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Abstract
Knowledge graph-aware recommendation has become an important research topic in 
recent years. The user preference representation, which preserves the user’s taste towards 
items (e.g., movies, books.), is obtained through aggregating the information of entities or 
attributes in knowledge graphs directly. However, the fine-grained heterogeneity informa-
tion, which can be derived from the groups of items or entities, remains barely exploited in 
the process of encoding the user interaction intention for the items. To fill up this gap, we 
propose a Multistage Clustering-based Hierarchical Attention (McHa) model to capture 
the user preference representation. In our work, we first group the items and their neighbor-
ing entities in the knowledge graph into item clusters and entity clusters (jointly referred to 
as multistage clusters), respectively. Then, the user preference representation is obtained 
by hierarchically aggregating the heterogeneity information derived from the multistage 
clusters with the weights generated by the hierarchical attention layers. We conduct exten-
sive experimental comparisons with baselines and the variants. The experimental results 
indicate that McHa has achieved state-of-the-art performance on three benchmark datasets 
in two scenarios.

Keywords Recommender systems · Knowledge graph · Attention mechanism · Multistage 
clustering

1 Introduction

Prior works [20, 45, 47] have shown that introducing knowledge graphs (KGs) into recom-
mender systems (RS) can effectively improve the accuracy of recommendation and solve 
the problems of data sparsity and cold start, compared with the traditional recommendation 
methods, such as content-based methods [30] and collaborative filtering (CF)-based meth-
ods [25]. Besides, KGs have been successively used in many intelligent tasks due to their 
rich side information, such as question answering and information retrieval.
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KG is a kind of semantic network composed of entities and relations. Its basic unit 
is a triple (h,  r,  t), where h and t represent the head entity and the tail entity, respec-
tively, and r represents the relation between h and t. For example, the two triples, 
< Donald Trump, occupation,Politician > and < Donald Trump, occupation, Investor > , 
mean that Donald Trump is not only a politician but also an investor. The main idea of 
the existing KG-aware recommendation methods [51, 55, 56] is to build a User-Item-
Entity KG (UIEKG) by connecting the user’s interacted items with the entities or attributes 
extracted from the side KG (such as Wikidata [49], DBpedia [2], Yago [44] and Satori 
[37].), and then obtain the user preference representation through propagating the informa-
tion of entities or attributes extracted from the UIEKG. For example, KGAT [51] updates 
the user preference vector through aggregating the embeddings of the neighbors, and recur-
sively performs such updating process to capture the high-order information of neighbors. 
Meanwhile, the attention mechanism is used for weighting the importance of neighbors. 
However, directly aggregating or propagating the information of entities instead of further 
processing them leaves the useful information barely exploited, such as the heterogeneity 
information [4], which can be derived from different item clusters or entity clusters.

Exploring the focused heterogeneity could enhance the ability of the recommenda-
tion model to accurately capture the user’s fine-grained tastes. For example, as shown 
in Figure 1, given a user’s viewed record, a movie-related UIEKG can be built by con-
necting the movies to the actors, directors, and genres extracted from Satori. We group 
the items (movies) into Item Clusterscience and Item Clusterthriller according to their gen-
res, which gives these two item clusters the item-level heterogeneity in terms of movie 
genre. If Item Clusterthriller is paid more attention than Item Clusterscience when encoding 
the different item-level heterogeneity into the user preference, which probably means 
that the user prefers thriller to science fiction. Similarly, we could group the entities 
headed with Avengers: Endgame into Entity Clusteractor and Entity Clusterdirector accord-
ing to their relations, which gives the two entity clusters the entity-level heterogeneity 
in terms of the relation between head entity and tail entity. If Entity Clusteractor is paid 
more attention than Entity Clusterdirector when encoding the different entity-level hetero-
geneity into the user preference, which probably means that the user decided to watch 
Avengers: Endgame largely depending on who acted in this movie rather than who 
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Fig. 1  A toy example of the movie-related User-Item-Entity Knowledge Graph (UIEKG). The entities or 
attributes are extracted from Microsoft Satori
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directed it. Through the case analysis, we assume that encoding the multi-level (item-
level and entity-level) heterogeneity derived by multistage clustering could enhance 
the pertinence of user preference.

Based on the above assumption, we propose a Multistage Clustering-based Hierar-
chical Attention (McHa) model to obtain the user preference representation of knowl-
edge graph-aware recommendation. Specifically, we first group the items and their 
neighboring entities in UIEKG into item clusters and entity clusters (jointly referred 
to as multistage clusters) according to the attributes of items (e.g., genres of movies or 
authors of books) and the relations between head entities and tail entities, respectively. 
Then, we construct the hierarchical attention layers to discriminatively aggregate the 
multi-level heterogeneity information derived from the multistage clusters into the user 
preference. Intuitively, our model can produce more focused user preference represen-
tation based on the following distinctive designs: 1) multistage clustering could pro-
duce the multi-level heterogeneity information of the items and their neighboring enti-
ties in UIEKG for encoding the user interaction intention for the characteristic items; 
2) the hierarchical attention layers built by integrating attention mechanisms [61] with 
graph attention networks (GAT) [48] could discriminate the importance of each clus-
ter and its elements; besides, 3) we explicitly encode the relation embedding into the 
entity cluster representation to enhance the heterogeneity of different entity clusters in 
terms of triple’s relation. Our contributions can be summarized as follows:

– We propose a novel knowledge graph-aware recommendation model, namely 
McHa, to obtain the fine-grained user preference representation strengthened with 
the multi-level heterogeneity derived by grouping the items and their neighboring 
entities into multistage clusters.

