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Abstract
As a fundamental data structure, graphs are ubiquitous in various applications. Among all 
types of graphs, signed bipartite graphs contain complex structures with positive and nega-
tive links as well as bipartite settings, on which conventional graph analysis algorithms are 
no longer applicable. Previous works mainly focus on unipartite signed graphs or unsigned 
bipartite graphs separately. Several models are proposed for applications on the signed bipar-
tite graphs by utilizing the heuristic structural information. However, these methods have lim-
ited capability to fully capture the information hidden in such graphs. In this paper, we pro-
pose the first graph neural network on signed bipartite graphs, namely Polarity-based Graph 
Convolutional Network (PbGCN), for sign prediction task with the help of balance theory. We 
introduce the novel polarity attribute to signed bipartite graphs, based on which we construct 
one-mode projection graphs to allow the GNNs to aggregate information between the same 
type nodes. Extensive experiments on five datasets demonstrate the effectiveness of our pro-
posed techniques.

Keywords  Graph neural network · Signed bipartite graph · Sign prediction

 *	 Hanchen Wang 

 *	 Chen Chen 
	 chenc@zjgsu.edu.cn

	 Xianhang Zhang 
	 xianhang.zhang@unsw.edu.au

	 Xiaoyang Wang 
	 xiaoyangw@zjgsu.edu.cn

	 Wenjie Zhang 
	 zhangw@cse.unsw.edu.au

1	 University of New South Wales, Sydney, Australia
2	 Zhejiang Gongshang University, Hangzhou, China

Published online: 16 February 2022

World Wide Web (2022) 25:471–487

/

http://orcid.org/0000-0003-3158-9586
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01015-4&domain=pdf


1 3

1  Introduction

Recently, graph-structured data is becoming increasingly ubiquitous, especially with the 
spreading popularity of the e-commerce platforms and social networks  [32, 33]. These 
networks can be modeled as signed graphs whose edges have either positive or negative 
signs. Great research efforts have been spent on the unipartite signed graphs [4, 18, 22, 25, 
26, 37]. However, as a common form of signed graphs, the signed bipartite graphs have 
been overlooked by the research community. Signed bipartite graphs have two independ-
ent partitions of nodes and the edges are only formed between the nodes of different types. 
These graphs are prevalent across many domains. For example, on e-commerce platforms, 
such as Amazon, the buyers can provide positive or negative reviews towards a product.

Previous works primarily focus on the unipartite signed graphs or bipartite graphs sepa-
rately [2, 5, 31], which are the graphs without node partition or edge sign information. These 
methods are unable to handle the complexities brought by both bipartite and signed settings. 
There have been some methods proposed for signed bipartite graphs based on the balance 
theory [6, 8]. However, these methods are unable to fully exploit the structural, attribute and 
high-order information by simply performing conventional random walk, which limits their 
performance on the sign prediction task. With the growing popularity of graph neural net-
works (GNNs), a variety of network embedding and GNN-based methods are developed for 
unipartite signed graphs and unsigned bipartite graphs. These models also lack the capability 
to fully preserve the information of negative links and node partitions. For example, the graph 
neural networks for signed graphs cannot capture the similarity between nodes in the same 
node partition of signed bipartite graphs. Similarly, GNNs designed for unsigned bipartite 
graphs [9, 21] will aggregate the neighbor information in the same way for both positive and 
negative edges. As a result, they totally ignore the sign information and cannot be used for the 
sign prediction task. Unsatisfactory results are observed in our initial attempt to directly apply 
these models on signed bipartite graphs. Therefore, the graph neural network on the signed 
bipartite graphs cannot be carried out by simply applying existing models.

Motivated by the above observations, in this paper, we design a novel graph neural 
network on the signed bipartite graphs by integrating the proposed polarity attribute, 
named Polarity-based Graph Convolutional Network (PbGCN). PbGCN first obtains the 
polarity value for each node, which describes others’ opinions towards this node.

For example, in Figure 1, people have polarized opposite opinions toward durian ( t2 ), even 
though they may share similar dietary preferences, such as they all love banana ( t1 ). Conse-
quently, durian ( t2 ) and banana ( t1 ) will have small and large polarity values, respectively.

The polarity value paves the way for PbGCN to perform one-mode projection [38] by 
adding edges between nodes of the same type that share similar polarity values. Then, 
PbGCN is able to aggregate the information via the established edges directly, even if 
the nodes in the edges have high proximity with each other in the original graph. Based 
on the above ideas, we build a graph neural network for signed bipartite graphs, which 
can significantly boost the performance of the sign prediction task compared with the 
baseline approaches. The main contributions of the paper are summarized as follows.

