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Abstract
Understanding human intelligence, especially brain intelligence, is the cornerstone of 
reaching the ultimate AI. In this paper, we briefly review the historical interactions between 
AI and brain science, and look towards the future vision of AI in the connected world. 
In particular, we introduce two rapidly developing fields in Web Intelligence (WI, AI in 
the Connected World) and Brain Informatics (BI, the brain/mind-centric study and the 
application of brain-machine intelligence), and combine them to accelerate the arrival of 
a human–level AI society. Furthermore, combining these two fields by connecting AI and 
brain science with big data, creates a new vision from the systematic brain-machine intel-
ligence research to new AI industry chain in the connected social-cyber-physical-thinking 
spaces.

Keywords Web Intelligence · Brain Informatics · Human-level AI · Brain computing · 
General intelligence model

1 Introduction

From its conception, artificial intelligence (AI) has experienced several key milestones, 
each of which had its own topics that inspired new development trends enriching scien-
tific and technological progress. More specifically, the perception capability was focused 
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in the early period. Subsequently, the inference-centric study led AI to developing the first-
generation robotic and intelligent software. For instance, the structure learning and induc-
tive learning systems were developed as the main viewpoint, at that time. In this period of 
knowledge, the expert system was studied as the mainstream. Meanwhile, neural networks 
also achieved a breakthrough, especially for multilayer perceptron and backpropagation. In 
the third period to now, machine learning and deep learning have become the mainstream, 
achieving remarkable gains in many fields such as pattern recognition, neural language 
processing and control [52, 83]. In this period, scientists focus on how to make machines 
own the higher-level learning capability, that is, human intelligence and the cognitive capa-
bility. In this context, many supercomputers, intelligent robots and online applications 
were developed in academia and industry, such as Deep Blue  [76], the NAO humanoid 
robots [82] and Alpha Go[89]. When it comes to developing the intelligence techniques, 
brain decoding is widely regarded as its fundamental and essential roads. By understanding 
biological characteristics and brain information-processing mechanisms, the intelligence 
capability is developed, modeled, simulated and assigned into machines, empowering them 
to become more humane. It is a long history to develop the brain-inspired intelligence 
applications, especially from the bottom-up perspective. However, owing to the limit of 
decoding brain, its support for AI seems rather slow. In recent years, with the develop-
ment of new technologies and methodologies, the brain intelligence study has become a 
hot topic again. We argue that this topic will keep leading trends of AI study. For this, 
the core issue is how to narrow the gap between brain science and artificial intelligence 
towards achieving the human-level AI society.

In this paper, we view the interaction of brain science and artificial intelligence in the 
big data era, as an opportunity to close the ultimate goal of human-level AI. More specifi-
cally, we propose a way of Web Intelligence meets Brain Informatics towards accelerating 
the progress of human-AI society, as shown in Figure 1. We look forward to having a gen-
eral intelligence model with the joint power of brain intelligence and artificial intelligence. 
Here, we use the term “brain intelligence” in the widest possible sense, from human think-
ing to behaviors that reflect everything within intelligence. Meanwhile, the term “AI” is 
also used in the widest possible sense, including the works related to statistics, machine 
learning and AI research that aims to build intelligent machines  [60]. For this, the intel-
ligence mechanisms in the brain are studied by the Brain Informatics methodology to sup-
port the development of the intelligence technology. Conversely, the Web Intelligence tech-
nology is developed to promote brain intelligence research, empowering machines with 
intelligence capability. As a general intelligence model, it should systematically integrate 
these capabilities such as reasoning, learning, computing, planning, decision-making and 
creativity, as well as the capability to process interconnected big data in various scenarios. 
We argue that such an intelligence model within the thinking space can more easily interact 
with: (1) the social space, in which the model supports the human-human interaction; (2) 
the cyber space, in which the model supports the human-machine interaction; and (3) the 
physical space, in which the model supports the machine-machine interaction. Hence, it 
can perform action and response, meeting or exceeding the human capability, when meet-
ing complex environmental stimuli and external requests.

