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Abstract
Knowledge Tracing (KT) refers to the problem of predicting future learner performance 
given their historical interactions with e-learning platforms. Recent years, Deep Learning-
based Knowledge Tracing (DLKT) methods show superior performance than traditional 
methods due to their strong representational ability. However, researchers usually focus on 
innovations in model structure, while ignoring the importance of Representation Learn-
ing (RL) for DLKT. Investigating previous studies, it is found that the mining and integra-
tion of learning-related factors can effectively improve the performance of DLKT models. 
This paper focuses on providing a model embedding interface for DLKT by considering 
multiple types of learning-related factors. We first explore and analyze four types of learn-
ing-related factors: exercise and skill, the attributes of exercise, learners’ historical per-
formance, and learners’ forgetting behavior in the learning process. We then propose an 
Extensible Representation Learning (ERL) approach for DLKT to extract and integrate the 
representations of these four types of factors by setting five components: base embedding, 
auxiliary embedding, performance embedding, forgetting embedding, and embedding inte-
gration. Finally, we apply ERL into two mainstream DLKT models and comprehensively 
evaluate the proposed approach on several real-world benchmark datasets. Results show 
that ERL can significantly improve the performances of these two network on predicting 
future learner responses.

Keywords Knowledge tracing · Deep learning · Representation learning · Learner 
modeling

1 Introduction

With the popularity of e-learning platforms, learners can acquire knowledge by self-study 
without leaving home. To recommend suitable learning contents to learners, e-learning 
platforms need to understand learners’ knowledge accurately [24], which is often done 
with Knowledge Tracing (KT). KT is an important task in e-learning. For example, it is 
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a stepping stone for the tasks of the knowledge graph [22, 32]. The goal of KT task is to 
model the Knowledge State (KS) of each learner, i.e., the level of the learner’s mastery of 
skills, based on the history of the learner’s interactions with the platform. On an e-learning 
platform, learners can learn related skills by completing specific exercises (e.g., if addition 
is a skill, “1 + 1” is its exercise.), and the system traces the learner’s KS about the learning 
skills based on a KT model. Finally, the platform determines whether the learner have mas-
tered these skills by a when-to-stop policy [31].

Usually, KT is formulated as a supervised sequence learning problem [38]: given a 
learner’s interaction sequence It− 1 = (i1,i2…it− 1) up to the timestamp t (where i = (e,r) is 
an input pair containing the exercise e at one timestamp and the learner’s response r (cor-
rect/incorrect) to e), the exercise et at timestamp t on a specific learning scenario, KT mod-
els try to predict the probability that the learner will correctly perform a learning action 
(e.g., responding the exercise) at timestamp t, i.e., p(rt = 1∣et,It− 1), [13, 16, 36].

Recent years, Deep Learning-based Knowledge Tracing (DLKT) methods [11, 30, 36, 
38] have shown superior performance than traditional models, such as Bayesian knowl-
edge tracing [7], latent factor models [4, 28] and item response theory [15, 33]. Figure 1 
shows the general working paradigm of DLKT, where the role of Model Embedding is to 
provide the exercise embedding (as x), the other is the exercise-response embedding (as y) 
for DLKT. The former takes part in the prediction process in Response Prediction network 
together with the current KS of the learner, while the latter is used to update the learner’s 
current KS in Leaner Knowledge State Network, and the updated KS is used to predict the 
response of the exercise in the next timestamp.

Theoretically, x and y are generated based on the exercise tag and the corresponding 
real response tag, i.e., x and y represent the embedding of exercise e and the embedding 
of exercise-response (e,r), respectively. However, due to the sparsity of exercise data [11, 
26], earlier DLKT models [30, 38] use skill embedding instead of exercise embedding as 
the model input to avoid over-parameterization and over-fitting. As the sparsity of exercise 
data is relieved to some extent [11, 26], more and more factors (e.g., exercise [11], forget-
ting [24, 27], exercise text [20], etc) are integrated into the specific model, making exercise 
a full representation.

However, due to the difference of learning content and learning setting in differ-
ent e-learning platforms, the types and quantities of learning-related factors modeled in 
specific models are different, which is not conducive to the subsequent application and 

Learner Knowledge 
State Network

Model Embedding

Response Prediction
Network

Deep Learning-based Knowledge Tracing

Fig. 1  General working paradigm of DLKT (only the workflow at timestamp t is shown, and the following 
model embedding and knowledge tracing are default at timestamp t)
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promotion of the model. Therefore, it is necessary to provide a systematic method to guide 
the representation learning (RL) of these factor, which has not received much attention in 
DLKT so far. RL [2] makes it easier to extract useful information when building classifiers 
or predictors by learning representations of the data, which has been successfully applied 
in various fields of machine learning, such as object recognition [18, 21], natural language 
processing [3, 14], transfer learning [1, 8] and so on.

In this paper, we propose an extensible representation learning approach, dubbed ERL, 
which aims to provide a model embedding interface for DLKT by mining and integrat-
ing multiple types of learning-related factors. We first emphasize the importance of factor 
mining and integration for DLKT by investigating the results of recent models integrated 
multi-factors. Then, we explore and analyze four types of learning-related factors: exercise 
and skill, the attributes of exercise, learners’ historical performance, and learners’ forget-
ting behavior in the learning process, which is inspired by the nature of learning behavior 
and previous researches. Moreover, we extract the representations of these four types of 
factors by setting four embedding components: Base Embedding (BE), Auxiliary Embed-
ding (AE), Performance Embedding (PE) and Forgetting Embedding (FE), respectively. 
BE involves the representation extraction of skill data and exercise data, dealing with the 
sparsity of exercise data; AE involves the representation extraction of various features 
(e.g., template, hint, etc.) of the exercise, and provides local extensibility to integrate one 
or more auxiliary factors; PE involves the representation extraction of the historical perfor-
mance of each learner; FE involves the representation extraction of the forgetting features 
of each learner, including the lag time between two adjacent interactions with the same 
exercise and two successive interactions. Finally, we integrate the representations of the 
above four types of factors by setting a Embedding Integration (EI) component, which can 
effectively solve the problems of over-parameterization and over-fitting caused by integra-
tion of too many factors.

To illustrate effectiveness of four types of learning-related factors and the usability of 
the final representation learning approach, we apply the proposed approach into two main-
stream representative DLKT models: DKVMN and AKT (the latest DLKT network). We 
design extensive experiments on three real-world datasets to comprehensively evaluate the 
two applied models. Results show that the proposed approach can significantly improve 
the performances of the latest network on predicting future learner responses, and the final 
performances outperform the state-of-the-art DLKT models1. A preliminary version of this 
report appeared in the Proceedings of the 2021 IEEE International Conference on Multi-
media and Expo (ICME) [12].

The contributions of this work are summarized as follows:

(1) Investigating the results of recent studies in DLKT, we find that although the structural 
innovations of the model have been fully demonstrated, the improvement of model 
performance brought by factor mining should not be underestimated.

(2) Exploring four types of factors that may affect learners’ knowledge tracing results, 
and analyzing these factors at the data level from the perspective of influencing the 
exercise-making accuracy of learners.

1 The corresponding source code and all preprocessed datasets are available at https:// github. com/ HLBil 
ove/ ERL- master
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(3) Proposing an extensible representation learning approach, dubbed ERL, which is used 
mined and integrated the above four types of factors, to provide a model embedding 
interface for DLKT.

(4) Applying ERL two mainstream representative DLKT models, and evaluating the two 
applied instances of ERL on three real-world benchmark datasets. The results show 
that the proposed framework improves state-of-the-art KT methods on predicting future 
learner responses.

In the remainder of this paper, we introduce the related work in the next section. 
Section  3 investigates the role of model innovation and factor mining in DLKT. The 
ERL approach is proposed in Section  4; two application instances, ERL+DKVMN and 
ERL+AKT, are proposed in Section 5. Experiments and Analysis follow in Section 6, with 
conclusion afterwards in the last section.