– We construct the hierarchical attention layers by integrating multi-level attention 
mechanisms with GAT to discriminate the contribution of each cluster to the user 
preference representation.

– We demonstrate the effectiveness of our model and the positive effect of each part 
in McHa through the comparative experiments with the state-of-the-art baselines 
and the ablation analysis with its variants, respectively, on three benchmark data-
sets in two scenarios.

The remainder of this paper is organized as follows. In Section 2, we survey the related 
works on KG-aware recommendation as well as recent emerging topics of recom-
mender systems. In Section 3, we present our model in detail. In Section 4, we show 
our experiments and analyze the results. Finally, we conclude our work and look for-
ward to the work of this paper in Section 5.

2  Related work

On the one hand, we first survey the literature related to KG-aware recommendation in 
this section. Following [16], we divide KG-aware recommendation methods into three 
categories: embedding-based, path-based, and unified methods. On the other hand, the 
recent emerging research topics of recommender systems have also been discussed.
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2.1  Knowledge graph aware recommendation

2.1.1  Embedding‑based methods

The embedding-based methods [1, 19, 36, 54] generally embed the semantic informa-
tion of KG into the representations of the items or users. For example, CKE [64] lever-
ages heterogeneous network embedding and deep learning embedding approaches, to 
automatically extract semantic representations from multi-modal knowledge. Then, it 
combines collaborative filtering and knowledge embedding components into a unified 
framework and learns different representations jointly. MKR [50] builds several cross 
and compress units, which automatically share latent features and learn high-order inter-
actions between items in recommender systems and entities in KGs. However, the con-
nectivity in KGs is ignored in embedding-based methods, which makes it difficult to 
explain the recommendation results.

2.1.2  Path‑based methods

Path-based methods mainly enhance the ability of recommendation model through explor-
ing the connectivity in KGs [8, 21, 58]. For instance, HeteRec [62] uses the meta-path-
based latent features to represent the connectivity between users and items along different 
paths. Then, a recommendation model with such latent features is defined and optimized 
through bayesian ranking optimization techniques. Later, FMG [65] improves the accuracy 
of recommendation by replacing the meta-path with the meta-graph. Moreover, to discrim-
inate the importance of different paths, MCRec [18] is proposed to learn representations 
for users, items, and the meta-paths extracted through priority-based sampling. Then, the 
co-attention mechanism is applied to strike a balance between the meta-paths and user-
item pairs to mutually improve their representations. RuleRec [33] induces rules from KGs 
for items and then makes recommendations based on the induced rules. Generally, path-
based methods calculate the path-level similarity for items and entities by encoding the 
predefined paths or meta-paths. However, extracting such paths is a time-consuming and 
expertise-intensive process.

2.1.3  Unified methods

To fully exploit the information in KG, the unified methods [26, 38, 42, 66] are proposed to 
integrate the semantic and connectivity information [46]. For example, RippleNet [55] sim-
ulates the phenomenon of water wave energy propagation and propagates user preference 
over the set of KG entities by automatically and iteratively extending the user’s potential 
interests along with the relations. KGCN [56] is an end-to-end framework that discovers 
both high-order structure information and semantic information of the KG and then con-
siders the neighborhood information when calculating the representation of a given entity. 
KGAT [51] propagates the embeddings from the node’s high-order neighbors to the central 
node, and employs an attention mechanism to discriminate the importance of neighbors. 
Recently, MVIN [46] is proposed to learn the item representation from both user-view and 
entity-view through a novel wide and deep GCN. The unified recommendation methods 
have become a popular trend to fully exploit the information of KGs [23, 28].
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2.1.4  Summary

Through investigating the related works on KG-aware recommendation, we find that the 
multi-level heterogeneity hidden in the items and their neighboring entities, which pre-
serves user’s fine-grained interests, remains barely explored by existing methods. To fill up 
this gap, we propose McHa to provide new insight into exploring more information in KG. 
To the best of our knowledge, McHa is the first method to exploit the multi-level heteroge-
neity information through aggregating the representations of multistage clusters and their 
elements with the hierarchical attention layers.

2.2  Other topics of recommendation

2.2.1  Community detection for recommendation

Community detection is to discover subgraphs from a network where the nodes share simi-
lar characteristics as well as patterns [29, 32]. It has been applied to many tasks, such as 
recommender systems, biochemistry, and online social network analysis, etc [43]. In the 
recommender systems, users with similar interests or preferences can be treated as mem-
bers of a community. Detecting heterogeneous communities can help recommender sys-
tems capture users’ differentiated preferences and thus provide personalized recommenda-
tions. For example, Eissa et  al. [10] proposes a novel recommendation model based on 
interest-based communities generated from topic-based attributed social networks. Sim-
Clusters [40] is a novel recommendation algorithm based on the bipartite communities 
detected via Metropolis-Hastings sampling technology. Recently, LA-ALS [35] is proposed 
based on the Louvain’s community detection algorithm and alternating least square algo-
rithm. Specifically, Louvain’s community detection algorithm is used to recognize the rela-
tionship between users to enhance the ability of the recommendation model.

