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Abstract
Attributed graph embedding aims to learn node representation based on the graph topol-
ogy and node attributes. The current mainstream GNN-based methods learn the represen-
tation of the target node by aggregating the attributes of its neighbor nodes. These meth-
ods still face two challenges: (1) In the neighborhood aggregation procedure, the attributes 
of each node would be propagated to its neighborhoods which may cause disturbance to 
the original attributes of the target node and cause over-smoothing in GNN iteration. (2) 
Because the representation of the target node is derived from the attributes and topology 
of its neighbors, the attributes and topological information of each neighbor have different 
effects on the representation of the target node. However, this different contribution has not 
been considered by the existing GNN-based methods. In this paper, we propose a novel 
GNN model named API-GNN (Attribute Preserving Oriented Interactive Graph Neural 
Network). API-GNN can not only reduce the disturbance of neighborhood aggregation 
to the original attribute of target node, but also explicitly model the different impacts of 
attribute and topology on node representation. We conduct experiments on six public real-
world datasets to validate API-GNN on node classification and link prediction. Experimen-
tal results show that our model outperforms several strong baselines over various graph 
datasets on multiple graph analysis tasks.

Keywords  Data mining · Graph neural networks · Social analysis · Representation learning

1  Introduction

Attributed network in which nodes are usually associated with rich attributes information 
is ubiquitous, such as social networks, citation networks, E-commerce networks and so 
on. Attributed network embedding, which aims to learn low-dimensional representations 
of nodes,is a basic task for attributed network analysis. However, how to use the network 
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topology information and node attribute information effectively to generate the meaningful 
node representation for various downstream tasks is a great challenge.

There has been many conventional graph embedding methods which encode topology 
structure information to learn node representation [4, 14, 15, 17, 21]. However, those meth-
ods ignore the attribute information which is also important to node representation. More 
recently, there has been a surge of graph neural networks (GNNs) whose core is neighbor-
hood aggregation. They can combine both the topology structure information and node 
attribute information to learn meaningful node representation. Now, GNNs have shown 
great popularity in tackling various graph analytics problems for attributed networks such 
as node classification [22, 25, 28], link prediction [19, 23] and recommendation [8, 16].

However, there are still some drawbacks in most of existing GNNs. On one hand, itera-
tive neighborhood aggregation in GNNs would disturb the attributes of nodes. Especially 
when the attributes of target node and the attributes of its neighbor node are extremely 
different, it will make the target node’s attribute deviate significantly from the original one 
[26]. Furthermore, as the neighborhood aggregation smoothens the attributes, iterative 
aggregation may make all nodes have the identical representation which reduces the dis-
criminability of nodes. We take a subgraph from the JD dataset for an example. As elabo-
rated in Figure 1(a), node Vj and node Vk are the neighbors of node Vi . After several rounds 
of neighborhood aggregation in GNNs, we observed that: (1) the missing attributes (two 
white boxes) of node Vi have been filled with blue and green attributes; (2) the original 
orange attribute value of node Vj has been significantly changed as shown in Figure 1(b); 
(3) the attributes of node Vi and node Vk becoming more similar. On the other hand, neigh-
borhood aggregation naturally fuses attribute and topology information, making them 
jointly affect the representation of the target node. This mechanism can’t distinguish the 
contributions of the attribute and topology information. In fact, the impacts of neighbor 
node’s attribute and topology on target node representation are different.

Fig. 1   Disturbance of GNNs neighborhood aggregation on node attribute. The vector of each node in sub-
graph (a) represents its initial attributes and subgraph (b) represents the attributes of nodes after GNNs 
neighborhood aggregation. After neighborhood aggregation, the missing attributes (white boxes) in some 
nodes’ initial attributes are filled, while the existing attributes (column height in histogram) in some nodes’ 
initial attributes are greatly changed. This change of attribute is called disturbance to the original attribute 
of node
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In order to improve the performances of GNNs in attributed graph embedding, some 
researchers have made a breakthrough in eliminating the consistency of node representa-
tions. CS-GNN [6] and ALaGCN [24] prevent representations of nodes from becoming 
identical by designing an adaptive neighborhood aggregation for each node, GResNet [27] 
keeps the diversity of node representations by exploring various residual connections and 
DAGNN [10] decouple the representation transformation and propagation in graph convo-
lution operations for a deeper GNN. However, as far as we know, these methods haven’t 
solve the node attribute disturbance problem and distinguish the impacts of attribute and 
topology on neighborhood aggregation. To address these two issues, we propose a novel 
graph neural network named Attribute Preserving Oriented Interactive Graph Neural 
Network (API-GNN). API-GNN consists of three modules: original attribute aggregation 
module (AGM), topology aggregation module (TAM) and interaction module (IM). AGM 
models the original attributes of neighbor nodes on the target node global representation 
and keeps the node original attribute representation unchanged in GNNs iterations. TAM 
distills the neighbor topology information from the a neighbor node global representation 
and models the topology information of neighbor nodes on the target node global represen-
tation. These two factors interact in the IM to jointly determine the global representation 
of the target one. In this way, API-GNN can not only weaken the disturbance of attributes, 
but also take into account the correlation and different effects of attribute and topology of 
neibourhood on node representation.