2  Related work

Since this paper aims to mine and integrate representations of multi-type learning-related 
factors to improve DLKT, this section will review the related works in this field in terms of 
the number of factors integrated in existing models.

2.1  Single‑factor models

For single-factor KT models, the single factor usually refers to exercise or skill. The exer-
cise library is considerably larger than the skill set, so many exercises are only learned 
by few learners in most e-learning platforms [11, 26], resulting in sparse exercise data 
(Figure 2 shows the distribution of the number of skills and the number of exercises on 
the learned times in ASSISTments2009 and ASSISTments2017, respectively). Due to the 
sparsity of exercise data, skills instead of exercises are used to generate x and y in DLKT 
models at the beginning to avoid over-parameterization and over-fitting [11], i.e., s = e in 
Figure 1 (ps, non-sparse exercise data is still the first choice for x and y).

The first single-factor DLKT model is Deep Knowledge Tracing (DKT) [30], which 
applies Long Short-Term Memory (LSTM) network [29] to KT tasks. DKT uses hidden 
states as a kind of summary of the past exercise-making sequence. Dynamic Key-Value 
Memory Networks (DKVMN) [38] models the user’s KS into two memory matrices: key-
memory and value-memory, which are used to trace the user’s KS about each underly-
ing skill by automatically learning the correlation between the input exercise and the skill. 
The Self-Attentive Knowledge Tracing (SAKT) model [26] applies attention mechanism to 
DLKT for the first time, to deal with the sparsity of the exercise data. SAKT predicts the 
user’s performance on the current exercise by considering the relevant exercises from his/
her past exercise-making sequence.

2.2  Double‑factor models

For double-factor KT models, the two factors usually refers to exercise and skill. Although 
skill data in single-factor models circumvent the sparsity of exercise data effectively, x and 
y to ignore the differences of exercises covering one same skill [11]. Thus, both skill data 
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and exercise data are used together to generate x and y in the double-factor models, result-
ing in significant performance gains.

Wang et al. [35] propose a novel Deep Hierarchical Knowledge Tracing (DHKT) model 
exploiting the hierarchical relations between skills and exercises, which are modeled by the 
hinge loss on the inner product between the average embedding of all skills covering one 
single exercise and the exercise embedding. Unfortunately, DHKT ignores the sparsity of 
the exercise data, when embedding the hierarchical relations.

Nagatani et al. [24] extends DKT by modeling the data related to forgetting. They con-
sider both the learner’s exercise-making sequence and the different forgetting behaviors 
in the process of exercise-making, and the latest extension model is called Bi-Interaction 
Deep Knowledge Tracing (BIDKT) [17].

Ghosh et al. [11] propose a novel Attentive Knowledge Tracing (AKT) model which is 
completely dependent on attention network. AKT improves upon existing KT methods by 
proposing a new monotonic attention mechanism to summarize past user performance. In 
addition, they propose a Rasch Model-based Embedding (RME) method to model embed-
ding, and the embeddings of RME for x (xRME) and y (yRME) are as follows:

(1)�RME = �s + �e ⋅ �s,

(a) (b)

(c) (d)

Fig. 2  Distributions of #exercise and #skill on the learned times in ASSISTments2009 (of (a) and (b)) and 
ASSISTments2017 (of (c) and (d)). Where the exercise data is very sparse, because there are very few exer-
cises that have been learned more often, and on the contrary, skills are learned more evenly
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where �s ∈ ℝ
D and �(s,r) ∈ ℝ

D denote the factor embedding and pair embedding of the skill 
this exercise covers, respectively; �s ∈ ℝ

D is a factor vector that summarizes the variation 
in exercises covering this skill; �(s,r) ∈ ℝ

D is a pair vector that summarizes the variation 
in exercises and their corresponding responses; �e ∈ ℝ is a scalar difficulty parameter that 
controls how far this exercise deviates from the skill it covers. However, although this setup 
in RME alleviates over-parameterization and over-fitting of models to a certain, compared 
with the multi-dimensional continuous vector, the 1-dimensional continuous scalar can 
carry very limited information, so the representation of exercises cannot be fully extracted 
when the exercise data is not sparse.

2.3  Multi‑factor models

To improve the performance of DLKT, multiple learning-related factors are integrated into 
some specific models [20, 24, 27]. Liu et al. propose an Exercise-aware Knowledge Trac-
ing (EKT) framework by integrating the information of skills, exercise-making sequence 
and the content text of exercises into a single model [20]. Pandey and Srivastava propose 
a novel Relation-aware self-attention Knowledge Tracing (RKT) model by improving 
the SAKT model. There are three types of information are combined in RKT, including 
the exercise-making sequence, the relations between skills and time delay since the last 
interaction, and the text information of the exercise content [27]. Admittedly, integrating 
more learning-related factors in a specific DLKT model does improve the performance of 
the model, but the integration mode of all factors involved depends on the specific DLKT 
model and is difficult to extend. Therefore, this paper aims to provide a model embedding 
interface for DLKT by mining and integrating multiple types of learning-related factors.

3  Investigation on model innovation and factor mining

To understand the effect of Model Innovation (MI) and Factor Mining (FM) on the final 
performance of the models in DLKT, we investigate the experimental results of recent 
DLKT models integrated multi-factors from two aspects of MI and FM. This section only 
takes two latest representative works (AKT [11] and RKT [27]) as examples to illustrate 
the results of our analysis. The datasets involved in this section are from the corresponding 
specific papers.

3.1  Model innovation

To understand DLKT’s achievements in MI in recent years, we extract the partial experi-
mental results in the papers of AKT and RKT, showing in Tables  1 and  2 respectively, 
where  AKTSkill and  RKTSkill denote the corresponding variants only integrating the skill 
factor, respectively, best models are bold and second best models are italic (working on all 
tables in this paper).
Table  1 shows that, compared with the earliest DLKT model (DKT), the largest perfor-
mance improvements (from  AKTSkill) due to MI are 0.39% (on Statics2011), -0.01% (on 
ASSISTments2009) and 0.26% (on ASSISTments2017), respectively. Incredibly, the earliest 

(2)�RME = �(s,r) + �e ⋅ �(s,r),
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model shows second best performance on the whole over all datasets, and performs best on 
ASSISTments2009.

Table 2 shows that, compared with DKT, the largest performance improvements due to MI 
are 3.2% (on ASSISTments2012 from SAKT), 7.3% (on POJ from DKVMN) and 2.5% (on 
Junyi from SAKT), respectively. Incredibly, the earliest model shows second best performance 
over all datasets. Although the overall improvement is significant, best models are not the lat-
est model (RKT) when only the skill factor is considered, and no single model is optimal over 
all datasets.

Table 1  AUC values of AKT and 
its baselines which only integrate 
skill factor

a https:// sites. google. com/ site/ assis tment sdata/ home/ assis tment- 2009- 
2010- data.
b https:// sites. google. com/ view/ assis tment sdata mining/ datas et
c https:// pslcd atash op. web. cmu. edu/ Datas etInfo? datas etId= 507

Models ASSIST-
ments2009a 

ASSIST-
ments2017b 

Statics2011c 

DKT 0.817 0.726 0.823
DKVMN 0.809 0.707 0.820
SAKT 0.752 0.657 0.803
AKTSkill 0.817 0.728 0.827

Table 2  AUC values of RKT and 
its baselines which only integrate 
skill factor

a https:// sites. google. com/ site/ assis tment sdata/ home/ 2012- 13- school- 
data- witha ffect
b https:// www. junyi acade my. org/
c http:// poj. org/

Models ASSISTments2012a POJb Junyic 

DKT 0.712 0.656 0.814
DKVMN 0.701 0.704 0.822
SAKT 0.735 0.696 0.834
RKTSkill 0.730 0.667 0.830

Table 3  AUC values of AKT 
and its baselines which integrate 
different factors

ASSISTments2009 ASSISTments2017

Models Skill Skill+Exercise Skill Skill+Exercise

DKT 0.817 0.818 0.726 0.754
DKVMN 0.809 0.824 0.707 0.763
SAKT 0.752 0.778 0.657 0.714
AKT 0.817 0.835 0.728 0.770
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3.2  Factor mining

We also extract the partial experimental results in papers of AKT and RKT, which can 
illustrate the performance improvement caused by FM, showing in Tables  3 and  4, 
respectively.