–	 To the best of our knowledge, this is the first work that develops a graph neural net-
work model on the signed bipartite graph to solve the sign prediction task.

–	 Our model combines the advantages of balance theory and polarity information, which 
describes the controversy of opinions to the node. Thus, it allows the graph neural network to 
perform aggregation between the nodes of the same type in signed bipartite graphs directly.
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–	 Extensive experiments conducted on both real-life and synthetic graphs demonstrate that 
PbGCN outperforms the state-of-the-art methods for sign prediction.

Roadmap. The rest part of the paper is organized as follows: Section  2 introduces highly 
related work of this paper (Section 2.1), and also given the key definitions and important nota-
tions used in this paper (Section 2.2). Section 3 describes our proposed model in detail. Spe-
cifically, Section 3.1 gives the overall framework of the model and other subsections describe 
every aspect of the model thoroughly. Section 4 consist the empirical evaluations of the pro-
posed model, where Section 4.1 introduces the datasets and baseline methods used in experi-
ments, Section 4.2 is the experiment settings and Sections 4.3 and 4.5 illustrate the experiment 
results including the parameter sensitivity analysis. Finally, the paper concludes in Section 5.

2 � Related work and preliminaries

Recently, with the increasing popularity of social networks and e-commerce platforms, the 
signed bipartite graphs have become much more ubiquitous. With this trend, there are a great 
number of researches for graph analytics proposed to solve the specific tasks on the signed 
bipartite graphs, such as link prediction, sign prediction, node classification, etc. Besides, due 
to the significant success of the graph neural network (GNN) on various graph analysis tasks, 
some GNN-based models are also proposed for bipartite graphs. In this section, we introduce 
some related work with important definitions and notations.

2.1 � Related work

2.1.1 � Analysis on relatively simple graphs

Numerous research works have proposed outstanding methods on graphs with relatively simple 
structures, i.e., unipartite signed graph and bipartite signed graph [2, 18, 22, 31, 37]. Among 
them,  [18, 22, 37] focus on the analysis of unipartite signed graphs. These studies carefully 
and effectively analyze the positive and negative relationships among the nodes of signed social 
networks. They point out the patterns or regularities that frequently appear in signed social net-
works. As a result, they achieve high accuracy on the sign prediction task, which is useful in 

Fig. 1   Example for Signed 
Bipartite Graph
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predicting whether users are more likely to have positive or negative relationships with each 
other in social networks. In addition, the method proposed by [2] can be used on the structure 
of the bipartite graph and can efficiently reproduce its degree distribution as well as the degree-
wise metamorphosis coefficients. What’s more, [31] presents a very advanced method for cal-
culating the number of butterflies in a bipartite graph. These methods cannot be directly applied 
for analysis of signed bipartite graphs due to their unipartite or unsigned settings respectively.

2.1.2 � Methods for signed bipartite graph

Aiming to fill the gap mentioned in the previous subsection, a variety of heuristic and theo-
retical models  [1, 3, 6, 8, 11, 13, 17, 24] are proposed for the applications on the signed 
bipartite graphs such as sign prediction, link prediction and recommendation. In these 
efforts, [6, 8, 13] analyzed the voting records of representatives from the U.S. Congress by 
using balance theory and achieved well predictions of the voting situation. In addition, there 
are other methods that implement the analysis of signed bipartite graphs based on the signed 
random walk with restart  [17], signed multiplicative rank propagation  [24], projection 
method  [11] and linear algorithm  [1]. Furthermore,  [3] develops a heuristic solution and 
obtains an outstanding performance on the node classification in signed bipartite networks.

2.1.3 � GNNs on bipartite graph

Recently, with the increasing popularity and development of network embedding [10, 23] 
and graph neural networks (GNN) [12, 16, 27], methods for solving problems on bipartite 
graphs using neural networks continue to be proposed by numerous studies [9, 19, 21, 28, 
30, 34]. Amount them, [9] proposes a novel framework for cancer survival prediction, [19, 
21] propose novel methods to handle large-scale e-commerce tasks by analyzing the hier-
archical structures and using GNNs in bipartite graphs.  [34] proposes an analysis that 
provides insights into better extracting and fusing information from the protein–protein 
interaction network for drug repurposing. Furthermore, [7, 14, 15, 20, 35] designed repre-
sentation learning models [29, 36] that are able to preserve both positive and negative link 
information within the signed graphs. These methodologies are lacking the capability to 
fully exploit the structural and attribute information that lies in the signed bipartite graphs. 
In this paper, we proposed the first graph neural network for signed bipartite graphs that is 
able to address the above issues and improve the sign prediction performance.

