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Abstract
Real-time processing of spatial keyword queries has been playing an indispensable role in 
location-based services. In this light, we propose and study a novel problem of processing 
continuous spatial keyword queries over geo-textual data streams. We define a new loca-
tion-based continuously query that enable users to define personalized spatial requirement 
and textual requirement. Each query continuously feeds users with geo-textual objects that 
satisfy both spatial and textual requirements set by the query. To process massive-scale 
continuous spatial keyword queries efficiently, we develop a Continuous Spatial Keyword 
Query Matching (CSKQM) framework that takes a stream of queries as input and applies 
hierarchical dynamic grid cells to index each batch of queries. We also propose effective 
index update algorithm and efficient geo-textual object matching algorithm to process mas-
sive-scale continuous spatial keyword queries simultaneously over a stream of geo-textual 
objects. We conduct comprehensive experimental study on two real datasets to verify the 
performance of the CSKQM framework.

Keywords  Spatial · Keyword · Geo-textual · Stream

1  Introduction

The continued proliferation of Location-based Services (LBS) enables web users and 
mobile users to publish massive-scale geo-textual objects. Each geo- textual object consists 
of both location information and text information. In particular, location information can 
be defined as a geographical coordinate with latitude and longitude (e.g., 39° 31′ 26″ N, 
116° 54′ 33″ E), or a semantic location (e.g., Peking University, Haidian, Beijing, China). 
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Text information can be a plain text document, a set of keywords, or a combination of 
keywords and values. Additionally, a geo-textual object may contain temporal information 
such as timestamp and time duration. Geo-textual data has been playing an indispensable 
role in our modern daily lives. It is ubiquitous in a variety of popular location-based social 
media and online map services, including but not limited to, geo-tagged microblogging 
posts (e.g., geo-tweets from Twitter and geo-tagged posts from Weibo), Points of Interest 
(e.g., Coffee shop in Google Maps), and local news articles. The information from Geo-
textual objects may cover a broad range of topics. For example, microblogging posts often 
offer the quickest first-hand reports of bursty events [1], and geo-tagged documents may be 
an early indicator of local trending news [2]. As such, it is of great importance to enable 
web users and mobile users to be updated with most recent geo-textual objects in a con-
tinuous fashion.

In this paper, we study the problem of processing Continuous Spatial Keyword (CSK) 
queries over a stream of geo-textual objects. Specifically, each CSK query is defined by a 
region of any shapes and a set of keywords connected by AND, OR, or NOT semantics. A 
CSK query continuously receives geo- textual objects from the input data stream that meet 
the spatial constraint and textual constraint. In particular, spatial constraint is defined by 
the spatial region, and textual constraint is defined by the Boolean keyword expression.

Efficient processing of CSK queries has the following technical challenges. First, the 
number of CSK queries can be very large, it is important to develop an effective scheme 
to processing massive-scale CSK queries efficiently. Second, each CSK query is required 
to be processed in a real-time fashion. When a new geo-textual object from data streams 
arrives, the CSK queries whose constraints can be satisfied by the new object need to be 
updated instantly. Third, each CSK query may have its unique spatial region and keyword 
set. Note that the query spatial region can be of any shapes, including but not limited to 
circle, rectangle, triangle, star, etc. A straightforward method works as follows. Each time 
when a new geo-textual object o arrives, we calculate whether the spatial and textual infor-
mation of o meets the spatial and textual constraints, respectively, of each CSK query. If 
the spatial and textual information of o meets the constraints of query q, we deliver o to q 
as the result. This method is very time consuming because each time a new object arrives, 
we need to evaluate whether o matches each CSK query. In real-life scenarios, the number 
of CSK queries can be very large, which can be million scale or even ten-million scale. 
At the same time, the geo-textual objects from data streams are arriving at a high rate. As 
such, we need to evaluate each CSK query against each new object. Hence, it is computa-
tionally expensive to apply the straightforward method.

