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Abstract
Click-through rate prediction(CTR) is a critical task in an online advertising system. 
Recently, deep learning based architectures have brought great attention in Click-through 
rate prediction by learning the nonlinear interaction between feature embedding of users 
and items. However, these methods have the following issues: (1) The collaborative infor-
mation between users and items could not be fully explored due to the static embedding 
with lookup-table technique. (2) The learning procedure lacks cognitive reasoning about 
what the users want to do and what they may need. To address the above challenges, we 
propose a graph aware collaborative reasoning method for CTR prediction which explores 
the collaborative information with graph and then predicts the users’ behaviors with logical 
reasoning. Specifically, the graph is built by the common behaviors between users, and the 
embedding of users and items can be learned by propagating the collaborative informa-
tion in the graph. Then with the collaborative embedding of users and items, two logical 
operations NOT and OR are adopted to integrate the embedding for logical reasoning with 
the neural networks. By learning the proposed architecture in an end-to-end manner, the 
logical behaviors of users in the behavior sequences can be learned efficiently. Extensive 
experiments on five real-world datasets show that the proposed method outperforms sev-
eral state-of-the-art methods in CTR prediction.
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1  Introduction

Online advertising system has attracted considerable attention in industry and academia 
due to the high yield. A good online advertising system can generate tens of billions of 
revenue yearly in some companies, such as Google and Alibaba. Click-through rate (CTR) 
prediction, which is defined as predicting the probability of a user clicking at the target 
item, is an essential task in online advertising systems. Hence, CTR prediction has been 
a popular topic in data mining and machine learning fields, Moreover, numerous methods 
have been developed for CTR prediction.

One popular approach for CTR prediction is to learn the feature combinations. Factori-
zation Machine(FM) [1], which is one of the most popular models, attempts to learn the 
embedding of each feature and predict CTR by linear combination of the first and second-
order feature interaction. In recent years, deep learning has shown powerful capability to 
learn the high-order feature interaction. The methods with deep learning for CTR predic-
tion, such as Wide&Deep [2] and DeepFM [3], are widely developed. Wide&Deep jointly 
trains logistic regression and deep neural networks to combine the strength of memoriza-
tion and generalization for prediction. DeepFM replaces the linear model in Wide&Deep 
with FM for learning second-order feature interaction and the feature engineering can also 
be simplified. However, even though the rich information can be learned by informative 
feature interaction, it only focuses on user preference, because features usually imply the 
prior information regarding whether the user is interested in a target item. The historical 
behaviors of users, which not only reflects user preference but also their requirements [4], 
are not fully explored in these methods. Hence, the behaviors are important resources to 
improve the CTR prediction.

With the increasing availability and quality of users’ behavior data, the use of this data 
for prediction becomes more necessary [5, 6]. Collaborative filtering (CF) approaches are 
adopted by assuming that the users with similar behaviors share similar preferences on 
items to explore the information in behaviors completely. In most collaborative filtering 
models, CF learns the embedding of users and items via historical interactions. One promi-
nent model is Matrix Factorization(MF), which uses the inner product between the embed-
ding of users and items to model user-item interaction. The embedding is represented with 
a dense vector. Many methods are developed on the basis of MF for CTR prediction. In [7], 
the CTR prediction is regarded as a special matrix completion problem. This study learns 
embedding of both users and items with logistic loss for binary data instead of square loss 
in MF and predicts the probability via inner product of embedding. The method in [8] pro-
posed to use attention mechanism to learn the embedding of the users, and then the embed-
dings are incorporated into MF to capture the relevance between the user and the target 
item.

Although these methods are successfully applied in the advertising system, they mainly 
attempt to predict the items that may match the historical preference of users and user 
requirements are ineffectively learned. Hence, discovering the logical behaviors in the 
sequential behaviors is necessary for the inference of users intention. Figure 1 shows the 
logical behaviors. In Figure 1, when user A bought a macbook online, instead of brows-
ing another laptop, he/she may prefer to click accessories such as air pods. This scenario 
indicates that the current decision of a user does not heavily depend on the similarity to 
his/her previous behaviors. Meanwhile, the collaborative information is not fully explored 
in the CF methods due to the lack of explicit connections, which may result in the match-
ing of irrelevant items. For a good recommendation, the item that is recommended to the 
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users should generally satisfy the preferences and the requirements of the users simulta-
neously. Hence, the collaborative capability via the user-item interaction also should be 
further improved.