2.2 � Preliminaries

There are two key definitions in this paper and Table 1 summarized the important nota-
tions frequently used throughout the paper.

Definition 1  (Signed Bipartite Graph) A bipartite graph has two separate vertex sets, each 
of which only has connections with the vertices in the other vertex set. A signed bipartite 
graph can be denoted as G = (VS,VT , E

+
, E

−) , where VS = {s1, s2, ..., sm},VT = {t1, t2, ..., tn} 
are the mutually exclusive node sets. E+ ⊂ VS × VT and E− ⊂ VS × VT are the positive and 
negative edges that connect nodes between two partitions, where E+ ∩ E

− = �.
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Definition 2  (One-Mode Projection) [38] One-Mode Projection on the bipartite graphs 
aims to construct a projection graph that creates links between the nodes of the same type, 
i.e., to build graphs GS = (VS, ES) , GT = (VT , ET ) where ES ⊂ VS × VS and ET ⊂ VT × VT.

Definition 3  (Polarity Value) Polarity value is used in our model to measure the disagree-
ment of attitude of the neighbors of one vertex towards it. Formally, in this work, the polar-
ity value is defined as: rvi = 1 − �DS

vi
∕�all

vi
 , where �DS

v
i

=
|||N

+
v
i

||| ×
|||N

−
v
i

||| is the product of the 
number of positive and negative neighbors of vi , and �all

vi
 is the number of all possible 

neighbor pairs of vi . We also regularize the polarity value as: |||�vi
||| =

rvi
−min(rV)

max(rV)−min(rV)
.

Definition 4  (Balance Theory) Balance theory defined that a cycle in signed networks 
with an even number of negative links is balanced, which is typically stated as “a friend of 
my friend is my friend” while an “enemy of my friend is my enemy”.

Typically, the one mode projection is performed based on the number of common 
neighbors of two nodes of the same type.

Example 1  One-mode projection. Figure  2 is an example of a one-mode projection of the 
signed bipartite graph in Figure 1. In this figure, both s1 and s3 are connected with t1 , t2 and t3 
with positive signed edges, so s1 and s3 have 3 neighbors that are connected in the same way. 
When the threshold used to judge whether a connection should be created is 3, s1 and s3 should 
be connected. Similarly, s2 and s4 are connected to both t1 and t3 with positive edges and to t2 
with negative edges at the same time, so s2 and s4 should also be connected. t1 and t3 have 4 
common neighbors with the same sign and will also be connected. However, if the number of 
common neighbors with the same sign is less than 3 like s1 and s2 , no edge will be established.

3 � Model

In this section, we introduce the details of our proposed Polarity-based Graph Convolu-
tional Network (PbGCN). In Section 3.1, we give the overall introduction of the frame-
work of our proposed PbGCN. Section 3.2 describes how the polarity attribute is captured 

Fig. 2   Example for one-mode 
projection
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in our model, based on which we perform the one-mode projection to establish the links 
between nodes in the same type. Section  3.3 introduces the graph convolution opera-
tions utilized in our model that aggregates the information along the edges in the graph 
after one-mode projection. Section 3.4 gives the learning objectives used to optimize our 
model. Finally, the balance theory-based sign prediction is introduced in Section 3.5.

3.1 � Framework

Our proposed PbGCN aims to preserve the universal relationship between neighboring 
nodes, thus achieves higher accuracy in the sign prediction task for signed bipartite graphs 
compared to the state-of-the-art heuristic methods. PbGCN is a GNN and balance theory-
based model which combines their advantages. The framework of PbGCN is shown in Fig-
ure 3. We first get the initial structural information of the graph, which helps to summarize 
the polarity information and add signed weighted edges between the same-type nodes for 
one-mode projection. The added edges are superimposed into positive and negative adja-
cency matrices respectively. Afterwards, graph neural network is performed to obtain the 
prediction � , which is then combined with the results Yb obtained based on balance theory 
for the down-stream prediction task.