In this light, we propose a novel continuous spatial keyword query matching (CSKQM) 
framework to process a large number of CSK queries effectively over a stream of geo-
textual objects. Specifically, we regard both geo-textual objects and CSK queries as data 
streams and build CSK query index in an incremental manner. The CSK query index is 
a hierarchical gird indexing structure that recursively partitions the underlying space into 
n × n cells. In particular, we propose a cost model to determine the value of n based on 
expected computation cost. For each incoming CSK query q, we iteratively find a set of 
non-overlapping cells from different layers that fully cover the spatial region of q. Next, we 
generate a “posting” of q, denoting the keywords of q, and store the posting under each cell 
associated with the spatial region of q. We use inverted file to index the keyword informa-
tion of CSK queries. Note that each cell maintains its own inverted file, indexing the CSK 
queries of which spatial regions overlap with the cell. When a new geo-textual object o 
arrives, we visit all cells from different layers that cover the location of o. For each vis-
ited cell, we visit its corresponding inverted file and retrieve the postings. Each posting 
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corresponds to a CSK query. If the posting of query q is retrieved, then o is a result of q 
and we need to deliver o to q.

Our proposed CSKQM framework has the following major advantages.

–	 Scalability: Our CSKQM framework is capable of handling millions of CSK queries 
simultaneously because our proposed CSK query index is capable of indexing massive-
scale CSK queries in an effective manner.

–	 Efficiency: When a new geo-textual object arrives, our CSKQM framework is able to 
process each the indexed CSK query set within user interaction time and the real-time 
results can be guaranteed given millions of indexed CSK queries

–	 Generalization: Our CSKQM framework allows users to issue CSK queries that have 
different keywords, different connection semantics, and different shapes of spatial 
regions.

Although the problem of continuous spatial keyword query processing has been exten-
sively investigated by existing studies, to the best of our knowledge, the proposals of exist-
ing studies fail to have the aforementioned three advantages simultaneously. Note that all 
of the aforementioned three aspects, including salability, efficiency, and generalization, are 
playing an indispensable role in continuous query processing. With the continued prolif-
eration of location-based social media and various location-based Apps, it is becoming 
increasingly important to develop a scalable, efficient, and generic continuous spatial key-
word query processing mechanism.

–	 We study a new problem of processing a large number of CSK queries in a real-time 
manner, where each CSK query consists of a set of query keywords connected by AND, 
OR, or NOT semantics, and a query region of arbitrary shape, which can either be con-
vex shape, concave shape, or multiple shapes.

–	 We develop a CSKQM framework with a dedicated query indexing structure to organ-
ize massive-scale CSK queries effectively. Based on the indexing structure, we propose 
an online query matching algorithm that is capable of finding a subset of CSK queries 
that can include each new object as their results in real-time fashion.

–	 We conduct extensive experiments by using real-life datasets and the experimental 
results show that our proposal is able to achieve high efficiency and high scalability.

The remaining of this paper is organized as follows. Section 2 defines the geo-textual 
object, CSK query, and our problem. Section 3 details our proposed solution. Section 4 
presents the experimental studies. Section  5 reviews the related work, and Sect.  6 con-
cludes the results.

2 � Problem statement

In this section, we present the definition of geo-textual objects, Continuous Spatial Key-
word (CSK) query, and our problem formulation.

Definition 1 geo‑textual object  A geo-textual object is defined by a tuple o = (ψ, ρ), 
where o.ψ denotes text information, which can be modeled by a sequence of terms, and o.ρ 
is a geographical point location with latitude and longitude.
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The proposal of this paper is designed based on the scenario that the geo-textual objects 
are arriving in a streaming manner. For example, it can be tweets with location information 
from Twitter, geo-tagged photos with descriptions from Instagram, check-ins with text and 
Point of Interests information from Foursquare, local news, etc.

Definition 2 Continuous Spatial Keyword (CSK) query   A CSK query is defined by a tri-
ple q = (w, r, s), where q.w is a set of query keywords, q.r is a geographical query region, 
and s is a semantic connection term, which can be AND, OR, or NOT.

Basically, given a stream of geo-textual objects, a CSK query q is to continuously find 
targeting geo-textual objects where for each targeting geo-textual object o, its text infor-
mation (o.ψ) satisfies the textual condition set forth by q.w and q.s, and spatial informa-
tion (o.ρ) satisfies the spatial condition set forth by q.r. As such, we define the concept of 
“matching”. Specifically, if a geo-textual object o satisfies both textual condition and spa-
tial condition set forth by CSK query q, then we say object o matches query q.