2.2.2  Explainable recommendation

Explainable recommendations [33, 52, 59] have attracted increasing attention as they could 
improve the persuasiveness of recommendation results. The advances of KGs have made 
it possible to provide explainable recommendations through integrating graph embed-
ding learning and recommendation techniques [9]. Within this field, KPRN [52], PGPR 
[58], and PeRN [22] perform reasoning over the paths extracted from KGs to improve the 
causal inference of recommendations with interpretability. Further, Xie et al. [60] design a 
novel multi-objective optimization function to jointly optimize the precision, diversity, and 
explainability of recommendations. Besides, some researchers have tried to derive inter-
pretability from auxiliary information, such as attribute [5], aspect [17], and sentiment [63] 
etc. For example, AMCF [60] incorporates a novel feature mapping approach to map the 
uninterpretable general features onto the interpretable aspect features. Another important 
line of research is to introduce attention mechanisms into RS to explore the interpretabil-
ity reflected by the discriminative attention weights. For example, to provide explanations 
tailored for different target items, Seo et al. [41] and Chen et al. [6] adopt attention mecha-
nisms to derive the importance of different review sentences under the supervision of user-
item rating information.
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2.2.3  Fairness in recommendation

Recently, research on fair recommendation has drawn a growing interest. There are some 
efforts [12, 15] on alleviating the unfairness problem of RS. For example, Fu et al. [11] 
quantify the unfairness in terms of KG path diversity as well as the recommendation per-
formance disparity. Then, a fairness-aware algorithm is proposed so as to produce high-
quality explainable recommendations with fairness. Mansoury et al. [34] propose a graph-
based algorithm, namely FairMatch, for improving recommendation fairness. It maintains 
the recommendation lists updated with the items that are rarely recommended yet are high-
quality. However, with the change of item popularity and user engagement, such fairness-
aware methods can not cope with the dynamic fairness problem. To address this limitation, 
Ge et al. [14] propose FCPO to capture the long-term dynamic fairness through a fairness-
constrained reinforcement learning framework. In detail, they leverage the Constrained 
Policy Optimization (CPO) with adapted neural network architecture to automatically learn 
the optimal policy under different fairness constraints.

3  Methodology

3.1  Problem formulation

In knowledge graph-aware recommendation, we let U = {u1, u2,⋯ , u|U|} and 
V = {v1, v2,⋯ , v|V|} denote the user set and item set, respectively. The user-item interac-
tion matrix is represented as Y = {yuv|u ∈ U, v ∈ V} , where

yuv = 1 means that the user u has an implicit interaction with the item v, such as clicking, 
watching and browsing, etc. Additionally, we have a side knowledge graph KG , which is 
comprised of triples (h, r,  t). Here, h, r, and t represent the head entity, relation, and tail 
entity, respectively. Given the input user u, input candidate item v, user-item interaction 
matrix Y , and knowledge graph KG , the goal of our model is to train a prediction model 
ŷuv = F(u, v) to predict the probability ŷuv that the user u would adopt the candidate item v.

In detail, as shown in the left part of Figure 2, for each input user u ∈ U , we can obtain 
the interaction record of user u by looking up the user-item interaction matrix Y . The inter-
action record I  can be formulated as

We link all items in the interaction record I  to the entities or attributes of the side KG to 
generate UIEKG G . Then, the UIEKG is fed into the user preference capturing model to 
calculate the final preference representation (denoted by � ) for the input user u. Accord-
ingly, we could feed the input candidate item v into the knowledge graph embedding layer 
to obtain the candidate item representation (denoted by � ). After that, we calculate the 
probability ŷuv by inputting � and � into a mapping function f ∶ ℝ

k ×ℝ
k
→ ℝ:

(1)yuv =

{
1, if u has an interaction with v;

0, otherwise.

(2)I = {v1,⋯ , vi,⋯ , v|I|}, vi ∈ V and yuvi = 1.

(3)ŷuv = f (�, �).
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Capturing user preference is the most important part of the knowledge graph-aware rec-
ommender systems. An ideal recommendation model should capture the user’s potential 
interests as accurately as possible. To achieve this, we propose a new KG-aware recom-
mendation model, namely McHa (depicted in the right part of Figure 2). Different from 
that the existing KG-aware recommendation methods directly aggregate neighboring enti-
ties to the central item and aggregate items to the user, we additionally deploy the entity 
cluster-level attention layer between the neighboring entities and the central item and the 
item cluster-level attention layer between the interaction items and the user to capture the 
user’s more fine-grained potential interests. We will present our model detailedly in the fol-
lowing Sections 3.2-3.8.

3.2  Knowledge graph embedding layer (KGEL)

As shown in Figure  2, knowledge graph embedding (KGE) layer is to represent entities 
and relations as vectors to preserve the structural and semantic information in KG. Many 
attempts have been made for KGE, such as TransE [3], TransH [53], and TransR [27], etc. 
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 . �
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the representation vector of item v
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1109World Wide Web (2022) 25:1103–1127



1 3

In our work, we use TransR to learn the embeddings of the entities and relations in KG 
because of its superiority in dealing with the multi-relational space projection between 
head entity and tail entity. Semiotically, we let �h , �r , �t denote the embeddings of h, r, t for 
a triple (h, r, t) in UIEKG, respectively. The embeddings �h and �t in the entity space are 
projected into the relation space by the r-aware parameter �r:

where [ �h , �t ] ∈ ℝd , �r ∈ ℝdr and �r ∈ ℝdr×d . According to the principle of TransR, we have 
“ h + r ≈ t ”, which means that h can be translated into t through the bridge r. Therefore, the 
energy score of the triple (h, r, t) can be evaluated by

A lower score of f(h, r, t) means that the head entity and its tail entity are more closely in 
the relation space. It should be noted that the items in UIEKG can be regarded as entities 
when performing knowledge graph embedding.

