
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01041-2

1 3

Multi‑type factors representation learning for deep
learning‑based knowledge tracing

Liangliang He1 · Jintao Tang1 · Xiao Li2 · Pancheng Wang1 · Feng Chen1 · Ting Wang1

Received: 13 September 2021 / Revised: 14 February 2022 / Accepted: 8 March 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Knowledge Tracing (KT) refers to the problem of predicting future learner performance
given their historical interactions with e-learning platforms. Recent years, Deep Learning-
based Knowledge Tracing (DLKT) methods show superior performance than traditional
methods due to their strong representational ability. However, researchers usually focus on
innovations in model structure, while ignoring the importance of Representation Learn-
ing (RL) for DLKT. Investigating previous studies, it is found that the mining and integra-
tion of learning-related factors can effectively improve the performance of DLKT models.
This paper focuses on providing a model embedding interface for DLKT by considering
multiple types of learning-related factors. We first explore and analyze four types of learn-
ing-related factors: exercise and skill, the attributes of exercise, learners’ historical per-
formance, and learners’ forgetting behavior in the learning process. We then propose an
Extensible Representation Learning (ERL) approach for DLKT to extract and integrate the
representations of these four types of factors by setting five components: base embedding,
auxiliary embedding, performance embedding, forgetting embedding, and embedding inte-
gration. Finally, we apply ERL into two mainstream DLKT models and comprehensively
evaluate the proposed approach on several real-world benchmark datasets. Results show
that ERL can significantly improve the performances of these two network on predicting
future learner responses.

Keywords Knowledge tracing · Deep learning · Representation learning · Learner
modeling

1 Introduction

With the popularity of e-learning platforms, learners can acquire knowledge by self-study
without leaving home. To recommend suitable learning contents to learners, e-learning
platforms need to understand learners’ knowledge accurately [24], which is often done
with Knowledge Tracing (KT). KT is an important task in e-learning. For example, it is

 * Ting Wang
 tingwang@nudt.edu.cn

Extended author information available on the last page of the article

Published online: 3 May 2022

World Wide Web (2022) 25:1343–1372

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01041-2&domain=pdf

1 3

a stepping stone for the tasks of the knowledge graph [22, 32]. The goal of KT task is to
model the Knowledge State (KS) of each learner, i.e., the level of the learner’s mastery of
skills, based on the history of the learner’s interactions with the platform. On an e-learning
platform, learners can learn related skills by completing specific exercises (e.g., if addition
is a skill, “1 + 1” is its exercise.), and the system traces the learner’s KS about the learning
skills based on a KT model. Finally, the platform determines whether the learner have mas-
tered these skills by a when-to-stop policy [31].

Usually, KT is formulated as a supervised sequence learning problem [38]: given a
learner’s interaction sequence It− 1 = (i1,i2…it− 1) up to the timestamp t (where i = (e,r) is
an input pair containing the exercise e at one timestamp and the learner’s response r (cor-
rect/incorrect) to e), the exercise et at timestamp t on a specific learning scenario, KT mod-
els try to predict the probability that the learner will correctly perform a learning action
(e.g., responding the exercise) at timestamp t, i.e., p(rt = 1∣et,It− 1), [13, 16, 36].

Recent years, Deep Learning-based Knowledge Tracing (DLKT) methods [11, 30, 36,
38] have shown superior performance than traditional models, such as Bayesian knowl-
edge tracing [7], latent factor models [4, 28] and item response theory [15, 33]. Figure 1
shows the general working paradigm of DLKT, where the role of Model Embedding is to
provide the exercise embedding (as x), the other is the exercise-response embedding (as y)
for DLKT. The former takes part in the prediction process in Response Prediction network
together with the current KS of the learner, while the latter is used to update the learner’s
current KS in Leaner Knowledge State Network, and the updated KS is used to predict the
response of the exercise in the next timestamp.

Theoretically, x and y are generated based on the exercise tag and the corresponding
real response tag, i.e., x and y represent the embedding of exercise e and the embedding
of exercise-response (e,r), respectively. However, due to the sparsity of exercise data [11,
26], earlier DLKT models [30, 38] use skill embedding instead of exercise embedding as
the model input to avoid over-parameterization and over-fitting. As the sparsity of exercise
data is relieved to some extent [11, 26], more and more factors (e.g., exercise [11], forget-
ting [24, 27], exercise text [20], etc) are integrated into the specific model, making exercise
a full representation.

However, due to the difference of learning content and learning setting in differ-
ent e-learning platforms, the types and quantities of learning-related factors modeled in
specific models are different, which is not conducive to the subsequent application and

Learner Knowledge
State Network

Model Embedding

Response Prediction
Network

Deep Learning-based Knowledge Tracing

Fig. 1 General working paradigm of DLKT (only the workflow at timestamp t is shown, and the following
model embedding and knowledge tracing are default at timestamp t)

1344 World Wide Web (2022) 25:1343–1372

1 3

promotion of the model. Therefore, it is necessary to provide a systematic method to guide
the representation learning (RL) of these factor, which has not received much attention in
DLKT so far. RL [2] makes it easier to extract useful information when building classifiers
or predictors by learning representations of the data, which has been successfully applied
in various fields of machine learning, such as object recognition [18, 21], natural language
processing [3, 14], transfer learning [1, 8] and so on.

In this paper, we propose an extensible representation learning approach, dubbed ERL,
which aims to provide a model embedding interface for DLKT by mining and integrat-
ing multiple types of learning-related factors. We first emphasize the importance of factor
mining and integration for DLKT by investigating the results of recent models integrated
multi-factors. Then, we explore and analyze four types of learning-related factors: exercise
and skill, the attributes of exercise, learners’ historical performance, and learners’ forget-
ting behavior in the learning process, which is inspired by the nature of learning behavior
and previous researches. Moreover, we extract the representations of these four types of
factors by setting four embedding components: Base Embedding (BE), Auxiliary Embed-
ding (AE), Performance Embedding (PE) and Forgetting Embedding (FE), respectively.
BE involves the representation extraction of skill data and exercise data, dealing with the
sparsity of exercise data; AE involves the representation extraction of various features
(e.g., template, hint, etc.) of the exercise, and provides local extensibility to integrate one
or more auxiliary factors; PE involves the representation extraction of the historical perfor-
mance of each learner; FE involves the representation extraction of the forgetting features
of each learner, including the lag time between two adjacent interactions with the same
exercise and two successive interactions. Finally, we integrate the representations of the
above four types of factors by setting a Embedding Integration (EI) component, which can
effectively solve the problems of over-parameterization and over-fitting caused by integra-
tion of too many factors.

To illustrate effectiveness of four types of learning-related factors and the usability of
the final representation learning approach, we apply the proposed approach into two main-
stream representative DLKT models: DKVMN and AKT (the latest DLKT network). We
design extensive experiments on three real-world datasets to comprehensively evaluate the
two applied models. Results show that the proposed approach can significantly improve
the performances of the latest network on predicting future learner responses, and the final
performances outperform the state-of-the-art DLKT models1. A preliminary version of this
report appeared in the Proceedings of the 2021 IEEE International Conference on Multi-
media and Expo (ICME) [12].

The contributions of this work are summarized as follows:

(1) Investigating the results of recent studies in DLKT, we find that although the structural
innovations of the model have been fully demonstrated, the improvement of model
performance brought by factor mining should not be underestimated.

(2) Exploring four types of factors that may affect learners’ knowledge tracing results,
and analyzing these factors at the data level from the perspective of influencing the
exercise-making accuracy of learners.

1 The corresponding source code and all preprocessed datasets are available at https:// github. com/ HLBil
ove/ ERL- master

1345World Wide Web (2022) 25:1343–1372

https://github.com/HLBilove/ERL-master
https://github.com/HLBilove/ERL-master

1 3

(3) Proposing an extensible representation learning approach, dubbed ERL, which is used
mined and integrated the above four types of factors, to provide a model embedding
interface for DLKT.

(4) Applying ERL two mainstream representative DLKT models, and evaluating the two
applied instances of ERL on three real-world benchmark datasets. The results show
that the proposed framework improves state-of-the-art KT methods on predicting future
learner responses.

In the remainder of this paper, we introduce the related work in the next section.
Section 3 investigates the role of model innovation and factor mining in DLKT. The
ERL approach is proposed in Section 4; two application instances, ERL+DKVMN and
ERL+AKT, are proposed in Section 5. Experiments and Analysis follow in Section 6, with
conclusion afterwards in the last section.

2 Related work

Since this paper aims to mine and integrate representations of multi-type learning-related
factors to improve DLKT, this section will review the related works in this field in terms of
the number of factors integrated in existing models.

2.1 Single‑factor models

For single-factor KT models, the single factor usually refers to exercise or skill. The exer-
cise library is considerably larger than the skill set, so many exercises are only learned
by few learners in most e-learning platforms [11, 26], resulting in sparse exercise data
(Figure 2 shows the distribution of the number of skills and the number of exercises on
the learned times in ASSISTments2009 and ASSISTments2017, respectively). Due to the
sparsity of exercise data, skills instead of exercises are used to generate x and y in DLKT
models at the beginning to avoid over-parameterization and over-fitting [11], i.e., s = e in
Figure 1 (ps, non-sparse exercise data is still the first choice for x and y).