In the rest of this paper, we first introduce the five core topics and relevant works in the 
Web Intelligence field. Second, we give a new perspective of Web Intelligence research 
from the viewpoint of Brain Informatics, in which we emphasize the bi-directional sup-
port between both Web Intelligence and Brain Informatics. Next, we provide a practical 
version towards meeting the targets of “Web Intelligence meets Brain Informatics”, that is 
the Data-Brain driven general intelligence model as the engine of intelligence technology 
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and the smart portal as the provider of wisdom services. Finally, we give our concluding 
remarks.

2  WI = AI in the connected world

Web Intelligence is now a cutting-edge research field exploring fundamental roles and 
practical impacts of artificial intelligence (AI) and advanced information technology (IT) 
on the Web, and the next generation of Web-empowered wisdom services [115]. The term 
“Web Intelligence” was first introduced in 2000  [116], and promoted in several papers 
and books during the early stages  [68, 101, 114, 116]. Web Intelligence aims to achieve 
a multi-disciplinary balance among research advances in theories, methods and applica-
tions usually associated with collective intelligence, data science, human-centric com-
puting, knowledge management and network sciences. Furthermore, Web Intelligence is 
considered an enhancement or extension of AI and IT, and focuses on answering the core 
question about how to study intelligence on the Web and intelligence for the Web. Cur-
rently, Web Intelligence research is not limited to Internet/Web but extends to any network 
patterns, and especially highlights the power of both connection and intelligence in the 
social-cyber-physical-thinking (SCPT) spaces of Internet of Everything. With an eye on 
the future, Web Intelligence begins a new chapter around the theme of

“Web Intelligence = AI in the Connected World”.

Fig. 1  The synergy of Web Intelligence (WI) and Brain Informatics (BI) in the social-cyber-physical-
thinking spaces towards human-level AI society. Web Intelligence embraces various AI fields in the con-
nected world, which can provide the advanced technology and methodology to promote the progress of 
brain investigation. Meanwhile, Brain Informatics contributes to the study of human information-processing 
mechanisms in the big data era, which can promote our systematic understanding of human intelligence 
surrounding the brain. By integrating Web Intelligence and Brain Informatics, the brain-inspired intelli-
gence technology is developed and the wisdom service is provided to build human-level AI society
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The core of this theme is to both deepen the understanding of computational, logical, 
cognitive, physical and social foundations of the future human-level AI society, and enable 
the development and application of intelligent technologies. More specifically, these five 
topics could be tracked to investigate how intelligence is impacting the Web of People, the 
Web of Data, the Web of Things, the Web of Trust and the Web of Agents in this era of the 
rapid development of information and communication technologies.

Over the past twenty years, there are many results have been published to enrich the 
theme of Web Intelligence and advance the possibilities. Here, we review various endeav-
ors that study Web Intelligence and potential applications from these five topics: Web of 
People, the Web of Data, the Web of Things, the Web of Trust and the Web of Agents, with 
each encompassing several subtopics.

• Web of People: This topic focuses on the people-oriented research in the connected 
world, in which humans (as individuals and in societies) are understood and human-ori-
ented services are provided. Related subtopics include human-centric computing [37, 
43], user behavior modeling techniques [47], crowdsourcing [24, 99], information dif-
fusion  [35, 63], knowledge community support  [30], recommendation engines  [103], 
social network analysis [10, 13], social media [53], social groups [26, 87], social net-
work dynamics [9], sentiment analysis [32] and opinion mining [7], and so forth.

• Web of Data: This topic focuses on the methods, techniques and standards related to 
storage, management, queries, processing, mining, computing, analysis, visualization 
and application, as well as other issues concerning data in the connected world. Related 
subtopics includes graph database [1], information search and retrieval [92], knowledge 
graph and semantic networks [11, 44], linked data management and analytics [71], data 
integration and provenance [38, 50, 94], big data analytics [46, 95], machine learning 
and data science [21, 45], graph theory and analytics [59], as well as data-driven ser-
vices and applications [36, 70], and so forth.