3.3  Entity‑level attention layer (EAL)

3.3.1  Entity cluster extraction

As shown in Figure 2, given an interaction item v ∈ I  , we can extract many triples that 
equip the item v as the head entity from the UIEKG. The extracted triples share the 
same head entity, meanwhile have different relations. We group these tail entities that 
share the same item (head entity) into several entity clusters (e.g. Entity Clusteractor and 
Entity Clusterdirector ) according to their different relations for exploring heterogeneity infor-
mation in terms of triple’s relation. Entity cluster can be defined as:

Definition 1  Entity Cluster  ( ECv
r
 ): A group of entities that share the same head entity v 

under relation r:

Grouping entities according to their relations in this layer can allow our model to pur-
posefully capture the user’s preference for the items with more subdivided characteristics.

3.3.2  Obtain entity cluster representation

After extracting entity cluster, we obtain the entity cluster representation through aggregat-
ing the elements in each entity cluster with the entity-level attention weights generated by 
GAT [48]. Specifically, we first obtain the attention score s(t) for each element by

where �EAL
1

∈ ℝ
dr×d and �EAL

2

∈ ℝ
1×2dr are the learning parameters for the feature aug-

menting and [⋅||⋅] is the concatenating operation for two vectors. A single layer perceptron 
with LeakyReLU activation function is applied to map the latent vector [�EAL1

�h||�EAL1
�t] 

to the real number s(t) . We chose LeakyReLU activation function since it attempts to fix 
the “dying ReLU problem” [31] with a small negative slope instead of zero when the input 

(4)�
r
h
= �r�h, �

r
t
= �r�t,

(5)f (h, r, t) = ‖‖�
r
h
+ �r − �

r
t
‖‖
2

2
.

(6)ECv
r
= {t1, t2, t3,⋯ , t|ECv

r
||}.

(7)s(t) = LeakyReLU(�EAL2
⋅ [�EAL1

�h||�EAL1
�t]),
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value < 0. By normalizing the attention score s(t) via softmax function, we get the attention 
weight:

The entity-level attention weight �(t) suggests which neighboring tail entities should be 
paid more attention when capturing the collaborative information. Finally, we obtain the 
entity cluster representation through aggregating the embedding vectors of all elements in 
entity cluster ECv

r
:

�ECv
r
 is the final entity cluster representation that preserves the heterogeneity information in 

terms of triple relation r.

3.4  Relation enhancing layer (REL)

According to Definition 1, the entities headed with item v can be grouped into different 
entity clusters according to different relations, which gives each entity cluster different het-
erogeneity in terms of triple’s relation. To further enhance the heterogeneity of each entity 
cluster, we explicitly encode the embedding of relation r into the entity cluster representa-
tion �ECv

r
 . As shown in Figure 2, the relation enhancing process can be formulated as

We first obtain the latent representation ��
ECv

r

∈ ℝ
dr by performing the element-wish projec-

tion between the entity cluster representation �ECv
r
 and the relation embedding �r . Then, we 

use a fully connected layer with sigmoid activation function to compress the latent repre-
sentation �′

ECv
r

 into �∗
ECv

r

 . �REL ∈ ℝ
dr×d is the learning parameter. �∗

ECv
r

∈ ℝ
d is the final 

entity cluster representation enhanced with the relation information.

3.5  Entity cluster‑level attention layer (ECAL)

As depicted in the right part of Figure 2, we assume that the entities headed with the item 
v can be grouped into several entity clusters according to different relations, which can be 
formulated as

where Sv is the entity cluster set of item v. Not all entity clusters equally contribute to 
the central item representation. For example, if the desire of the user to watch a movie 
largely depends on who acted in this movie rather than who directed it, the entity cluster 
Entity Clusteractor should be paid more attention than Entity Clusterdirector in the process of 
capturing the user’s preference.

(8)�(t) =
exp(s(t))

∑
t∈ECv

r
exp(s(t))

.

(9)�ECv
r
=

∑

t∈ECv
r

�(t)�EAL1
�t.

(10)�
�
ECv

r

=�ECv
r
⊙ �r,

(11)�
∗
ECv

r

=�(�REL�
�
ECv

r

).

(12)Sv = {ECv
r1
,ECv

r2
,ECv

r3
,⋯ ,ECv

r|Sv |
},
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Motivated by the above analysis, we calculate the representation of item v by differ-
ently aggregating the representations of all entity clusters of item v. In detail, we apply the 
entity cluster-level attention mechanism to discriminate those informative and uninforma-
tive entity clusters, which can be formulated as

 Inspired by [61], we first utilize a single-layer feedforward neural network with the tanh 
activation function to calculate the hidden representation �(ECv

r
) of the entity cluster ECv

r
 . 

�ECAL ∈ ℝ
d�×d and �ECAL ∈ ℝ

d� are the learning weight matrix and bias, respectively. We 
chose tanh activation function since it can solve the non zero-centered problem of popular 
sigmoid function by squashing a real-valued number to the range [-1, 1]. Then, the entity 
cluster-level attention weight �(ECv

r
) is calculated by normalizing the projection between 

�(ECv
r
) and �ECAL ∈ ℝ

d� via softmax function. �ECAL can be regarded as the entity cluster-
level context vector. Finally, we calculate the item representation �v by aggregating all �∗

ECv
r

 
in Sv with the entity cluster-level attention weights. The vector �v is the final representation 
of item v that summarizes the information of all entity clusters that equip this item as the 
head entity.