The first single-factor DLKT model is Deep Knowledge Tracing (DKT) [30], which
applies Long Short-Term Memory (LSTM) network [29] to KT tasks. DKT uses hidden
states as a kind of summary of the past exercise-making sequence. Dynamic Key-Value
Memory Networks (DKVMN) [38] models the user’s KS into two memory matrices: key-
memory and value-memory, which are used to trace the user’s KS about each underly-
ing skill by automatically learning the correlation between the input exercise and the skill.
The Self-Attentive Knowledge Tracing (SAKT) model [26] applies attention mechanism to
DLKT for the first time, to deal with the sparsity of the exercise data. SAKT predicts the
user’s performance on the current exercise by considering the relevant exercises from his/
her past exercise-making sequence.

2.2 Double‑factor models

For double-factor KT models, the two factors usually refers to exercise and skill. Although
skill data in single-factor models circumvent the sparsity of exercise data effectively, x and
y to ignore the differences of exercises covering one same skill [11]. Thus, both skill data

1346 World Wide Web (2022) 25:1343–1372

1 3

and exercise data are used together to generate x and y in the double-factor models, result-
ing in significant performance gains.

Wang et al. [35] propose a novel Deep Hierarchical Knowledge Tracing (DHKT) model
exploiting the hierarchical relations between skills and exercises, which are modeled by the
hinge loss on the inner product between the average embedding of all skills covering one
single exercise and the exercise embedding. Unfortunately, DHKT ignores the sparsity of
the exercise data, when embedding the hierarchical relations.

Nagatani et al. [24] extends DKT by modeling the data related to forgetting. They con-
sider both the learner’s exercise-making sequence and the different forgetting behaviors
in the process of exercise-making, and the latest extension model is called Bi-Interaction
Deep Knowledge Tracing (BIDKT) [17].

Ghosh et al. [11] propose a novel Attentive Knowledge Tracing (AKT) model which is
completely dependent on attention network. AKT improves upon existing KT methods by
proposing a new monotonic attention mechanism to summarize past user performance. In
addition, they propose a Rasch Model-based Embedding (RME) method to model embed-
ding, and the embeddings of RME for x (xRME) and y (yRME) are as follows:

(1)�RME = �s + �e ⋅ �s,

(a) (b)

(c) (d)

Fig. 2 Distributions of #exercise and #skill on the learned times in ASSISTments2009 (of (a) and (b)) and
ASSISTments2017 (of (c) and (d)). Where the exercise data is very sparse, because there are very few exer-
cises that have been learned more often, and on the contrary, skills are learned more evenly

1347World Wide Web (2022) 25:1343–1372

1 3

where �s ∈ ℝ
D and �(s,r) ∈ ℝ

D denote the factor embedding and pair embedding of the skill
this exercise covers, respectively; �s ∈ ℝ

D is a factor vector that summarizes the variation
in exercises covering this skill; �(s,r) ∈ ℝ

D is a pair vector that summarizes the variation
in exercises and their corresponding responses; �e ∈ ℝ is a scalar difficulty parameter that
controls how far this exercise deviates from the skill it covers. However, although this setup
in RME alleviates over-parameterization and over-fitting of models to a certain, compared
with the multi-dimensional continuous vector, the 1-dimensional continuous scalar can
carry very limited information, so the representation of exercises cannot be fully extracted
when the exercise data is not sparse.

2.3 Multi‑factor models

To improve the performance of DLKT, multiple learning-related factors are integrated into
some specific models [20, 24, 27]. Liu et al. propose an Exercise-aware Knowledge Trac-
ing (EKT) framework by integrating the information of skills, exercise-making sequence
and the content text of exercises into a single model [20]. Pandey and Srivastava propose
a novel Relation-aware self-attention Knowledge Tracing (RKT) model by improving
the SAKT model. There are three types of information are combined in RKT, including
the exercise-making sequence, the relations between skills and time delay since the last
interaction, and the text information of the exercise content [27]. Admittedly, integrating
more learning-related factors in a specific DLKT model does improve the performance of
the model, but the integration mode of all factors involved depends on the specific DLKT
model and is difficult to extend. Therefore, this paper aims to provide a model embedding
interface for DLKT by mining and integrating multiple types of learning-related factors.

3 Investigation on model innovation and factor mining

To understand the effect of Model Innovation (MI) and Factor Mining (FM) on the final
performance of the models in DLKT, we investigate the experimental results of recent
DLKT models integrated multi-factors from two aspects of MI and FM. This section only
takes two latest representative works (AKT [11] and RKT [27]) as examples to illustrate
the results of our analysis. The datasets involved in this section are from the corresponding
specific papers.

3.1 Model innovation

To understand DLKT’s achievements in MI in recent years, we extract the partial experi-
mental results in the papers of AKT and RKT, showing in Tables 1 and 2 respectively,
where AKTSkill and RKTSkill denote the corresponding variants only integrating the skill
factor, respectively, best models are bold and second best models are italic (working on all
tables in this paper).
Table 1 shows that, compared with the earliest DLKT model (DKT), the largest perfor-
mance improvements (from AKTSkill) due to MI are 0.39% (on Statics2011), -0.01% (on
ASSISTments2009) and 0.26% (on ASSISTments2017), respectively. Incredibly, the earliest

(2)�RME = �(s,r) + �e ⋅ �(s,r),

1348 World Wide Web (2022) 25:1343–1372

1 3

model shows second best performance on the whole over all datasets, and performs best on
ASSISTments2009.

Table 2 shows that, compared with DKT, the largest performance improvements due to MI
are 3.2% (on ASSISTments2012 from SAKT), 7.3% (on POJ from DKVMN) and 2.5% (on
Junyi from SAKT), respectively. Incredibly, the earliest model shows second best performance
over all datasets. Although the overall improvement is significant, best models are not the lat-
est model (RKT) when only the skill factor is considered, and no single model is optimal over
all datasets.

Table 1 AUC values of AKT and
its baselines which only integrate
skill factor

a https:// sites. google. com/ site/ assis tment sdata/ home/ assis tment- 2009-
2010- data.
b https:// sites. google. com/ view/ assis tment sdata mining/ datas et
c https:// pslcd atash op. web. cmu. edu/ Datas etInfo? datas etId= 507

Models ASSIST-
ments2009a

ASSIST-
ments2017b

Statics2011c

DKT 0.817 0.726 0.823
DKVMN 0.809 0.707 0.820
SAKT 0.752 0.657 0.803
AKTSkill 0.817 0.728 0.827

Table 2 AUC values of RKT and
its baselines which only integrate
skill factor

a https:// sites. google. com/ site/ assis tment sdata/ home/ 2012- 13- school-
data- witha ffect
b https:// www. junyi acade my. org/
c http:// poj. org/

Models ASSISTments2012a POJb Junyic

DKT 0.712 0.656 0.814
DKVMN 0.701 0.704 0.822
SAKT 0.735 0.696 0.834
RKTSkill 0.730 0.667 0.830

Table 3 AUC values of AKT
and its baselines which integrate
different factors

ASSISTments2009 ASSISTments2017

Models Skill Skill+Exercise Skill Skill+Exercise

DKT 0.817 0.818 0.726 0.754
DKVMN 0.809 0.824 0.707 0.763
SAKT 0.752 0.778 0.657 0.714
AKT 0.817 0.835 0.728 0.770

1349World Wide Web (2022) 25:1343–1372

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
https://sites.google.com/view/assistmentsdatamining/dataset
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-withaffect
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-withaffect
https://www.junyiacademy.org/
http://poj.org/

1 3

3.2 Factor mining

We also extract the partial experimental results in papers of AKT and RKT, which can
illustrate the performance improvement caused by FM, showing in Tables 3 and 4,
respectively.

Table 3 shows that all models have achieved significant performance improve-
ments on the whole by integrating exercises (E) based on modeling skills (S) over both
ASSISTments2009 and ASSISTments2017. The maximum increases (from SAKT) are
3.5% (on ASSISTments2009) and 8.6% (on ASSISTments2017). For the latest network
AKT, the increases are 2.2% (on ASSISTments2009) and 5.8% (on ASSISTments2017).

Table 4 shows that, compared with RKT which only models skill data,
RKT+Performance integrating additional performance data, achieves 0.68%,
4.3% and 0.48% improvement on ASSISTments2012, POJ and Junyi, respec-
tively; RKT+ExerciseText integrating additional exercise text data, achieves 4.0%,
1.3% and 0.24% improvement on ASSISTments2012, POJ and Junyi, respectively;
RKT+Forgetting integrating additional forgetting data, achieves 6.6%, 18.1% and 0.36%
improvement on ASSISTments2012, POJ and Junyi, respectively.

3.3 Summary of investigation

Compared with the performance improvement brought by MI, the performance improve-
ment brought by FM is relatively more significant and stable. Therefore, we believe that
FM for DLKT should not be neglected and should be given at least the same importance
as MI. Unfortunately, there is a lack of systematic methods to guide Representation
Learning (RL) for DM in DLKT by far.