• Web of Things: This topic focuses on the interactions between the Web and physical 
objects to realize the organic amalgamation and harmonious symbiosis among humans, 
computers and things in the connected world. Related subtopics include Internet of 
Things (IoT)  [4], sensor networks  [104], distributed systems and devices  [91], web 
infrastructures and devices [100], industrial multi-domain web [90], location and time 
awareness [62], transparent computing [86], mobile edge computing [75], fog comput-
ing [74], cloud computing [2], ubiquitous computing [34], and so forth. Furthermore, 
in order to realize a goal of making “network” wisdom, an emerging direction, namely 
Wisdom Web of Things, has gained increased attention in recent years to develop tech-
niques and applications around a cycle of “from things to data, information, knowl-
edge, wisdom, services, humans, and then back to things” [118–120].

• Web of Trust: This topic focuses on methods, techniques, applications and services 
related to the assessment, prediction, management, computation and analysis of trust, 
as well as other issues concerning trust in the connect world. Related subtopics include 
web cryptography  [22], web safety and openness  [8], blockchain analytics and tech-
nologies [106], fake content and fraud detection [93], hidden web analytics [64], mon-
etization services and applications [31], and so forth.

• Web of Agents: This topic focuses on the development of virtual and physical enti-
ties in the connected world, where an entity can perform perceiving, reasoning, adapt-
ing, learning, cooperating and delegating in a dynamic environment. Related subtopics 
include behavior modeling in agent [72], behavioral interactions [20], knowledge infor-
mation agents [6, 85], autonomous agents [67], self-driving vehicles [5], self-adaptive 
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evolutionary systems  [73], self-organizing systems  [23], trust models for agents  [81, 
102], virtual services [78], multi-agent systems [69], agent networks [39], and so forth.

To accelerate AI in the connected world, brain science plays a vital role in developing 
intelligent technologies with the thinking-power and perception abilities. It provides a win-
dow to explore biological intelligence in the human brain, and at the same time, provides 
a rich source of inspiration for and validation of AI techniques. Although the interactions 
between AI and brain science have a long history, there are still major challenges that pro-
vide a smooth transition from the brain intelligence studies to the intelligence technology 
applications. Brain Informatics is a cutting-edge field that focuses on the full-scale human 
brain study by cooperatively using experimental, computational, cognitive neuroscience 
and advanced Web Intelligence centric information technology  [108]. More specifically, 
it provides a unique framework to address human brain related issues from the computa-
tional, cognitive, physiological, biological, physical, ecological, social and informatics per-
spectives, as well as its applications in brain-machine intelligence, brain-inspired intelligent 
systems, mental health and brain disorders, etc. We argue that the human-level AI society 
may be achieved by the “Web Intelligence meets Brin Informatics” research [55–57, 109].

3  WI meets BI: Trends and challenges

3.1  WI meets BI

We provided a brief overview of the five topics about Web Intelligence and some poten-
tial research directions in the last section. Although the development of Web Intelligence-
centric research has surpassed expectations, the road ahead remains very long in building 
a truly human-level AI society. We believe that the urgent need is to understand the nature 
of intelligence or the source of thinking to develop general intelligence models, rather than 
merely developing next-generation AI technology towards the application of a specific 
scenario. The brain investigation, as a source of inspiration for Web Intelligence research, 
plays a vital role in this process. With this background information, Brain Informatics is 
proposed to study the human brain from the viewpoint of informatics (i.e., human brain 
is an information processing system) and uses informatics (i.e., Web Intelligence-centric 
information technology) to support brain science study [117]. Meanwhile, Brain Informat-
ics-centric research results are committed to driving continued progress in the Web Intelli-
gence field. Here, we first discuss the bi-directional support between Web Intelligence and 
Brain Informatics (i.e., “WI for BI” and “BI for WI”), and then give the future vision of AI 
in the connected world from the “Web Intelligence meets Brain Informatics” perspective.