3.6  Item‑level attention layer (IAL)

3.6.1  Item cluster extraction

Similar to the entity cluster extraction, we group the items in the user’s interaction record I 
into different item clusters according to their attributes (e.g., genres for movies). Item clus-
ter can be defined as:

Definition 2 Item Cluster ( ICu
a
 ): A group of items that share the same user u and attribute 

a:

The purpose of grouping items into different item clusters in this layer is to allow our 
model to exploit the heterogeneity of different item clusters in terms of the item’s attribute 
and strengthen the pertinence of the user preference.

3.6.2  Obtain item cluster representation

As presented in the right part of Figure 2, to obtain the representation of item cluster ICu
a
 , 

we aggregate the representations of all items in ICu
a
 based on the item-level attention mech-

anism, which can be formulated as

(13)�v =
∑

ECv
r
∈Sv

�(ECv
r
)�∗

ECv
r

,

(14)�(ECv
r
) =

exp(�(ECv
r
)T�ECAL)∑

ECv
r
∈Sv

exp(�(ECv
r
)T�ECAL)

,

(15)�(ECv
r
) =tanh(�ECAL�

∗
ECv

r

+ �ECAL).

(16)ICu
a
= {v1, v2, v3,⋯ , v|ICu

a
|}.
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where �IAL ∈ ℝ
d�×d , �IAL ∈ ℝ

d� and �IAL ∈ ℝ
d� are the learning parameters. �(v) is the 

item-level attention weight. The vector �ICu
a
 is the item cluster representation that summa-

rizes the information of all items in the item cluster ICu
a
.

3.7  Item cluster‑level attention layer (ICAL)

In this layer, the interaction items of the user u can be grouped into different item clusters, 
which can be formulated as

where Su is the item cluster set of user u. As we discussed in Section 1, user may have dif-
ferent interests for different movie clusters. Therefore, the user preference representation 
� can be obtained by discriminatorily aggregating the representations of all item clusters 
of user u based on the item cluster-level attention mechanism, which can be formulated as

where �ICAL ∈ ℝ
d�×d , �ICAL ∈ ℝ

d� and �ICAL ∈ ℝ
d� are the learning parameters. �(ICu

a
) is the 

item cluster-level attention weight. The vector � is the final user preference representation.

3.8  Probability prediction

So far, we have obtained the final user preference representation � of user u. Given a can-
didate item v, we feed it into the knowledge graph embedding layer to obtain the candidate 
item representation � . Hereafter, the probability ŷuv that user u would adopt candidate item 
v is calculated by feeding � and � into the following equation:

where �(⋅) is the sigmoid function. ŷuv is the final output of our model.

(17)�ICu
a
=

∑

v∈ICu
a

�(v)�v,

(18)�(v) =
exp(�(v)T�IAL)∑

v∈ICu
a
exp(�(v)T�IAL)

,

(19)�(v) =tanh(�IAL�v + �IAL),

(20)Su = {ICu
a1
, ICu

a2
, ICu

a3
,⋯ , ICu

a|Su |
},

(21)� =
∑

ICu
a
∈Su

�(ICu
a
)�ICu

a
,

(22)�(ICu
a
) =

exp(�(ICu
a
)T�ICAL)∑

ICu
a
∈Su

exp(�(ICu
a
)T�ICAL)

,

(23)�(ICu
a
) =tanh(�ICAL�ICu

a
+ �3),

(24)ŷuv = 𝜎(�T�),
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3.9  Learning algorithm

3.9.1  Loss function

In the training process of knowledge graph embedding (KGE), we learn the embeddings of 
entities and relations in UIEKG G by optimizing the BPR [39] loss with L

2
 regularization, 

which can be formulated as

LKGE is the knowledge graph embedding loss. In detail, the first term is the BPR loss, 
where (h, r, t�) is the negative triple generated by negative sampling for tail entity, and f (⋅) 
(see (5)) is the energy function for evaluating the plausibility of a triple. The second term is 
the L

2
 regularizer with the coefficient � for preventing overfitting and �KGE (including �r ) 

stands for the parameter set for training KGE. G stands for the user-item-entity knowledge 
graph.

In the training process of recommendation model (RM), we adopt the cross-entropy loss 
with L

2
 regularization to optimize the learning parameters, which can be formulated as

LRM is the recommendation loss. In detail, the first term is the cross-entropy loss, where P 
stands for the mixed training interactions including the observed interactions and the unob-
served (negative) interactions generated by negative sampling strategy, and ŷuv (see (24)) is 
the CTR probability. The second term is the L

2
 regularizer with the coefficient � and �RM 

(including �EAL1
 , �EAL2

 , �REL , �ECAL , �ECAL , �ECAL,⋯ ) stands for the parameter set for 
training recommendation model.

3.9.2  Training strategy

Inspired by [51], we optimize LKGE and LRM alternatively with the widely used optimizer-
Adam [24]. We chose Adam since it keeps the learning rate adaptive. The learning algo-
rithm of our model is presented in Algorithm 1. For every epoch of training, we perform 
KGE training (corresponding to lines 3-8) and recommendation model training (corre-
sponding to lines 9-24) alternately.

(25)
LKGE =

∑

(h,r,t)∈G
(h,r,t� )∉G

− ln �(f (h, r, t�) − f (h, r, t)) + �‖‖�KGE
‖‖
2

2
.