A graph-aware collaborative reasoning for CTR prediction, termed as GACR, is pro-
posed in this paper to address the above challenges. This method learns deep collabora-
tive embedding based on user-item interaction graph and obtains the logical reasoning by 
integrating the logical operators into neural networks based on the embedding of users and 
items. In the proposed method, the collaborative information is explicitly presented by 
message passing and message propagation between the nodes in the graph. The informa-
tion is learned recursively via the paths in the graph to guarantee that deep collaborative 
information can be endowed into the embedding of users and items. The interaction infor-
mation between users and items is then learned on the basis of embedding with an interac-
tion layer. The interaction information is transformed into logical representation based on 
the logic laws to capture the logical behaviors in the behavior sequence. A logical neural 
network is adopted to learn the logical behaviors with the logical representations. There-
fore, the proposed method can learn the collaborative information and logical behaviors 
simultaneously with an end-to-end manner, and the preference and the requirements of the 
users can be captured effectively in CTR prediction.

The main contributions of the paper can be summarized as follows:

•	 The proposed GACR is the first work that attempts to learn the collaborative informa-
tion and logical reasoning jointly in one network architecture for cognitive learning in 
CTR prediction.

•	 This paper highlights that the preferences and the requirements are both essential for 
CTR prediction, and the proposed method can capture both of them effectively.

•	 The results of extensive experiments on several real-world datasets demonstrate that 
our GACR outperforms several state-of-the-art models.

The following sections of this paper is organized as follows. Section 2 provides some 
recent studies that are related to the current work. In Section 3, the methodology of the pro-
posed method is introduced in detail. Extensive experiments are reported in Section 4. The 
conclusion of the paper is shown in Section 5.

Figure 1   The illustration of logical behaviors. User A has bought macbook, ipad and airpods in the behav-
ior sequence while user B, C, D, E and F have bought at least one of these three items. There exist many 
items that user A may need according to the user B, C, D, E and F. To infer which one is the requirement 
for A, the items that user A has bought are connected with logical operation AND(∧). With the logical 
inference, the prediction of that whether user A will click an item (such as mouse) can be learned
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2 � Related work

This section focuses on introducing the related works on both graph-based recommenda-
tion and CTR prediction.

2.1 � Graph‑based recommendation

Graph is a data structure with rich information and it had been applied in multiple areas 
[9]. ItemRank [10] designs a random-walk algorithm based on user-item interactions to 
extract user preferences in the user-item interaction graph. However, the algorithm is a 
model-based collaborative filtering(CF) method and lacks optimization capability. HOP-
Rec [11] presents a unified and efficient framework that incorporates graph- and embed-
ding-based methods. RecWalk [12], which is also based on random walk, utilizes the 
spectral properties in Markov chains to explore interaction graph effectively. Graph neural 
network is proven to be efficient in various task [13]. On the basis of paths in graph, RKGE 
[14] designs a recurrent network architecture for capturing user preference and then learns 
additional informative embedding to recommendation. MCRec [15] defines meta-path 
and leveraging co-attention mechanism to improve the representations of both entities and 
meta-paths. These path-based models are limited due to their sensitive effect on path selec-
tion despite their promising performance. The heterogeneous information network(HIN) 
has recently become a hot topic in graph-based recommendation. NIRec [16] emphasizes 
the interaction in HIN and proposes meta-path based module to learn interactive patterns. 
Finding appropriate paths requires large experiences and time, NGCF [17] focus on collab-
orative signal in graph structure and utilizes a propagation layer for extraction to alleviate 
the aforementioned problems. Similarly, KGAT [18] combines recursive embedding propa-
gation and attention mechanism to extract high-order connectivity. An innovative model 
equipped with embedding propagation and logical reasoning is introduced in this paper to 
learn the comprehensive interest of users.

2.2 � CTR prediction

CTR prediction is the core technology in recommendation, searching and advertising sys-
tems. Historically, logistic regression(LR) had been widespread in CTR prediction. How-
ever, using LR to predict CTR requires a huge workload for manual feature engineering. 
Facebook proposed [19] using gradient boost decision tree(GBDT) and LR to explore the 
combination of features automatically to reduce human consumption feature engineering. 
Despite the strengths in auto feature engineering, this approach did not consider the pres-
ence of many high dimensional sparse features in CTR prediction. Using decision tree to 
handle highly sparse data or online scenery is difficult.