Existing DLKT models embed one or more factors to obtain the input of their mod-
els. In general, the more extended factors, the better the model performance. However,
due to the difference of learning content and learning environment in different online
learning, the types and quantities of learning factors integrated into the DLKT models
are different and this expansion lacks a clear direction, which is not conducive to the
subsequent application and promotion of the model.

This paper focus on providing a model embedding interface for DLKT by learning
representations of multi-type learning-related factors. As shown in Figure 1, x and y are
used to provide factor embedding and pair embedding to the DLKT model. Therefore,
our task is to learn x and y based on the static data from the e-learning platform (i.e.,
exercise, skill and etc) and the dynamic data of learner’s interaction with the platform
(i.e., performance, forgetting and etc).

Table 4 AUC values of RKT
and its baselines which integrate
different factors

Models ASSIST-
ments2012

POJ Junyi

RKT 0.730 0.667 0.830
RKT+Performance 0.735 0.696 0.834
RKT+ExerciseText 0.759 0.759 0.832
RKT+Forgetting 0.778 0.788 0.833

1350 World Wide Web (2022) 25:1343–1372

1 3

4 Extensible representation learning for factor embedding

According to the formal definition in Section 1, the KT task has been abstracted as a pre-
diction problem of unknown response, i.e., predicting a learner’s unknown response to a
certain exercise at a certain timestamp in the future. Therefore, the model embedding of
DLKT should consider the representations of both exercise and learner. For convenience,
the former are collectively referred to as Item-related Representations (IR), while the latter
are collectively referred to as User-related Representations (UR). In addition to exercise
and skill in IR, we believe that other attributes of exercise (e.g., template, hints, etc) should
not be ignored; we also believe that learners’ historical performance and forgetting behav-
ior in UR will greatly affect their future learning.

In this section, we first analyze the influence of the above four types of factors on learn-
ers’ learning behavior (exercise-making); then, we extract the representations of the four
types of factors by setting four embedding components: Base Embedding (BE), Auxiliary
Embedding (AE), Performance Embedding (PE) and Forgetting Embedding (FE), respec-
tively; finally, we integrate the representations of the above four types of factors by setting
a Embedding Integration (EI) component to generate the final factor embedding (x) and
pair embedding (y) for DLKT. The complete method is called Extensible Representation
learning (ERL). Figure 3 shows the architecture of ERL for x when the exercise data is not
sparse. Let D denotes the dimension of all factor and pair embeddings.

4.1 Base embedding

To make both embeddings x and y reflect the individual differences among exercises cover-
ing the same skill, RME weights the vector embedding of the skill using the scalar difficulty

Item-related representations User-related representations

BE AE PE

EI

FE

Fig. 3 Architecture of ERL for the factor embedding

1351World Wide Web (2022) 25:1343–1372

1 3

parameter of the exercise (refer to Eqs. 1 and 2). Although the setup in RME alleviate over-
parameterization and over-fitting of models to a certain, there is a limited amount of infor-
mation that a 1-dimensional vector can carry compared with a multi-dimensional continu-
ous vector, so the representation of exercises cannot be fully extracted when the exercise
data is not sparse. Therefore, RME has been improved to serve as BE in this paper. BE,
as the core component, is used to learn the basic representations required for the DLKT
model, involving exercise data and skill data.

Let E and S represent the number of distinct exercise tags and distinct skill tags of the
e-learning system, respectively. For factor embedding x, when the exercise data is sparse,
the exercise tag in each timestamp needs to be scalar embedded to reduce the effect of the
exercise data on BE (the relationship between the sparsity of exercise data and its embed-
ding is studied and discussed in Section 6.2.4). The formalization process is as follows:

where �spare ∈ ℝ
E×1 denotes the continuous embedding matrix for any exercise tag e under

the exercise data sparsity condition; �e ∈ ℝ denotes the scalar embedding of e; OneHot(⋅)
denotes the one-hot encoding operation. The scalar embedding, μe, is used to weight the
variant vector of the corresponding skill tag s, then the weighted result is added to the fac-
tor embedding of s, and finally the sum vector is fed into the tanh activation layer to form
the corresponding factor embedding of BE (Figure 4 shows the process of representation
extraction):

where �BE ∈ ℝ
D denotes the factor embedding of BE; {W1, b1} are the corresponding acti-

vation layer parameters; �s ∈ ℝ
D and �s ∈ ℝ

D denote the factor embedding and variant vec-
tor of s respectively, and the formalization processes are as follows:

where ��
x
∈ ℝ

S×D and ��
x
∈ ℝ

S×D denote the continuous embedding matrices for s. When
the exercise data is non-sparse, the factor embeddings of e and s are concatenated and then

(3)�e = OneHot(e) ⋅ �spare,

(4)�BE = Tanh(�1 ⋅ (�s + �e ⋅ �s) + �1),

(5)�s = OneHot(s) ⋅ �f
�
,

(6)�s = OneHot(s) ⋅ �v
�
,

Fig. 4 Representation extraction process of xBE under the condition of sparse exercise data

1352 World Wide Web (2022) 25:1343–1372

1 3

fed into the tanh activation layer to form the corresponding base embedding as (Figure 5
shows the process of representation extraction):

where {W2, b2} are the corresponding activation layer parameters; ⊕ is the concatenation
operation; �e ∈ ℝ

D denotes the factor embedding of e, and the calculation process is as
follows:

where ��
�
∈ ℝ

E×D denotes the continuous embedding matrix for any exercise e under the
exercise data non-sparsity condition. In summary, the final expression of BE for x is as
follows:

For pair embedding y of BE, �BE ∈ ℝ
D has the same structure as xBE, and the final

expression is as follows:

where {W3, b3,W4, b4} are the corresponding activation layer parameters; �(s,r) ∈ ℝ
D and

�(s,r) ∈ ℝ
D denote the pair embedding and the variant vector of (s,r), �(e,r) ∈ ℝ

D denote the
pair embedding of (e,r), and the calculation processes are as follows:

where ��� ∈ ℝ
(S+2)×D and ��

�
∈ ℝ

(S+2)×D denote the continuous embedding matrices for
(s,r); ��

� ∈ ℝ
(S+2)×D denote the continuous embedding matrix for (s,r); MultiHot(⋅) denotes

the multi-hot encoding operation.

(7)�BE = Tanh(�2 ⋅ [�s ⊕ �e] + �2),

(8)�
e
= OneHot(e) ⋅ ��

�
,

(9)�BE =

{

Tanh(�1 ⋅ (�s + 𝜇e ⋅ �s) + �1) when sparse

Tanh(�2 ⋅ [�s ⊕ �e] + �2) when non-sparse

(10)�BE =

{

Tanh(�3 ⋅ (�(s,r) + 𝜇e ⋅ �(s,r)) + �3) when sparse

Tanh(�4 ⋅ [�(s,r) ⊕ �(e,r)] + �4) when non-sparse

(11)�(s,r) = MultiHot(s, r) ⋅ �
�
� ,

(12)�(s,r) = MultiHot(s, r) ⋅ ��
�
,

(13)�(s,r) = MultiHot(e, r) ⋅ �
�
� ,

Fig. 5 Representation extraction process of xBE under the condition of non-sparse exercise data

1353World Wide Web (2022) 25:1343–1372

1 3

4.2 Auxiliary embedding

In order to further enrich xBE and yBE without over-fitting, we explored the attribute factors
of the exercise, which had not been considered in the previous works. Research shows that
the attributes of exercise are usually divided into two categories: one is relational attributes
(e.g., template, exercise type), the other is indicative attributes (e.g., hint). The former can
reflect the relationship between exercises, while the latter can be used as an indicator of the
difficulty (or complexity) of the exercise. There are two specific examples to illustrate these
two types of attribute factors.

• Template. Exercises in e-learning are usually generated based on the template. In other
words, multiple exercises may belong to the same template. Compared with the exer-
cise set, the scale of the template set is smaller, but relatively considerable compared
with the skill set. Data analysis shows that the difference between the Average Correct
Rate (ACR) of exercises under the same template is less than that under the same skill.
Therefore, the template information can supply the difficulty difference of the exercise
when faced with data sparsity.

• Hint. To assist learners in self-learning, some e-learning platforms set up hints for each
exercise. Generally, the total number of hints assigned by the platform for each exercise
can reflect the difficulty of the exercise to a certain extent. We can see from Figure 6
that the more the number of hints for an exercise, the more difficult the exercise is,
given that ACR indicates the difficulty of the exercise.

The factors in different e-learning platforms are different, so the auxiliary factors that
can reflect the difficulty of exercise are far from limited to these two types, which inspires
us to propose an extensible embedding component, auxiliary embedding (AE), for IR. AE
provides BE with embeddings of auxiliary data. Since there are differences in the types and
numbers of auxiliary data for different e-learning settings, AE is extensible.