Table  3 shows that all models have achieved significant performance improve-
ments on the whole by integrating exercises (E) based on modeling skills (S) over both 
ASSISTments2009 and ASSISTments2017. The maximum increases (from SAKT) are 
3.5% (on ASSISTments2009) and 8.6% (on ASSISTments2017). For the latest network 
AKT, the increases are 2.2% (on ASSISTments2009) and 5.8% (on ASSISTments2017).

Table  4 shows that, compared with RKT which only models skill data, 
RKT+Performance integrating additional performance data, achieves 0.68%, 
4.3% and 0.48% improvement on ASSISTments2012, POJ and Junyi, respec-
tively; RKT+ExerciseText integrating additional exercise text data, achieves 4.0%, 
1.3% and 0.24% improvement on ASSISTments2012, POJ and Junyi, respectively; 
RKT+Forgetting integrating additional forgetting data, achieves 6.6%, 18.1% and 0.36% 
improvement on ASSISTments2012, POJ and Junyi, respectively.

3.3  Summary of investigation

Compared with the performance improvement brought by MI, the performance improve-
ment brought by FM is relatively more significant and stable. Therefore, we believe that 
FM for DLKT should not be neglected and should be given at least the same importance 
as MI. Unfortunately, there is a lack of systematic methods to guide Representation 
Learning (RL) for DM in DLKT by far.

Existing DLKT models embed one or more factors to obtain the input of their mod-
els. In general, the more extended factors, the better the model performance. However, 
due to the difference of learning content and learning environment in different online 
learning, the types and quantities of learning factors integrated into the DLKT models 
are different and this expansion lacks a clear direction, which is not conducive to the 
subsequent application and promotion of the model.

This paper focus on providing a model embedding interface for DLKT by learning 
representations of multi-type learning-related factors. As shown in Figure 1, x and y are 
used to provide factor embedding and pair embedding to the DLKT model. Therefore, 
our task is to learn x and y based on the static data from the e-learning platform (i.e., 
exercise, skill and etc) and the dynamic data of learner’s interaction with the platform 
(i.e., performance, forgetting and etc).

Table 4  AUC values of RKT 
and its baselines which integrate 
different factors

Models ASSIST-
ments2012

POJ Junyi

RKT 0.730 0.667 0.830
RKT+Performance 0.735 0.696 0.834
RKT+ExerciseText 0.759 0.759 0.832
RKT+Forgetting 0.778 0.788 0.833
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4  Extensible representation learning for factor embedding

According to the formal definition in Section 1, the KT task has been abstracted as a pre-
diction problem of unknown response, i.e., predicting a learner’s unknown response to a 
certain exercise at a certain timestamp in the future. Therefore, the model embedding of 
DLKT should consider the representations of both exercise and learner. For convenience, 
the former are collectively referred to as Item-related Representations (IR), while the latter 
are collectively referred to as User-related Representations (UR). In addition to exercise 
and skill in IR, we believe that other attributes of exercise (e.g., template, hints, etc) should 
not be ignored; we also believe that learners’ historical performance and forgetting behav-
ior in UR will greatly affect their future learning.

In this section, we first analyze the influence of the above four types of factors on learn-
ers’ learning behavior (exercise-making); then, we extract the representations of the four 
types of factors by setting four embedding components: Base Embedding (BE), Auxiliary 
Embedding (AE), Performance Embedding (PE) and Forgetting Embedding (FE), respec-
tively; finally, we integrate the representations of the above four types of factors by setting 
a Embedding Integration (EI) component to generate the final factor embedding (x) and 
pair embedding (y) for DLKT. The complete method is called Extensible Representation 
learning (ERL). Figure 3 shows the architecture of ERL for x when the exercise data is not 
sparse. Let D denotes the dimension of all factor and pair embeddings.

4.1  Base embedding

To make both embeddings x and y reflect the individual differences among exercises cover-
ing the same skill, RME weights the vector embedding of the skill using the scalar difficulty 

Item-related representations User-related representations

BE AE PE

EI

FE

Fig. 3  Architecture of ERL for the factor embedding
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parameter of the exercise (refer to Eqs. 1 and 2). Although the setup in RME alleviate over-
parameterization and over-fitting of models to a certain, there is a limited amount of infor-
mation that a 1-dimensional vector can carry compared with a multi-dimensional continu-
ous vector, so the representation of exercises cannot be fully extracted when the exercise 
data is not sparse. Therefore, RME has been improved to serve as BE in this paper. BE, 
as the core component, is used to learn the basic representations required for the DLKT 
model, involving exercise data and skill data.

Let E and S represent the number of distinct exercise tags and distinct skill tags of the 
e-learning system, respectively. For factor embedding x, when the exercise data is sparse, 
the exercise tag in each timestamp needs to be scalar embedded to reduce the effect of the 
exercise data on BE (the relationship between the sparsity of exercise data and its embed-
ding is studied and discussed in Section 6.2.4). The formalization process is as follows:

where �spare ∈ ℝ
E×1 denotes the continuous embedding matrix for any exercise tag e under 

the exercise data sparsity condition; �e ∈ ℝ denotes the scalar embedding of e; OneHot(⋅) 
denotes the one-hot encoding operation. The scalar embedding, μe, is used to weight the 
variant vector of the corresponding skill tag s, then the weighted result is added to the fac-
tor embedding of s, and finally the sum vector is fed into the tanh activation layer to form 
the corresponding factor embedding of BE (Figure 4 shows the process of representation 
extraction):

where �BE ∈ ℝ
D denotes the factor embedding of BE; {W1, b1} are the corresponding acti-

vation layer parameters; �s ∈ ℝ
D and �s ∈ ℝ

D denote the factor embedding and variant vec-
tor of s respectively, and the formalization processes are as follows:

where ��
x
∈ ℝ

S×D and ��
x
∈ ℝ

S×D denote the continuous embedding matrices for s. When 
the exercise data is non-sparse, the factor embeddings of e and s are concatenated and then 

(3)�e = OneHot(e) ⋅ �spare,

(4)�BE = Tanh(�1 ⋅ (�s + �e ⋅ �s) + �1),

(5)�s = OneHot(s) ⋅ �f
�
,

(6)�s = OneHot(s) ⋅ �v
�
,

Fig. 4  Representation extraction process of xBE under the condition of sparse exercise data
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fed into the tanh activation layer to form the corresponding base embedding as (Figure 5 
shows the process of representation extraction):

where {W2, b2} are the corresponding activation layer parameters; ⊕ is the concatenation 
operation; �e ∈ ℝ

D denotes the factor embedding of e, and the calculation process is as 
follows:

where ��
�
∈ ℝ

E×D denotes the continuous embedding matrix for any exercise e under the 
exercise data non-sparsity condition. In summary, the final expression of BE for x is as 
follows:

For pair embedding y of BE, �BE ∈ ℝ
D has the same structure as xBE, and the final 

expression is as follows:

where {W3, b3,W4, b4} are the corresponding activation layer parameters; �(s,r) ∈ ℝ
D and 

�(s,r) ∈ ℝ
D denote the pair embedding and the variant vector of (s,r), �(e,r) ∈ ℝ

D denote the 
pair embedding of (e,r), and the calculation processes are as follows:

where ��� ∈ ℝ
(S+2)×D and ��

�
∈ ℝ

(S+2)×D denote the continuous embedding matrices for 
(s,r); ��

� ∈ ℝ
(S+2)×D denote the continuous embedding matrix for (s,r); MultiHot(⋅) denotes 

the multi-hot encoding operation.