• WI for BI: The WI-centric technologies (e.g., AI, big data, computational science, the 
wisdom Web, Wisdom Web of Things, and information and communication technol-
ogy) provide a powerful platform for brain science, which have penetrated into all 
aspects of brain investigations, including collection, storage, archives, curation, man-
agement, sharing, analysis and visualization. For instance, big data, cloud computing 
and high performance computing approaches have improved our ability to respond 
to large-scale brain data  [12, 15, 48, 66]. The computational approaches are used to 
investigate the human representational spaces [17], such as machine learning [61] and 
deep learning  [42]. New equipment and techniques give us opportunities to investi-
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gate brain structure, function and dynamics from the fusion perspectives of multi-
modal  (e.g., functional magnetic resonance imaging, positron emission tomography, 
deep brain stimulation, transcranial direct/alternate current stimulation, transcranial 
magnetic stimulation and optogenetics) and multiple macro-meso-micro scales  (e.g., 
molecular, cellular, circuit/pathway, brain regions, systems, cognitive/behavioral and 
social scales)  [105]. The brain cloud/ machine interface technologies are designed to 
enable the real-time interactions among the brains, machines and things in the social-
cyber-physical spaces [77, 98]. The brain investigations related tools and software are 
already in broad use, such as TeraVR [97]. In particular, the community-driven tools 
and platforms provide support to meet requirements of big open brain science in a col-
laborative era  [14]. By using the WI technologies, some multi-database mining grid 
architecture based agents on the wisdom Web were proposed to build a brain informat-
ics portal [107, 112, 113].

• BI for WI: New understanding and discovery of the intelligence and behavior related 
brain science (e.g., cognitive science, neuroscience, and BI), at the same time, accel-
erate the development of WI research towards a more intelligent view. One path that 
was taken is to attempt to closely mimic or directly reverse engineer the brain from the 
bottom-up perspective, such as the blue brain project [76] and neuromorphic comput-
ing [27]. Further, neural computation is investigated to construct artificial neural net-
work or deep learning methods [58]. Apart from constructing the deep nets, the reward 
mechanism is considered to stimulate the emergence of reinforcement learning  [19]. 
AI research has also drawn inspiration from various brain function mechanisms, such 
as attention   [79], memory  [40, 89] and continual learning  [49], by integrating these 
mechanisms into algorithms or architectures at the system level. In addition, the neu-
ral mechanisms of the brain function provide access to build intelligent machines in 
silico [28]. These paradigms such as semantic and cognitive computing shape human 
experience into machines to provide the personalized data processing capability [88]. 
The cognitive theory is studied by Brain Informatics to push forward general artifi-
cial intelligence [51, 65]. The behaviors from working brains are taken as a guide for 
machine learning algorithms to leverage the benefits of both human and machine within 
a human-in-the-loop [33, 41]. Brain investigations also help us realize the validation of 
AI theories and techniques, and improve the explainability of AI methods [3, 96].

3.2  Connected challenges

As described previously, there are many theoretical foundations and practical demands 
to promote communication and collaboration between WI and BI. On the one hand, WI 
research makes requests to understand intelligence in depth and develop intelligent systems 
that integrate all the human-level capabilities [110]. The WI centric technologies can help 
us meet various demands intelligently in such a social-cyber-physical space. On the other 
hand, BI investigates the essential functions of the brain and their mechanisms underlying 
the human information processing system, ranging from perception to thinking, which pro-
vides the support in such a thinking space [111]. Combining these two fields opens a new 
perspective to construct such SCPT spaces, and hence realizes the harmonious symbiosis 
of humans, computers and things within different dimensional networks. More specifically, 
it is a trend to integrate brain big data and human behavior big data with the extensible rep-
resentation to model all human communications and activities, in which big data are used 
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as a bridge to connect various aspects of humans, computers and things. For this, the study 
of “WI meets BI” raises important conceptual and theoretical problems, including:

• How do we understand brain from neural microcircuits to macroscale intelligence sys-
tems, supported by connecting network and brain with big data?

• How do we realize human-level collective intelligence as a big data sharing mind by 
developing brain inspired intelligent technologies?

• How do we drive never-ending learning and generalize knowledge to provide multi-
dimensional wisdom services in the connected world?

4  WI and BI: Putting it all together

More and more investigators have paid attention to the connected power of WI and BI, 
and made efforts to contribute to this research direction. Here, we propose the Data-Brain 
driven general intelligence model to implement representative case studies  [56]. We 
emphasize the advantages of integrating brain science and informatics technology: com-
bining the research results of the brain mechanisms with systematically collected brain big 
data related to the human thinking and perception activities; make full use of the advantage 
of WI to develop brain big data-based wisdom service platforms and applications; and for-
malize an innovative ecological chain from the brain intelligence research to the applica-
tion of the brain-inspired intelligence technology.