Given N different types of auxiliary factors, and let {A1, A2, ..., AN} represent the num-
ber of tags for each factor, respectively. For factor embedding x, the one-hot vector of ai(i
= 1,2,...,N) are first embedded by embedding matrices �i

�
∈ ℝ

A
i
×D to generate the corre-

sponding factor embeddings, �ai ∈ ℝ
D , respectively. The calculation process is as follows:

Fig. 6 Distributions of ACR on #hint for datasets ASSISTments2009 and ASSISTments2017 (refer to
Table 6)

1354 World Wide Web (2022) 25:1343–1372

1 3

Then, all these embeddings are concatenated and then fed into the tanh activation layer to
generate the factor embedding of AE (�AE ∈ ℝ

D) as:

where {W5,b5} are the corresponding activation layer parameters
For pair embedding y, the multi-hot vector of (ai,r) is first embedded by embedding matri-

ces �i
�
∈ ℝ

Ai×D to generate the corresponding pair embeddings, �(ai,r) ∈ ℝ
D , respectively.

The calculation process is as follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to
generate the pair embedding of AE (�AE ∈ ℝ

D) as:

where {W6,b6} are the corresponding activation layer parameters.

4.3 Performance embedding

Performance refers to the objective results of the user’s past exercise-making behaviors, i.e.,
the number of correct and incorrect responses in the past. A correct response will help the
model to affirm and increase the strength estimate of the user’s KS, in the case of current
strength is already high. An incorrect response will help users better find the deficiencies of
their knowledge reserve. Therefore, incorrect responses may simply lead to more learning than
correct responses. However, while making the model sensitive to incorrectness is a good start,
it also seems useful to make the model specifically sensitive to correctness.

The performance factor analysis results (as shown in Figure 7) on ASSSISTments2017 and
Statics2011 support our motivation. As can be seen that: ARC of learners to the same exercise
at the next timestamp gradually increases on the whole, with the increase in the number of
historically correct responses; the trend is the opposite for the number of historically incorrect
responses. Thus, PE involves the learning of both correctness and incorrectness representa-
tions. As shown in Fig. 3, pcor and pinc in PE denote the good and poor performance factors of
e in the past respectively. The two delay features are discretized at following scale to alleviate
the impact of performance data sparsity:

where x and y denote the feature values before and after discretization, respectively.
Let Pcor and Pinc represent the maximum number of correct and incorrect response after

discretization, respectively. For factor embedding x, the one-hot vectors of pcor and pinc are
used to generate the corresponding factor embeddings, �pcor ∈ ℝ

D and �pinc ∈ ℝ
D , respectively.

The calculation processes are as follows:

(14)�ai = OneHot(ai) ⋅ �
i
�
.

(15)�AE = Tanh(�5 ⋅ [�a1 ⊕ �a2 ⊕⋯⊕ �aN] + �5),

(16)�(ai,r) = MultiHot(ai, r) ⋅ �
i
�
.

(17)�AE = Tanh(�6 ⋅ [�(a1,r) ⊕ �(a2,r) ⊕⋯⊕ �(aN ,r)] + �6),

(18)y = log2(x + 1),

(19)�pcor = OneHot(pcor) ⋅ �
cor
�

,

1355World Wide Web (2022) 25:1343–1372

1 3

Where �cor
�

∈ ℝ
Pcor×D and �inc

�
∈ ℝ

Pinc×D denote the continuous embedding matrices for pcor
and pinc, respectively. Then �pcor and �pinc are concatenated and then fed into the tanh activa-
tion layer to generate the factor embedding of PE (�PE ∈ ℝ

D) as:

where {W7,b7} are the corresponding activation layer parameters. Figure 8 shows an
embedding process for xPE.

For pair embedding y, the multi-hot vectors of (pcor,r) and (pinc,r) are first embedded by
embedding matrices �cor

�
∈ ℝ

Pcor×D and �inc
�

∈ ℝ
Pinc×D to generate the corresponding pair

embeddings �(pcor ,r) ∈ ℝ
D and �(pinc,r) ∈ ℝ

D , respectively. The calculation processes are as
follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to
generate the pair embedding of PE (�PE ∈ ℝ

D) as:

(20)�pinc = OneHot(pinc) ⋅ �
inc
�
.

(21)�PE = Tanh(�7 ⋅ [�pcor ⊕ �pinc] + �7),

(22)�(pcor ,r) = MultiHot(pcor, r) ⋅ �
cor
�

,

(23)�(pinc,r) = MultiHot(pinc, r) ⋅ �
inc
�
.

Fig. 7 Distributions of ACR on the number of correct and incorrect response for ASSISTments2017 and
Statics2011

1356 World Wide Web (2022) 25:1343–1372

1 3

where {W8,b8} are the corresponding activation layer parameters.

4.4 Forgetting embedding

Predicting a learner’s knowledge precisely is a difficult task because learners do forget, i.e.,
the time lag (or delay) between the last learning of the same or similar content and the next
learning. Nagatani et al. ’s research shows that: how the probability of responding correctly
depends on the lag time from the previous interaction with the same skill. We analyze the

(24)�PE = Tanh(�8 ⋅ [�(pcor ,r) ⊕ �(pinc,r)] + �8),

0 0 1 1 1 1 1

Fig. 8 PE embedding process for factor embedding. Given a learner’s historical interaction sequence up to
the timestamp 13, generate the corresponding factor embedding of PE

Fig. 9 Correlation between lag time and ARC of exercise in ASSISTments2017 and Statics2011

1357World Wide Web (2022) 25:1343–1372

1 3

correlation between delay time and ARC of exercise in three datasets: ASSISTments2017
and Statics2011 (Figure 9 shows the analysis results), which further consolidates the above
conclusion. As can be seen that: ARC of learners to the same exercise at the next times-
tamp gradually decreases, with the increase in lag time on the whole.

To achieve an accurate knowledge modeling, we introduce the Forgetting Embedding
(FE) component to model the learner’s forgetting factors. Different from other work, we
consider the following two features in this study:

• Repeated Delay (RD): the time delay between two adjacent interactions with the same
exercise id.

• Sequence Delay (SD): the time delay of two successive interactions; the exercise id of
an interaction do not matter.

Thus, FE involves the learning of both RD and SD representations. Figure 10 illustrates
these delay factor, and the missing RD and SD are set to a fixed value of 0. All the delay
features are used by the seconds and are discretized by Eq. 18 to alleviate the impact of
delay data sparsity.

Let Frep and Fseq represent the maximum time delays of RD and SD after discretization,
respectively. For factor embedding x, the one-hot vectors of frep and fseq are used to gener-
ate the corresponding factor embeddings, �frep ∈ ℝ

D and �fseq ∈ ℝ
D , respectively. The calcu-

lation processes are as follows:

Where �rep
� ∈ ℝ

Frep×D and �seq
� ∈ ℝ

Fseq×D denote the continuous embedding matrices for frep
and fseq, respectively. Then �frep ∈ ℝ

D and �fseq ∈ ℝ
D are concatenated and then fed into the

tanh activation layer to generate the factor embedding of PE (�FE ∈ ℝ
D) as:

where {W9,b9} are the corresponding activation layer parameters.
For pair embedding y, the multi-hot vectors of (frep,r) and (fseq,r) are first embedded by

embedding matrices �rep
� ∈ ℝ

Frep×D and �seq
� ∈ ℝ

Fseq×D denote the continuous embedding

(25)�frep = OneHot(frep) ⋅ �
rep
�
,

(26)�fseq = OneHot(fseq) ⋅ �
seq
�
.

(27)�FE = Tanh(�9 ⋅ [�frep ⊕ �fseq] + �9),

Timestamp

RD

SD 0

0 0

Fig. 10 Forgetting factors from a learner’s sequence of interactions. Each circle corresponds to an interac-
tion and the same color represents the same exercise id. In the right table, the time gap Δij = ti − tj

1358 World Wide Web (2022) 25:1343–1372

1 3

matrices for frep and fseq to generate the corresponding pair embeddings �(frep,r) ∈ ℝ
D and

�(fseq ,r) ∈ ℝ
D , respectively. The calculation processes are as follows:

Then, all these embeddings are concatenated and then fed into the tanh activation layer to
generate the pair embedding of FE (�FE ∈ ℝ

D) as:

where {W10,b10} are the corresponding activation layer parameters.

4.5 Embedding integration

In order to provide a model embedding interface for DLKT, the output of the four embed-
ding components needs to be integrated into an embedding vector with fixed dimensions.
The most straightforward approach is to concatenate the embedding of the output of these
four components as:

where �ERL
concat

∈ ℝ
D and �ERL

concat
∈ ℝ

D denote the factor embedding and pair embedding of
ERL based on directly concatenating, respectively.

However, considering the extensibility of the approach, the output dimensions of ERL
also need to be fixed when the above four types of information cannot be provided or are
not necessary (especially the last three). Therefore, we perform a compression operation
on �ERL

concat
 and �ERL

concat
 . In order to make the compression effect better, we compare the lin-

ear activation (“Linear”) and five nonlinear activation functions: “Softmax”, “Sigmoid”,
“Tanh”, “ReLU” and “LeakyReLU”. The results show that Softmax has the best overall
performance on the basis of solving the over-fitting (refer to Table 5 and Figure 11, where

(28)�(frep ,r) = MultiHot(frep, r) ⋅ �
rep
�
,

(29)�(fseq ,r) = MultiHot(fseq, r) ⋅ �
seq
�
.

