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Abstract
In social networks, the departure of some users can lead to the dropout of others from the 
community in cascade. Therefore, the engagement of critical users can significantly influ-
ence the stability of a network. In the literature, the anchored/collapsed k-core problem 
is proposed, which aims to enlarge/collapse the community by anchoring/deleting certain 
nodes. While, in real social networks, nodes are usually associated with different prefer-
ences, such as close or conflict interest. Intuitively, a community will be more stable if 
more nodes share close interest and fewer of them carry conflict interest. However, most 
existing researches simply treat all users equally, and the inclination property is neglected. 
To fill the gap, in this paper, we propose two novel problems, named inclined anchored 
k-core (IAK) problem and minimum detached k-core (MDK) problem, to better character-
ize the real scenarios. We prove that both problems are NP-hard. To facilitate the computa-
tion, novel search strategies are proposed. Comprehensive experiments are conducted on 9 
networks to demonstrate the effectiveness and efficiency of the proposed techniques.

Keywords Inclined anchored k-core · Minimum detached k-core · NP-hard

1 Introduction

In recent years, modeling user engagement for user behavior has attracted great interest 
from researchers [2, 6, 7, 10–12, 28]. In social network analysis, the k-core model is widely 
used in the study of network stability or engagement, e.g.,  [2, 7, 28]. Given a graph G, 
k-core is the maximal subgraph, in which each node has at least k neighbors. The size 
of k-core plays an important role in graph analysis. To enlarge (resp. collapse) the size 
of k-core, the anchored (collapsed) k-core problem are proposed in the literature [2, 29]. 
By giving users some incentives, the anchored k-core problem aims to anchor b nodes, 
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i.e., stay in k-core regardless of the neighbor size constraint, in order to maximize the cor-
responding k-core size. The selected nodes are called anchored nodes. On the contrary, 
the collapsed k-core problem attempt to delete certain nodes in order to minimize the cor-
responding k-core. In real applications, users in a network are usually associated with dif-
ferent properties, such as close or conflict interest, towards the community. However, the 
previous models treat each node equally and may fail to characterize the propensity and 
stability of the network.

Intuitively, a community is more stable if more nodes inside share close interest and fewer 
nodes hold conflict interest [3]. It will also assist more new users to join the community if the 
community is strongly inclined. Motivated by this, in this paper, we propose two new models, 
i.e., inclined anchored k-core(IAK) and minimum detached k-core(MDK), to fill the gap. For 
the IAK problem, we consider the nodes outsides the k-core are marked with labels, i.e., close, 
conflict or unlabeled. When anchoring nodes, both nodes with close and conflict interest may 
join the k-core community. In the IAK problem, we aim to find b anchor nodes, such that more 
close nodes but fewer conflict nodes will involve in the anchored k-core. For MDK problem, 
we consider a set E of nodes in the k-core are attached with conflict interest. To maintain the 
harmony in the community, we aim to collapse or detach the minimum number of nodes, such 
that all the nodes in E are removed from the k-core. As observed, we not only consider the size 
of resulting k-core, but also pore over the inclination of the returned community. Through this 
way, we can better portray the resilience of networks. Following are two motivating examples.

Example 1 As shown in Figure 1, there is a social network with 12 users and their corre-
sponding connections. Suppose k = 3, the close node set F = {u1, u2, u3, u12} (blue nodes), 
the conflict node set E = {u9, u10, u11} (red nodes), and the others are marked as unlabeled. 
The willingness of a user to engage in the group depends on the number of his neighbors. If 
a user leaves the group, the willingness of his neighbors will decrease, which may lead to a 
cascade of others to drop out the community. Given k = 3 , only nodes u4, u5,… , u8 belong 
to the 3-core. To enhance the inclination and stability of the group, we can anchor the criti-
cal nodes by giving them incentives. If we anchor u1 , there will be three close followers 
{u1, u2, u3} (i.e., join the anchored k-core) and no conflict followers. When u12 is anchored, 
there will be four followers {u9, u10, u11, u12} , but three of them are from the conflict group. 
Thus, for b = 1, we can select u1 as the optimal node to anchor. It can also be observed, 
simply enlarging the k-core size will not guarantee the increase of nodes with close interest.

Example 2 Reconsider the graph in Figure 1. Suppose the conflict node set E = {u9, u10, u11} 
and k = 2 . Then, all nodes in the graph except u1 belong to the 2-core. To make the group 
more harmonious, i.e., not contain any conflict nodes, we need to detach some nodes from 
the group. Considering the cost of detaching, we need to choose as few detached nodes 
as possible. Thus, in the example, {u9, u12} is the best detached node set. After deleting 
{u9, u12} , all the nodes in the conflict node set will be removed from the 2-core.

Figure 1  Motivation example
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Challenges and Contributions In this paper, we propose and investigate the inclined 
anchored k-core and minimum detached k-coreproblems. We prove that both problems are 
NP-hard, which implies that it is non-trivial to solve them within polynomial time. Thus, 
following the routine in previous studies, in this paper, we aim to design heuristic strategies 
that can return competitive results efficiently. In addition, due to the different properties 
of the objective functions, lots of pruning rules in previous studies no longer hold for our 
problems. Secondly, in real-world social networks, the search space is usually quite large, 
which is time-consuming to conduct the exploration. To enhance the processing, different 
search approaches and pruning techniques are considered. The main contributions of the 
paper are summarized as follows.