4.1  Data‑Brain oriented research

Data-Brain is a general intelligence model designed by the hierarchical knowl-
edge  (K)–information  (I)–data  (D) architecture (that is KID architecture)  [55–57, 112], 
which realizes the brain-centric big data processing, analyzing and computing. More spe-
cifically, the knowledge layer corresponding to the conceptual Data-Brain includes mul-
tiple knowledge graphs to represent the systematic brain investigation process related to 
function domains, experimental design, data details and analysis methods; the information 
layer corresponding to the data and analysis provenances bridges across the knowledge and 
data layers, in which the properties of inner (such as brain information processing mecha-
nisms) and outer (such as environmental stimuli) brain are organized systematically; and 
the data layer covers the multi-type data such as raw data, processed data and results of 
study from local and global sources. As a novel brain computing platform, the Data-Brain 
driven general intelligence model has some representative characteristics, which are sum-
marized as follows:

• Systematic methodology. The general intelligence model follows the top-down priority 
principle aligned with the systematic Brain Informatics methodology, including: sys-
tematic investigations of complex brain science problems, systematic design of cog-
nitive experiments, systematic brain data collection and management, and systematic 
brain data analysis and simulation. It models a whole process of systematically inves-
tigating human intelligence, towards a holistic view at a long-term and a global vision 
to understand the principles and mechanisms of the human information processing sys-
tem, including, but not limited to, human reasoning, computation, attention, emotion, 
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language, multiperception, memory, heuristic search, planning, decision making, prob-
lem solving, learning, discovery and creativity, etc.

• Big data approaches. The general intelligence model integrates big data related to all 
major aspects and capabilities of human information processing mechanism from local 
and global sources by means of modern informatics such as knowledge graph tech-
nique, towards systematic analytics, curation, management and provenance of brain and 
health big data. On this basis, the evidence combination and fusion computing-based 
data processing pipeline is developed to realize modeling and computing of the multi-
modal and multi-scale brain big data for brain–centric understanding and translational 
applications.

• Never-ending learning. The never-ending learning in the general intelligence model is 
to learn multiple sources of data, information and knowledge cumulatively, the con-
tinuously over long spans of time, and to provide greater explanation, new findings and 
innovative services over time. It integrates the reasoning capability within the thinking 
space and the human intervention mechanism into such a human-in-the-loop learning 
paradigm, together with some autonomous modes such as self-supervision, self-evalu-
ation and self-reflection. The never-ending learning drives the continuous iteration and 
evolution of the model to meet increased service requirements.

• Generalizability and transferability. The root node of the general intelligence model 
processes the commonsense knowledge about facts and truths gained through big data 
mining, at the same time, integrates the brain-inspired generalized mechanisms into 
problem-solving solutions, which are applicable to smaller areas and personalized sce-
narios. Furthermore, the general intelligence model builds the capabilities of context-
aware and transfer learning to jointly address diverse issues in ever-dynamic real-world 
scenarios, such as the transformation of research findings between healthy and abnor-
mal brains.

By integrating brain big data as the extensional representation of the human information 
processing system, the Data-Brain driven general intelligence model can be used as a bi-
directional decoder between the inner brain information and the outer brain information by 
connecting brain and network with big data; an energy converter between brain science and 
artificial intelligence; and an engine from systematic brain-machine intelligence research to 
new AI industry chain in the connected world [56].

4.2  Brain‑inspired wisdom service

The interconnections of humans, machines and things in the SCPT spaces form a super 
network, in which the voluminous contents of big data are continuously generated to 
enrich and enhance the world. How we maximize the potential of the network and real-
ize the harmonious symbiosis of everything is a critical issue. Investigators have rec-
ognized the importance of collective wisdom, enhancing the global effectiveness of the 
information technology and high-performance computing. Here, the “wisdom” means 
that the machine can be aware of the real intent of each request (such as the system-
oriented request and content-oriented request from itself or other objects in the social-
cyber-physical spaces) to provide the right service for the right object at the right time 
and context. In this context, the machine needs not only the revolutionizing of informa-
tion processing technology and methodology, that is wisdom-oriented information pro-
cessing, but also the dynamic reconstruction of its component and content to improve 
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the general capability. For this, the Data-Brain driven general intelligence model is pro-
posed to encourage the integration of multiple applications, the transfer learning among 
various domains, the translational study for smart health, and so on. More specifically, 
the general intelligence model-centric wisdom service ecosystem is given, in which 
various applications are integrated into a smart portal to process multi-dimensional 
demands at various abstract levels, as shown in Figure 2.