Definition 3 object‑query matching   Given a geo-textual object o and a CSK query q, o 
matches q iff: (1) o.ψ satisfies q.w and q.s, and (2) o.ρ is covered by q.r.

In this paper, we study the problem of processing a large number of CSK queries over a 
stream of geo-textual objects. Here, each CSK query is expected to receive real-time results 
from the geo-textual data stream.

3 � CSK query processing

In this section, we first present the baseline solution to processing a large number of CSK 
queries over a stream of geo-textual objects, which is named as Grid-based Direct Search 
(Sect. 3.1). Next, we present the details of our CSKQM framework.

3.1 � Grid‑based direct search

This subsection introduce our grid-based direct search algorithm to process CSK queries. The 
high-level idea works as follows. First, we partition the underlying space into n × n grid cells. 
For each cell, we store the CSK queries whose spatial regions have overlapping areas with the 
cell. When a new geo- textual object on arrives, we evaluate each CSK queries indexed under 
the cell that covers the location of the new object. If on matches an indexed query q, we return 
on as a result of q. Next, we details the query index update algorithm and the object process-
ing algorithm respectively.

3.1.1 � Query index update algorithm

Algorithm 1: GridIndexUpdate
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The pseudo code of the grid query index update algorithm is presented by Algorithm 1. 
The inputs are CSK query set Q and grid resolution n. The output is the grid query index 
for indexing queries in Q, which is denoted by G. At the beginning, we initialize the grid 
index G by n × n grid cells (Line 1). Next, for each CSK query q in Q, we find a subset 
of cells that overlap the spatial area of q.r (Lines 3–4). If there exists overlapping area 
between the spatial area of cell c (i.e., c.r) and the spatial region of q (i.e., q.r), we index q 
under c (Lines 4–9). Specifically, we generate a posting for q, which is denoted by p(q). We 
set the query keyword information of p(q), denoted by p(q).w, to be q.w, and set the con-
nection semantic of p(q), denoted by p(q).s, to be q.s (Lines 6–7). Next, we add the posting 
of q to c and update the grid query index (Lines 8–9). Finally, we return G as the result 
(Line 10).

3.1.2 � Object processing algorithm

Algorithm 2: ObjectProcessing

The pseudo code of the geo-textual object processing algorithm is presented by Algo-
rithm 2. The inputs are the new object o from the geo-textual data stream, existing CSK 
query set Q, and the grid query index G. The output is the subset of query set R ⊆ Q such 
that each query q ∈ R can regard the new object o as one of its result. At the beginning, we 
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locate the cell c in G that covers the location of the new object o (Line 1). Next, we evalu-
ate each posting p indexed under c (Lines 2–7). Specifically, for each posting p we retrieve 
the corresponding query qi (Line 3). If the spatial region of qi covers the location of o, we 
proceed to check if qi can textually match o (Lines 4–7). Here, we first generate the text 
predicate of qi based on qi.w and qi.s, which is denoted by T (Line 5). Then we check if 
o.ψ matches T (Line 6). If so, we add qi into the matching query set R (Line 7). Finally, we 
return R as the result (Line 8). Note that we need to deliver o to each query in R.

3.2 � Continuous spatial keyword query matching framework

The Grid-based Direct Search has the following limitations. First, it is difficult to set an 
appropriate grid resolution as the spatial region of CSK queries can be varied. Although a 
higher grid resolution may improve the efficiency of object processing, it may have nega-
tive effect on index update because we need more cells to index each query. In contrast, if 
we set a lower grid resolution, we may save space cost and time cost of index update while 
decreasing the efficiency of object processing. As such, it is impossible to set a resolution 
that is feasible to all queries. To address this challenge, we develop a hierarchical grid 
query indexing structure that is capable of using dynamic grid resolution to index queries 
based on their spatial locations and shapes.