– To the best of our knowledge, we are the first to investigate the inclined anchored k-core 
and minimum detached k-coreproblems. We formally define the problems and prove the 
hardness of the problems.

– For the inclined anchored k-core problem, a layer-based method is adopted to accelerate 
the exploration, and upper bound based techniques are integrated to further speedup the 
procedure.

– For the minimum detached k-coreproblem, two heuristic strategies, i.e., conflict remove 
heuristic and degree decline heuristic, are proposed by leveraging different properties 
of the model.

– We conduct extensive experiments over 9 datasets to evaluate the efficiency and effec-
tiveness of proposed methods.

Roadmap The rest of this paper is organized as follows. In Sect. 2, we formally define the 
problems studied and show their properties. In Sect. 3, we present the solutions for the IAK 
problem. In Sect. 4, novel heuristic strategies are proposed for MDK problem. We report 
the experiment results in Sect. 5. We introduce the related work in Section 6 and conclude 
the paper in Sect. 7.

2  Preliminaries

In this section, we first formally define the inclined anchored k-coreand minimum detached 
k-coreproblems. Then, we present the analysis about the proprieties and hardness of the 
problems. Table 1 summarizes the notations frequently used throughout the paper.

2.1  Problem definition

We consider an unweighted and undirected graph G = (V, E), where V and E represent the 
sets of nodes and edges, respectively. We denote n = |V| and m = |E|. Given a subgraph 
S ⊆ G , N(u, S) is the set of adjacent nodes of u in S. deg(u, S) is the degree of u in S, i.e., 
deg(u, S) = |N(u, S)| . To measure the cohesiveness of subgraph, we employ the concept of 
k-core in this paper.

Definition 1 Given a graph G, a subgraph S is the k-core of G, denoted by Ck(G) , if 1) 
deg(u, S) ≥ k for each node u ∈ S ; 2) S is maximal, i.e., any supergraph S′ ⊃ S is not a 
k-core.
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Definition 2 Given a graph G, the coreness of a node u ∈ G , denoted by core(u), is the 
largest k such that u belongs to k-core, i.e.,core(u) = max{k|u ∈ Ck(G)}.

The k-core of a graph G can be obtained by recursively removing the node whose 
degree is less than k with a time complexity of O(m) [1, 22]. The pseudo code is shown 
in Algorithm 1.

Definition 3 Given a graph G, the k-peel of G, denoted by Pk(G) , is the set of nodes that 
have coreness equal to k, i.e., Pk(G) = Ck(G)�Ck+1(G).

The k-core model is widely used to measure the properties of the graph. In order 
to enlarge the k-core, we can offer some incentives to a set A of nodes, named the 
anchored nodes, to make them stay in the k-core community. That is, once a node is 
anchored, it is always reserved in the k-core, i.e., with infinite large degree. Through 
anchoring these nodes, some other nodes will join the k-core in cascade and finally the 
k-core is enlarged.

Table 1  Summary of notations Notation Definition

G an unweighted and undirected graph
V; E the node set of G; the edge set of G
n the number of nodes in G
m the number of edges in G
S a subgraph of G
N(u, S) the set of adjacent nodes of u in S
deg(u, S) the number of adjacent nodes of u in S
core(u) the coreness of u
Ck(G) ; Pk(G) the k-core of G; the k-peel of G
A a set of anchored nodes
D a set of detached nodes
F; E the close node set; the conflict node set
F(u,G) the followers of the anchored node u
F+(A,G) ; F−(A,G) the close (resp. conflict) followers of A
Score(A,G) the difference of F+(A,G) and F−(A,G)

1318 World Wide Web (2022) 25:1315–1341



1 3

Definition 4 Given a graph G and an anchored node set A ⊆ V  , the anchored k-core, 
denoted by Ck(G⊕A) , is the corresponding k-core of G with nodes in A anchored.

We use F(u,G) to denote the set of nodes that join the k-core when u is anchored, i.e., 
F(u,G) = Ck(G⊕ u)�Ck(G) , and call F(u,G) as the followers of u. As discussed, a com-
munity may have its own preferences, such as nodes with close or conflict interests. When 
selecting anchored nodes, we would like to preserve more users with close interests and 
less users with conflict interests. Given the set F (resp. E ) of nodes with close (resp. con-
flict) interests, we use F+(A,G) (resp. F−(A,G) ) to denote the close (resp. conflict) follow-
ers of A , i.e., F(A,G) ∩ F (resp. F(A,G) ∩ E ). To enlarge a community through anchoring 
nodes, intuitively, we want to involve more users with close interests and fewer ones with 
conflict interests. Then, we define the inclined score as follows.

Definition 5 [inclined score] Given a graph G, an anchored node set A , and the close and 
conflict node sets F and E , the inclined score of A , denoted as Score(A , G), is the differ-
ence between the number of close followers and that of conflict followers, i.e., Score(A , G) 
= F+(A,G) − F−(A,G).

We propose the concept of inclined score to better judge the effectiveness of anchored 
nodes by considering the inclination. When the context is clear, we omit the second param-
eter, i.e., G, from the notations.