The details of wisdom services and smart portals are described as follows:

• The multi-layered wisdom services are inspired by the Data-Brain driven general intelli-
gence model, as shown in the left part of Figure 2. The wisdom service follows the hierar-
chical architecture surrounding data, information, knowledge, thinking and robot, relying 
on sequential and parallel operations. More specifically, the multi-layered wisdom ser-
vices [56] includes Robot as a Service (RaaS), Thinking as a Service (TaaS), Knowledge 
as a Service (KaaS), Information as a Service (IaaS) and Data as a Service (DaaS):

– Robot as a Service trains various agents in the form of both physical and virtual envi-
ronments, enhancing customized service and user experiences through the interactive 
interface of bridging inter and outer agents;

Fig. 2  The general intelligence model-centric wisdom service ecosystem. In the left part of the figure, the 
wisdom service-generated chain of “data-information-knowledge-thinking-robot-thinking-knowledge-infor-
mation-data” derives from the hierarchical architecture, including Robot as a Service (RaaS), Thinking as 
a Service (TaaS), Knowledge as a Service (KaaS), Information as a Service (IaaS) and Data as a Service 
(DaaS). In the centralized mode, the model is required to achieve the broader objective of supporting the 
resource learning and the service scheduling. In the decentralized mode, the model is configurable to serve 
a personalized requirement from users, which contributes to the ability to work and learn collabratively in 
networks as well as independently. For example, in the right part of the figure, the applications could be 
developed separately at different layers for a specific scenario. Meanwhile, these potential applications in 
different scenarios could be integrated to strengthen the full system-wide response for a common develop-
ment vision
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– Thinking as a Service models human intelligence-related activities such as the creative 
and logical function, making correct judgments from the stimuli, performing reasoning 
in agents, and developing the rational response;

– Knowledge as a Service processes facts/principles spanning different domains, in which 
the connectivity is taken as the basic and core mode, simulating commonsense to 
improve the problem-solving ability surrounding transfer and generalization;

– Information as a Service extracts properties, parameters and features from data entity to 
give the finer interpretation, at the same time, providing provenance of the data object 
for meeting requirements of the systematic computing;

– Data as a Service produces flexible data models, data schemes and data clusters, sup-
porting systematic data management, organization, linkage, integration, computing, 
dissemination, and visualization.

On that basis, these services can offer sequential operations, driving the wisdom gener-
ated chain from bottom to top and the wisdom application chain from top to down. Mean-
while, the parallel operations increase independence between different service levels, ena-
bling it to scale up its flexibility and personalization.

• The broader applications from the multi-domain smart portal are interpreted in the right 
part of Figure 2. Under the wisdom service architecture, various applications within the 
smart portal can be reconstructed to create more integrated services, such as translational 
research for the ‘P4 (Personalized, Predictive, Preventive and Participatory approaches)’ 
medicine. For example, studies show that depression not only causes emotional and 
physical symptoms, but also occupational and functional disability (such as memory, 
thinking and cognition), which has become a common illness worldwide  [80]. In 
response to this, the multi-aspect services are provided by developing applications 
throughout the whole process of prevention, diagnosis, evaluation, treatment, prognosis 
and rehabilitation. More specifically, the RaaS layer provides interfaces, such as the 
cognitive screening test and the frail prevention service, which are applied to measure the 
physical and mental state at an early stage. The smart doctor assistant service is applied to 
participate in decision-making in the middle stage. Moreover, the physical and functional 
rehabilitation services produce planning and provide support at the later stage. Such the 
interface-based interactive services receive the support from other layers simultaneously. 
In the TaaS layer, the smart portal produces methods, strategies and solutions for meeting 
the multi-aspect analytical requirements such as depression, advancing systematic brain 
computing-centric never-ending learning of knowledge, information and data. In the KaaS 
layer, the multi-domain knowledge is organized into the interconnected graph, together 
with various computing operations, enhancing public awareness and the development of 
knowledge-driven methods. In the IaaS layer, the information is read and learned from 
the internal and external evidence, especially from the open literature. Meanwhile, it also 
provides the provenance service to help track entities and assist computing in the complex 
environment. In the DaaS layer, the brain big data from the local and global sources is 
managed to meet various requirements such as data sharing and data computing, at the 
same time, enhancing the development of data-driven methods.