(26)LRM = −
∑

(u,v)∈P

(yuv log(ŷuv) + (1 − yuv) log(1 − ŷuv)) + 𝜆‖‖𝛩RM
‖‖
2

2
.
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4  Experiments

4.1  Datasets

We choose the following three widely used benchmark datasets of recommendation tasks 
to evaluate our model.

– MovieLens-1M1 is a movie rating dataset widely used in recommendation task. It 
includes ratings (ranging from 1 to 5) for movies and demographic data (age, gender, 
and occupation, etc.) about users.

1 https:// group lens. org/ datas ets/ movie lens/ 1m/
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– Last.FM2 is a dataset collected from an online music website for providing music rec-
ommendations. This dataset includes the listened artist records of users and the meta-
data about users and artists.

– Book-Crossing3 is a book rating dataset from Book-Crossing community. It includes 
the ratings (ranging from 0 to 10) for books and the metadata about users and books.

The statistics of the three benchmark datasets are shown in Table 1. As suggested in [46, 
55], we convert the ratings in MovieLens-1M and Book-Crossing into binary feedback. 
Each entry is marked as 1 if the item had been positively rated by the user. Practically, the 
rating threshold of MovieLens-1M is set to 4, which means that if the rating score is not 
smaller than 4, the entry is marked as 1. While no threshold is set for Book-Crossing due to 
its sparsity of interactions, which means that if the entry is observed, it is marked as 1. For 
Last.FM, the user-artist entry is marked as 1 if it is recorded in the listened artist records. 
For the three benchmark datasets, these entries marked as 1 are regarded as the observed 
interactions. Accordingly, we randomly sample unobserved interactions marked as 0 for 
each user, which is of equal size with the observed interactions. We split the mixed interac-
tions including the observed and unobserved interactions into training, validation, and test 
datasets with the ratio of 6:2:2. We train our model on the training data, tune hyper-param-
eters on the validation data, and evaluate the performance of our model on the test data. 
Following [46, 55, 56], we use Microsoft Satori4 to construct the UIEKG for each dataset. 
Specifically, we link the items to the entities by matching their names with the confidence 
level > 0.9. For MovieLens-1M and Last.FM, we group the interaction items (movies and 
artists) of the user into item clusters according to their genres, while for Book-Crossing, we 
group the items (books) into item clusters according to their authors.

4.2  Baselines

We choose the following representative or state-of-the-art models as baselines:

– SVD++ [25] is an improved version of Singular Value Decomposition (SVD), which 
considers the user’s implicit feedback to the item.

Table 1  Statistics of the three 
benchmark datasets. # stands for 
the number

MovieLens-1M Last.FM Book-Crossing

# Users 6,036 1,872 17,860
# Items 2,445 3,846 14,967
# Interactions 753,772 42,346 139,746
# KG Entities 182,011 9,366 77,903
# KG Relations 12 60 25
# KG Triples 1,241,995 15,518 151,500

2 https:// group lens. org/ datas ets/ hetrec- 2011/
3 http:// www2. infor matik. uni- freib urg. de/ ~czieg ler/ BX/
4 https:// searc hengi neland. com/ libra ry/ bing/ bing- satori
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– CKE [64] is a unified framework that combines collaborative filtering with knowledge 
base embedding to learn different representations jointly.

– MKR [50] builds several cross and compress units, which automatically share latent 
features and learn high-order interactions between items in recommender systems and 
entities in the knowledge graph.

– KGCN [56] captures inter-item relatedness effectively by mining their associated 
attributes in KG. Besides, it samples from the neighbors for each entity in KG and then 
combines the neighborhood information when calculating the representation of a given 
entity.

– KGAT  [51] is a model that propagates the embeddings from the node’s high-order 
neighbors to the central node and employs an attention mechanism to discriminate the 
importance of the neighbors.

– MVIN [46] improves representations of items from both the user view gathering per-
sonalized knowledge information and the entity view considering the difference among 
layers.

– RippleNet [55] propagates user preferences over the set of entities by extending a 
user’s potential interests along links extracted from KG.

– FairGo [57] is a model-agnostic framework, which considers fairness from a user-item 
bipartite graph perspective. In detail, it eliminates the unfairness through a graph-based 
adversarial training process.

It should be noted that the hyper-parameters of baselines are set to the default or recom-
mended parameters in the published literature.

4.3  Experiment setup

4.3.1  Hyper‑parameters

The hyper-parameter settings are listed in Table 2. In detail, d and dr stand for the embed-
ding dimension of entity and relation, respectively, and d′ is the dimension of the context 
vector. We let |EC| and |Sv| denote the number of entity elements in each entity cluster and 
the number of entity clusters in each Sv , respectively. Similarly, |IC| and |Su| are the number 
of item elements in each item cluster and the number of item clusters in each Su , respec-
tively. It should be noted that the size of EC , Sv , IC, and Su are not fixed for each user. As 
suggested in [55], we apply the sampling strategy to fix these unfixed sizes for every user. 
� is the regularization coefficient. The batch size and learning rate are set to 128 and 0.001 
for both KGE and recommendation training. The hyper-parameters given in this paper are 
selected by grid search.

Table 2  Hyper-parameter 
settings of McHa 

Dataset d d
r

d
′ |EC| |S

v
| |IC| |S

u
| �

MovieLens-1M 16 32 16 4 5 6 4 1e-4
Last.FM 16 16 16 3 5 3 5 1e-2
Book-Crossing 32 16 8 8 4 6 4 1e-3
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4.3.2  Evaluation metrics

For CTR prediction task, we use the metrics of AUC , ACC  and F1-score to evaluate the 
performance of our model. For top-N recommendation task, we adopt the metrics of 
Precision@N, Recall@N and F1-score@N to evaluate the ability of our model in selecting 
N highest click probability items for the user. Each experiment is repeated 5 times, and the 
average results (mean) with standard deviation (std) on the test dataset are reported.