Problem 1 (IAK problem) Given a graph G, the close and conflict node sets F and E , 
the degree constraint k and a budget b, the inclined anchored k-core (IAK) problem aims to 
anchor a set of b nodes A∗ with the largest inclined score, i.e.,

Example 3 Reconsider the graph in Figure 1. Assume k = 3 and b = 1 . The close and con-
flict node sets are F = {u1, u2, u3, u12} and E = {u9, u10, u11} , respectively. By anchoring 
the node u1 , we can obtain the anchored k-core {u1, u2,… , u8} with inclined score 3. The 
inclined score is -2, if we anchor u12.

Contrary to the anchor k-core problem, the dropout of certain nodes could collapse the 
k-core community, i.e., the collapsed k-core problem. As discussed, sometimes we may 
enforce the leaving of certain nodes to detach the conflict users from the community. Moti-
vated by this, we introduce the minimum detached k-core problem as follows.

Problem 2 (MDK problem) Given a graph G, the conflict node set E and the degree 
constraint k, the minimum detached k-core (MDK) problem aims to find the smallest node 
set of D∗

⊆ G , such that after the deletion of D∗ , the k-core of G contains no nodes in E . 
That is, Ck(G�D

∗) does not contain any nodes in E , i.e.,

Example 4 Reconsider the graph in Figure 1. Suppose k = 2 and the conflict node set is E = 
{u9, u10, u11} . The detached node set D = {u9, u12} is optimal result for MDK problem with 
size of 2, and Ck(G�D) does not contain any node in E.

A∗ = argmax
A⊆G∧|A|=b

Score(A)

D∗ = argmin
D⊆G∧Ck(G�D)∩E=∅

|D|
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2.2  Problem properties

In this section, theoretical analysis is conducted about the hardness and properties of the 
studied problems. According to Theorems 1 and 2, the inclined anchored k-core problem 
is NP-hard, and the objective function is non-monotonic and non-submodular. Then, we 
prove the minimum detached k-core problem is also NP-hard in Theorem 3.

Theorem 1 The IAK problem is NP-hard for k ≥ 3.

Proof When there are only close nodes in the graph, the inclined anchored k-core problem 
can be reduced to the traditional anchored k-core problem, which is NP-hard for k ≥ 3 [2]. 
Hence, the inclined anchored k-core problem studied in this paper is also NP-hard.

Theorem 2 The objective function of IAK problem is non-monotonic and non-submodular.

Proof Non-monotonic. We prove Score(X) is non-monotonic by constructing a coun-
ter example. Reconsider the graph in Figure  1. For k = 3, E = {u9, u10, u11} and F = 
{u1, u2, u3, u12} , suppose A = {u3} . We have Score(A) = 2 . By adding u12 to A , the 
inclined score becomes 0. While, the score becomes 3, if we add u1 to A . Thus, the objec-
tive function is non-monotonic.

Non-submodular. Given two sets A and B, we say the function Score(X) is submodular if 
Score(A) + Score(B) ≥ Score(A ∪ B) + Score(A ∩ B) . We also show the inequality does not 
hold by constructing a counter example. In Figure 1, for k = 3, E = {u9, u10, u11} and F = 
{u1, u2, u3, u12} , suppose A = {u10} and B = {u12} . We have Score(A) = −2 , Score(B) = −2 , 
Score(A ∩ B) = 0 and Score(A ∪ B) = −2 . Hence, the inequation does not hold. Therefore, 
the theorem is correct.

Theorem 3 The MDK problem is NP-hard for k ≥ 2.

Proof We prove this theorem by reducing set cover problem [15] to MDK problem. Given 
an element set Q = {e1, e2,⋯ , em} with m elements and a collection T = {T1, T2,⋯ , Tn} 
of n sets whose union equals Q . The set cover problem aims to identify the smallest sub-
collection R ⊆ T  whose union equals Q . Then we construct a graph G such that we can 
find a minimum detached node set D for MDK problem if and only if the set cover problem 
is answered. Following is the construction procedure.

First, we create some nodes. For each element ei in Q , we generate a node ui and 
let conflict set E = {ui|1 ≤ i ≤ m} . For each set Tj ∈ T  , we generate a node vj . Let 
V = {vj|1 ≤ j ≤ n} . We add a k-core M with at least (m + n) × k nodes. Then, we build 
some edges between these nodes. If an element ei ∈ Tj , we add an edge between ui and 
vj . Let t be the max deg(ui,V) for any ui ∈ E . For each node vj in V, let it be connected to 
k nodes in M. For each node ui in E , let it connected to k − deg(ui,V) nodes in M. Con-
sequently, the construction is completed. Figure 2 is a construction example with m = 6 , 
n = 4 and k = 3.

With the construction, we can ensure that i) M is always a k-core, no matter how many 
nodes in V and E are deleted; ii) vj always in k-core, no matter how many nods in V�{vj} 
and E are deleted; iii) once vj is deleted, all its neighbors ui in E will not belong to k-core.
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By doing this, for any k ≥ t , the sub-set D of V corresponding to the smallest sub-col-
lection R ⊆ T  whose union equals Q of set cover problem is the optimal solution of MDK 
problem. Hence, this theorem is correct.

Figure 2  Construction example for NP-hard proof, where m = 6 , n = 4 and k = 3

3  Solution for IAK problem

In this section, a baseline search framework is firstly proposed. Then, optimized solu-
tions are developed to accelerate the computation.