3.2 � Polarity attribute

Firstly, we need an initial polarity value �init from the structure of the given graph to perform 
one-mode projection and guide our training process. The core idea is to capture the distri-
bution of edge signs between each node and its neighbors. For node vi ∈ V in the bipartite 

Table 1   Notation Table Notation Description

G Signed bipartite graph.
V , E Nodes and edges in Graph.
A , D Adjacency matrix and diagonal degree matrix of G.
B Bi-adjacency matrix.
P Adjacency matrix of the same type nodes.
I Identity matrix.
W Weight matrix in neural network.
H Hidden feature matrix.
N Neighborhood node set.
M Weighted edge matrix.
c Random walk restart parameter.
� Weight coefficient for bi-adjacency matrix.
�
init

 , � Initial polarity value and polarity attribute.
� Nonlinear activation function.
� Number of neighboring node pairs.
� , � Threshold used to control the addition of connections.
Y Result of the sign prediction.
L Loss function.
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graph G, we simply compute the possible number of neighboring node pairs connected by 
different signs as:

where |||N
+
v
i

||| and |||N
−
v
i

||| denotes the number of positive and negative neighbors of vi respec-
tively. For instance, in Figure 1, Jack(s2 ) has two positive links and one negative link, thus 
|||N

+
s2

||| = 2 and |||N
−
s2

||| = 1 . We can also compute the number of all possible pairs between the 
neighbor of vi using the following equation:

where |||Nv
i

||| denotes the total number of vi ’s neighbors. Obtained the number of possible 
pairs, we can get the dissimilar connection rate using the fraction between the numbers of 
different signed neighbor pairs and all possible pairs: rvi = 1 − �DS

vi
∕�all

vi
 . It is obvious that 

|||Nv
i

||| , rvi is smaller with more polarized distributed edge signs, i.e., |||N
+
v
i

||| is closed to |||N
−
v
i

||| , 
with the total number of neighbors fixed.

We normalize the dissimilar rate by:

where rV is the rate set of all nodes V and |||�vi
||| is the normalized value. The sign of �vi is 

determined by the number of positive and negative neighbors of vi , i.e., 𝜏vi > 0 if 
|||N

+
v
i

||| >
|||N

−
v
i

||| and vice versa. We denote this initial polarity value � as �init in the rest of this 
paper. �init directly comes from the neighbor information which captures abundant struc-
tural information. However, �init is hard to be utilized as a training objective or directly 
used for sign prediction. Therefore, we convert �vi to a label yi by thresholding. The nodes 
in the given signed bipartite graph are categorized into three classes according to polarity 
values: positive tendency nodes, negative tendency nodes which are more likely to have 
positive or negative links respectively, and polarized nodes which have no obvious ten-
dency to form positive or negative links. These labels give a qualitative training target for 

(1)�DS
vi

=
|||N

+
vi

||| ×
|||N

−
vi

|||,

(2)�all
vi

=

|||Nvi

|||!

2 × (
|||Nvi

||| − 2)!
,

(3)|||�vi
||| =

rvi − min(rV)

max(rV) − min(rV)
,

Fig. 3   The Framework of Proposed PbGCN
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GNN, and as a result, our model is able to capture the graph information on a learning 
basis rather than simply use the values from heuristic statistics.

Since the bipartite graphs have no edge connected between nodes within the same type, 
in order to allow neighbor aggregation between nodes of the same type, we perform one-
mode projection to add edges between these same type nodes according to their polarity 
values. The main idea for creating such edges is to consider the closeness of �vi , �vj of the 
same type nodes vi, vj . When their gap is less than a threshold � , we create a weighted edge 
M�

ij
∈ (0, 1] between them:

This weight is determined by the similarity of their polarity value �init , and the smaller the 
gap, the greater the weight. After the pair-wise comparison of �init between nodes in the 
same partition, we can form the one-mode projection (OMP) graphs M�

S
 and M�

T
 for node 

sets S and T, respectively. We form an adjacency matrix that involves all nodes in the graph 

as M� =

[
M

�
S

0

0 M
�
T

]
 for the aggregation in graph neural network. The algorithm for one-

mode projection is summarized in Algorithm  1, where line 2 is the computation of the 
number of positive edges, the number of negative edges and the total number of edges con-
nected to node v. Lines 17 to 19 are used to avoid the self-loop.