In general, the main contributions of our method are as follows:

–	 For the first time, we explore the problems of GNN methods in neighbor aggrega-
tion, that is, the original attribute disturbance problem, and the influence differences of 
attribute and topology information on node representation.

–	 We propose a novel API-GNN to solve the above problems. In the process of neighbor 
aggregation, it can not only ensure that the original attributes are preserved as much as 
possible, but also consider the differences and associations of attributes and topology to 
node representation through an interactive way.

–	 We conduct extensive experiments on node classification and link prediction tasks with 
six real-world attributed network datasets. The results demonstrate that API-GNN out-
performs all baseline models.

2 � Preliminary

In this section, we first introduce the notions of attributed networks and formally introduce 
the studied problem of attributed network embedding. Next, we give an intuitive explana-
tion of our proposed attribute embedding, which is for better understanding of API-GNN. 
In this paper, we use calligraphic fonts, bold lowercase letters, and bold uppercase letters to 
denote sets (e.g., G ), vectors (e.g., � ), and matrices(e.g., � ), whereas others are scalars. For 
convenience, some important notations are summarized in Table 1.

2.1 � Problem definition

We assume an attributed network can be represented as G = (V, E,�,�) , where 
V = {V1,V2, ...,VN} is the node set ( N = |V| ). E ⊆ V × V denotes the edge set between nodes 
in V . � ∈ {0, 1}N×N denotes the adjacency matrix of G , entry aij = 1 indicates that there is 
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an edge between node Vi and node Vj , otherwise, aij = 0 . � = [��,��, ...,��] ∈ ℝ
N×D rep-

resents the matrix composed of all attribute vectors of all nodes (N and M represent the 
number of nodes and attributes respectively, D is all attributes dimension of � ), where each 
attribute of each node is represented as a vector. �� = [���, ���, ..., ���]

T ∈ ℝ
N×Di is the i-th 

attribute matrix of all nodes, where Di is the ith attribute dimension of �� and D =
∑M

i=1
Di . 

Specifically, in real-world, each node always has many attributes, for instance, user has 
name, gender, age and so on in social network, item has brand, price, category and so on in 
e-commerce network.

Definition 1  Attributed Network Embedding: Given an attributed network 
G = (V, E,�,�) , Attributed Network Embedding aims to learn an embedding model 
f ∶ V → ℝ

d that embed each node V ∈ V to a vector in a d-dimensional space ℝd with A 
and X, d ≪ |V| . The node embedding can be applied to all kinds of downstream tasks.

In this paper, our goal is to make attribute network embedding meet the following two 
conditions: (1) the original attributes of nodes should be kept as much as possible in the 
embedding process. (2) The different influence of neighbor node’s attribute and topology 
on the representation of target node should be modeled.

2.2 � Our solution

In order to make attribute network embedding meet the above definition and conditions, we 
propose a new GNN aggregation mechanism which is shown in Figure 2. To better illus-
trate our aggregation mechanism, we first give some definitions.

Table 1   Table of main symbols

Symbols Definitions

G Input attributed network
� , � , � Matrices of adjacency, attribute and node label
N, M The number of nodes and node attributes
C The labels set of nodes
N(i) The neighbor nodes set of node V

i

�
it

t-th original attribute vector of node V
i

�
(l)

F
,�

(l)

T
Layer-specific transformation matrix

�
F
 , �

N
Attribute-level and node-level attention vector

�∗ , �∗ Model trainable parameters

�
(l)

i
Global representation of node V

i
 in l-th layer

��
(l)

i
, ��

(l)

i
Original attribute representation with low dimension and topology infor-

mation representation of node V
i
 in l-th layer

��
(l)

i
 , ��(l)

i
Neighborhood attribute representation and neighborhood topology repre-

sentation of node V
i
 in l-th layer

NI(i) Neighborhood information representation of node V
i
 in l-th layer

YC,Y+,Y− Labeled nodes set, postive instances link set and negative instances link set
�1, �2, �3 Weight coefficients of loss function
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Definition 2  Attribute Information: For node Vi ( Vi ∈ V ), the representation of 
attribute information �� i is generated from the original attribute vector of Vi itself, i.e. 
xi = [xi1, xi2, ..., xiM] ( xi ⊂ X ), through linear or nonlinear transform.