3.1  Baseline algorithm

For the inclined anchored k-core problem, a native method is to enumerate all possible 
node sets A with size b and compute the corresponding inclined score. Then, we just 
return the result with the largest score. However, the exact algorithm is time-consuming 
because of the large number of combinations. Due to the NP-hardness of the inclined 
anchored k-core problem, we resort to the greedy heuristic as the traditional anchored 
k-core solution does [28]. The details are shown in Algorithm 2. It iteratively finds the 
node with the largest score in current k-core. It is easy to verify that we only need to 
consider the nodes not in the k-core as candidates.

3.2  Follower computation
Because of the non-monotonic property, the pruning techniques developed for the tradi-
tional anchored k-core problem are no longer held for our inclined case. For our problem, 
an essential task is to compute the followers of an anchored node.
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Lemma 1 By anchoring a node, all of its followers are from Pk−1.

Proof By anchoring a node, the coreness of a node increases at most 1 [28]. Therefore, if 
one node u is not in (k − 1)-core, then anchoring a node x can increase the coreness of u to 
k − 1 at most, and u cannot appear in the k-core. Thus, it cannot be the follower of x.

Peel layer Based on the definition of (k − 1)-peel, we can divide the nodes in Pk−1 into 
different layers. Motivated by the onion layer structure  [28], we recursively remove the 
node with degree less than k and organize the nodes in Pk−1 in a peel layer structure P. 
Thus, the set of nodes which are deleted in the i-th batch belong to the i-layer, denoted by 
Pi . Specifically, P1 = {u | deg(u,Ck−1(G)) < k ∧ u ∈ Ck−1(G)} . Due to the deletion of P1 , 
we can get P2 in the same manner. Similarly, we recursively get all Pi . So, the peel layer 
structure P =

⋃t

i=1
Pi , where t represents the recursion times. We use p(u) to denote the 

layer index of a node u, i.e., p(u) = i when u ∈ Pi.
According to the peel layer structure P and Lemma 1, we have that the valid candidate 

anchored nodes with at least one follower must belong to P, which can significantly reduce 
the size of candidates. We propose an effective candidate pruning technique based on peel 
layer structure based on Observation 1. To better explain the pruning rule, we first repre-
sent the definition of ladder path.

Definition 6 Given an anchored node x, there is a ladder path from x to u, denoted by 
x ⇝ u , where (i) all nodes are from P; (ii) p(v) < p(w) for every two consecutive nodes v 
and w along this path.

Observation 1 Given a graph G, if a candidate anchor x has at least one follower u, we 
have that there exists a ladder path x ⇝ u.

Clearly, if there is no one ladder path x ⇝ u for a node x, it cannot be considered as a can-
didate anchor. Then, we compute the followers for each candidate anchor based on the radiate 
search after candidate reduction. We give the definition involved before presenting the details.

Definition 7 [distance] Give a graph G and a node u, the distance of u, denoted as dis(u), 
is the difference between degree constraint k and the number of neighbors of u in k-core, 
i.e., dis(u) = k − deg(u,Ck(G)) . The distance of u represents that u still need dis(u) nodes to 
satisfy the requirement of degree not less than k.

Radiate Search We find the followers of anchors by radiate search, which is similar to 
breadth-first search. During the search procedure, each node has four states. When we start to 
anchor a node u, then other nodes will be listening l(v). Due to the degree of anchored node 
u is infinity, which satisfies the degree constraint, i.e. dis(u) ≤ 0 , u is received r(u). A node 
is activated a(v) when its neighbor is received or activated. In addition, if p(v) ≥ p(u) , then 
the node v cannot be activated based on the layer structure P. After anchoring a node u, the 
distance of each neighbor v of u subtract 1, and we check whether the distance of v is 0. If the 
distance is 0, then v is received, so we continue to check the neighbors of v. Otherwise, we 
need to check that whether the neighbors of v can participate in the k-core to decrease dis(v). 
Note that, if dis(v) > a(v) + r(v) + l(v) , then the distance of v cannot be 0, thus, v is closed 
c(v). The details are described in Algorithm 3.
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At first, we set the status of anchored node x as received (Line 1). Then, we process all 
other nodes in G (Lines 2-4). For each node, we compute the degree of v in Ck(G) (Line 3) 
and obtain the distance of v. Then, we set the status of v as listening (Line 4). After that, we 
set queue Q as empty in Line 5. In Lines 6-9, for each node w who is the neighbor of x or 
belongs to layer structure P with p(w) > p(x) , we push it into the queue Q (Line 7). Then, we 
update the distance for both w and x by subtracting 1 (Line 8). If the distance of w is no larger 
than 0, we set the status of it as received (Line 9). In Lines 10-21, we process all nodes in Q 
until it becomes empty. In Line 11, we pop a node u from Q. If the distance of u is larger than 
a(u) + r(u) + l(u) which means the node u cannot be the follower, we set the status of u as 
closed, and use the Shrink of Algorithm 4 to update its neighbors’ distance and status (Lines 
12-13). Otherwise, we set the status of u as activated (Line 15) and process each listening 
node z who is the neighbors of u (Lines 16-21). If node z is not in the k-core and p(z) > p(u) , 
we push z into Q and update the distance u and z by subtracting 1. Then, we judge the dis-
tance of z. If dis(z) is no larger than 0, we set the status of z as received. Finally, we return all 
received nodes in P until Q is empty.