(4)M�
ij
= 1 −

(
|||�vi − �vj

||| ×
1

�

)
.
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3.3 � Graph convolutional layers

In PbGCN, we use the graph convolutional network (GCN) to perform neighbor aggrega-
tion. The overall idea of GCN aggregation is to rely on the adjacency matrix to filter out 
the neighboring nodes of each node, then weight the feature vectors of these neighboring 
nodes and sum them up. The activation function is then used on them to update feature 
vectors, so that the similar nodes have similar feature vectors. Besides, in order to retain 
the feature vectors of the original nodes, a diagonal identity matrix is added to the original 
adjacency matrix for self-loop. And to ensure that all nodes aggregate the feature vectors 
of neighboring points at the same scale, a normalization operation is required for each row 
of the adjacency matrix. As a result, each layer in the original GCN algorithm can be for-
mulated as:

where H(l) is the hidden feature vector at lth layer, Ã is the adjacency matrix A with self-
loop as: Ã = A + IN , D̃ is a diagonal degree matrix of Ã where Dii =

∑
j Ãij , and W(l) is a 

trainable weight matrix for lth layer. It is clear that the original GCN will suffer from poor 
performance if it is directly applied to the signed bipartite graph. As a result, there are two 
major challenges to apply graph convolutional network on the signed bipartite graphs: it is 
difficult to aggregate the feature vectors of nodes of the same type, on the other hand, the 
primitive aggregation approach cannot distinguish the sign information of the edges.

In order to solve the above problems, we have obtained �init in the above steps and used 
it to build a one-mode projection graph M� to allow nodes of the same type with potentially 
similar properties to be connected and provide weights according to the polarity values 
to ensure better aggregation results. To address the second problem, we divide the origi-
nal signed adjacency matrix into positive-edge adjacency matrix and negative-edge adja-
cency matrix. We design the graph neural network on these adjacency matrices separately 
to ensure that the information of positive and negative edges can each be fully utilized, 
instead of totally ignoring the sign information or directly using the original adjacency 
matrices with 1 and -1 weights, which cannot fully consider the sign information during 
the aggregation process and result in unsatisfactory aggregation results. The aggregation 
process can be summarized in the following equations:

where M̃
�

p
=

[
M�

S
Mp

M�

p
M�

T

]
+ IM , M̃

�

n
=

[
M�

S
Mn

M�

n
M�

T

]
+ IM , and D̃

�

pii
=
∑

j M̃
�

pij
 , D̃

�

nii
=
∑

j M̃
�

nij
 , 

� denotes the activation function, H(0)
p

 and H(0)
n

 are the input features of the graph, and 
Ŷ ∈ (0, 1)|V|×3 is the output tensor for the label prediction. It is worth noting that the softmax 
function is used to the sum of two sets of feature vectors in layer L to obtain Ŷ , while activa-
tion function is applied when aggregating the feature vectors in other layers.

(5)Hl+1
p

= �(D̃
−

1

2 ÃD̃
−

1

2H(l)W(l)),

(6)Hl+1
p

=�(D̃
�−

1

2

p
M̃

�

p
D̃

�−
1

2

p
H(l)

p
W(l)

p
)

(7)Hl+1
n

=�(D̃
�−

1

2

n
M̃

�

n
D̃

�−
1

2

n
H(l)

n
W(l)

n
)

(8)Ŷ =softmax(HL
p
+HL

n
),
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3.4 � Learning objectives

With the obtained label prediction, we need to set a loss function as the training target 
of the model. As mentioned in Section 3.2, we have generated a label y for each node to 
describe the probability of this node to form a new positive/negative link. Based on that, 
we design the cross-entropy loss function as our learning objective:

where Vtrain is the node set involved in the training edge set, and K is the number of labels, 
in our case K = 3 . The prediction result Ŷ is then mapped as attribute vector � for all nodes 
by f (⋅) ∶ ℝ

|V|×3
→ ℝ

|V|×1

where Ŷpos, Ŷpol, Ŷneg represent the predicted probability of a node being of type positive 
tendency nodes, polarized nodes and negative tendency nodes.

The mapping function f could assign 1 as predicted polarity value to the nodes that are more 
likely to have positive edges with similar neighboring nodes and assign −1 to the other nodes. 
We then use the computed polarity value to optimize the balance theory-based prediction.