FM [1] uses inner product between latent vectors to learn the weight of each second-
order feature combination and provides predictions via linear aggregation of all first and 
second-order features. Some feature combinations have minimal influence on target task. 
AFM [20] introduced attention network to learn the influence of each second-order feature 
combination to enhance the expressiveness of the model. Similarly, FFM [21] referred to 
the concept of field to discriminate different importance of diverse feature cross.

FNN[22] was proposed on the basis of FM. FNN adopts FM to train the embedding 
in advance and then feeds the embedding into multi layer perceptron(MLP) to learn the 
high-order feature correlation. This two-phase structure with Embedding and MLP can be 
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summarized as Embedding&MLP model. PNN [23] introduced the product layer to extract 
addtional complex feature interaction. Instead, NFM [24] proposed bi-interaction pooling 
layer to learn the feature interaction and enhance the expressiveness of the model.

Many recent studies [2, 3, 25] have shown that deep learning based CTR prediction 
models have achieved remarkable effectiveness. Wide&Deep Learning(WDL) [2] was first 
proposed by Google and employed in Google play application. WDL comprises a general-
ized linear module (wide part) and an MLP (deep part). WDL also combines the memo-
rization of the wide part and the generalization of the deep part to model the user behav-
ior. However, this approach is limited to designing feature cross manually. DeepFM [3] 
introduced the Deep Neural Network (DNN) based on FM model to improve the capabil-
ity of information extraction and Deep Crossing [26] applies a deep residual network to 
learn cross features. Since DNN can only conduct implicit feature cross, Deep&Cross [27] 
designed Cross Net to replace FM. Thus the model can also learn bound-degree feature 
cross explicitly.

The attention mechanism learns a function to assign large weights to closely correlated 
items. This mechanism is originally proposed for the neural machine translation (NMT) 
[28], but has been widely used in diverse domains. Considering CTR prediction, DeepIn-
tent [29] applies attention in the context and utilizes RNN to model text, and then learns 
the global hidden vector to allocate the weights of keys in each query. DIN [30] uses atten-
tion mechanism to learn the representation of historical behaviors of users. DIEN [31] 
adopts the interest extractor layer and interest evolving layer to learn the representation 
of user behaviors and capture the dynamic changes in user interests respectively. DSIN 
[32] leverages multiple historical sessions of users in behavior sequences with the attention 
mechanism to extract accurate interest representations of each session. In DMR [8], the 
model calculates the item-to-item similarities between user-target item interaction using 
the attention mechanism.

3 � Methodology

The proposed GACR model will be comprehensively introduced in this section. First, an 
embedding layer is adopted to initialize the embedding of users and items with the lookup-
table technique. Then a graph layer is adopted to propagate the collaborative information 
with the interaction graph and enrich the information in the embedding of users and items. 
Following the graph layer, an interaction layer is used to learn the interaction information 
between a user and an item from the embedding. A logical reasoning layer is used by prop-
agating the interaction information into logical representation to learn the logical behaviors 
in the sequential behaviors. Finally, a prediction layer is adopted to predict the probability 
that user clicks target item. The architecture of GACR is shown in Figure 2.

3.1 � Embedding layer

One-hot encoding is a popular technique used to generate continuous feature representa-
tion for discrete data. This technique has been widely used in recommendation and CTR 
prediction. The user ID, item ID and context features are usually transformed into a sparse 
vector with one-hot encoding technique to learn the embedding of users and items in rec-
ommendation and CTR prediction, and then the sparse vector is transformed into a low 
dense vector via the lookup-table technique. Without loss of generality, the IDs of users 
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and items are similarly transformed into dense vectors, which are then treated as the initial-
ized embedding of users and items.

Mathematically, e0
u
∈ ℝ

d and e0
i
∈ ℝ

d are defined as the initialized embedding of user u 
and item i respectively, where d represents the embedding dimension. All the embeddings 
of users and items are organized as the embedding lookup table �

�
∈ ℝ

nu×d , �
�
∈ ℝ

ni×d 
and �

�
∈ ℝ

nf×d , where nu, ni and nf denotes the number of users, items and context features 
respectively. Thus, the embedding for each user, item and feature can be represented as 
follows:

where tu ∈ ℝ
nu and ti ∈ ℝ

ni represent the one-hot encoding of user and item respectively. 
tf ∈ ℝ

nu represents the one-hot encoding of one field feature and Cf is the concatenated 
vector of context features set F. The user-item interaction graph is constructed on the basis 
of these initialized embedding to endow them with collaborative information where concat 
indicates the concatenate operation.