Definition 3  Neighborhood Information: For node Vi ( Vi ∈ V ), the neighborhood infor-
mation NI(i) is the information propogated to it by its neighbors N(i) , which includes the 
original attributes xj of neighbor node Vj ( Vj ∈ N(i) ) and the neighborhood information 
NI(j) propogated by neighbors of neighbor node Vj . So neighborhood information is gen-
erated by an iterative procedure.

As shown in Figure  2, each node independently propagates its original attributes to its 
neighbors. In our GNN aggregation procedure, each node’s representation (global representa-
tion) is composed of two kinds of information, namely attribute information of the node itself 
(Definition 2) and neighborhood information (Definition 3). Taking node V0 as an example 
(Figure 2(b)), its global representation is obtained by aggregating attribute information and 
neighborhood information of V0 . The neighborhood information of V0 is obtained by aggre-
gating the neighborhood information and original attributes of neighbors V1 and V2 , and the 
neighborhood information of V1 is obtained by aggregating the neighborhood information and 
original attributes of neighbors V3 and V4.

Definition 4  Topology Information: According to the iterative characteristics of neigh-
borhood information, the essence of neighborhood information is that the original attrib-
utes propogation through hierarchical topology. Therefore, the neighborhood information 
can be obtained from the original attribute information and topology information. It should 
be noted that the topology information here is not the first-order neighbor relationship, it 
refers to the overall influence of hierarchical topology in message propagation, so it cannot 
be obtained directly.

Based on this intuitive idea, we innovatively propose an attributed embedding model 
named Attribute Preserving Oriented Interactive Graph Neural Network. Next, we will intro-
duce our model in detail.

Fig. 2   The aggregation method of API-GNN
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3 � The proposed model

This section introduces our approach API-GNN in details. As shown in Figure  3, API-
GNN contains three modules: the original attribute aggregation module, topology aggre-
gation module and interaction module. The first two modules model the influence of the 
neighbors’ attribute and topology on node representation independently, and obtain attrib-
ute representation and topology representation of the neighbourhood. The third module 
models the correlation between attribute representation and topology representation of 
neighbourhood on target node representation, and obtains target node global representa-
tion. We utilize original attribute aggregation module to eliminate the attribute disturbance 
caused by neighborhood aggregation and keep the original attribute of nodes as unchanged 
as possible.

3.1 � Original attribute aggregation module

The purpose of the original attribute aggregation module is to model the different influ-
ences of the neighbor nodes’ original attributes on the target node global representation in 
the GNN iteration process. The output of the module is the neighborhood attribute repre-
sentation of target node. In GNN aggregation, the attributes of each neighbor has different 
influence on the target node neighborhood attribute representation. Moreover, in attributed 
network, each neighbor node has multiple attributes, and each attribute also has different 
influence on the target node neighborhood attribute representation. Based on the above, 
in this module, we design two levels of attention (attribute-level attention and node-level 
attention) to model these two effects separately.

3.1.1 � Attribute‑level attention

This step models the influences of different original attributes of a neighbor node on the 
target node global representation. We define the layer-specific attribute transformation 

Fig. 3   The overall framework of the proposed API-GNN
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matrix �(l)

F
 to project the each original attribute vector of a neighbor node into the seman-

tic space of the target node global representation. The projection process can be shown as:

we define node Vj is a neighbor node of node Vi , �jt is the t-th original attribute vector of 
node Vj and �(l)

jt
 is the projected attribute vector. After projecting, we leverage attention 

mechanism in GAT [20] to learn the weight between target node global representation in 
the l-th layer �(l)

i
 and each projected attribute vector �(l)

jt
 . It can be formulated as follows:

where �F is the attribute-level attention vector, �(l)

1
 is attribute-level weight matrix in layer 

l, M is the attribute number of node and || denotes the concatenate operation. �(l)

ijt
 is the 

attention weight which reflects the important of t-th attribute of node Vj for node Vi . The 
influence of all the original attributes of node Vj on the neighborhood attribute representa-
tion of target node Vi in the l-th layer is denoted as �(l)

ij
 , here � is the activation function.