3.2.1 � Hierarchical grid query index

Hierarchical grid query index uses different grid granularity to index the spatial informa-
tion of CSK q ueries. For each grid cell, we const ruct an inver ted file to index the text 
ual infor mation of CSK queries whose query regions intersect with the cell. In particular, 
when a new query arrives, we do not index it immediately. Instead, we temporarily store 
it in a buffer. When the number of queries reaches the buffer size limit, we perform group 
query partitioning and find an global optimal partitioning scheme to index the group of 
queries in the buffer.

Figure 1 illustrates a toy example of our query partitioning scheme to the hierarchical 
grid query index. Let q1, q2,…, q6 be six CSK queries and q1.r, q2.r,…, q6.r be their cor-
responding query regions, respectively. Let c1, c2,…, c9 be nine representative grid cells 
from different layers. Each CSK query is indexed under a set of grid cells that altogether 
cover its spatial region. Assume that the current structure of the hierarchical grid query 
index is illustrated by Figure 1 where the black square denotes the underlying space and 
the blue segments denote the partitioning of the grid cells. We see that q1 is indexed by c1 
because q1.r intersects with c1 only, q2 is indexed by both c1 and c2 since q2.r intersects 
with both c1 and c2. Likewise, we see that q3 is indexed by c5, c6, c7, c8, and c9, q6 is 
indexed by c3 and c4, and q5 and q6 are indexed by the cells in light red color.

Recall that for each cell, we maintain an inverted file to index the textual information of 
CSK queries. We proceed to present how to index the textual information of CSK queries. 
According to the definition of the CSK query, we need to support AND, OR, and NOT 
semantics. However, traditional inverted file is designed for plain text document, which is 
inapplicable to indexing the aforementioned query predicates. For the purpose, we design 
a novel query inverted file dedicated for the textual information of CSK queries. We design 
three schemes to handle query keywords connected by AND, OR, and NOT semantics, 
respectively.
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Specifically, given a CSK query q, if q.s is OR, we create |q.w| postings and each 
posting is associated to an individual query keyword. If q.s is AND, we only create one 
posting and the posting is associated the query keyword with the least frequency. If q.s 
is NOT, we do not let q be indexed by inverted file. Instead, we store q separately to a 
list exclusively designed for queries that have NOT semantic.

Algorithm 3 presents the pseudo code of our hierarchical grid index update scheme. 
The inputs are (1) a batch of CSK queries B in the buffer; (2) the current cell c; (3) step 
resolution threshold m, denoting that the cell partitioning between two consecutive lay-
ers cannot exceed m × m; (4) coverage ratio threshold θ, denoting the termination condi-
tion regarding the ratio of the query region size and the sum of cell sizes that index the 
query. The output is the updated index structure that takes queries of B into considera-
tion. At the beginning, we set a initial value of resolution to be 2 × 2 (Line 1). For each 
resolution from 2 × 2 to m × m, we perform the following steps. To be specific, we first 
initialize the sub-index rooted at cell c to be k × k grid cells (Line 3).

Then we initialize C Ravg to be 0 (Line 4). Note that C Ravg represents the average 
coverage ratio of queries in B. For each query q in B, we first initialize Cq, represent-
ing the set of cells that intersect with q.r, as an empty set (Line 6). For each cell ci in 
Gc, we check if ci intersects with q.r. If so, we add ci to set Cq (Lines 8–9). Next, we 
calculate the coverage ratio of q, which is denoted by C R(q). Note that C R(q) is com-
puted by dividing the area of q.r to the sum of areas of Cq (Line 10). After evaluating 
all queries in B, we calculate the average coverage ratio of queries in B (Line 12). If 
the average coverage ratio is no less than the pre-defined coverage threshold θ, we stop 
evaluating the partitioning with finer resolution (Lines 13–14). Otherwise, we proceed 
with finer resolution by increasing k by 1. If k reaches m or the average coverage ratio 
is no less than the pre-defined coverage threshold θ, we stop the resolution evaluation. 

q1.r

q2.r

q3.r

q4.r

q5.r

q6.rc1

c2

c3

c4

c5 c6

c7 c8

c9

Figure 1   Hierarchical grid query index
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Next, we store the posting of each query in B to the corresponding cells. Finally, we 
update G with Gc and return the updated G as the updated index.