3.2 � Graph layer

The collaborative information with graph is explicitly explored by following to capture the 
collaborative information between the users and items effectively [17]. The endowment of col-
laborative information to the embedding of users and items by the graph layer will be subse-
quently described. This approach mainly contains message passing and message propagation.

3.2.1 � Message passing

The message passing is achieved via the paths in the graph. For example, in a user-item 
interaction graph, as shown in Figure 1, if user A has purchased item a and this item is also 
purchased by user B, then a path A → a → B can be obtained. This condition indicates 
potential similarity between A and B. If B has purchased c, then the path A → a → B → c 
implies that A may be interested in c. The message passing between one user-item pair can 
be then represented as:

where h and t in (2) respectively represent the head and tail nodes in an interaction path. 
mh→t ∈ ℝ

d represents the message passing from head node to tail node. Dh and Dt are the 
degrees of head and tail nodes respectively, and the degree of a node is the number of 
nodes that are connected with it in the graph. Ws,Wi ∈ ℝ

d×d and bs, bi ∈ ℝ
d are trainable 

parameters for core message extraction. Notably, active users or popular items usually con-
nect with an excessive number of nodes and may propagate numerous messages to neigh-
bors. While the information from those cold users or items may be missed. Therefore, bias 
learning may appear. 1∕

√
DhDt in (2) is served as decay factor to solve this problem. The 

Element-wise product ⊙ in (2) facilitates the dependence of message passing on affinity 
between nodes according to [17].

(1)

e0
u
= tu × �

�

e0
i
= ti × �

�

ef = tf × �
�

Cf = concat(ef ), ∀f ∈ F

(2)mh→t =
1

√
DhDt

(Wseh + bs +Wi(eh ⊙ et) + bi)
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3.2.2 � Message propagation

A node t in this graph can obtain various messages from its neighbor nodes. These mes-
sages are integrated together recursively for collaborative information learning, and the 
embedding of node t at each iteration can be calculated as:

where el
t
 represents the embedding of node at l − th iteration, and Nt represents the set of 

nodes that are connected to t in graph. Wl
s
,Wl

i
∈ ℝ

d×d and bl
s
, bl

i
∈ ℝ

d are trainable param-
eters at l − th iteration. LeakyReLU[33] is chosen as activation function σ1 in (3).

A simple example is shown in Figure  3 to understand the graph layer. Figure  3(a) 
shows a user-item interaction graph, and Figure  3(b) shows the message propagation 
based on the graph. Figure 3(a) reveals a path from the graph, such as b → B → a → A . 
The collaborative information in this path is then learned With three iterations in Fig-
ure 3(b) to obtain the embedding of user A, that is, e3

A
 . In recursive learning procedure, 

e3
A
 mainly depends on the e2

a
 and e2

c
 in the second iteration. While e2

a
 contains the mes-

sages from e1
B
 and e0

b
.

With the message propagation in the graph, many embedding can be obtained from 
e0 to el for each user and item. The embedding at different iterations may contain differ-
ent level collaborative information. Therefore, the final embedding for each node can be 
calculated as:

3.3 � Interaction layer

The interaction layer is adopted on the basis of collaborative embedding of users and 
items to learn the interaction information between the users and items. Specifically, sup-
pose a user u has interacted with several items i1,i2,...,in,itar, where n is the number of 
items which the user has clicked and itar is the latest item that the user has clicked. An 
MLP is used to obtain the interaction embedding between user u and the items that 

(3)
el
t
= 𝜎1(W

l
s
el−1
t

+ bl
s
+

∑
h∈Nt

ml
h→t

)

ml
h→t

=
1√
DhDt

(Wl
s
el−1
h

+ bl
s
+Wl

i
(el−1

h
⊙ el−1

t
) + bl

i
)

(4)e = concat(e0, e1, ..., el)

Figure 3   Overview of the graph layer. (left) is a sample user-item interaction graph and (right) is the illus-
tration of message propagation with (a)
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the user has clicked. The concatenation of user embedding and the corresponding item 
embedding can be learned as follows:

where eu,ei are the embeddings of user u and item i respectively, Iu
i
 represents the interac-

tion information between user u and item i. W1,b1,W2,b2 are trainable parameters in MLP. 
Meanwhile, the ReLU is set as the activation function in MLP.