(7)�BE = Tanh(�2 ⋅ [�s ⊕ �e] + �2),

(8)�
e
= OneHot(e) ⋅ ��

�
,

(9)�BE =

{

Tanh(�1 ⋅ (�s + 𝜇e ⋅ �s) + �1) when sparse

Tanh(�2 ⋅ [�s ⊕ �e] + �2) when non-sparse

(10)�BE =

{

Tanh(�3 ⋅ (�(s,r) + 𝜇e ⋅ �(s,r)) + �3) when sparse

Tanh(�4 ⋅ [�(s,r) ⊕ �(e,r)] + �4) when non-sparse

(11)�(s,r) = MultiHot(s, r) ⋅ �
�
� ,

(12)�(s,r) = MultiHot(s, r) ⋅ ��
�
,

(13)�(s,r) = MultiHot(e, r) ⋅ �
�
� ,

Fig. 5  Representation extraction process of xBE under the condition of non-sparse exercise data
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4.2  Auxiliary embedding

In order to further enrich xBE and yBE without over-fitting, we explored the attribute factors 
of the exercise, which had not been considered in the previous works. Research shows that 
the attributes of exercise are usually divided into two categories: one is relational attributes 
(e.g., template, exercise type), the other is indicative attributes (e.g., hint). The former can 
reflect the relationship between exercises, while the latter can be used as an indicator of the 
difficulty (or complexity) of the exercise. There are two specific examples to illustrate these 
two types of attribute factors.

• Template. Exercises in e-learning are usually generated based on the template. In other 
words, multiple exercises may belong to the same template. Compared with the exer-
cise set, the scale of the template set is smaller, but relatively considerable compared 
with the skill set. Data analysis shows that the difference between the Average Correct 
Rate (ACR) of exercises under the same template is less than that under the same skill. 
Therefore, the template information can supply the difficulty difference of the exercise 
when faced with data sparsity.

• Hint. To assist learners in self-learning, some e-learning platforms set up hints for each 
exercise. Generally, the total number of hints assigned by the platform for each exercise 
can reflect the difficulty of the exercise to a certain extent. We can see from Figure 6 
that the more the number of hints for an exercise, the more difficult the exercise is, 
given that ACR indicates the difficulty of the exercise.

The factors in different e-learning platforms are different, so the auxiliary factors that 
can reflect the difficulty of exercise are far from limited to these two types, which inspires 
us to propose an extensible embedding component, auxiliary embedding (AE), for IR. AE 
provides BE with embeddings of auxiliary data. Since there are differences in the types and 
numbers of auxiliary data for different e-learning settings, AE is extensible.

Given N different types of auxiliary factors, and let {A1, A2, ..., AN} represent the num-
ber of tags for each factor, respectively. For factor embedding x, the one-hot vector of ai(i 
= 1,2,...,N) are first embedded by embedding matrices �i

�
∈ ℝ

A
i
×D to generate the corre-

sponding factor embeddings, �ai ∈ ℝ
D , respectively. The calculation process is as follows:

Fig. 6  Distributions of ACR on #hint for datasets ASSISTments2009 and ASSISTments2017 (refer to 
Table 6)

1354 World Wide Web (2022) 25:1343–1372



1 3

Then, all these embeddings are concatenated and then fed into the tanh activation layer to 
generate the factor embedding of AE ( �AE ∈ ℝ

D ) as:

where {W5,b5} are the corresponding activation layer parameters
For pair embedding y, the multi-hot vector of (ai,r) is first embedded by embedding matri-

ces �i
�
∈ ℝ

Ai×D to generate the corresponding pair embeddings, �(ai,r) ∈ ℝ
D , respectively. 

The calculation process is as follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to 
generate the pair embedding of AE ( �AE ∈ ℝ

D ) as:

where {W6,b6} are the corresponding activation layer parameters.

4.3  Performance embedding

Performance refers to the objective results of the user’s past exercise-making behaviors, i.e., 
the number of correct and incorrect responses in the past. A correct response will help the 
model to affirm and increase the strength estimate of the user’s KS, in the case of current 
strength is already high. An incorrect response will help users better find the deficiencies of 
their knowledge reserve. Therefore, incorrect responses may simply lead to more learning than 
correct responses. However, while making the model sensitive to incorrectness is a good start, 
it also seems useful to make the model specifically sensitive to correctness.

The performance factor analysis results (as shown in Figure 7) on ASSSISTments2017 and 
Statics2011 support our motivation. As can be seen that: ARC of learners to the same exercise 
at the next timestamp gradually increases on the whole, with the increase in the number of 
historically correct responses; the trend is the opposite for the number of historically incorrect 
responses. Thus, PE involves the learning of both correctness and incorrectness representa-
tions. As shown in Fig. 3, pcor and pinc in PE denote the good and poor performance factors of 
e in the past respectively. The two delay features are discretized at following scale to alleviate 
the impact of performance data sparsity:

where x and y denote the feature values before and after discretization, respectively.
Let Pcor and Pinc represent the maximum number of correct and incorrect response after 

discretization, respectively. For factor embedding x, the one-hot vectors of pcor and pinc are 
used to generate the corresponding factor embeddings, �pcor ∈ ℝ

D and �pinc ∈ ℝ
D , respectively. 

The calculation processes are as follows:

(14)�ai = OneHot(ai) ⋅ �
i
�
.

(15)�AE = Tanh(�5 ⋅ [�a1 ⊕ �a2 ⊕⋯⊕ �aN ] + �5),

(16)�(ai,r) = MultiHot(ai, r) ⋅ �
i
�
.

(17)�AE = Tanh(�6 ⋅ [�(a1,r) ⊕ �(a2,r) ⊕⋯⊕ �(aN ,r)] + �6),

(18)y = log2(x + 1),

(19)�pcor = OneHot(pcor) ⋅ �
cor
�

,

1355World Wide Web (2022) 25:1343–1372



1 3

Where �cor
�

∈ ℝ
Pcor×D and �inc

�
∈ ℝ

Pinc×D denote the continuous embedding matrices for pcor 
and pinc, respectively. Then �pcor and �pinc are concatenated and then fed into the tanh activa-
tion layer to generate the factor embedding of PE ( �PE ∈ ℝ

D ) as:

where {W7,b7} are the corresponding activation layer parameters. Figure  8 shows an 
embedding process for xPE.

For pair embedding y, the multi-hot vectors of (pcor,r) and (pinc,r) are first embedded by 
embedding matrices �cor

�
∈ ℝ

Pcor×D and �inc
�

∈ ℝ
Pinc×D to generate the corresponding pair 

embeddings �(pcor ,r) ∈ ℝ
D and �(pinc,r) ∈ ℝ

D , respectively. The calculation processes are as 
follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to 
generate the pair embedding of PE ( �PE ∈ ℝ

D ) as:

(20)�pinc = OneHot(pinc) ⋅ �
inc
�
.

(21)�PE = Tanh(�7 ⋅ [�pcor ⊕ �pinc ] + �7),

(22)�(pcor ,r) = MultiHot(pcor, r) ⋅ �
cor
�

,

(23)�(pinc,r) = MultiHot(pinc, r) ⋅ �
inc
�
.

Fig. 7  Distributions of ACR on the number of correct and incorrect response for ASSISTments2017 and 
Statics2011
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where {W8,b8} are the corresponding activation layer parameters.

4.4  Forgetting embedding

Predicting a learner’s knowledge precisely is a difficult task because learners do forget, i.e., 
the time lag (or delay) between the last learning of the same or similar content and the next 
learning. Nagatani et al. ’s research shows that: how the probability of responding correctly 
depends on the lag time from the previous interaction with the same skill. We analyze the 

(24)�PE = Tanh(�8 ⋅ [�(pcor ,r) ⊕ �(pinc,r)] + �8),

 

0 0 1 1 1 1 1

Fig. 8  PE embedding process for factor embedding. Given a learner’s historical interaction sequence up to 
the timestamp 13, generate the corresponding factor embedding of PE

Fig. 9  Correlation between lag time and ARC of exercise in ASSISTments2017 and Statics2011
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correlation between delay time and ARC of exercise in three datasets: ASSISTments2017 
and Statics2011 (Figure 9 shows the analysis results), which further consolidates the above 
conclusion. As can be seen that: ARC of learners to the same exercise at the next times-
tamp gradually decreases, with the increase in lag time on the whole.