(30)�FE = Tanh(�10 ⋅ [�(frep,r) ⊕ �(fseq ,r)] + �10),

(31)�ERL
concat

=
[

�BE ⊕ �AE ⊕ �PE ⊕ �FE
]

,

(32)�ERL
concat

=
[

�BE ⊕ �AE ⊕ �PE ⊕ �FE
]

.

Table 5 Performance evaluation results of ERL+AKT (detailed in Section 5) with different activation func-
tions on datasets: ASSISTments2009, ASSISTments2017 and Statics2011 (detailed in Section 6.1.1)

ASSISTments2009 ASSISTments2017 Statics2011

Activation functions ACC AUC ACC AUC ACC AUC

Linear 0.9065 0.8333 0.8756 0.7863 0.8797 0.8170
Softplus 0.9078 0.8340 0.8790 0.7897 0.8809 0.8183
ReLU 0.9069 0.8340 0.8751 0.7859 0.8792 0.8172
LeakyReLU 0.9068 0.8340 0.8751 0.7858 0.8793 0.8169
Sigmoid 0.9075 0.8345 0.8785 0.7890 0.8802 0.8185
Tanh 0.9063 0.8343 0.8756 0.7865 0.8795 0.8166

1359World Wide Web (2022) 25:1343–1372

1 3

ERL+AKT denotes the application of ERL to AKT). Therefore, the final integration form
of the proposed ERL approach is as follows:

where �ERL ∈ ℝ
D and �ERL ∈ ℝ

D denote the final factor embedding and pair embedding
of ERL, respectively; {xBE, yBE} are required; {xAE, yAE}, {xPE, yPE}, and {xFE, yFE} are
optional; {W11,b11, W12,b12} are the corresponding activation layer parameters, whose
dimensions vary with the number of components to be integrated. In addition, to further
avoid over-fitting problems, we add the drop-out operation during activation.

5 Applying ERL to DLKT models

In this section, we provide two instances to illustrate how to apply the proposed ERL
approach to existing DLKT models. Existing DLKT models are divided into two main
classes: RNN-based models and attention mechanism(AM)-based models. For RNN-based
models, DKT, as the first application of deep learning in the field of knowledge tracing,
uses RNN and LSTM to model knowledge tracing task. MANN extends LSTM and GRU
using external memory, and is used by whom to model knowledge tracing tasks. At the

(33)�ERL = Softplus
(

�11 ⋅

[

�BE[⊕�AE][⊕�PE][⊕�FE]
]

+ �11
)

,

(34)�ERL = Softplus
(

�12 ⋅

[

�BE[⊕�AE][⊕�PE][⊕�FE]
]

+ �12
)

,

Fig. 11 Training and validation processes of ERL+AKT (detailed in Section 5) with different activation
functions on the dataset of ASSISTments2009

1360 World Wide Web (2022) 25:1343–1372

1 3

same time, they propose DKVMN based on MANN, taking into account the correlation
between skills in the knowledge tracing field. For AM-based models, SAKT, as the first
proposed model, aims to deal with the sparse problem of exercise data, which is a self-
attention based knowledge tracing model. RKT extends SAKT by introducing a relation-
aware self-attention layer that incorporates the contextual information. AKT, a completely
dependent on attention network, extends SAKT by building context-aware representations
of exercises and responses and proposing a monotonic attention mechanism to summarize
past learner performance in the right time scale. To sum up, we therefore choose DKVMN
and AKT as the application models of ERL. We select two existing main stream DLKT
models for improved instances. The first instance improves DKVMN by ERL, named
ERL+DKVMN; the second improves AKT by ERL, named ERL+AKT.

5.1 Application Instance‑1: ERL+DKVMN

Figure 12(a) shows the knowledge tracing process of DKVMN. At the timestamp t,
DKVMN traces the KS of the learner by reading and writing to the value-memory matrix
M

v
t
 using the correlation weight computed from the input skill and the key-memory matrix

Mk, and predicts the response of the learner to the skill based on the read memory content
rt and the input skill embedding ks

t
 . Mk and Mv are used to store the underlying concepts

and the mastery levels of each concept, respectively.
According to the architecture of DLKT, DKVMN can be generalized into three

parts: Model Embedding, Learner Knowledge State Network and Response Prediction
Network, as shown in Figure 12(b). ERL+DKVMN is produced by extending Model
Embedding in DKVMN with the proposed ERL representation learning approach,

Fig. 12 DKVMN (of (a)) and its DLKT-oriented generalized architectures (of (b))

1361World Wide Web (2022) 25:1343–1372

1 3

using both factor embedding (xERL) and pair embedding yERL of ERL to improve the
original factor embedding (�DKVMN = �s) and pair embedding (�DKVMN = �s) in Model
Embedding of DKVMN.

5.2 Application Instance‑2: ERL+AKT

AKT [11] is the representative work based on attention mechanism, which consists
of five components: Rasch Model-based Embeddings, Question Encoder, Knowl-
edge Encoder, Knowledge Retriever and Prediction Network, as shown in Fig-
ure 13(a). Rasch Model-based Embeddings is used as raw embeddings for exercises
and responses; Question Encoder and Knowledge Encoder are used to compute the
context-aware representations of exercises and responses pairs, respectively; Knowl-
edge Encoder uses these representations as input and computes the KS of the learner;
Prediction Network is used to predict the learner’s response to the current exercise.
According to the architecture of DLKT, Rasch Model-based Embeddings corre-
sponds to Model Embedding; Question Encoder, Knowledge Encoder and Knowledge
Retriever correspond to Learner Knowledge State Network; Prediction Network cor-
responds to Response Prediction Network. The generalized architectures for AKT is
shown in Figure 13(b).

ERL+AKT is produced by extending Model Embedding in AKT with the proposed
ERL representation learning approach, using both factor embedding (xERL) and pair
embedding yERL of ERL to improve the original factor embedding (�DKVMN = �s) and
pair embedding (�DKVMN = �s) in Model Embedding of AKT.

Rasch model-based
Embeddings

Knowledge
Encoder

Exercise
Encoder

Knowledge
Retriever

Prediction Network

(a)

Rasch model-based
Embeddings

Knowledge
Encoder

Exercise
Encoder

Knowledge
Retriever

Prediction Network

Model
Embedding

Learner Knowledge
State Network Response Prediction

Network

(b)

Fig. 13 AKT (of (a)) and its AKT-oriented generalized architectures (of (b))

1362 World Wide Web (2022) 25:1343–1372

1 3

5.3 Model extensibility and training

For application models of ERL, local extensibility means that one or more auxiliary fac-
tors can be extended in AE to meet different KT tasks with various auxiliary factors, and
you can also mine more performance and forgetting factors to enrich PE and FE, respec-
tively. In addition to the local extensibility, these application instances also show global
extensibility in terms of the overall structure, which means that all the local embedding
components other than BE can be used separately or not, and you can also extend more
user-related local embedding components other than PE and FE to enrich UE, respectively.

All parameters in ERL and its variants are learned together with parameters of the
DLKT model from downstream All learnable parameters in the entire are trained in end-to-
end fashion by minimizing the following cross entropy loss between predicted response (r′

t
)

and real response (rt) during training:

where L denotes the cross entropy loss.

6 Experiments

To evaluate the usability and effectiveness of the proposed representation learning frame-
work, we apply the proposed ERL into two representative existing DLKT model: DKVMN
and AKT (the latest DLKT network), and the two applied instances respectively are
denoted by ERL+DKVMN and ERL+AKT. We design six experiments on four real-world
datasets to comprehensively evaluate ERL+DKVMN and ERL+AKT.

6.1 Experimental settings

6.1.1 Datasets

Three real-word benchmark datasets are used to evaluate the performance of all the mod-
els involving in experiments on predicting future learner responses, including ASSIST-
ments2009, ASSISTments2017 and Statics2011. For ASSISTments2009, each exer-
cise involves the specific skill, template which is used to generated related exercises,
and hint number which is set by the platform according to the specific exercise. For

(35)L = −
∑

t

(

rt log
(

r�
t

)

+
(

1 − rt
)

log
(

1 − r�
t

))

,

Table 6 Statistical information for all datasets

a “Seqlen” denotes the range of sequence lengths
b “Sparsity” is calculated as Sparsity = 1 − #interactions/(#users ⋅ #exercises)

Datasets #users #skills #exercises #interactions Seqlena Sparsityc

ASSISTments2009 4217 124 26688 525534 [1, 8214] 99.53%
ASSISTments2017 1709 102 3162 942816 [2, 3057] 82.55%
Statics2011 333 300 1224 261947 [5, 2185] 35.73%

1363World Wide Web (2022) 25:1343–1372

1 3

ASSISTments2017, each exercise involves the specific skill, hint number and exercise
types. For Statics2011, each exercise involves the specific steps. Previous works use exer-
cise tag and step tag together to retrieve each record of exercise-making. The original exer-
cise tag is treated as the skill tag, and the original exercise tag is treated as a new exercise
tag along with the step tag in the paper. The complete statistical information for all datasets
refers to Table 6. We delete user sequences of length 1 from all the datasets, and round
off all responses. To ensure the integrity of the learning sequence, we save all records of
interactions missing skill (all missing skills are treated as a new skill label) in ASSIST-
ments2009, which is different for all existing works. We trained all the models with 80% of
the dataset and test them on the remaining. We perform 5-fold cross validation to evaluate
all the models on all datasets, in which folds are split based on users.