3.4 � Logical reasoning layer

The behaviors can imply the potential and dynamic preference of the user and can be treated 
as an important feature to describe the user. With this feature, the use of logical learning is 
attempted to learn the user requirements. Through the following logical operation, a logi-
cal conditional statement can be transferred into logical representation with only disjunction 
∧ and negation ¬, that is, a → b ⟺ ¬a ∨ b . The problem can be transformed as follows: 
(a ∧ b ∧ c) → t to ¬a ∨¬b ∨¬c ∨ t.

Specifically, the logical reasoning layer comprises a recurrent neural module based on idea 
of distributed representation and neural symbolic framework [34, 35], to learn logical opera-
tion “OR” and a module to learn the logical operation “NOT”. The logical representation for 
inferring can be easily defined with the interaction information learned from interaction layer. 
For example, if user u has bought items i1,i2,...,in, then the logical representation to predict 
whether u will click the item itar can be represented as:

The operation “NOT” is represented as a two-layer MLP, and can be formulated as follows:

where Wn
1
,Wn

2
, bn

1
, bn

2
 are trainable parameters in NOT module. An MLP module simulates 

“NOT”. Therefore, the embedding of the interaction at negation, that is, ¬Eu
i
 , can be easily 

obtained. Equation (7) shows that logical operation ∨ is continuous and requires two behav-
iors as input simultaneously. The OR network is designed as a recurrent MLP network. 
Mathematically, this network can be defined similarly to Recurrent Neural Network(RNN):

where W0
1
,Wo

2
, bo

1
, bo

2
 are trainable parameters and ht represents a temporary state after t 

behaviors of a user. The initial hidden state h1 as ¬E1
1
 is set and the negation of each inter-

action embedding is fed into the OR module recursively until the entire OR operation is 
learned. Thus, Eu

1
∨ ¬Eu

2
∨⋯ ∨ ¬Eu

n
 can be finally transformed to hn. The embedding of the 

logical behaviors in behavior sequence can then be calculated by:

(5)
Iu
i
= concat(eu, ei)

Eu
i
= W2�2(W1I

u
i
+ b1) + b2

(6)¬Eu
1
∨ ¬Eu

2
∨⋯ ∨ ¬Eu

n
∨ Eu

tar

(7)
¬Eu

i
= NOT(Eu

i
)

NOT(x) = Wn
2
����(Wn

1
x + bn

1
) + bn

2

(8)
xt = Eu

t

ht = Wo
2
����(Wo

1
(ht−1 + ¬xt) + bo

1
) + bo

2

(9)� = Wo
2
����(Wo

1
(hn + Eu

tar
) + bo

1
) + bo

2
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Notably, the input is the embedding of the latest interaction Eu
tar

 instead of its negation 
¬Eu

tar
 . O represents the embedding of the logical behaviors. Similar to [35], an extra regu-

larizer is adopted to learn the modules with logical functions.

3.5 � Prediction layer

A considerable amount of collaborative information can be endowed to the embedding of 
users and items with the graph layer. The interaction layer can learn the interaction informa-
tion effectively with the collaborative embedding. Since the goal is to calculate the occur-
rence probability of the behavior. Thus, a constant vector � ∈ ℝ

d is defined to represent 
“True behavior”, which indicates the occurrence of the behavior. The calculation of similarity 
between O and T can directly imply the prediction of probability. The cosine similarity is cho-
sen in this paper to measure the proximity between decision vector and True vector. Addition-
ally, since contextual information assists models with stronger expressive [36], we incorporate 
the embedding of context features Cf and combine it with the cosine similarity for prediction 
via MLP. Cosine similarity between the two vectors and the prediction of CTR can be calcu-
lated as:

Notably, p is the predicted probability of user clicks target item and MLP represents a two-
layer fully connected network with ReLU activation.

3.6 � Learning algorithm

The loss function has two components. The first one is the log-likelihood function which is 
widely applied in CTR models [30, 32]. This function considers both the label of a sample 
and the corresponding prediction score. Specifically, an ideal model should assign positive 
and negative samples with higher and lower scores respectively. The loss function is pre-
sented as:

where � is the training dataset and x,y and p are the inputs, labels and prediction probabili-
ties respectively.