Example 5 As shown in Figure 3, given the part of a graph G and the distance d(u) for 
each u, when we anchor the node u3 , then u3 is received and its neighbors are activated and 
other nodes are listening. The distance of u2 subtract 1, i.e., d(u2) = 4 and the distance of 
neighbors { u5, u7, u4, u1 } of u2 subtract 1. We have that d(u5) = 0, d(u2) = 0. Thus, the node 
u2 and u5 are received. Similarly, activating u1 can activate its neighbors and make their dis-
tance subtract 1. Finally, we find that all nodes are received except u8.

3.3  Search algorithm

Let CC(u) be the connected component of u. The number of close nodes in CC(u) is 
denoted by f +(u) . Then, we can use f +(u) to serve as an upper bound to filter the candi-
date. It is easy to verify the correctness of Lemma 2.
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Lemma 2 Let � denote the largest marginal score currently after anchoring a candidate 
node. If f +(u) < 𝛼 , we can remove u from the candidate.

By further extending the result in Lemma 2, we can maintain a tighter upper bound when 
conducting the radiate search. That is, when exploring the layer structure, we can decease the 
upper bound value f +(u) by if we meet a node in the conflict set. Then, we can terminate the 
computation when the updated upper bound violates Lemma 2. By integrating all optimiza-
tion techniques, we present the KSM algorithm as shown in Algorithm 5. We skip a node u, if 
f +(u) is no large than � . Otherwise, we conduct a radiate search that integrates the extended 
Lemma 2. At the end of current iteration, we have the best anchor u∗ with maximum score and 
merge it into A . Lastly, Algorithm 5 returns the set A of b anchored nodes after b iterations.

4  Solution for MDK problem

In this section, we first present an exact algorithm by enumerating all the combinations. 
Then, we propose two heuristic algorithms based on the properties of the problem.

4.1  Exact Algorithm

Recall that the MDK problem is to find the smallest node set D from G so that Ck(G�D) 
does not contain any nodes in the conflict node set E.

Observation 2 The deletion of node in G�Ck(G) will not influence the structure of k-core.

Observation 3 Given a graph G and the conflict set E , for the MDK problem, the size of 
the optimal solution D is no larger than that of E.

The observation is easy to verify, since 1) the node in G�Ck(G) will be deleted when 
computing the k-core, and 2) Ck(G�E) must not contain E . Therefore, to find the optimal 

Figure 3  Example of radiate search
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solution of MDK, we can first compute the k-core of G, and then enumerate all subsets 
D�

⊆ V(Ck(G)) with size from 1 to |E| . Then, we select the first encountered node set D′ 
such that Ck(G�D

�) does not contain any nodes in E . In the worst case, the time complexity 
of the algorithm is O(2|V(Ck(G))||E(Ck(G))|) . The above solution is too cost to be adopted in 
real applications, especially when |E| is large. In the next sections, we turn to heuristic solu-
tions, which can return a competitive result efficiently.

4.2  Conflict removing heuristic

For any node v ∈ V(Ck(G)) , if we want v to not be contained in Ck(G) , there are two 
approaches, 1) one is to delete v directly, and 2) the other is to delete deg(v,Ck(G)) − k + 1 
v’s neighbors in Ck(G) . Considering that we aim to find the smallest node set D , the lat-
ter method usually requires more nodes than the former method, unless deg(v,Ck(G)) = k . 
Before introducing the detailed heuristic method, we first show a property of k-core in 
Lemma 3.

Lemma 3 Let S be a subset of k-core but not in (k + 1)-core of G. Then, there must exist a 
node u in S such that S∖u does not satisfy the degree constraint of k-core.

Proof Let v be a node in S with the minimum degree. Then, deg(v, S) must equal k, otherwise 
S should also be inside (k + 1)-core. Suppose u is a neighbor of v in S. After u is removed, the 
degree of v in S will be k − 1 . Thus, S∖u cannot be a k-core, and the lemma holds.

Since D = E is a solution for MDK problem, although not necessarily the opti-
mal one, in this heuristic method, we try to optimize this solution by shrinking its 
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cardinality. According to Lemma  3, for a node v ∈ E ∩ Pk , i.e.,deg(v,Ck(G)) = k , if 
one of its neighbor u in Ck(G) is deleted, v cannot stay in Ck(G) due to the degree con-
straint. Moreover, all neighbors of u in E ∩ Pk cannot exist in Ck(G) either. Therefore, 
D� = (E�(E ∩ Pk ∩ N(u,G))) ∪ {u} is a superior solution compared with D = E . Based 
on this idea, we propose our conflict removing heuristic (CRH) algorithm, which tries to 
reduce the result size iteratively. The details of this algorithm is shown in Algorithm 6.

In Algorithm 6, we first compute the k-core of G (line 1). Then, we iteratively select 
nodes to be removed from Ck(G) until Ck(G) does not contain any node in E (lines 3-21). 
Let Ek be the nodes in E with degree equal k (line 4) in the k-core, and Nk be the neigh-
bors of each node in Ek (line 5). If there exist nodes in Ek , we delete the node from Nk that 
has the largest number of neighbors in Ek . Otherwise, we delete the node from E that has 
the largest coreness (lines 7-18). Note that, the nodes in Nk may also belong to E , so they 
need to be handled differently (lines 9-16). After each iteration, we update k-core and E 
(lines 20-21). Finally, we returned the detached node set D in line 22.