To achieve an accurate knowledge modeling, we introduce the Forgetting Embedding 
(FE) component to model the learner’s forgetting factors. Different from other work, we 
consider the following two features in this study:

• Repeated Delay (RD): the time delay between two adjacent interactions with the same 
exercise id.

• Sequence Delay (SD): the time delay of two successive interactions; the exercise id of 
an interaction do not matter.

Thus, FE involves the learning of both RD and SD representations. Figure 10 illustrates 
these delay factor, and the missing RD and SD are set to a fixed value of 0. All the delay 
features are used by the seconds and are discretized by Eq. 18 to alleviate the impact of 
delay data sparsity.

Let Frep and Fseq represent the maximum time delays of RD and SD after discretization, 
respectively. For factor embedding x, the one-hot vectors of frep and fseq are used to gener-
ate the corresponding factor embeddings, �frep ∈ ℝ

D and �fseq ∈ ℝ
D , respectively. The calcu-

lation processes are as follows:

Where �rep
� ∈ ℝ

Frep×D and �seq
� ∈ ℝ

Fseq×D denote the continuous embedding matrices for frep 
and fseq, respectively. Then �frep ∈ ℝ

D and �fseq ∈ ℝ
D are concatenated and then fed into the 

tanh activation layer to generate the factor embedding of PE ( �FE ∈ ℝ
D ) as:

where {W9,b9} are the corresponding activation layer parameters.
For pair embedding y, the multi-hot vectors of (frep,r) and (fseq,r) are first embedded by 

embedding matrices �rep
� ∈ ℝ

Frep×D and �seq
� ∈ ℝ

Fseq×D denote the continuous embedding 

(25)�frep = OneHot(frep) ⋅ �
rep
�
,

(26)�fseq = OneHot(fseq) ⋅ �
seq
�
.

(27)�FE = Tanh(�9 ⋅ [�frep ⊕ �fseq ] + �9),

Timestamp

RD

SD 0

0 0

Fig. 10  Forgetting factors from a learner’s sequence of interactions. Each circle corresponds to an interac-
tion and the same color represents the same exercise id. In the right table, the time gap Δij = ti − tj

1358 World Wide Web (2022) 25:1343–1372



1 3

matrices for frep and fseq to generate the corresponding pair embeddings �(frep,r) ∈ ℝ
D and 

�(fseq ,r) ∈ ℝ
D , respectively. The calculation processes are as follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to 
generate the pair embedding of FE ( �FE ∈ ℝ

D ) as:

where {W10,b10} are the corresponding activation layer parameters.

4.5  Embedding integration

In order to provide a model embedding interface for DLKT, the output of the four embed-
ding components needs to be integrated into an embedding vector with fixed dimensions. 
The most straightforward approach is to concatenate the embedding of the output of these 
four components as:

where �ERL
concat

∈ ℝ
D and �ERL

concat
∈ ℝ

D denote the factor embedding and pair embedding of 
ERL based on directly concatenating, respectively.

However, considering the extensibility of the approach, the output dimensions of ERL 
also need to be fixed when the above four types of information cannot be provided or are 
not necessary (especially the last three). Therefore, we perform a compression operation 
on �ERL

concat
 and �ERL

concat
 . In order to make the compression effect better, we compare the lin-

ear activation (“Linear”) and five nonlinear activation functions: “Softmax”, “Sigmoid”, 
“Tanh”, “ReLU” and “LeakyReLU”. The results show that Softmax has the best overall 
performance on the basis of solving the over-fitting (refer to Table 5 and Figure 11, where 

(28)�(frep ,r) = MultiHot(frep, r) ⋅ �
rep
�
,

(29)�(fseq ,r) = MultiHot(fseq, r) ⋅ �
seq
�
.

(30)�FE = Tanh(�10 ⋅ [�(frep,r) ⊕ �(fseq ,r)] + �10),

(31)�ERL
concat

=
[

�BE ⊕ �AE ⊕ �PE ⊕ �FE
]

,

(32)�ERL
concat

=
[

�BE ⊕ �AE ⊕ �PE ⊕ �FE
]

.

Table 5  Performance evaluation results of ERL+AKT (detailed in Section 5) with different activation func-
tions on datasets: ASSISTments2009, ASSISTments2017 and Statics2011 (detailed in Section 6.1.1)

ASSISTments2009 ASSISTments2017 Statics2011

Activation functions ACC AUC ACC AUC ACC AUC 

Linear 0.9065 0.8333 0.8756 0.7863 0.8797 0.8170
Softplus 0.9078 0.8340 0.8790 0.7897 0.8809 0.8183
ReLU 0.9069 0.8340 0.8751 0.7859 0.8792 0.8172
LeakyReLU 0.9068 0.8340 0.8751 0.7858 0.8793 0.8169
Sigmoid 0.9075 0.8345 0.8785 0.7890 0.8802 0.8185
Tanh 0.9063 0.8343 0.8756 0.7865 0.8795 0.8166
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ERL+AKT denotes the application of ERL to AKT). Therefore, the final integration form 
of the proposed ERL approach is as follows:

where �ERL ∈ ℝ
D and �ERL ∈ ℝ

D denote the final factor embedding and pair embedding 
of ERL, respectively; {xBE, yBE} are required; {xAE, yAE}, {xPE, yPE}, and {xFE, yFE} are 
optional; {W11,b11, W12,b12} are the corresponding activation layer parameters, whose 
dimensions vary with the number of components to be integrated. In addition, to further 
avoid over-fitting problems, we add the drop-out operation during activation.

5  Applying ERL to DLKT models

In this section, we provide two instances to illustrate how to apply the proposed ERL 
approach to existing DLKT models. Existing DLKT models are divided into two main 
classes: RNN-based models and attention mechanism(AM)-based models. For RNN-based 
models, DKT, as the first application of deep learning in the field of knowledge tracing, 
uses RNN and LSTM to model knowledge tracing task. MANN extends LSTM and GRU 
using external memory, and is used by whom to model knowledge tracing tasks. At the 

(33)�ERL = Softplus
(

�11 ⋅

[

�BE[⊕�AE][⊕�PE][⊕�FE]
]

+ �11
)

,

(34)�ERL = Softplus
(

�12 ⋅

[

�BE[⊕�AE][⊕�PE][⊕�FE]
]

+ �12
)

,

Fig. 11  Training and validation processes of ERL+AKT (detailed in Section  5) with different activation 
functions on the dataset of ASSISTments2009
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same time, they propose DKVMN based on MANN, taking into account the correlation 
between skills in the knowledge tracing field. For AM-based models, SAKT, as the first 
proposed model, aims to deal with the sparse problem of exercise data, which is a self-
attention based knowledge tracing model. RKT extends SAKT by introducing a relation-
aware self-attention layer that incorporates the contextual information. AKT, a completely 
dependent on attention network, extends SAKT by building context-aware representations 
of exercises and responses and proposing a monotonic attention mechanism to summarize 
past learner performance in the right time scale. To sum up, we therefore choose DKVMN 
and AKT as the application models of ERL. We select two existing main stream DLKT 
models for improved instances. The first instance improves DKVMN by ERL, named 
ERL+DKVMN; the second improves AKT by ERL, named ERL+AKT.