Algorithm 3: HierarchicalIndexUpdate

4 � Experimental study

In this section, we conduct extensive experiments to evaluate the performance of our 
proposal.

4.1 � Baseline

A straightforward method is presented in Sect. 3.1. It basically uses a grid- based index-
ing structure to organize CSK queries. We use it as our baseline. Note that we tune the 
grid resolution based on the size of query regions.
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4.2 � Datasets and generation of CSK queries

We use two real-world datasets in our experiments: FQ and TE. FQ is a real-world data-
set collected from Foursquare, which contains 2 million worldwide check-ins where each 
check-in has both geographical location and text document. Dataset TE is a real-world 
dataset as well, which contains 10 million geo-tagged tweets. Each geo-tagged tweet has 
both location and text information.

The CSK queries are generated as follows. For each geo-textual object, which is check-
in or geo-tagged tweet in FQ and TE, respectively, we randomly select a number of key-
words from the object keywords. As for the query spatial region, we generate three types 
of regions: circle, square, and hexagon. We regard the location of each randomly selected 
geo-textual object as the center of query spatial region, and let the size of the region be of 
pre-defined size.

4.3 � Experimental settings

Our parameter settings used in the experiments are presented in Table 1. Note that we use 
GDS to denote our baseline method and use CSKQM to denote the method proposed in 
this paper.

4.4 � Experimental result

We proceed to present our experimental results.

4.4.1 � Effect of the number of query keywords

This set of experiments investigates the effect of the number of CSK query keywords 
regarding both methods. Figure 2 shows the results on FQ and TE datasets respectively. 
We could see that the runtime of geo-textual object processing for both methods exhibit 
an increasing trend when we increase the number of query keywords. The reason is that 
when the number of query keywords increases, the index sizes of both GDS and CSKQM 
become larger. As such, it may take more time to retrieve the spatially relevant and textu-
ally relevant queries when a new object arrives.

At the same time, we find that CSKQM performs consistently better than GDS for 
approximately 4X to 6X regarding the efficiency of object processing. Such significant 

Table 1   Parameter settings

Parameter Setting Default

Number of query keywords 1 – 5 3
Grid resolution 1 km – 50 km On the basis of scenarios
Query region size 1km2 – 400km2 Random
Step resolution threshold m 3 – 6 4
Coverage ratio threshold θ 0.2 – 0.8 0.6
Number of CSK queries On the basis of scenarios FQ:1 M TE 5 M
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performance improvement is resulted from the dynamic grid granularity provided by the 
hierarchical partitioning scheme.

4.4.2 � Effect of query region size

Figure  3 demonstrates the results on FQ and TE respectively when we vary the size of 
query spatial regions. We see that GDS performs worse when we enlarge the query region 
size. The reason can be explained as follows. When the query region size becomes larger, 
if the grid resolution is constant, we need to use more cells to index each CSK query. As 
a result, the index size may become larger. When a new object arrives, we are expected to 
compare the new objects with more postings. Hence, the runtime of object processing will 
be increased. In particular, we also find that when we increase the region size from 1 km2 
to 100 km2, the runtime of GDS only exhibits a slight increasing trend. In contrast, when 
we proceed to increase the region size from 100 km2 to 400 km2, the runtime of GDS only 
exhibits a sharp increasing trend. Such contrast can be explained by the fact that when the 
region size is smaller than the cell size, GDS only needs to use a small number of cells to 
index the query. However, when the query region size is significantly larger than the cell 
size, the number of cells required to index a query may be proportional to the size of the 
query region.
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Figure 2   Effect of the number of query keywords
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Compared to GDS, our proposed CSKQM does not exhibit similar performance trend. 
In contrast, the object processing time of CSKQM is relatively consistent as we vary the 
query region size. The reason is that CSKQM is capable of using different grid resolutions 
to index CSK queries with different regwn sizes.

4.4.3 � Effect of step resolution threshold

Figure  4 presents the performance result of CSKQM when we vary the step resolution 
threshold m from 3 to 6. We see that the time cost of object processing decreases when we 
increase the step resolution threshold. The reason is that when we increase the step resolu-
tion threshold, it is more likely for a query to be partitioned and represented by a set of 
fine-grained cells. As such, queries are indexed in a more precise way, which in turn may 
enhance the efficiency of object processing.