4.3  Degree decline heuristic

The CRH algorithm is based on the idea that to make a node v ∈ V(Ck(G)) dropout of 
Ck(G) , we need to delete deg(v,Ck(G)) − k + 1 v’s neighbors in Ck(G) , i.e., local perspec-
tive. However, it is undesirable to put all these neighbors of each node in E into D . Con-
sidering the effect of cascade in the k-core, i.e., global perspective, it may be enough to 
remove only a very small number of nodes from Ck(G) , such that the degree of each node 
in E is less than k in Ck(G) . Motivated by this, for each node u in Ck(G) , we use Dec(u) to 
measure the contribution of deleting u in the MDK problem. Specifically, Dec(u) is the 
number of neighbors of the nodes in E that are removed with the deletion of u, i.e.,

Based on the concept of Dec(u), we introduce our degree decline heuristic (DDH) algo-
rithm. The details of the algorithm is shown in Algorithm 7. In line 1, we first compute the 
k-core of G. Then, we iteratively select a node u∗ from Ck(G) with the maximum Dec(u) for 
deletion, until all nodes in E do not exist in k-core (lines 3-9). Finally, we return the set of 
detached nodes in line 10.

Dec(u) =
∑

v∈E

deg(v,Ck(G)) − deg(v,Ck(G�{u}))
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Note that, in Algorithm 7, we need to compute Dec(u) for each node in candidate set. 
Let I(u) be the set of nodes that are removed from the k-core after u is deleted, i.e.,

To speed up the selection of the node with the largest Dec from V(Ck(G)) at each iteration, 
we propose the following lemma to avoid the computation of Dec for some nodes.

Lemma 4 Given two nodes u and v in G, we have Dec(v) ≤ Dec(u), if v ∈ I(u).

Proof Since v ∈ I(u) , it implies that I(v) ⊆ I(u) . Hence, Dec(v) ≤ Dec(u), and the lemma 
holds.

5  Experiments

In this section, comprehensive experiments are conducted over 9 datasets to evaluate the 
efficiency and effectiveness of proposed techniques.

5.1  Experiment setup

Algorithms In the experiments, we implement and compare the following algorithms. The 
first 5 algorithms is for the IAK problem.

– Rand: select b nodes that are not in the k-core randomly.
– Exact-IAK: enumerate all possible combinations with the optimal result.
– Traditional: obtain the node set with traditional anchored k-core model.
– BL: the baseline greedy algorithm, i.e., Algorithm 2.
– KSM: the optimized algorithm i.e., Algorithm 5.

Then, the following 3 algorithms is for the MDK problem.

– Exact-MDK: enumerate all possible combinations with size from 1 to |E| and return the 
optimal solution.

– CRH: The conflict removing heuristic algorithm, i.e.,Algorithm 6.
– DDH: The degree decline heuristic algorithm, i.e.,Algorithm 7.

Note that, for MDK problem, there is no random and traditional solutions. This is because, 
the results returned by random and traditional solutions may be far from satisfied due to the 
removal of all the nodes in conflict set E.

Datasets and workloads We conduct experiments on 8 real-world networks, which 
are public available in Networkrepository1 and SNAP2. We also employ 1 artificial graph, 
which is generated by GTGraph with 500 nodes and 5000 edges. Table 2 shows the statis-
tic details of the datasets. Note that, nodes in the original graphs have no close or conflict 

I(u) = V(Ck(G))�V(Ck(G�u))

1 http://networkrepository.com
2 http://snap.stanford.edu
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properties, so we use a method similar to BFS to assign the labels to each node in the 
datasets. For each connected component in the original graph, we randomly select an initial 
node and regard it as a close, and each neighbor of the initial node has a 50% probability of 
being close, a 20% probability of being conflict, and a 30% probability of being unchanged 
(i.e., no label). For an unchanged node, each of its neighbor is set as unchanged. Then, we 
repeat the process for the encountered nodes in BFS. In our experiment, both k and b vary 
from 5 to 25. For each setting, we run the algorithm 20 times and take the average per-
formance as the final result. All the programs are implemented in standard C++. All the 
experiments are performed on a PC with an Intel i5-9600KF 3.7GHz CPU and 64 GB main 
memory.

5.2  Effectiveness evaluation for IAK problem

To evaluate the effectiveness of algorithms for IAK problem, we report the ratio of inclined 
score of KSM and Exact-IAK by anchoring b nodes. This is because KSM only enhances 
the efficiency compared to BL. Then, we compare the results obtained by the traditional 
anchored k-core and our inclined anchored k-core problems. In addition, case studies are 
also conducted.