3.5 � Balance theory‑based sign prediction

Inspired by the application of balance theory on signed bipartite graphs [6], we design the 
heuristic prediction process based on the balance theory. According to the balance theory, 
we add the signed edges between two nodes of the same type with the following equation

P is an adjacency matrix storing edges of the same type nodes. Counting the number of neighbors 
with the same sign edges �A

ij
 and the number of neighbors with different sign edges �D

ij
 which are 

linked to both nodes vi and vj to create edges. When �A
ij
− nD

ij
 is greater or less than a certain thresh-

old, vi and vj will be connected by an edge with weight �A
ij
− �D

ij
 . After adding edges between the 

same type nodes, and then combining the weighted adjacency matrix A ∈ ℝ
|S|×|T| of the original 

graph, the adjacency matrix Mb ∈ ℝ
|V|×|V| that can be used for random walk can be constructed:

where Mb is the matrix constructed according to balance theory, and B̂ is the row nor-
malized bi-adjacency matrix, i.e., B̂ij = Bij∕

∑
k �Bik� where B ∈ ℝ

|S|×|T| is the adjacency 
matrix of the signed bipartite graph, � = 2 is the weight coefficient for B̂ , and we also nor-
malize matrix P and Mb to get matrix P̂ and M̂

b
 . The relationship between any three nodes 

is consistent according to balance theory when and only when the number of negative 

(9)L = −
∑

vi∈Vtrain

K∑

k

yk(vi)log(̂yk(vi)),

(10)f (Ŷ) =
Ŷpos − Ŷneg

Ŷpos + Ŷpol + Ŷneg

,

(11)Pij =

{
0 𝛿n < 𝜂A

ij
− 𝜂D

ij
< 𝛿p

𝜂A
ij
− 𝜂D

ij
otherwise

(12)Mb =

[
P̂S �B̂

�B̂
�

P̂T

]
,
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edges linked to these three nodes is an even number. 4 We then perform two-step random 
walk to capture more information, and the signs of the edges that connect the starting and 
ending nodes are determined by the signs of visited edges in these random walk paths. As 
a result, the prediction matrix Yb under balance theory can be obtained by performing ran-
dom walk on the normalized adjacency matrix M̂

b
:

where (1 − c) is the random walk restart probability.
After obtaining the prediction matrix Yb that relies on the balance theory, we add it with 

weighted � before the prediction. In order to enable � to add directly to the matrix Yb , we 
need to do the expansion operation on � first, that is to say, copy � ∈ ℝ

|V| for |V| times to 
get �expand ∈ ℝ

|V|×|V| . To further improve the prediction results with the help of � , in prac-
tice, we will first compute the mean value y of Yb , and then multiply y with �expand . On this 
basis, the optimized prediction matrix Y� is obtained as:

where � is the adjustable weight. Finally, we use the sign of the value at the corresponding 
position in Y� as the sign prediction of the given edge.

4 � Experiment

In this section, we empirically prove and evaluate the effectiveness of polarity value � and 
GNN in the optimization of sign prediction performance. We attempt to answer the follow-
ing two research questions:

–	 Q1. Has the utilization of polarity property and graph neural network led to improved 
prediction results?

–	 Q2. How much the proposed method improves the baselines?

To answer the above questions, experiments are conducted on three real-world and two 
synthetic signed bipartite graphs to evaluate the performance of the baseline methods for 
sign prediction task. To further investigate the advancement of our proposed method, we 
also perform a parameter sensitivity analysis on PbGCN. The datasets and baselines used 
are listed in Section 4.1, the experiment settings are introduced in Section 4.2, the results 
comparisons are shown in Section 4.3 and the parameter analysis results in Section 4.5.

4.1 � Datasets and baselines

The experiments are conducted on the following real-life and synthetic datasets:

–	 Senate and House [6] are directed graphs that contain the role call votes records from 
the 1st to 10th United States Senate and House of Representatives.

–	 Gene 1 is a undirected graph which describes the regulatory effect of the transcription 
factor on the regulated gene.

(13)Yb = (1 − c)(I − cM̂
b
)−1,

(14)Y� = Yb + � ⋅ y ⋅ �expand,

1  http://regulondb.ccg.unam.mx/menu/download/datasets/files/network_tf_gene.txt
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–	 Synth1 and Synth2 are synthetic datasets that we generate by randomly adding positive 
and negative edges between two randomly separated node sets.

The statistics of these datasets are summarized in Table 2.

Two set of synthetic data are generated from two undirected bipartite graphs: Robertson 
(1929) 2 and Youtube Group Memberships 3. We randomly add positive and negative labels 
to the edges of these two bipartite graphs to generate symbolic bipartite graphs, where the 
probability of obtaining a positive label for each edge is 35It should be noted that since the 
youtube dataset is too large, we only take its first 230,000 edges to generate the dataset. 
The number of edges added by the one-mode projection is usually under five times of the 
number of original edges in the graph.