4.4.4 � Effect of coverage ratio threshold

Figure  4 presents the performance result of CSKQM when we vary the coverage ratio 
threshold θ from 0.2 to 0.8. We see that the performance of CSKQM becomes better on 
both datasets when we increase the step resolution threshold. The reason is that when we 
incease the step resolution threshold, it denotes that we impose a more rigorous require-
ment in query region partitioning. As such, the spatial region of each query may be repre-
sented more precisely (Figure 5).

4.4.5 � Effect of the number of indexed queries

Finally, we evaluate the object processing performance when we increase the number 
of indexed queries. From Figure  6 we see that both methods performs worse when we 
increase the number of indexed queries. The reason is quite straightforward. When the 
number of indexed queries mounts up, the postings list maintained by each cell is expected 
to be longer. We also find that CSKQM performs consistently better than GDS for at least 
5X.
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5 � Related work

In this section, we investigate relevant related studies regarding spatial keyword search 
and location-based continuous query processing.

5.1 � Spatial keyword search

The problem of spatial keyword search can be defined as processing spatial keyword 
queries over a collection of geo-textual objects. A spatial keyword query consists of 
both spatial query component and textual query component. A spatial query component 
can be a region, a distance threshold, and spatial proximity. A textual query compo-
nent can be a Boolean textual predicate and a set of keywords. Based on the spatial 
and textual information, spatial keyword queries can be classified as Boolean Range 
query, Boolean k-NN query, and Top-k k-NN query. Efficient processing of spatial key-
word queries has been extensively studied by existing works [3–13]. Some surveys and 
experimental studies regarding spatial keyword search techniques can be found as well 
[14–16]. Recently, some studies focus on pattern mining over sequential geo-textual 
data, which is named as semantic trajectory data [17–19]. These studies have wide and 
practical applications and they are on the basis of spatial keyword search techniques.
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However, the aforementioned studies regard geo-textual objects as a collection of 
static data or a group of items with low-frequent updates. Moreover, their queries are 
one-time queries, which means that each query is only responsible for the results at the 
snapshot when the query is issued. In contrast, our problem is to handle a stream of 
geo-textual objects and the CSK queries defined in this paper may continuously receive 
up-to-date results over time. No sensible way exists to use the methods proposed by 
aforementioned studies for our problem.

5.2 � Location and content based continuous query processing

Existing studies model the problem of continuous content-based query processing as the 
problem of publish/subscribe. A host of studies that target the problem of developing effi-
cient publish/subscribe algorithms [1, 20–24]. A traditional publish/subscribe framework 
consists of publisher component and subscriber component. Specifically, publisher com-
ponent can be regarded as a stream of items while subscriber component can be regarded 
as a set of subscribers where each subscriber continuously receives targeting items from 
the publisher side. Over the last decade, some studies enable subscribers to defined their 
location-based requirements, which is called location-based publish/subscribe [25–33].

However, the aforementioned publish/subscribe framework has the following limita-
tions. First, it has specific requirements towards the shape of query spatial region. Second, 
it only supports limited textual connection semantics. It is an open problem regarding how 
to support all of the three major textual connection semantics, namely AND, OR, and NOT 
semantics.

6 � Conclusions

We consider the problem of processing a large number of CSK queries over a stream of 
geo-textual objects. We define a new type of location-based continuous query that sup-
ports arbitrary shape of query spatial regions and supports all of the three major textual 
connection semantics, including AND, OR, and NOT semantics. To process a large num-
ber of CSK queries efficiently, we develop a CSKQM framework that takes a stream of 
CSK queries as input and use hierarchical dynamic grid cells to index each batch of CSK 
queries. We also propose effective index update algorithm and efficient geo-textual object 
matching algorithm to process massive-scale CSK queries simultaneously over a stream 
of geo-textual objects. The experimental results on two real-world datasets show that our 
proposal, CSKQM framework, is capable of achieving a runtime reduction of 70%-85% 
compared with baseline.
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