5.2.1  Compared with Exact‑IAK

Table  3 reports the inclined score ratio of KSM and Exact-IAK by anchoring b nodes, 
where k = 10 and b varies from 1 to 3. We set the inclined score ratio of Exact-IAK as 
100% and that of KSM is score returned by KSM

score returned by Exact-IAK
× 100% . Note that, due to the high compu-

Table 2  Statistics of datasets Dataset nodes edges davg dmax

Artificial 496 3,971 16 89
Eco-mahindas 1,258 7,513 12 206
Soc-hamsterster 2,426 16,630 14 273
Email 1,005 16,064 32 345
Facebook 4,039 88,234 44 1045
Brightkite 58,228 214,078 7.4 1134
Arxiv 34,546 420,877 24.4 846
Gowalla 196,591 950,327 10 14,730
YouTube 1,134,890 2,987,624 5 28,754

Table 3  Inclined score ratio of Exact-IAK and KSM

Ratio b = 1 b = 2 b = 3

Exact-IAK KSM Exact-IAK KSM Exact-IAK KSM

Artificial 100% 100% 100% 100% 100% 100%
Eco-mahindas 100% 100% 100% 100% 100% 100%
Soc-hamsterster 100% 100% 100% 100% 100% 97%
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tational cost of Exact-IAK, we only test Exact-IAK on small datasets with small b values. 
As observed, KSM only slightly drops in one setting. In addition, Table 4 reports the run-
ning time of Exact-IAK and KSM. We can see KSM achieves significant speedup com-
pared with Exact-IAK, which further verifies the effectiveness of the greedy framework.

5.2.2  Compared with rand and traditional

Compared with Rand In Figure 4(a), we report the inclined score compared with Rand on 
6 larger datasets, i.e., Email, Facebook, Brightkite, Arxiv, Gowalla, YouTube with b = 10 
and k = 10 . The datasets are ordered by their network sizes, i.e., the number of edges. Note 
that, the larger the inclined score is, the more effective the algorithm will be. As we can 
see, KSM outperforms Rand by a big margin. This is because, there is usually few follow-
ers for anchored nodes that are selected in random.

Compared with Traditional We report the results by compared the inclined model 
with the traditional model. The corresponding inclined scores are shown in Figure 4(b). 
Traditional does not consider the properties of different nodes, and only focuses on enlarg-
ing the total k-core. As observed, Traditional may lead to a very small inclined score, even 
a negative score, such as Youtube. Thus, it is necessary to develop algorithms to handle the 
inclined case.

5.2.3  Case study

We conduct a case study on Facebook dataset with k = 20 and b = 1 . Figure 5(a) and 
(b) are the results obtained by KSM and Traditional, respectively, where blue/red 
nodes denotes the close/conflict nodes, and white nodes are the ones without labels. As 
shown in Figure 5(a), the best anchored node is the one with id 2300. It has 5 followers 
and all of them are close nodes, i.e., the inclined score is 5. As shown in Figure 5(b), 

Table 4  Response time of Exact-IAK and KSM

Running Time b = 1 b = 2 b = 3

Exact-IAK KSM Exact-IAK KSM Exact-IAK KSM

Artificial 0.0005 0.00005 0.1131 0.0001 18.44 0.0002
Eco-mahindas 0.0097 0.0006 5.8537 0.0011 2510 0.0016
Soc-hamsterster 0.0435 0.0001 50.913 0.0003 42985.6 0.0005

Figure 4  Effectiveness evaluation compared with Rand and Traditional for IAK problem
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the returned anchor is with id 1611. It has 9 followers, where there are 3 close and 4 
conflict nodes, i.e., the inclined score is -1. Compared with the anchored node 2300, 
though the node 1611 has more followers, it has smaller inclined score.

5.3  Effectiveness evaluation for MDK problem

To evaluate the effectiveness of the proposed two heuristic algorithms for MDK prob-
lem, we compare them with Exact-MDK on a small dataset. Then, we conduct experi-
ments on the large datasets to further evaluate the performance of the two strategies.

5.3.1  Compare heuristic solutions with Exact‑MDK

Due to the prohibitive time cost for Exact-MDK algorithm, in this experiment, we 
select a small dataset, i.e.,Eco-mahindas, to evaluate the performance of the heuris-
tic solutions and Exact-MDK by varying k and |E| . The results are shown in Figure 6. 
The number on the bar is the corresponding response time. Since both heuristics take 
less than 10−3 seconds to complete, we only mark the time cost for Exact-MDK in the 
figure. As we can see, the two heuristics perform as well as the Exact-MDK in most 
settings. Moreover, the heuristic algorithms are much faster than Exact-MDK, which 
verifies the advantage of proposed heuristic strategies.

Figure 5  Case study for IAK problem

Figure 6  Effectiveness evaluation compared with Exact-MDK
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5.3.2  Compare detached node set size

In this experiment, we report the size of detached node set, i.e.,|D| , retrieved by CRH 
and DDH in Figures 7 and 8 by varying k and the number of conflict nodes on the larg-
est 6 datasets, respectively. Recall that, D = E is an answer of MDK problem. Therefore, 
we use |E| as a benchmark to measure the effectiveness of CRH and DDH, i.e.,the gray 
bar in Figures 7 and 8. As we have seen, in most cases, both CRH and DDH are able to 
obtain smaller D . DDH performs better than CRH, because CRH is able to select nodes 
from global perspective, i.e., leveraging the cascade phenomenon of k-core. While, DDH 
is based on local observation, i.e., only replace part of nodes in D = E . For example, in 

Figure 7  Compare the size of detached node set by varying k 
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Figure 7(d) with k = 25 , |E| is 300, while the size of D retrieved by CRH and DDH are 128 
and 115, respectively. The results of CRH and DDH are similar only when k or |E| is small. 
This is because, the cascading phenomenon becomes more prominent for larger k and |E|.