4.4  Results and discussion

We evaluate our model in two recommendation tasks: (1) CTR prediction, and (2) top-N 
recommendation. We have the following observations.

4.4.1  CTR prediction task

As shown in Table 3, our model has achieved the best performance in the CTR prediction 
task, compared with baselines. Specifically, the performance has been averagely improved 
by 2.3%, 5.0%, and 10.7% of F1-score on MovieLens-1M, Last.FM, and Book-Crossing, 
respectively. Compared with our model, KGCN, KGAT, MVIN, and RippleNet achieve 
poorer performances probably because the noisy information of the irrelevant high-order 
nodes could be unintentionally introduced and amplified step by step during the informa-
tion propagation in these methods. CKE does not perform well when missing the visual 
embedding, compared with other KG-aware methods. Besides, due to the lack of external 
information, SVD++ achieves poorer performance, especially in face of sparser data (e.g., 
Last.FM and Book-Crossing). Although FairGo attempts to improve the recommendation 
performance via mitigating the unfairness issue, it doesn’t perform well compared with 
KG-aware methods due to the lack of external information provided by KG.

4.4.2  Top‑N recommendation task

As shown in Figure 3, our model has also achieved the best performance compared with 
baselines. Given the fact that Last.FM is a smaller dataset than MovieLens-1M and Book-
Crossing, the outstanding improvement of our model performance on this dataset indicates 
that our model has strong adaptability when facing a smaller dataset in top-N recommenda-
tion task.

4.5  Ablation study

4.5.1  Ablation setup

In this part, we conduct the ablation experiment to prove the positive effect of every atten-
tion layer in McHa. Experimentally, we perform the ablation by replacing every atten-
tion layer of McHa with the single-layer feedforward neural network with tanh activa-
tion function. For the ablation of relation enhancing layer, we only eliminate �r in (10). 
We use abbreviations to represent McHa’s variants. For example, we let the abbreviation 
“ McHa w/o EAL ” denote McHa with the ablation of Entity-level Attention Layer (EAL).
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4.5.2  Ablation results

As shown in Table  4, McHa outperforms all variants. This observation demonstrates that 
every attention layer of our proposed framework has an essential and positive contribution 
to the performance of our model. Specifically, McHaw/o ECAL (McHa without Entity Cluster-
level Attention Layer) and McHaw/o ICAL (McHa without Item Cluster-level Attention Layer) 

Table 3  Results ( Mean ±std of testing 5 times) for the CTR prediction task

The best results are marked in boldface. Avg Improv. is calculated via averaging the improvement percent-
ages of our model relative to the baseline methods

Methods AUC ACC F1-score

(a) Results on MovieLens-1M (To be continued).
SVD++ 0.892±0.011 0.815±0.010 0.810±0.013
CKE 0.896±0.005 0.822±0.004 0.829±0.007
MKR 0.912±0.010 0.838±0.009 0.841±0.011
KGCN 0.902±0.006 0.827±0.004 0.834±0.004
KGAT 0.895±0.017 0.821±0.016 0.828±0.012
MVIN 0.923±0.009 0.849±0.015 0.853±0.013
RippleNet 0.921±0.007 0.845±0.005 0.848±0.006
FairGo 0.907±0.006 0.832±0.009 0.838±0.005
Ours 0.928± 0.008 0.853± 0.012 0.854± 0.011
Avg Improv. +2.5% +2.7% +2.3%
(b) Results on Last.FM (Continued).
SVD++ 0.780±0.017 0.727±0.011 0.733±0.008
CKE 0.777±0.007 0.705±0.006 0.688±0.003
MKR 0.793±0.012 0.751±0.007 0.722±0.005
KGCN 0.796±0.011 0.739±0.008 0.723±0.013
KGAT 0.792±0.007 0.722±0.010 0.726±0.009
MVIN 0.811±0.011 0.740±0.009 0.735±0.006
RippleNet 0.799±0.016 0.731±0.014 0.725±0.013
FairGo 0.796±0.009 0.729±0.010 0.700±0.007
Ours 0.823± 0.013 0.764± 0.007 0.757± 0.010
Avg Improv. +3.8% +4.9% +5.0%
(c) Results on Book-Crossing (Continued).
SVD++ 0.696±0.014 0.647±0.009 0.663±0.012
CKE 0.723±0.002 0.635±0.004 0.656±0.004
MKR 0.733±0.004 0.703±0.006 0.659±0.010
KGCN 0.728±0.021 0.697±0.014 0.643±0.019
KGAT 0.703±0.013 0.649±0.018 0.646±0.018
MVIN 0.735±0.012 0.676±0.015 0.638±0.014
RippleNet 0.726±0.018 0.653±0.021 0.652±0.019
FairGo 0.716±0.015 0.655±0.012 0.661±0.013
Ours 0.798± 0.014 0.724± 0.011 0.722± 0.012
Avg Improv. +10.9% +9.1% +10.7%
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achieve the poorer performance than other variants, which indicates that multistage clustering 
plays a significant positive role in capturing the user’s preference.