We follow the settings in [6] to randomly split 85%, 5% and 10% of the edge labels in 
the original datasets for training, validation and testing. More specifically, during the train-
ing process, only training set is accessible, and when evaluating the sign prediction perfor-
mance, we compare the ground truth signs of the edges in the test set with the predicted 
sign suggested by the models.

We compare the proposed framework with the following baselines:

–	 SBRW4 [6] is a sign prediction algorithm on signed bipartite graphs by performing ran-
dom walk on the adjacency matrix constructed according to the balance theory.

–	 SBRW+GCN and SBRW+GAT​ are the optimized models that add the learned pre-
dictions by directly performing GCN [16] or GAT [27] in the original signed bipartite 
graph to the prediction value of SBRW. Please note that these baselines do not consider 
the sign information.

–	 SBRW+�init is the model that utilizes �init to boost the prediction performance of SBRW 
by simply adding �init to the results of SBRW.

4.2 � Experimental settings

We designed the polarity-based graph neural network for edge sign prediction on signed 
bipartite graphs to improve the prediction accuracy compared to the conventional balance 
theory-based methods. In our proposed model, we use two-layer GCN model, choose Adam 
as the optimizer with the learning rate lr = 0.01 , and we use the randomly generated features 

Table 2   Statistics of Datasets Dataset S Nodes T Nodes Edges

Senate 145 1,056 27,083
House 515 1,281 114,378
Gene 211 1,847 4,670
Synth1 1,428 456 15,255
Synth2 7,372 9,747 31,641

2  https://​iwdb.​nceas.​ucsb.​edu/​html/​rober​tson_​1929.​html
3  http://​socia​lnetw​orks.​mpi-​sws.​org/​data-​imc20​07.​html
4  https://github.com/DSE-MSU/signed-bipartite-networks
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as the input of GCN. The dimension of input feature is 1000, the representation feature’s 
dimension is 64, and the final output dimension for prediction is 3. The random walk restart 
probability 1 − c is set to 0.15. Since the sign prediction problem can be formulated as a 
binary classification task, we select the widely-used Area Under Curve (AUC) and F1-score 
as the evaluation metrics. The bold entries in Tables 3 and 4 indicate the best results.

4.3 � Sign prediction results

The experiment results are illustrated in Table 3. Our proposed PbGCN outperforms all 
baseline methods across all datasets. Compared to the state-of-the-art sign prediction model 
SBRW, PbGCN could significantly improve AUC and F1-score by up to 6.54% and 16.71% 
respectively. It is worth mentioning that SBRW guesses the sign based on the proportion 
of positive and negative edges in the dataset if it encounters a result that cannot be distin-
guished to make a decision. Our proposed PbGCN could avoid this situation, thus achieves 
better performance. The improvement compared to SBRW+GCN and SBRW+GAT indi-
cates that the edges constructed by the polarity attribute and consideration of positive and 
negative links could consistently enhance the prediction accuracy. These results provide a 
positive answer to our first research question: the utilization of polarity value and GNNs 
indeed provides an empirically verifiable improvement.

Moreover, PbGCN reaches better performance in comparison to SBRW+�init . The rea-
son is that �init only contains the node attribute rather than its neighbor information. There-
fore, PbGCN could easily make a more accurate prediction by the aggregation of neighbor 
information in the signed bipartite graph with added �init-based edges.

Overall, it can be summarized that PbGCN achieves the superior performance because 
of the utilization of polarity attribute, one-mode projection and GNN which aggregates the 
neighbor information with consideration of both positive and negative links.

4.4 � Ablation study

We also perform the ablation study to show the effectiveness of our model. We replace the 
graph neural network in the paper with the basic neural network (i.e., multilayer perceptron 
MLP), denoted as NN-Baseline. The results are illustrated in Table 4. We can find in the 
results that, in most datasets, PbGCN outperforms the NN-Baseline, which indicate the 
effectiveness of the design of PbGCN.

4.5 � Parameter analysis

We conduct the parameter analysis experiments on the following parameters: weight coefficient 
� of learned � , threshold � , number of GCN layers L and learning rate lr. We perform all the 
parameter analysis experiments on the Gene dataset. The analysis results are shown in Figure 4.

