query processing over geo-textual data streams
	Abstract
	1 Introduction
	2 Problem statement
	3 CSK query processing
	3.1 Grid-based direct search
	3.1.1 Query index update algorithm
	3.1.2 Object processing algorithm

	3.2 Continuous spatial keyword query matching framework
	3.2.1 Hierarchical grid query index

	4 Experimental study
	4.1 Baseline
	4.2 Datasets and generation of CSK queries
	4.3 Experimental settings
	4.4 Experimental result
	4.4.1 Effect of the number of query keywords
	4.4.2 Effect of query region size
	4.4.3 Effect of step resolution threshold
	4.4.4 Effect of coverage ratio threshold
	4.4.5 Effect of the number of indexed queries

	5 Related work
	5.1 Spatial keyword search
	5.2 Location and content based continuous query processing

	6 Conclusions
	Acknowledgements
	References