Second, logical equation is introduced on the basis of the idea w.r.t logical regularizers 
[35] to guarantee that NOT and OR modules can be learned with the property of propo-
sitional logic. The motivation of logical regularizer is that the modules, which have the 
capability of logical operation, should satisfy the basic logical operation laws. Thus, the 
interactions are transformed into logical representation and added to the loss function. The 
logical laws and the corresponding logical representation are listed in Table 1.

The loss function is organized by combining the log likelihood function and the logical 
regularizers together which can be represented as:

(10)
sim(�,�) =

��

‖�‖‖�‖
p = MLP(concat(sim(�,�),O,T,Cf ))

(11)Llog = −
1

N

∑

(x,y)∈�

(y log p + (1 − y) log(1 − p)).

(12)L = Llog +
�1

‖E∗‖

6�

i=1

li + �2‖Θ‖22
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where ∥E*∥ represents the total number of interactions. λ1,λ2 are the penalty coefficients 
of logical regularizers and Frobenius norm respectively.

4 � Experiments

Several popular real-world datasets are used in the experiments to demonstrate the effec-
tiveness of the proposed method, and several state-of-the-art and baseline methods are 
compared.

4.1 � Datasets

Five large-scale datasets are adopted, and these datasets are collected by Amazon from 
their websites [37], including Video Games, Digital Music, Cell Phones and Accessories, 
Toys and Games and CDs and Vinyl. These datasets are all from Amazon 5-core. 1

The rating scores in these datasets are from a candidate {1,2, 3, 4, 5}. The data are 
transformed into binary classification data to apply data in CTR prediction task by labeling 
samples with ratings of 4 and 5 to be positive and the rest to be negative. CTR prediction is 
a binary problem, which indicates whether the user has clicked on the item; thus the high-
est score is set as 1. Meanwhile, each dataset is divided into training data and testing data 
based on the time stamp. For each user, The latest behavior of each user in the sequential 
behaviors according to his/her historical behaviors is used for testing. The latest behavior 
in the training sequential behaviors is used during the training procedure as the target item 
for training. For example, if the behaviors of a user are represented as B = [b1,b2,...,bn], 
then the latest behavior bn is used for testing while the behavior bn− 1 is used to train the 
model for prediction. A total of 10% of users in the training set with their historical behav-
iors are randomly selected as validation set.

4.2 � Experimental settings

The proposed GACR is compared with several popular CTR models, including graph-
based CF models and logical reasoning models.

Table 1   Correspondence 
between logical laws and 
expressions applied in loss 
function

 E* represents the representation of interaction information in the 
interaction matrix

name Law Expression

l1 ¬T = F  
∑
(1 + sim(NOT(E∗),E∗))

l2 ¬(¬x) = x  
∑
(1 − sim(NOT(NOT(E∗)),E∗))

l3 x ∨ F = x  
∑
(1 − sim(E∗,OR(E∗,NOT(T)))) 

l4 x ∨ T = T  
∑
(1 − sim(T ,OR(E∗,T)))

l5 x ∨ x = x  
∑
(1 − sim(E∗,OR(E∗,E∗)))

l6 x ∨¬x = T  
∑
(1 − sim(T ,OR(E∗,NOT(E∗))))

1  http://​jmcau​ley.​ucsd.​edu/​data/​amazon/

977World Wide Web (2023) 26:967–987

http://jmcauley.ucsd.edu/data/amazon/


1 3

•	 Wide&Deep [2]: Wide & Deep Learning framework is widely used in modern indus-
trial applications. This framework combines two technological parts: the wide part used 
the linear model with the capability of memorization, and the deep part can extract 
non-linear correlations among features via deep neural networks.

•	 DeepFM [3]: DeepFM is derived from Wide & Deep and utilizes an FM to replace the 
linear model for learning two-order feature interaction.

•	 xDeepFM [25]: A combination of the deep neural network and a novel compress infor-
mation module to extract additional implicit information behind features for CTR pre-
diction.

•	 NGCF [17]: A graph-based collaborative filtering model that exploits the graph struc-
ture by propagating embedding and generates expressive representations with high-
order connectivity.

•	 NLR [35]: A cognition recommendation focused model, which integrates embedding 
learning technology and logical reasoning.