5.1  Application Instance‑1: ERL+DKVMN

Figure  12(a) shows the knowledge tracing process of DKVMN. At the timestamp t, 
DKVMN traces the KS of the learner by reading and writing to the value-memory matrix 
M

v
t
 using the correlation weight computed from the input skill and the key-memory matrix 

Mk, and predicts the response of the learner to the skill based on the read memory content 
rt and the input skill embedding ks

t
 . Mk and Mv are used to store the underlying concepts 

and the mastery levels of each concept, respectively.
According to the architecture of DLKT, DKVMN can be generalized into three 

parts: Model Embedding, Learner Knowledge State Network and Response Prediction 
Network, as shown in Figure  12(b). ERL+DKVMN is produced by extending Model 
Embedding in DKVMN with the proposed ERL representation learning approach, 

Fig. 12  DKVMN (of (a)) and its DLKT-oriented generalized architectures (of (b))
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using both factor embedding (xERL) and pair embedding yERL of ERL to improve the 
original factor embedding ( �DKVMN = �s ) and pair embedding ( �DKVMN = �s ) in Model 
Embedding of DKVMN.

5.2  Application Instance‑2: ERL+AKT

AKT [11] is the representative work based on attention mechanism, which consists 
of five components: Rasch Model-based Embeddings, Question Encoder, Knowl-
edge Encoder, Knowledge Retriever and Prediction Network, as shown in Fig-
ure  13(a). Rasch Model-based Embeddings is used as raw embeddings for exercises 
and responses; Question Encoder and Knowledge Encoder are used to compute the 
context-aware representations of exercises and responses pairs, respectively; Knowl-
edge Encoder uses these representations as input and computes the KS of the learner; 
Prediction Network is used to predict the learner’s response to the current exercise. 
According to the architecture of DLKT, Rasch Model-based Embeddings corre-
sponds to Model Embedding; Question Encoder, Knowledge Encoder and Knowledge 
Retriever correspond to Learner Knowledge State Network; Prediction Network cor-
responds to Response Prediction Network. The generalized architectures for AKT is 
shown in Figure 13(b).

ERL+AKT is produced by extending Model Embedding in AKT with the proposed 
ERL representation learning approach, using both factor embedding (xERL) and pair 
embedding yERL of ERL to improve the original factor embedding ( �DKVMN = �s ) and 
pair embedding ( �DKVMN = �s ) in Model Embedding of AKT.

Rasch model-based
Embeddings

Knowledge
Encoder

Exercise
Encoder

Knowledge
Retriever

Prediction Network

(a)

Rasch model-based
Embeddings

Knowledge
Encoder

Exercise
Encoder

Knowledge
Retriever

Prediction Network

Model
Embedding

Learner Knowledge
State Network Response Prediction

Network

(b)

Fig. 13  AKT (of (a)) and its AKT-oriented generalized architectures (of (b))
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5.3  Model extensibility and training

For application models of ERL, local extensibility means that one or more auxiliary fac-
tors can be extended in AE to meet different KT tasks with various auxiliary factors, and 
you can also mine more performance and forgetting factors to enrich PE and FE, respec-
tively. In addition to the local extensibility, these application instances also show global 
extensibility in terms of the overall structure, which means that all the local embedding 
components other than BE can be used separately or not, and you can also extend more 
user-related local embedding components other than PE and FE to enrich UE, respectively.

All parameters in ERL and its variants are learned together with parameters of the 
DLKT model from downstream All learnable parameters in the entire are trained in end-to-
end fashion by minimizing the following cross entropy loss between predicted response ( r′

t
 ) 

and real response (rt) during training:

where L  denotes the cross entropy loss.

6  Experiments

To evaluate the usability and effectiveness of the proposed representation learning frame-
work, we apply the proposed ERL into two representative existing DLKT model: DKVMN 
and AKT (the latest DLKT network), and the two applied instances respectively are 
denoted by ERL+DKVMN and ERL+AKT. We design six experiments on four real-world 
datasets to comprehensively evaluate ERL+DKVMN and ERL+AKT.

6.1  Experimental settings

6.1.1  Datasets

Three real-word benchmark datasets are used to evaluate the performance of all the mod-
els involving in experiments on predicting future learner responses, including ASSIST-
ments2009, ASSISTments2017 and Statics2011. For ASSISTments2009, each exer-
cise involves the specific skill, template which is used to generated related exercises, 
and hint number which is set by the platform according to the specific exercise. For 

(35)L = −
∑

t

(

rt log
(

r�
t

)

+
(

1 − rt
)

log
(

1 − r�
t

))

,

Table 6  Statistical information for all datasets

a “Seqlen” denotes the range of sequence lengths
b “Sparsity” is calculated as Sparsity = 1 − #interactions/(#users ⋅ #exercises)

Datasets #users #skills #exercises #interactions Seqlena Sparsityc

ASSISTments2009 4217 124 26688 525534 [1, 8214] 99.53%
ASSISTments2017 1709 102 3162 942816 [2, 3057] 82.55%
Statics2011 333 300 1224 261947 [5, 2185] 35.73%
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ASSISTments2017, each exercise involves the specific skill, hint number and exercise 
types. For Statics2011, each exercise involves the specific steps. Previous works use exer-
cise tag and step tag together to retrieve each record of exercise-making. The original exer-
cise tag is treated as the skill tag, and the original exercise tag is treated as a new exercise 
tag along with the step tag in the paper. The complete statistical information for all datasets 
refers to Table 6. We delete user sequences of length 1 from all the datasets, and round 
off all responses. To ensure the integrity of the learning sequence, we save all records of 
interactions missing skill (all missing skills are treated as a new skill label) in ASSIST-
ments2009, which is different for all existing works. We trained all the models with 80% of 
the dataset and test them on the remaining. We perform 5-fold cross validation to evaluate 
all the models on all datasets, in which folds are split based on users.

6.1.2  Auxiliary factor selection

Different e-learning platforms have different types and numbers of exercise attributes, so 
it is crucial to determine which auxiliary factors contribute to the final performance of the 
model. This paper uses the method of analysis + statistics + experiment:

• Analysis. Potential auxiliary factors that may affect the difficulty of exercise are firstly 
selected from the existing auxiliary factors by analysis, such as the generated template 
of exercise and the number of hints equipped with exercise. For the template, the diffi-
culty of the exercise is greatly influenced by the template, e.g. “1 + 1” (exercise) for “a 
+ b” (template), “1 − (2 + 3)” (exercise) for “a − (b + c)” (template); For the hint, the 
more hints an exercise is equipped with, the more difficult it may be intuitively.

• Statistics. The uncertain auxiliary factors (e.g. hints) can be further determined by 
means of data statistics (refer to Section 4.2), in which the ACR of exercises can be 
used as an indicator of whether the corresponding factors can affect the difficulty of 
exercises.

• Experiment. The final judgment of whether a potential auxiliary factor should be used 
to trace the knowledge state of learners, it is necessary to verify whether its integration 
can improve the evaluation metrics of KT task through specific experiments.

6.1.3  Model setting and evaluating

Except for all the scalar parameters (with the same dimension of 1), all the vector embed-
dings in DKVMN and ERL+DKVMN have the same dimension of 100, and all the vector 
embeddings in AKT and ERL+AKT have the same dimension of 256; the dropout rate 
for all models is set to 0.05. The Area Under the Curve (AUC) and Accuracy (ACC) are 
used to evaluate the performances of all the models on predicting binary-valued future 
user responses to exercises. Generally, the value 0.5 of AUC or ACC represents the perfor-
mance prediction result by randomly guessing, and the larger the better.

6.1.4  Factor encoding

All the input factors are presented to neural networks using “one-hot” encoding vectors. 
Take exercise factor, for example, if E different exercise tags exist in total, then the “one-
hot” encoding of the exercise tag et is length E vector whose entries are all zero except that 
the eth

t
 entry is one. All the input pairs are presented using “multi-hot” encoding vectors. 
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Specifically, the “one-hot” encoding of the exercise tag et is directly concatenated with 
the response of et to form the “multi-hot” encoding vectors of the pair (et,rt). An concrete 
example of the input encoding for exercise is illustrated in Table 7 where there is a total of 
five exercises. An alternative encoding for the pair encoding is “one-hot” encoding, whose 
vector is twice as long as the “multi-hot” encoding. In our experiments, we have found that 
using the “multi-hot” encoding for pair is much more effective and introduces fewer model 
parameters.