The smart portal relies on large-scale converging of the intelligent information tech-
nology to meet the seven factors of the infrastructure, platform, software (developing 
and scheduling abilities), data, information, knowledge and wisdom. More specifically, 
some areas have received special attention, such as artificial general intelligence, the 
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end-edge-cloud orchestrated network paradigms with high-performance computing, the 
network and information communication technology, and the organization and manage-
ment of big data using knowledge graph and graph database techniques, and so forth.

4.3  Systematic brain computing

Systematic brain computing inspires us to investigate the brain from multiple dimensions, 
such as the basic neuroscience study with brain-inspired multi-aspect applications. One of 
its representatives is brain-related translational research. In this context, the Data-Brain 
driven general intelligence model [56, 57], as core of the smart portal, is a wisdom pro-
vider in the thinking space to realize wisdom-oriented information processing, such as 
human-in-the-loop and never-ending learning. Considering the importance of advancing 
translational research, the systematic brain computing and its case study are further inter-
preted, as shown in Figure 3.

From Figure 3A, people interacts with the conceptual Data-Brain to set the goal-related 
factors and parameters  [56], during the human-in-the-loop and never-ending learning 
processes. Such a goal could be an exploratory study that explores the possible brain patterns 
of a specific cognitive function. Based on these pre-defined factors, the general intelligence 
model integrates the experience/facts from the knowledge layer, the contextual information 
from the information layer, and the samples from the data layer, depending on the KID 
architecture. Activated model carries out the systematic brain computing  [57], including 
systematic experimental plan, evidential type inference, evidential weight evaluation, together 
with evidence combination and fusion computing. In the training stage, the model receives the 
planned samples continuously to learn the significant patterns from the brain, using various 
methods. Then, these learned patterns and models enable the trial of further scenarios.

Initial tests were implemented to explore the brain network patterns related to human 
reasoning, using the task-state and resting-state fMRI data from the sample library [54, 57]. 
The intent is to select the brain activity pattern with specificity for a cognitive function of 
interest. For this, the � values can be measured using our previously proposed approach [54, 
57], which is the evaluation indicator of the brain functional characteristics by fusing multi-
ple task-related functional neuroimaging data during never-ending learning. In this process, 
various datasets are integrated and computed throughout a task sequence, which are planned 
by the general intelligence model. Correspondingly, the higher � values could be used to 
evaluate specificity of the brain activity patterns for a specific cognitive function, while the 
lower � values could be used to evaluate robustness of the brain activity patterns for multiple 
cognitive functions. Figure 3B shows a recommended plan of experimental samples with 
priority from highest to lowest ranking. For each sample, the connectome-wide networks 
for different tasks were constructed by measuring the partial coefficients between various 
nodes defined in the CC400 atlas [18]. Then, the network centrality coefficient [121] was 
calculated at sparsity from 0.01 to 0.5, followed by the nodal significance was evaluated by 
using a one-way analysis of variance (ANOVA) model with the experimental condition as 
random factors. The significant nodes were counted in each contrast and their weights were 
nominalized to give � values. These computed � values based on the single sample will be 
fused continuously, throughout the never-ending learning process. Furthermore, the nodes 
selected by the size of the � values can be connected to various brain network patterns.