•	 DIFM [38]: A FM based model that combine the self-attention and deep neural net-
work to learn both bit-wise and vector-wise level feature interaction simultaneously.

The learning rate is set as 0.001 and the optimizer with Adam, which is widely used 
in deep learning models. Meanwhile, the batch size for training with 1024 is chosen. For 
the proposed method, the weight of logical regularizer λ1 is set to 0.4 (except 0.1 in Video 
Games), the penalty coefficient of Frobenius norm regularizer λ2 is set to 1 × 10− 5 and the 
embedding size is set to 16 (except 8 in Digital Music and 32 in Toys and games). Moreo-
ver, the number of iterations in graph layer is set to 4.

These models are assessed with two popular evaluations, namely, Area Under ROC 
Curve (AUC) to show the superiority of the proposed method. AUC, which reflects the 
ranking capability is suitable for imbalanced data [39]. A high AUC indicates ranking 
of additional positive samples before negative samples. AUC and logloss are defined as 
follows:

where M, N indicates the total number of positive samples x+ and negative samples x− 
respectively, and f(x) is the prediction results of x. I(x,y) are equal to 0, 0.5, 1 for x < y, x = 
y and x > y respectively.

In addition, RelaImpr metric [40] is introduced for measuring relative improvement of 
the proposed model. RelaImpr is defined as follows:

where AUCt,AUCc represent the AUC achieved by the proposed model and the best result 
in the compared methods respectively.

4.3 � Results

The results of the methods in the experiments are reported in Table 3. All the results 
are obtained with the average results in five runs. In the compared methods, WDL, 
DeepFM and xDeepFM are three methods that attempt to extract high-order feature 

(13)AUC =

∑
I(f (x+), f (x−))

M × N

(14)RelaImpr =

(
AUCt − 0.5

AUCc − 0.5
− 1

)
× 100%
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interaction. These methods achieve the second-best performance of AUC on most data-
sets. Therefore, learning interaction information from embedding is crucial.

NGCF and NLR are two state-of-the-art methods for graph learning and logical rea-
soning respectively in recommendation. Notably, the performance of the two methods 
is worse than that of other feature based models on AUC. This finding may be due to 
the excessive number of similar items, which makes it difficult for NGCF and NLR to 
capture the specific item. DIFM is the state-of-the-art method designed based on FM 
architecture. As shown in Table 3, DIFM achieves worse performance at most cases. 
The explanation for this phenomenon may be that though DIFM utilizes complex net-
work to learn the weight for feature interaction, it needs more data of feature interac-
tion for training.

Meanwhile, the proposed method achieves the best performance on all datasets on 
AUC value. In particular, the proposed model is superior the second-best results and 
RelaImpr reaches 11.05% and 6.2% on Digital Music and CDs and Vinyl respectively. 
This finding demonstrates that the proposed method can effectively capture the prefer-
ence and the requirement of the users, and recommend additional specific items for the 
users. Hence, the combination of collaborative information and the logical behaviors is 
crucial to designing ideal advertising systems, and the proposed method can effectively 
achieve this goal.

Table 2   Statistics of five 
Amazon datasets

dataset # users # items # interaction # density

Video Games 55,222 71,976 231,780 0.005%
Digital Music 16,565 77,625 169,781 0.013%
Cell Phones 27,878 284,012 194,437 0.002%
Toys and Games 208,180 78,772 1,828,971 0.011%
CDs and Vinyl 112,394 418,435 1,097,592 0.004%

Table 3   The AUC results of the comparison methods on five Amazon datasets

 The best performance on each dataset is highlighted with bold font while the second best performance 
is marked with underline. Results with “*” indicate the statistically improvements between the proposed 
method and the best result in the compared methods based on paired t-test with p-value at 0.05

Video Games Digital Music Cell Phones Toys and Games CDs and Vinyl

WDL 0.6721 0.7378 0.6187 0.6685 0.6419
DeepFM 0.6882 0.7370 0.6176 0.6696 0.6404
xDeepFM 0.6814 0.7307 0.6179 0.6677 0.6402
NGCF 0.6326 0.6997 0.5609 0.6125 0.5763
NLR 0.6706 0.7357 0.6057 0.6533 0.6328
DIFM 0.6835 0.7303 0.5981 0.6123 0.6329
GACR​ 0.6945* 0.7641* 0.6237* 0.6769* 0.6507*

Improv 0.91% 3.56% 0.80% 1.09% 1.37%
RelaImpr 3.34% 11.05% 4.21% 4.30% 6.20%
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4.4 � Parameters analysis

The following effects of parameters in GACR are studied in this section: (1) the dimen-
sion of embedding; (2) the number of propagation iterations in the graph layer; (3) the 
weight of logical loss λ1 in (13).