6.1.2 Auxiliary factor selection

Different e-learning platforms have different types and numbers of exercise attributes, so
it is crucial to determine which auxiliary factors contribute to the final performance of the
model. This paper uses the method of analysis + statistics + experiment:

• Analysis. Potential auxiliary factors that may affect the difficulty of exercise are firstly
selected from the existing auxiliary factors by analysis, such as the generated template
of exercise and the number of hints equipped with exercise. For the template, the diffi-
culty of the exercise is greatly influenced by the template, e.g. “1 + 1” (exercise) for “a
+ b” (template), “1 − (2 + 3)” (exercise) for “a − (b + c)” (template); For the hint, the
more hints an exercise is equipped with, the more difficult it may be intuitively.

• Statistics. The uncertain auxiliary factors (e.g. hints) can be further determined by
means of data statistics (refer to Section 4.2), in which the ACR of exercises can be
used as an indicator of whether the corresponding factors can affect the difficulty of
exercises.

• Experiment. The final judgment of whether a potential auxiliary factor should be used
to trace the knowledge state of learners, it is necessary to verify whether its integration
can improve the evaluation metrics of KT task through specific experiments.

6.1.3 Model setting and evaluating

Except for all the scalar parameters (with the same dimension of 1), all the vector embed-
dings in DKVMN and ERL+DKVMN have the same dimension of 100, and all the vector
embeddings in AKT and ERL+AKT have the same dimension of 256; the dropout rate
for all models is set to 0.05. The Area Under the Curve (AUC) and Accuracy (ACC) are
used to evaluate the performances of all the models on predicting binary-valued future
user responses to exercises. Generally, the value 0.5 of AUC or ACC represents the perfor-
mance prediction result by randomly guessing, and the larger the better.

6.1.4 Factor encoding

All the input factors are presented to neural networks using “one-hot” encoding vectors.
Take exercise factor, for example, if E different exercise tags exist in total, then the “one-
hot” encoding of the exercise tag et is length E vector whose entries are all zero except that
the eth

t
 entry is one. All the input pairs are presented using “multi-hot” encoding vectors.

1364 World Wide Web (2022) 25:1343–1372

1 3

Specifically, the “one-hot” encoding of the exercise tag et is directly concatenated with
the response of et to form the “multi-hot” encoding vectors of the pair (et,rt). An concrete
example of the input encoding for exercise is illustrated in Table 7 where there is a total of
five exercises. An alternative encoding for the pair encoding is “one-hot” encoding, whose
vector is twice as long as the “multi-hot” encoding. In our experiments, we have found that
using the “multi-hot” encoding for pair is much more effective and introduces fewer model
parameters.

6.2 Experimental design and results

In this section, we design four sub-experiments to answer the following research questions
(RQs):

• RQ1: Can ERL improve the DLKT networks?
• RQ2: What is the effect of various components in ERL?
• RQ3: What is the effect of various factors in each local embedding component of ERL?
• RQ4: How to determine when to use scalar or vector embedding for exercise data?

6.2.1 Overall performance evaluation (RQ1)

To evaluate the usability and effectiveness of the proposed representation learning
approach, We compare our models involving with the state-of-the-art DLKT methods. The
details of compared models are:

• DKT [30] is the earliest DLKT method that leverages single layer LSTM to model
learner knowledge state.

• DKT+ [37] is an improved version of DKT with regularization on prediction consist-
ency, which reconstructs the observed input and overcomes the prediction performance
inconsistency of model across time-steps.

• DKVMN [38] is improved memory augmented recurrent neural network with dynamic
key-value memories, which mines correlations between skills.

• SAKT [26] applies the transformer structure to assign weights to the previously learned
exercises for predicting predict the learner’s response to the current exercise.

• AKT [11] is an improved version of SAKT with contextualized representations of exer-
cises and responses, which utilizes a monotonic attention mechanism to summarize past
learner performance, and the RME model to capture individual differences among exer-
cises covering the same skill.

Table 7 Examples for the input
encoding

Exercise tag Response Factor encoding Pair encoding

Exercise-1 Correct (or 1) [1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 1]
Exercise-1 Incorrect (or 0) [1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0]
Exercise-2 Correct (or 1) [0, 1, 0, 0, 0] [0, 1, 0, 0, 0, 1]
Exercise-3 Incorrect (or 0) [0, 0, 1, 0, 0] [0, 0, 1, 0, 0, 0]
Exercise-4 Correct (or 1) [0, 0, 0, 1, 0] [0, 0, 0, 1, 0, 1]
Exercise-5 Incorrect(or 0) [0, 0, 0, 0, 1] [0, 0, 0, 0, 1, 0]

1365World Wide Web (2022) 25:1343–1372

1 3

Where we re-implement DKVMN and AKT in PyTorch, and the rest of the experimental
results are replicated from AKT because the data are pre-processed and the parameters are
initialized in exactly the same way.

we firstly compare the performance of DKVMN [38] and AKT [11] before and
after the application of ERL, and Table 8 shows the performance of all DLKT methods
across all datasets on predicting future learner responses. The results show that ERL can
effectively improve the performance of the DLKT models on predicting future learner
responses. Compared with original DKVMN, the improved predictive performances
of ERL+DKVMN evaluated by AUC are up to 7.93%, 19.10% and 5.23% on datasets
ASSISTments2009, ASSISTments2017 and Statics2011, respectively; the improved pre-
dictive performances evaluated by ACC are up to 4.91%, 11.78% and 3.85% on datasets
ASSISTments2009, ASSISTments2017 and Statics2011, respectively. Compared with
original AKT, the improved predictive performances of ERL+AKT evaluated by AUC are
up to 5.46%, 14.21% and 9.48% on datasets ASSISTments2009, ASSISTments2017 and
Statics2011, respectively; the improved predictive performances evaluated by ACC are up
to 4.25%, 9.97% and 6.73% on datasets ASSISTments2009, ASSISTments2017 and Stat-
ics2011, respectively. This experiment demonstrates that ERL can greatly improve the per-
formances of the DLKT models on predicting future learner responses.

In addition, we compare the AUC performance of ERL+DKVMN and ERL+AKT
with other DLKT model, and Table 9 shows the compared results. It can be seen that
AKT shows better performance than other baseline models on all data except for Stat-
ics2011; DKVMN has better performance than other RNN-based models (DKT and
DKT+) on the whole; the proposed ERL+AKT shows the best performance over all
involved baseline models. This experiment demonstrates that ERL-enhanced AKT
achieves the best performance across all involved benchmark datasets on predicting
future learner responses. Although data enhancement leads to the introduction of more
parameters into the model, our series of specific operations (such as scalar embedding

Table 8 Performance comparison
before and after application of
ERL

ASSIST-
ments2009

ASSIST-
ments2017

Statics2011

Models AUC ACC AUC ACC AUC ACC

DKVMN 0.8206 0.7699 0.7232 0.6911 0.8164 0.7741
ERL+DKVMN 0.8857 0.8077 0.8613 0.7725 0.8591 0.8039
Improved 7.93% 4.91% 19.10% 11.78% 5.23% 3.85%
AKT 0.8608 0.8000 0.7664 0.7149 0.8151 0.7776
ERL+AKT 0.9078 0.8340 0.8753 0.7862 0.8924 0.8299
Improved 5.46% 4.25% 14.21% 9.97% 9.48% 6.73%

Table 9 AUC performance of other baseline DLKT methods on all datasets on predicting future learner
responses

Datasets DKT DKT+ DKVMN SAKT AKT ERL+ DKVMN ERL+ AKT

ASSISTments-2009 0.8170 0.8024 0.8206 0.7520 0.8608 0.8857 0.9078
ASSISTments-2017 0.7264 0.7124 0.7232 0.6569 0.7664 0.8613 0.8753
Statics-2011 0.8233 0.8301 0.8164 0.8029 0.8151 0.8591 0.8924

1366 World Wide Web (2022) 25:1343–1372

1 3

of exercise labels, logarithmic discretization of integer data, etc.) have in fact reduced
the influence to a certain extent and reached a fully acceptable degree.

6.2.2 Global ablation study (RQ2)

To get deep insights on ERL, we investigate the contribution of various components
involved in ERL to the whole performance. Therefore, we conduct some ablation
experiments to show how each embedding component of ERL affect final results. All
the datasets are used to support the global ablation study of ERL, and Table 10 shows
the ablation results, where AE is not integrated in ERL due to lack of time data for
Statics2011. It can be seen from Table 10 that i) the ERL integrating all the embedding
components improves the performance of AKT more than the other variants; ii) ERL
with BE and AE improves the performance of AKT more than ERL with BE and PE or
FE on ASSISTments2017; iii) ERL with BE and PE improves the performance of AKT
more than ERL with BE and AE or FE on ASSISTments2009 and Statics2011; iv) ERL
with BE and FE improves the performance of AKT less than ERL with BE and AE or
PE on all datasets; v) the variant of ERL only integrating the embedding component
of BE outperforms the corresponding base models. In conclusion, the effectiveness of
ERL comes from all the embedding components working together, different embed-
ding components have different positive effects on the whole performance of models,
and no one embedding component is significantly better than any other on all datasets.