4.6  Parameter sensitivity analysis

4.6.1  Embedding dimension

We vary d ∈ [4, 8, 16, 32, 64, 128] to study the influence of dimension in the knowledge 
graph embedding layer. As shown in Figure 4(a), increasing the dimension boosts the 

Fig. 3  Results (Mean of testing 5 times) for the top-N recommendation task
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performance since a high-dimensional vector preserves more information. While, if the 
embedding dimension is too large, the model suffers from overfitting.

4.6.2  Number of entity clusters

We vary |Sv| ∈ [2, 3, 4, 5, 6, 7] to verify the influence of the number of entity clusters. As 
shown in Figure 4(b), performance would deteriorate when setting |Sv| to the smaller or 
greater values than the ideal value. This observation can be explained as that a smaller 
or greater size of Sv generated by the negative sampling strategy would lead to the 
loss of information or the introduction of noisy entities, respectively. This observation 
implies that the performance of our model is sensitive to the number of entity clusters in 
Sv and grouping the entities into different entity clusters in our proposed model is effec-
tive for capturing the user’s fine-grained preferences.

4.6.3  Number of item clusters

We vary |Su| ∈ [2, 3, 4, 5, 6, 7] to verify the influence of the number of item clusters. As 
shown in Figure 4(c), our model achieves the best results when setting |Su| to 4, 5, and 4 for 
MovieLens-1M, Last.FM, and Book-Crossing, respectively. This observation indicates that 
the performance of our model is sensitive to the number of item clusters in Su . In another 

Table 4  Ablation study results ( Mean ± std of testing 5 times). “w/o” means without. The best results are 
reported in boldface

Methods AUC ACC F1-score

(a) Results on MovieLens-1M (To be continued).
McHa 0.928± 0.008 0.853± 0.012 0.854± 0.010
McHa

w/o ICAL
0.919±0.010 0.842±0.013 0.845±0.011

McHa
w/o IAL

0.921±0.004 0.845±0.004 0.847±0.005
McHa

w/o ECAL
0.915±0.019 0.837±0.016 0.841±0.017

McHa
w/o REL

0.925±0.008 0.850±0.012 0.851±0.010
McHa

w/o EAL
0.924±0.010 0.848±0.011 0.849±0.009

(b) Results on Last.FM (Continued).
McHa 0.823± 0.013 0.764± 0.007 0.757± 0.010
McHa

w/o ICAL
0.810±0.010 0.725±0.008 0.733±0.009

McHa
w/o IAL

0.820±0.003 0.746±0.002 0.744±0.002
McHa

w/o ECAL
0.817±0.008 0.735±0.010 0.740±0.012

McHa
w/o REL

0.823±0.005 0.746±0.006 0.751±0.005
McHa

w/o EAL
0.820±0.008 0.748±0.008 0.749±0.006

(c) Results on Book-Crossing (Continued).
McHa 0.798± 0.014 0.734± 0.011 0.722± 0.012
McHa

w/o ICAL
0.755±0.012 0.671±0.014 0.676±0.015

McHa
w/o IAL

0.778±0.006 0.698±0.005 0.701±0.004
McHa

w/o ECAL
0.754±0.011 0.668±0.013 0.674±0.013

McHa
w/o REL

0.765±0.015 0.680±0.017 0.683±0.014
McHa

w/o EAL
0.797±0.012 0.721±0.009 0.720±0.013
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word, properly grouping the items into different item clusters contributes to the recommenda-
tion performance positively.

4.7  Interpretability with case study

Prior works [7, 13] have shown that the attention mechanism can benefit and explain the 
recommendation results. On this basis, we provide a visual case to intuitively explain 
the recommendation results of our model. We randomly sample a user (User ID: 9) from 
MovieLens-1M. As shown in Figure  5, movies in this user’s viewed record extracted 
from MovieLens-1M are grouped into four item clusters by our model according to their 
genres. This case shows that Item ClusterComedy and Item ClusterAnimation are assigned 
with the biggest and smallest attention weight when calculating the user preference 

Fig. 4  Parameter sensitivity for embedding dimension d, number of entity clusters |S
v
| , and number of item 

clusters |S
u
| . The other hyper-parameters are fixed according to Table 2
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representation, respectively. This means that the fine-grained and focused information 
that the user is more interested in comedy rather than animation would be encoded into 
the user preference representation. To verify the effectiveness of such user preference, 
we feed two new candidate movies The Tigger Movie (an animation) and A League 
of Their Own (a comedy) into our model to calculate their CTR probabilities, respec-
tively. The output results for these two candidate movies show that comedy A League of 
Their Own received a higher CTR probability (0.857) than animation The Tigger Movie 
(0.092), which demonstrates that the user preference captured by our model works. In 
summary, this case implies that our model could accurately generate the expressive user 
preference representation and the recommendation results can be explained by the atten-
tion weights.

5  Conclusion and future work

In this paper, we propose a novel KG-aware recommendation model, namely McHa. It 
overcomes the limitation that the more fine-grained and focused multi-level heterogene-
ity information remains barely exploited in existing methods. Specifically, we first capture 
the multi-level heterogeneity information by grouping the items and their connected enti-
ties into item clusters and entity clusters (jointly referred to as multistage clusters), respec-
tively. Then, the user preference is obtained by hierarchically aggregating the multi-level 
heterogeneity information with the weights generated by the hierarchical attention layers. 
The extensive experiments show the effectiveness of our model.

However, further research is still needed. For example, we only consider the nearest 
(1-hop) entities around the item in the knowledge graph. How to extend our model to effi-
ciently process the multi-hop entities needs to be further studied to explore more potential 
information in the knowledge graph.

Fig. 5  A real case (User ID: 9) from MovieLens-1M
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