4.4.1 � Effect of embedding dimension

The embedding dimension from the candidate set (4,8,16,32,64) to study the influence 
of embedding dimension, and results on video game, digital music, and Cell Phones 
are reported in Figure  4. In Figure  4, the red lines represent the AUC values while 
the blue lines represent the results of logloss. The results indicate that the proposed 
method is sensitive to the embedding dimension. The performance decreases when 
the embedding dimension is larger than 16 on video game, 8 on digital music and 32 
on Cell Phones dataset. At Video Games and Cell Phones dataset, 8 or 16 is a small 
dimension for the optimal settings compared to former work. It is due to the message 
propagation mechanism in Graph layer. It could learn the collaborative information on 
different level in forms of embedding vectors and concatenate them together according 
to (4). Thus a small embedding dimension can lead to expressive embedding vectors. 
With the increase of embedding dimension, the overfitting problem leads to worse per-
formance. Notably, at Cell Phones dataset with the most sparse interactions accord-
ing to Table  2, the collaborative information is less and thus the optimal dimension 
increases to 32.

Figure 7   Visualization of the 
item embeddings in Video 
Games dataset via t-SNE. Color 
of points corresponds to the dif-
ferent categories
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4.4.2 � Effect of propagation iterations l in the graph layer

The collaborative information in the graph layer is learned by message propagation on 
graph. The message propagates recursively to learn the propagation layer effectively. 
Hence, the propagation iteration l is an important parameter in the proposed method. 
The propagation results on video game, digital music, and Cell Phones are presented 
by changing l from 1 to 5 in Figure 5. This figure shows that the results are sensitive to 
the l. AUC and logloss can obtain improved results when l is increased. However, the 
results decrease quickly on all datasets when l is larger than 4. This phenomenon may 
result in the overfitting problem due to the presence of many iterations. However, the 
best performance is achieved on all datasets when l is equal to 4. Hence, l can be set as 
4 in real applications.

4.4.3 � Effect of λ1

The performance with different weights on three datasets, including video game, digital 
music, and Cell Phones, is presented to evaluate the importance of logical reasoning and 
the results are reported in Figure  6. This Figure reveals that the results are sensitive to 
weight. The best performance is achieved on Video Games when λ1 is equal to 0.1 while 
the two other datasets achieve the best performance when λ1 is equal to 0.4. Compared 
without logical reasoning, the improvements are significant. Hence, the logical reasoning is 
essential for CTR prediction. Meanwhile, although the results begin to descend when λ1 is 
larger than 0.1 on Video Games, the descending is almost can be ignored. Hence, λ1 can be 
set as 0.4 for practical application.

4.5 � Visualization of embedding

Five main categories of items in Video Games dataset are selected to show the effective 
learning of embedding, and several items from these categories are randomly sampled. 
Figure 7 shows the visualization of embedding vectors of items with t-SNE [41]. This 
figure indicates that although all the items that belong to the same category are not 
closed, several items in the same categories are always closed with each other because 
several subcategories may exist in one category. Hence, the consistency and the dif-
ference among the items can be learned effectively. Moreover, considering the embed-
dings cross categories, the items in different categories also have significant differences. 
These results confirm that the proposed method can learn cognitive embedding for the 
items, which is favorable to logical reasoning.

5 � Conclusion

A graph-aware collaborative reasoning method for CTR prediction is proposed in this 
paper. The proposed method uses the graph to propagate messages and endow deep 
collaborative information for the embedding of users and items. The preference of the 
user can be effectively learned. A logical reasoning network is then adopted to learn 
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the logical behaviors in the sequential behaviors from the interaction information. The 
intention of the user can be inferred from the logical behaviors. The proposed method 
can simultaneously learn user preference and user requirements by the proposed archi-
tecture. Extensive experiments on five large-scale datasets demonstrate that the pro-
posed method outperforms the state-of-the-art methods for CTR prediction.
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