6.2  Experimental design and results

In this section, we design four sub-experiments to answer the following research questions 
(RQs):

• RQ1: Can ERL improve the DLKT networks?
• RQ2: What is the effect of various components in ERL?
• RQ3: What is the effect of various factors in each local embedding component of ERL?
• RQ4: How to determine when to use scalar or vector embedding for exercise data?

6.2.1  Overall performance evaluation (RQ1)

To evaluate the usability and effectiveness of the proposed representation learning 
approach, We compare our models involving with the state-of-the-art DLKT methods. The 
details of compared models are:

• DKT [30] is the earliest DLKT method that leverages single layer LSTM to model 
learner knowledge state.

• DKT+ [37] is an improved version of DKT with regularization on prediction consist-
ency, which reconstructs the observed input and overcomes the prediction performance 
inconsistency of model across time-steps.

• DKVMN [38] is improved memory augmented recurrent neural network with dynamic 
key-value memories, which mines correlations between skills.

• SAKT [26] applies the transformer structure to assign weights to the previously learned 
exercises for predicting predict the learner’s response to the current exercise.

• AKT [11] is an improved version of SAKT with contextualized representations of exer-
cises and responses, which utilizes a monotonic attention mechanism to summarize past 
learner performance, and the RME model to capture individual differences among exer-
cises covering the same skill.

Table 7  Examples for the input 
encoding

Exercise tag Response Factor encoding Pair encoding

Exercise-1 Correct (or 1) [1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 1]
Exercise-1 Incorrect (or 0) [1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0]
Exercise-2 Correct (or 1) [0, 1, 0, 0, 0] [0, 1, 0, 0, 0, 1]
Exercise-3 Incorrect (or 0) [0, 0, 1, 0, 0] [0, 0, 1, 0, 0, 0]
Exercise-4 Correct (or 1) [0, 0, 0, 1, 0] [0, 0, 0, 1, 0, 1]
Exercise-5 Incorrect(or 0) [0, 0, 0, 0, 1] [0, 0, 0, 0, 1, 0]
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Where we re-implement DKVMN and AKT in PyTorch, and the rest of the experimental 
results are replicated from AKT because the data are pre-processed and the parameters are 
initialized in exactly the same way.

we firstly compare the performance of DKVMN [38] and AKT [11] before and 
after the application of ERL, and Table 8 shows the performance of all DLKT methods 
across all datasets on predicting future learner responses. The results show that ERL can 
effectively improve the performance of the DLKT models on predicting future learner 
responses. Compared with original DKVMN, the improved predictive performances 
of ERL+DKVMN evaluated by AUC are up to 7.93%, 19.10% and 5.23% on datasets 
ASSISTments2009, ASSISTments2017 and Statics2011, respectively; the improved pre-
dictive performances evaluated by ACC are up to 4.91%, 11.78% and 3.85% on datasets 
ASSISTments2009, ASSISTments2017 and Statics2011, respectively. Compared with 
original AKT, the improved predictive performances of ERL+AKT evaluated by AUC are 
up to 5.46%, 14.21% and 9.48% on datasets ASSISTments2009, ASSISTments2017 and 
Statics2011, respectively; the improved predictive performances evaluated by ACC are up 
to 4.25%, 9.97% and 6.73% on datasets ASSISTments2009, ASSISTments2017 and Stat-
ics2011, respectively. This experiment demonstrates that ERL can greatly improve the per-
formances of the DLKT models on predicting future learner responses.

In addition, we compare the AUC performance of ERL+DKVMN and ERL+AKT 
with other DLKT model, and Table 9 shows the compared results. It can be seen that 
AKT shows better performance than other baseline models on all data except for Stat-
ics2011; DKVMN has better performance than other RNN-based models (DKT and 
DKT+) on the whole; the proposed ERL+AKT shows the best performance over all 
involved baseline models. This experiment demonstrates that ERL-enhanced AKT 
achieves the best performance across all involved benchmark datasets on predicting 
future learner responses. Although data enhancement leads to the introduction of more 
parameters into the model, our series of specific operations (such as scalar embedding 

Table 8  Performance comparison 
before and after application of 
ERL

ASSIST-
ments2009

ASSIST-
ments2017

Statics2011

Models AUC ACC AUC ACC AUC ACC 

DKVMN 0.8206 0.7699 0.7232 0.6911 0.8164 0.7741
ERL+DKVMN 0.8857 0.8077 0.8613 0.7725 0.8591 0.8039
Improved 7.93% 4.91% 19.10% 11.78% 5.23% 3.85%
AKT 0.8608 0.8000 0.7664 0.7149 0.8151 0.7776
ERL+AKT 0.9078 0.8340 0.8753 0.7862 0.8924 0.8299
Improved 5.46% 4.25% 14.21% 9.97% 9.48% 6.73%

Table 9  AUC performance of other baseline DLKT methods on all datasets on predicting future learner 
responses

Datasets DKT DKT+ DKVMN SAKT AKT ERL+ DKVMN ERL+ AKT

ASSISTments-2009 0.8170 0.8024 0.8206 0.7520 0.8608 0.8857 0.9078
ASSISTments-2017 0.7264 0.7124 0.7232 0.6569 0.7664 0.8613 0.8753
Statics-2011 0.8233 0.8301 0.8164 0.8029 0.8151 0.8591 0.8924
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of exercise labels, logarithmic discretization of integer data, etc.) have in fact reduced 
the influence to a certain extent and reached a fully acceptable degree.

6.2.2  Global ablation study (RQ2)

To get deep insights on ERL, we investigate the contribution of various components 
involved in ERL to the whole performance. Therefore, we conduct some ablation 
experiments to show how each embedding component of ERL affect final results. All 
the datasets are used to support the global ablation study of ERL, and Table 10 shows 
the ablation results, where AE is not integrated in ERL due to lack of time data for 
Statics2011. It can be seen from Table 10 that i) the ERL integrating all the embedding 
components improves the performance of AKT more than the other variants; ii) ERL 
with BE and AE improves the performance of AKT more than ERL with BE and PE or 
FE on ASSISTments2017; iii) ERL with BE and PE improves the performance of AKT 
more than ERL with BE and AE or FE on ASSISTments2009 and Statics2011; iv) ERL 
with BE and FE improves the performance of AKT less than ERL with BE and AE or 
PE on all datasets; v) the variant of ERL only integrating the embedding component 
of BE outperforms the corresponding base models. In conclusion, the effectiveness of 
ERL comes from all the embedding components working together, different embed-
ding components have different positive effects on the whole performance of models, 
and no one embedding component is significantly better than any other on all datasets.

Table 10  Global ablation results of ERL, where “–” means the corresponding item is missing due to the 
absence of the corresponding factors in Statics2011

Datasets BE AE PE FE AUC (DKVMN) ACC (DKVMN) AUC (AKT) ACC (AKT)

ASSIST-
ments2009

0.8206 0.7699 0.8608 0.8000

 ✓ 0.8326 0.7740 0.8628 0.8004
 ✓ ✓ 0.8402 0.7724 0.8743 0.8083
 ✓ ✓ 0.8827 0.8078 0.8966 0.8244
 ✓ ✓ 0.8391 0.7787 0.8642 0.8004
 ✓ ✓ ✓ ✓ 0.8858 0.8077 0.8989 0.8277

ASSIST-
ments2017

0.7232 0.6911 0.7664 0.7149

 ✓ 0.7457 0.7018 0.7799 0.7210
 ✓ ✓ 0.8473 0.7620 0.8675 0.7799
 ✓ ✓ 0.7671 0.7151 0.8134 0.7494
 ✓ ✓ 0.7544 0.7075 0.7880 0.7280
 ✓ ✓ ✓ ✓ 0.8613 0.7724 0.8689 0.7803

Statics2011 – 0.8164 0.7741 0.8151 0.7776
 ✓ – 0.8536 0.7996 0.8726 0.8111
 ✓ – ✓ 0.8581 0.8021 0.8841 0.8221
 ✓ – ✓ 0.8433 0.7929 0.8790 0.8163
 ✓ – ✓ ✓ 0.8591 0.8039 0.8924 0.8299

1367World Wide Web (2022) 25:1343–1372



1 3

6.2.3  Local ablation study (RQ2)

To get deep insights on each embedding component in ERL, we conduct some ablation 
experiments to investigate the contribution of each factor in AE, PE and FE to the local 
performances based on BE. Table 11 shows the local ablation results of AE, PE and FE.