5.3.3  Compare size of remaining k‑core

In this experiment, we report the size of remaining k-core, i.e., i.e.,|Ck(G�D)| , after the dele-
tion of detached node set from graph G for CRH and DDH. The result are shown in Figures 9 
and 10 by varying k and the number of conflict nodes on the largest 6 datasets, respectively. 
We use the size of original k-core as a benchmark, i.e.,|Ck(G)| . It can be seen from the results 

Figure 8  Compare the size of detached node set by varying |E|
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that the remaining k-core becomes smaller due to the removal of D , and the variation increases 
gradually with the increase of k and |E| . Although DDH takes into account the cascade effect 
when selecting nodes, the final remaining k-core is usually larger than that of CRH. For exam-
ple, in Figure 9(e) with k = 25 , the size of remaining k-core of DDH is 2138, while CRH is 
only 313. From this perspective, it also reflects that DDH is more effective than CRH.

5.4  Efficiency evaluation for IAK problem

To evaluate the efficiency of our algorithms for IAK problem, we report the response time of 
BL and KSM by varying b and k on the largest 6 datasets. The results are shown in Figures 11 
and 12, respectively. It is clear that KSM constantly outperforms BL on all datasets, and can 

Figure 9  Compare the size of remaining k-core by varying k 
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achieve up to 2 orders of magnitude speedup. As observed, the response time of both methods 
increases when b increases. This is because more iterations need to be conducted. When k 
increases, the response time also grows. This is because when k is larger, the nodes in the layer 
structure have a larger degree, which leads to the need to explore more neighbors and greater 
time consumption.

5.5  Efficiency evaluation for MDK problem

In this experiment, we report the response time of CRH and DDH algorithms for MDK prob-
lem by varying k and the size of conflict node set on the largest 6 datasets. The results are 

Figure 10  Compare the size of remaining k-core by varying |E|
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shown in Figures 13 and 14. As can be seen from the results, CRH is basically faster than 
DDH by at least one order of magnitude. This is because CRH only needs to visit the nodes 
in E and their neighbors, i.e., local observation, while DDH needs to traverse all the nodes in 
Ck(G) . However, DDH is also able to finish in a competitive time, and takes only about 100 
seconds for the largest graph. Since CRH only needs to traverse E , the time required for CRH 
is essentially constant when k varies. Moreover, the response time CRH slightly increases 
when the size of E becomes larger. The response time of DDH, on the other hand, is sensitive 
to the change of k and |E| . With the increase of k, DDH runs faster, because there are fewer 
nodes in k-core. However, as |E| increases, the response time of DDH become larger. This is 
because it takes more iterations to exclude all the nodes in E from k-core.

Figure 11  Efficiency evaluation for IAK problem by varying b 
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6  Related work

As a common data structure, graphs are widely used to model the relationships among dif-
ferent entities, such as IoT [14], social network [27] and brain network [24]. In social net-
work analysis, different cohesive subgraph models have been proposed to accommodate 
different scenarios, such as k-core [20, 21], k-truss [13, 30] and clique [5, 23]. The k-core 
model is firstly proposed by Seidman [20], which has been widely adopted for social net-
work analysis with numerous applications, such as protein function prediction [26], social 
contagion [25] and influence study [16].

Figure 12  Efficiency evaluation for IAK problem by varying k 
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In social networks, the engagement and breakdown of certain nodes/edges can greatly 
influence the corresponding community. Due to the unique applications, the problems of 
finding critical nodes or edges have attracted significant attention in the recent, and different 
cohesive subgraph models and settings are studied, e.g., [2, 8, 28, 29]. These problems are 
usually NP-hard. Therefore, heuristic strategies are widely adopted in the previous studies. 
Bhawalkar et al. [2] propose the anchored k-core problem, which aims to maximize the size 
of k-core by anchoring b nodes. The authors also prove the problem is NP-hard. To acceler-
ate the computation, [28] develops an efficient algorithm for the anchored k-core problem 
on large-scale graphs. [11] proposes the directed anchored k-core problem by considering 
the case in directed graphs. In  [17], authors further investigate the anchored k-core prob-
lem by minimizing the total budget. Different from the anchored k-core problem, the col-
lapsed k-core problem aims to minimize the size of k-core community by deleting certain 

Figure 13  Efficiency evaluation for MDK problem by varying k 
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nodes [29]. In [7, 32], authors attempt to minimize the corresponding k-core by removing 
the critical edges from the graph. [18, 19] consider the k-core minimization problem based 
on the game theory model. Besides k-core model, the collapsed problems are also investi-
gated under different models, such as k-truss model [9, 33] and bipartite graph settings [31]. 
However, none of them considers the different property of nodes, i.e., close or conflict.

Figure 14  Efficiency evaluation for MDK problem by varying |E|

7  Conclusion

Anchored/collapsed k-core problem has attracted great attentions in the recent. However, 
the previous studies usually treat the nodes equally, which may fail to better characterize 
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the real scenarios. Motivated by this, in this paper, we propose and study the inclined 
anchored k-coreand minimum detached k-coreproblems by considering the node proper-
ties, i.e., close or conflict. We formally define the problem and prove their hardness. To 
facilitate the computations, different search methods and heuristic strategies are developed. 
Finally, comprehensive experiments on real-life networks are conducted to verify the effec-
tiveness and efficiency of the developed techniques.
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