Table 10 Global ablation results of ERL, where “–” means the corresponding item is missing due to the
absence of the corresponding factors in Statics2011

Datasets BE AE PE FE AUC (DKVMN) ACC (DKVMN) AUC (AKT) ACC (AKT)

ASSIST-
ments2009

0.8206 0.7699 0.8608 0.8000

 ✓ 0.8326 0.7740 0.8628 0.8004
 ✓ ✓ 0.8402 0.7724 0.8743 0.8083
 ✓ ✓ 0.8827 0.8078 0.8966 0.8244
 ✓ ✓ 0.8391 0.7787 0.8642 0.8004
 ✓ ✓ ✓ ✓ 0.8858 0.8077 0.8989 0.8277

ASSIST-
ments2017

0.7232 0.6911 0.7664 0.7149

 ✓ 0.7457 0.7018 0.7799 0.7210
 ✓ ✓ 0.8473 0.7620 0.8675 0.7799
 ✓ ✓ 0.7671 0.7151 0.8134 0.7494
 ✓ ✓ 0.7544 0.7075 0.7880 0.7280
 ✓ ✓ ✓ ✓ 0.8613 0.7724 0.8689 0.7803

Statics2011 – 0.8164 0.7741 0.8151 0.7776
 ✓ – 0.8536 0.7996 0.8726 0.8111
 ✓ – ✓ 0.8581 0.8021 0.8841 0.8221
 ✓ – ✓ 0.8433 0.7929 0.8790 0.8163
 ✓ – ✓ ✓ 0.8591 0.8039 0.8924 0.8299

1367World Wide Web (2022) 25:1343–1372

1 3

6.2.3 Local ablation study (RQ2)

To get deep insights on each embedding component in ERL, we conduct some ablation
experiments to investigate the contribution of each factor in AE, PE and FE to the local
performances based on BE. Table 11 shows the local ablation results of AE, PE and FE.

For AE, two datasets with two auxiliary factors are used to support the local ablation
study of AE, where a1 and a2 denote the template and hint factors (for ASSISTments2009),
the type and hint factors (for ASSISTments2017), respectively. It can be seen from
Table 11 that the variant of ERL (BE+AE) integrating two auxiliary factors based on BE
improves the performance of AKT more than the variants of ERL integrating a single aux-
iliary factor, and the variant of ERL only involving BE performs the worst. In addition,
different auxiliary factors have different positive effects on model performance. In conclu-
sion, the more effective factors are integrated in the model embedding, the better the per-
formance of the model can be significantly improved.

For PE, all the datasets are used to support the local ablation study of PE. Where
BE+pcor and BE+pinc denote the variants of ERL integrating the correct and incorrect
response factor, respectively. It can be seen from Table 11 that the variant of ERL (BE+PE)
integrating complete performance factors based on BE improves the performance of AKT
more than the variants of ERL integrating a single performance factor, and the variant of
ERL only involving BE performs the worst. In addition, although different performance
factors have different positive effects on model performance, BE+pinc achieves a larger per-
formance improvement than BE+pcor on the whole, which also supports our point in Sec-
tion 4.3. In conclusion, the integration of performance factors in the model embedding can
effectively improve the model performance under different e-learning settings.

For FE, all datasets with time data are used to support the local ablation study of FE.
Where BE+fseq and BE+frep denote the variants of ERL integrating the sequence delay and
repeat delay factors, respectively. It can be seen from Table 11 that the variant of ERL
(BE+FE) integrating both forgetting factors based BE improves the performance of AKT
more than the variants of ERL integrating a single forgetting factor on the whole, and the
variant of ERL only involving BE performs the worst. In addition, different forgetting fac-
tors have different positive effects on model performance. In conclusion, the integration of

Table 11 Local ablation results of AE, PE and FE

ASSISTments2009 ASSISTments2017 Statics2011

Components Variants AUC ACC AUC ACC AUC ACC

Baseline BE 0.8206 0.7699 0.7232 0.6911 0.8151 0.7776
BE+a1 0.8736 0.8085 0.7878 0.7273 – –

AE BE+a2 0.8609 0.7991 0.8677 0.7794 – –
BE+AE 0.8743 0.8083 0.8675 0.7800 – –
EB+pcor 0.8853 0.8132 0.7825 0.7253 0.8831 0.8210

PE BE+pinc 0.8927 0.8237 0.7996 0.7387 0.8790 0.8166
BE+PE 0.8967 0.8244 0.8134 0.7494 0.8841 0.8221
EB+fseq 0.8636 0.7979 0.7803 0.7225 0.8783 0.8168

FE BE+frep 0.8650 0.8006 0.7812 0.7229 0.8774 0.8165
BE+FE 0.8642 0.8005 0.7850 0.7254 0.8790 0.8163

1368 World Wide Web (2022) 25:1343–1372

1 3

forgetting factors in the model embedding can effectively improve the model performance
under different e-learning settings with time data.

Above all, although the variant of ERL integrating two factors from any one embed-
ding component improves the performance of AKT more than the variants of ERL inte-
grating one factor on the whole, sometimes the variants integrating one factor also shows
better performance than the variants integrating two factor, such as: ACC for AE on
ASSISTmens2009, AUC for AE on ASSISTmens2017, AUC and ACC for FE on ASSIST-
mens2009, and ACC for FE on Statics2011. Therefore, this indicates that our model still
has deficiencies in the integration of factors inside embedding components, which will be
one of the directions of our future efforts.

6.2.4 Exercise embedding study (RQ4)

In the Section 4.1, it is stipulated that when the exercise data is sparse, scalar embedding
is carried out for the exercise tag; otherwise, vector embedding is carried out. However,
sparse or not is a fuzzy concept, which can not provide specific guidance for practical
application. Therefore, in this section, we make a comparative study of the scalar embed-
ding and vector embedding under different exercise sparsity conditions based on the
applied instance ERL+AKT.

The sparse dataset, ASSISTments2009, is first divided into a series of sub-datasets with
different sparsity according to the shortest sequence length. Then, the performance of the
ERL+AKT model based on scalar embedding and vector embedding is respectively evalu-
ated on all sub-datasets (let ERLscalar+AKT and ERLvector+AKT denote the scalar embed-
ding-based and vector embedding-based models, respectively). Figure 14 shows results of
the comparative study in the interval 100 ∼ 1100 . In our experiments, we have found that if
the shortest sequence length in the sub-dataset is less than 100, the AUC value of the scalar
embedding is always greater than that of the vector embedding; the opposite is true if the
shortest sequence length is greater than 1100.

As you can see from Figure 14(a), results show that: (i) as the sparsity of exercise
data decreases, the performance of ERLscalar+AKT and ERLvector+AKT increases on the
whole, which is consistent with the intuition; (ii) when the sparsity is relatively large, the

(a) (b)

Fig. 14 Comparative study between the scalar and vector embeddings. Where (a) shows the result that the
shortest sequence length is in the interval 100 to 1100, and the step size is 100; (b) shows the result in the
interval 600 to 700, and the step size is 10

1369World Wide Web (2022) 25:1343–1372

1 3

performance of ERLscalar+AKT is better than that of ERLvector+AKT; otherwise, the per-
formance of ERLvector+AKT is better; (iii) the red circle is the intersection point of the two
polylines, and the corresponding sparsity lies between 94.5% and 93.8%. In order to further
explore more accurate sparsity, we conducted more fine-grained exploration in the range of
600 ∼ 700 . As you can see from Figure 14(b), results show that: although the overall trend
of the two polylines is in line with expectations, they intersect several times. Therefore, we
cannot obtain a more accurate sparsity boundary between the scalar embedding and the
vector embedding more accurately. In conclusion, we suggest that when the data sparsity
is relatively large, the scalar embedding should be used for ERL; when the data sparsity is
relatively small, the vector embedding is used for ERL. In other cases, the vector embed-
ding is used, because we find in the experiment that the scalar embedding requires more
time to train the model than the vector embedding.

7 Conclusion and future works

In this paper, we find that the mining and integration of learning-related factors can effec-
tively improve the performance of DLKT models by analyzing previous studies. However,
due to the difference of learning content and learning environment in different e-learning,
types and quantities of learning-related factors modeled in the specific models are differ-
ent, which is not conducive to the subsequent application and promotion of the models. We
focus on providing a model embedding interface for DLKT by consider multiple types of
learning-related factors.

Starting from the nature of learning behavior and combining with previous research, we
first explore and analyze four types of learning-related factors: exercise and skills, attributes
of exercise, learners’ historical performance, and learners’ forgetting behavior in the learn-
ing process. An Extensible Representation Learning (ERL) approach for DLKT is then
proposed to extract and integrate the representations of the four types of factors by setting
five components. Finally, we apply ERL into two mainstream DLKT models, and results
on three real-world datasets show that the proposed approach can significantly improve
performances of DLKT models on predicting future learner responses. In the future, our
work will focus on the application of ERL on more DLKT models, mining and itegrating
more factors related to item and user to rich the representation learning model, designing
more effective factor integration networks to give full play to the role of all factors.