For AE, two datasets with two auxiliary factors are used to support the local ablation 
study of AE, where a1 and a2 denote the template and hint factors (for ASSISTments2009), 
the type and hint factors (for ASSISTments2017), respectively. It can be seen from 
Table 11 that the variant of ERL (BE+AE) integrating two auxiliary factors based on BE 
improves the performance of AKT more than the variants of ERL integrating a single aux-
iliary factor, and the variant of ERL only involving BE performs the worst. In addition, 
different auxiliary factors have different positive effects on model performance. In conclu-
sion, the more effective factors are integrated in the model embedding, the better the per-
formance of the model can be significantly improved.

For PE, all the datasets are used to support the local ablation study of PE. Where 
BE+pcor and BE+pinc denote the variants of ERL integrating the correct and incorrect 
response factor, respectively. It can be seen from Table 11 that the variant of ERL (BE+PE) 
integrating complete performance factors based on BE improves the performance of AKT 
more than the variants of ERL integrating a single performance factor, and the variant of 
ERL only involving BE performs the worst. In addition, although different performance 
factors have different positive effects on model performance, BE+pinc achieves a larger per-
formance improvement than BE+pcor on the whole, which also supports our point in Sec-
tion 4.3. In conclusion, the integration of performance factors in the model embedding can 
effectively improve the model performance under different e-learning settings.

For FE, all datasets with time data are used to support the local ablation study of FE. 
Where BE+fseq and BE+frep denote the variants of ERL integrating the sequence delay and 
repeat delay factors, respectively. It can be seen from Table 11 that the variant of ERL 
(BE+FE) integrating both forgetting factors based BE improves the performance of AKT 
more than the variants of ERL integrating a single forgetting factor on the whole, and the 
variant of ERL only involving BE performs the worst. In addition, different forgetting fac-
tors have different positive effects on model performance. In conclusion, the integration of 

Table 11  Local ablation results of AE, PE and FE

ASSISTments2009 ASSISTments2017 Statics2011

Components Variants AUC ACC AUC ACC AUC ACC 

Baseline BE 0.8206 0.7699 0.7232 0.6911 0.8151 0.7776
BE+a1 0.8736 0.8085 0.7878 0.7273 – –

AE BE+a2 0.8609 0.7991 0.8677 0.7794 – –
BE+AE 0.8743 0.8083 0.8675 0.7800 – –
EB+pcor 0.8853 0.8132 0.7825 0.7253 0.8831 0.8210

PE BE+pinc 0.8927 0.8237 0.7996 0.7387 0.8790 0.8166
BE+PE 0.8967 0.8244 0.8134 0.7494 0.8841 0.8221
EB+fseq 0.8636 0.7979 0.7803 0.7225 0.8783 0.8168

FE BE+frep 0.8650 0.8006 0.7812 0.7229 0.8774 0.8165
BE+FE 0.8642 0.8005 0.7850 0.7254 0.8790 0.8163
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forgetting factors in the model embedding can effectively improve the model performance 
under different e-learning settings with time data.

Above all, although the variant of ERL integrating two factors from any one embed-
ding component improves the performance of AKT more than the variants of ERL inte-
grating one factor on the whole, sometimes the variants integrating one factor also shows 
better performance than the variants integrating two factor, such as: ACC for AE on 
ASSISTmens2009, AUC for AE on ASSISTmens2017, AUC and ACC for FE on ASSIST-
mens2009, and ACC for FE on Statics2011. Therefore, this indicates that our model still 
has deficiencies in the integration of factors inside embedding components, which will be 
one of the directions of our future efforts.

6.2.4  Exercise embedding study (RQ4)

In the Section 4.1, it is stipulated that when the exercise data is sparse, scalar embedding 
is carried out for the exercise tag; otherwise, vector embedding is carried out. However, 
sparse or not is a fuzzy concept, which can not provide specific guidance for practical 
application. Therefore, in this section, we make a comparative study of the scalar embed-
ding and vector embedding under different exercise sparsity conditions based on the 
applied instance ERL+AKT.

The sparse dataset, ASSISTments2009, is first divided into a series of sub-datasets with 
different sparsity according to the shortest sequence length. Then, the performance of the 
ERL+AKT model based on scalar embedding and vector embedding is respectively evalu-
ated on all sub-datasets (let  ERLscalar+AKT and  ERLvector+AKT denote the scalar embed-
ding-based and vector embedding-based models, respectively). Figure 14 shows results of 
the comparative study in the interval 100 ∼ 1100 . In our experiments, we have found that if 
the shortest sequence length in the sub-dataset is less than 100, the AUC value of the scalar 
embedding is always greater than that of the vector embedding; the opposite is true if the 
shortest sequence length is greater than 1100.

As you can see from Figure  14(a), results show that: (i) as the sparsity of exercise 
data decreases, the performance of  ERLscalar+AKT and  ERLvector+AKT increases on the 
whole, which is consistent with the intuition; (ii) when the sparsity is relatively large, the 

(a) (b)

Fig. 14  Comparative study between the scalar and vector embeddings. Where (a) shows the result that the 
shortest sequence length is in the interval 100 to 1100, and the step size is 100; (b) shows the result in the 
interval 600 to 700, and the step size is 10
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performance of  ERLscalar+AKT is better than that of  ERLvector+AKT; otherwise, the per-
formance of  ERLvector+AKT is better; (iii) the red circle is the intersection point of the two 
polylines, and the corresponding sparsity lies between 94.5% and 93.8%. In order to further 
explore more accurate sparsity, we conducted more fine-grained exploration in the range of 
600 ∼ 700 . As you can see from Figure 14(b), results show that: although the overall trend 
of the two polylines is in line with expectations, they intersect several times. Therefore, we 
cannot obtain a more accurate sparsity boundary between the scalar embedding and the 
vector embedding more accurately. In conclusion, we suggest that when the data sparsity 
is relatively large, the scalar embedding should be used for ERL; when the data sparsity is 
relatively small, the vector embedding is used for ERL. In other cases, the vector embed-
ding is used, because we find in the experiment that the scalar embedding requires more 
time to train the model than the vector embedding.

7  Conclusion and future works

In this paper, we find that the mining and integration of learning-related factors can effec-
tively improve the performance of DLKT models by analyzing previous studies. However, 
due to the difference of learning content and learning environment in different e-learning, 
types and quantities of learning-related factors modeled in the specific models are differ-
ent, which is not conducive to the subsequent application and promotion of the models. We 
focus on providing a model embedding interface for DLKT by consider multiple types of 
learning-related factors.

Starting from the nature of learning behavior and combining with previous research, we 
first explore and analyze four types of learning-related factors: exercise and skills, attributes 
of exercise, learners’ historical performance, and learners’ forgetting behavior in the learn-
ing process. An Extensible Representation Learning (ERL) approach for DLKT is then 
proposed to extract and integrate the representations of the four types of factors by setting 
five components. Finally, we apply ERL into two mainstream DLKT models, and results 
on three real-world datasets show that the proposed approach can significantly improve 
performances of DLKT models on predicting future learner responses. In the future, our 
work will focus on the application of ERL on more DLKT models, mining and itegrating 
more factors related to item and user to rich the representation learning model, designing 
more effective factor integration networks to give full play to the role of all factors.
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