Figure 3C shows three types of brain network patterns constructed by different nodal sets, 
including the specific brain network where it has the first 30 nodes with the highest � values, 
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the random brain network where it is taken as the control with the 30 random nodes of � = 0 , 
the robust brain network where it has the last 30 nodes with the lowest � values, respectively. 
According to various strict levels, the size of nodal sets is adjustable. On the basis of these 

Fig. 3  The Data-Brain driven general intelligence model for systematic brain computing. A. The model is 
trained to contribute to various scenarios, together with human-in-the-loop and never-ending learning. B. 
The experimental plan recommended by the model is given to integrate brain data systematically. C. The 
� values are computed to interpret the characteristics of brain patterns and their extended applications in 
translational research. GIM: Data-Brain driven general intelligence model; MDD: Major Depressive Dis-
order; HC: Healthy Control; the nine functional subnetworks, including the default mode network (DMN), 
the fronto-parietal network (FPN) and the sensorimotor network (SMN) from the Dosenbach-160 atlas [25], 
the visual network (VSN), the salience network (SAN), the subcortical network (SCN), the ventral attention 
(VAN) and the dorsal attention networks (DAN) from the Power-264 atlas  [84], and the limbic-lode net-
work (LLN) from the brainnetome atlas [29]
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network patterns, the features are extracted and entered in the predictive model, aiming at the 
scenario of translational research. In this case, the features extracted by the three selected brain 
networks and other nine functional subnetworks were used to classify the samples with major 
depressive disorders and healthy controls, using the resting-state fMRI data and the XGBoost 
algorithm [16]. The nine functional subnetworks include the default mode network (DMN), the 
fronto-parietal network (FPN) and the sensorimotor network (SMN) from the Dosenbach-160 
atlas  [25], the visual network (VSN), the salience network (SAN), the subcortical network 
(SCN), the ventral attention (VAN) and the dorsal attention networks (DAN) from the Power-
264 atlas  [84], and the limbic-lode network (LLN) from the brainnetome atlas  [29]. It was 
found that the specific brain network shares the similar recognizing scale with SAN, SCN, 
VAN, DAN and LLN, while the robust brain network shares the similar recognizing scale with 
DMN, FPN, SMN and VAN. Additionally, the accuracy based on the robust brain network 
is higher than that of the specific brain network with the reasoning characteristic. It is an 
intriguing attempt to inspire us to enhance our efforts in the relational analysis among the 
complex brain, higher-order cognition and diseases. Details on data processing and network 
construction were described previously [54, 57].

In this study, the Data-Brain driven general intelligence model was introduced by 
exploring the different types of brain network patterns and their possible extended applica-
tions in the field of translational research. From results, three types of brain network pat-
terns are obtained to interpret specificity, randomness and robustness, respectively. In the 
stage of translational research, these brain network patterns are used to detect the poten-
tial functional abnormality from the MDD groups. By comparing the classification results 
as shown in the right of Figure 3C, it was found that the accuracy corresponding to the 
specific brain network is relatively smaller than that of the robust brain  network, which 
inspires us to rethink the broader cognitive difference between the MDD and HC groups, in 
addition to reasoning. In the future, it will be important to extend the study of more cogni-
tive functions and functional disorders in the brain, enhancing their global interpretation on 
brain intelligence, brain health and their complex interactions.

5  Concluding remarks

Having undergone twenty years of development from 2000 to now, Web Intelligence has 
grown into one of the most popular research fields. As an enhancement or an extension of 
AI and IT, its initial goal was to develop wisdom Web centric products, systems, services 
and applications to meet the requirements of the rise of knowledge economies. For the 
next twenty years, Web Intelligence will be on an ever-greater role in the connected world 
towards the organic amalgamation and harmonious symbiosis among humans, computers 
and things. In this paper, we have presented the systematic review of Web Intelligence-
related topics with respect to people, data, things, trust and agents, respectively. 
Furthermore, the role of “brain intelligence” and “intelligence technology” is discussed 
to promote the development of Web Intelligence, specifically from the viewpoint of “Web 
Intelligence meets Brain Informatics”. Finally, we highlight two representative directions 
that are Data-Brain oriented research and brain-inspired wisdom service to accelerate 
the practice of Web Intelligence and Brain Informatics. More and more investigators will 
contribute their knowledge and experience in areas concerning the new paradigm of “Web 
Intelligence meets Brain Informatics”, which will produce new efficiencies and provide a 
strong catalyst towards achieving the ultimate goal of a human-level AI society.
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