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments. The
research is supported by the National Natural Science Foundation of China (61702532, 61690203).

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

 1. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of
ICML Workshop on Unsupervised and Transfer Learning, pp 17–36 (2012)

 2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE
Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

1370 World Wide Web (2022) 25:1343–1372

1 3

 3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach.
Learn. Res. 3, 1137–1155 (2003)

 4. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis–a general method for cognitive model
evaluation and improvement. In: International Conference on Intelligent Tutoring Systems, pp 164–
175 (2016)

 5. Chaudhry, R., Singh, H., Dogga, P., Saini, S.K.: Modeling Hint-Taking behavior and knowledge state
of students with Multi-Task learning. Int. Educ. Data Mining Soc. (2018)

 6. Cinquin, P.A., Guitton, P., Sauzéon, H.: Online e-learning and cognitive disabilities: a systematic
review. Comput. Educ. 130, 152–167 (2019)

 7. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge.
User Model. User-adapted Interact. 4(4), 253–278 (1994)

 8. Dauphin, G.M.Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie, E., Muller, X., Desjardins,
G., Warde-Farley, D., Vincent, P., Bergstra, J, et al.: Unsupervised and transfer learning challenge: a
deep learning approach. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
pp 97–110 (2012)

 9. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Murphy, K., Strohmann, T., Sun,
S., Zhang, W., Zhang, W.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion.
In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp 601–610 (2014)

 10. Dong, G., Zhang, X., Lan, L., Wang, S., Luo, Z.: Label guided correlation hashing for large-scale
cross-modal retrieval. Multimed. Tools Appl. (2019)

 11. Ghosh, A., Heffernan, N., Lan, A. S.: Context-aware attentive knowledge tracing. In: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 2330–
2339 (2020)

 12. He, L.: Integrating performance and side factors into embeddings for deep Learning-Based knowledge
tracing. In: 2021 IEEE International Conference on Multimedia and Expo (ICME) (2021)

 13. He, L., Tang, J., Li, X., Wang, T.: ADKT: Adaptive deep knowledge tracing. In: International Confer-
ence on Web Information Systems Engineering, pp. 302–314 (2020)

 14. Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of the Eighth Annual
Conference of the Cognitive Science Society, vol. 1, p 12 (1986)

 15. Khajah, M.M., Huang, Y., González-Brenes, J.P., Mozer, M.C., Brusilovsky, P.: Integrating knowledge
tracing and item response theory: a tale of two frameworks. CEUR Workshop Proc. 1181, 7–15 (2014)

 16. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing?, arXiv:1604.02416 (2016)
 17. Krishnan, R., Singh, J., Sato, M., Zhang, Q., Ohkuma, T: Incorporating wide context information for

deep knowledge tracing using attentional bi-interaction (2021)
 18. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural

networks. Commun. ACM 60(6), 84–90 (2017)
 19. Liu, Y., Hua, W., Qu, J., Xin, K., Zhou, X.: Temporal knowledge completion with context-aware

embeddings. World Wide Web 24(2), 675–695 (2021)
 20. Liu, Q., Huang, Z., Yin, Y., Chen, E., Xiong, H., Su, Y., Hu, G.: Ekt: Exercise-aware knowledge trac-

ing for student performance prediction. IEEE Trans. Knowl. Data Eng. 33(1), 100–115 (2019)
 21. Liu, K., Liu, W., Ma, H., Huang, W., Dong, X.: Generalized zero-shot learning for action recognition

with web-scale video data. World Wide Web 22(2), 807–824 (2019)
 22. Liu, T., Pan, X., Wang, X., Feenstra, K.A., Heringa, J., Huang, Z.: Predicting the relationships between

gut microbiota and mental disorders with knowledge graphs. Health Inf. Sci. Syst. 9(1), 1–9 (2021)
 23. Liu, T., Pan, X., Wang, X., Feenstra, K.A., Huang, Z.: Exploring the Microbiota-Gut-Brain axis for

mental disorders with knowledge graphs. J. Artif. Intell. Med. Sci. (2020)
 24. Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F., Ohkuma, T.: Augmenting knowledge tracing

by considering forgetting behavior. In: The World Wide Web Conference, pp. 3101–3107 (2019)
 25. Niu, L., Fu, C., Yang, Q., Li, Z., Chen, Z., Liu, Q., Zheng, K.: Open-world knowledge graph comple-

tion with multiple interaction attention. World Wide Web 24(1), 419–439 (2021)
 26. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. In: Proceedings of the 12th

International Conference on Educational Data Mining, pp 384–389 (2019)
 27. Pandey, S., Srivastava, J.: RKT: Relation-aware self-attention for knowledge tracing. In: Proceedings

of the 29th ACM International Conference on Information & Knowledge Management, pp 1205–1214
(2020)

 28. Pavlik, P.I. Jr, Cen, H., Koedinger, K.R: Performance factors analysis–A new alternative to knowledge
tracing. Online submission (2009)

 29. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J.: Long short-
term memory. Neural Comput. 8(9), 1735–1780 (1997)

1371World Wide Web (2022) 25:1343–1372

1 3

 30. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., Sohl-Dickstein, J.: Deep
knowledge tracing. Adv. Neural Inf. Process. Syst., 505–513 (2015)

 31. Rollinson, J., Emma, B.: From Predictive models to instructional policies. Int. Educ. Data Mining Soc.
(2015)

 32. Wang, Z., Li, L., Zeng, D.: Knowledge-enhanced natural language inference based on knowledge
graphs. In: Proceedings of the 28th International Conference on Computational Linguistics (2020)

 33. Wilson, K. H., Karklin, Y., Han, B., Ekanadham, C.: Back to the basics: Bayesian extensions of IRT
outperform neural networks for proficiency estimation. arXiv:1604.02336 (2016)

 34. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity
descriptions. In: Proceedings of the AAAI Conference on Artificial Intelligence, 30(1) (2016)

 35. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Deep hierarchical knowledge tracing. In: Proceedings of the
12th International Conference on Educational Data Mining (2019)

 36. Yeung, C.K.: Deep-IRT: Make deep learning based knowledge tracing explainable using item response
theory. arXiv:1904.11738 (2019)

 37. Yeung, C.K., Yeung, D.Y.: Addressing two problems in deep knowledge tracing via Prediction-Con-
sistent regularization. In: Proceedings of the Fifth Annual ACM Conference on Learning at Scale
(2018)

 38. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing.
In: Proceedings of the 26th International Conference on World Wide Web, pp 765–774 (2017)

 39. Zhang, L., Xiong, X., Zhao, S., Botelho, A., Heffernan, N.T.: Incorporating rich features into deep
knowledge tracing. In: Proceedings of the Fourth ACM Conference on Learning@scale, pp 169–172
(2017)

 40. Zhang, M., Zhu, J., Wang, Z., Chen, Y.: Providing personalized learning guidance in MOOCs by
multi-source data analysis. World Wide Web 22 (3), 1189–1219 (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Liangliang He1 · Jintao Tang1 · Xiao Li2 · Pancheng Wang1 · Feng Chen1 · Ting Wang1

 Liangliang He
 heliangliang19@nudt.edu.cn

 Jintao Tang
 tangjintao@nudt.edu.cn

 Xiao Li
 xiaoli@nudt.edu.cn

 Pancheng Wang
 wangpancheng13@nudt.edu.cn

 Feng Chen
 chenfeng15a@nudt.edu.cn

1 College of Computer, National University of Defense Technology, Yanwachi Street,
Changsha 410073, Hunan, People’s Republic of China

2 Information center, National University of Defense Technology, Yanwachi Street,
Changsha 410073, Hunan, People’s Republic of China

1372 World Wide Web (2022) 25:1343–1372

	Multi-type factors representation learning for deep learning-based knowledge tracing
	Abstract
	1 Introduction
	2 Related work
	2.1 Single-factor models
	2.2 Double-factor models
	2.3 Multi-factor models

	3 Investigation on model innovation and factor mining
	3.1 Model innovation
	3.2 Factor mining
	3.3 Summary of investigation

	4 Extensible representation learning for factor embedding
	4.1 Base embedding
	4.2 Auxiliary embedding
	4.3 Performance embedding
	4.4 Forgetting embedding
	4.5 Embedding integration

	5 Applying ERL to DLKT models
	5.1 Application Instance-1: ERL+DKVMN
	5.2 Application Instance-2: ERL+AKT
	5.3 Model extensibility and training

	6 Experiments
	6.1 Experimental settings
	6.1.1 Datasets
	6.1.2 Auxiliary factor selection
	6.1.3 Model setting and evaluating
	6.1.4 Factor encoding

	6.2 Experimental design and results
	6.2.1 Overall performance evaluation (RQ1)
	6.2.2 Global ablation study (RQ2)
	6.2.3 Local ablation study (RQ2)
	6.2.4 Exercise embedding study (RQ4)

	7 Conclusion and future works
	Acknowledgements
	References