For PbGCN, the most important parameter is the weight � of � . We tested seven � val-
ues varying between 0 and 0.3 with an interval of 0.05 as our weight. The result of tests 
can be seen in Figure 4(a) for AUC and Figure 4(b) for F1. When the weight � is set to 
0, the prediction is made fully by the heuristic method based on balance theory. The best 
AUC value is achieved when the weight is 0.15. At the same time, F1-score reaches the 
salient point with a weight of 0.15. The performance of PbGCN worsens with the incre-
ment of � . Therefore, for the Gene dataset, � was set to be around 0.15.
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In addition, the threshold value � that determines whether an edge is established 
between two nodes of the same type is also an important parameter. We tested six thresh-
olds {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} , and the results are demonstrated in Figures  4(c) for 
AUC and Figure 4(d) for F1. We can make a conclusion from the experiment results that 
PbGCN is robust for F1-score with regards to varying thresholds � . The best point appears 
at 0.1 for AUC. As a result, for the Gene dataset, we choose 0.1 as the threshold value to 
determine whether an edge should be added between the same type nodes.

In order to test the impact of the varying number of layers L in the graph convolutional 
network, we evaluate our model with 1 to 5 GCN layers. The results are illustrated in Fig-
ure  4(e) and (f). Interestingly, unlike the fact observed before that deeper graph neural 
networks have worse performance, the overall impact of the number of GCN layers L is 
insignificant in our case. Consequently, we set the GCN model with a depth of 2 for higher 
efficiency while maintaining effectiveness.

Finally, we tested the learning rate lr with five values { 1 × 10−4, 1 × 10−3, 5 × 10−3, 0.01, 0.1 } 
with results in Figure 4(g) and (h). While proving the robustness of proposed PbGCN, the results 
also indicate that the salient point for learning rate is 0.01 on the Gene dataset. Taking the experi-
ment results on other datasets into consideration, we finally set the default learning rate of our 
model to 0.01.

Table 3   Experiment results for 
sign prediction

Dataset Algorithm AUC​ F1 #Guess

Senate SBRW 79.398% 81.077% 0
SBRW+GCN 79.406% 81.388% 0
SBRW+GAT​ 79.365% 81.037% 0
SBRW+�

init
79.662% 81.551% 0

PbGCN 80.426% 82.282% 0
House SBRW 81.143% 82.504% 0

SBRW+GCN 81.315% 82.868% 0
SBRW+GAT​ 81.261% 82.653% 0
SBRW+�

init
81.216% 82.637% 0

PbGCN 81.579% 83.159% 0
Gene SBRW 67.238% 69.048% 84

SBRW+GCN 70.122% 68.046% 0
SBRW+GAT​ 69.419% 68.151% 0
SBRW+�

init
68.963% 68.670% 31

PbGCN 71.633% 69.725% 0
Synth1 SBRW 50.320% 59.923% 9

SBRW+GCN 50.519% 69.034% 0
SBRW+GAT​ 49.826% 62.297% 0
SBRW+�

init
51.466% 66.433% 2

PbGCN 51.587% 69.939% 0
Synth2 SBRW 50.660% 64.920% 639

SBRW+GCN 51.043% 66.965% 0
SBRW+GAT​ 50.756% 65.550% 0
SBRW+�

init
51.653% 64.287% 245

PbGCN 52.154% 67.163% 0
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Fig. 4   Parameter Analysis 
Results in PbGCN on Gene 
Dataset

Table 4   Experiment results for 
ablation study

Dataset Algorithm AUC​ F1 #Guess

Senate NN-Baseline 80.103% 81.964% 0
PbGCN 80.426% 82.282% 0

House NN-Baseline 81.416% 82.950% 0
PbGCN 81.579% 83.159% 0

Gene NN-Baseline 70.166% 68.337% 0
PbGCN 71.633% 69.725% 0

Synth1 NN-Baseline 52.346% 67.884% 0
PbGCN 51.587% 69.939% 0

Synth2 NN-Baseline 50.970% 66.523% 0
PbGCN 52.154% 67.163% 0
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5 � Conclusion

The signed bipartite graphs are becoming more and more ubiquitous in real-life applications, but 
few research works are conducted due to the complexities brought by the signed links and bipar-
tite settings. In this paper, we propose the first graph neural network on signed bipartite graphs 
for sign prediction task. The proposed PbGCN first introduces the polarity attribute to the signed 
bipartite graphs, in order to describe the probability of a node for establishing positive/negative 
links with others. Based on these polarity values, we construct one-mode projection graphs that 
enable the developed graph convolutional network to perform neighbor aggregation more effec-
tively on signed bipartite graphs. By integrating the learning-based and balance theory-based 
predictions, PbGCN boosts the sign prediction accuracy significantly. Comprehensive experi-
ments on three real-life and two synthetic datasets prove the notable improvement of PbGCN 
compared with the state-of-the-art methods.
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