3.1.2 � Node‑level attention

This step models the influences of different neighbors’ attributes on the target node 
global representation. We adopt the similar attention mechanism similar to attribute-level 
attention.

where �N is the node-level attention vector, �(l)

2
 is node-level trainable weight matrix and 

Ni is the neighbor set of node Vi . �
(l)

ij
 is the attention weight which indicates the impor-

tance of attributes of neighbor node Vj to target node Vi . We use above attention weights to 
acquire the target node neighborhood attribute representation:

It should be noted that �� (l)
i

 only depends on the aggregation of neighbor nodes’ original 
attributes, and does not use the topology information of neighbors. Therefore, the distur-
bance of topology to the original attributes of node is avoided.

(1)�
(l)

jt
= �

(l)

F
⋅ �jt

(2)e
(l)

ijt
= LeakyReLU(�T

F
⋅ [�

(l)

1
�
(l)

i
||�(l)

1
�
(l)

jt
)

(3)�
(l)

ijt
= softmax(e

(l)

ijt
) =

exp(e
(l)

ijt
)

∑M

t=1
exp(e

(l)

ijt
)

(4)�
(l)

ij
= �

(∑M

t=1
�
(l)

ijt
⋅ �

(l)

jt

)

(5)e
(l)

ij
= LeakyReLU(�T

N
⋅ [�

(l)

2
�
(l)

i
||�(l)

2
�
(l)

ij
])

(6)�
(l)

ij
= softmax(e

(l)

ij
) =

exp(e
(l)

ij
)

∑
j∈N(i) exp(e

(l)

ij
)

(7)��
(l)

i
= �

(∑
j∈N(i)

�
(l)

ij
⋅ �

(l)

ij

)
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3.2 � Topology aggregation module

The purpose of topology aggregation module is to model the influence of neighbor topology 
on target node global representation, and the output of this module is the neighborhood topol-
ogy representation of the target node. This module includes two steps: Topology Distilling and 
Topology Aggregation.

3.2.1 � Topology distilling

Due to the integration of topology information and attribute information in the iterative aggre-
gation of existing GNNs, it is difficult to obtain pure topology information. In this paper, we 
use the node global representation minus node original attributes vector in each API-GNN 
layer to obtain the topology information. Because the node has many dimensional attributes, 
the node original attributes vector dimension is high, so we use a two layers auto-encoder to 
obtain low-dimensional original attributes vector in the first API-GNN layer, and make the 
dimension consistent with the node global representation in API-GNN iteration. The encoder 
of the auto-encoder can be represented as:

where �i is the concatenation of all original attribute vectors of node Vi , �3,�4, �1, �2 
are the trainable parameters of encoder and �� (1)

i
 is the low-dimensional original attributes 

vector of the node Vi in the first API-GNN layer. The decoder and loss function of auto-
encoder can be defined as follow:

By solving the above objective function, we can obtain �� (1)
i

 and use it to initialize the 
node global representation �(1)

i
 in the first API-GNN layer. With the iteration of API-GNN, 

the global representation of node is constantly changing and the original attributes vector 
of node is also changing. We define a layer-specific transformation matrix �(l−1)

T
 , and it 

transforms the original attributes vector of a node in previous layer into original attributes 
vector in current layer.

After obtaining the original attributes vector of a node, we distill its topology information 
��

(l)

i
 in the l-th layer as:

It should be noted that in the first API-GNN layer, we set ��(1)
i

 to the zero vector.

(8)�i = �i1||�i2||⋯ ||�iM

(9)��
(1)

i
= �(�4 ⋅ �(�3 ⋅ �i + �1) + �2)

(10)��
i
= �(�6 ⋅ �(�5 ⋅ ��

(1)

i
+ �3) + �4)

(11)Lauto =
1

N

∑N

i=1
||��

i
− �i||2

(12)��
(l)

i
= �

(l−1)

T
⋅ ��

(l−1)

i

(13)��
(l)

i
= �

(l)

i
− ��

(l)

i
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3.2.2 � Topology aggregation

Because the contribution of topology information of different neighbor nodes to the target 
node global representation is different, we define an attention mechanism to model the dif-
ference. It is similar to the attention mechanism in original attribute aggregation module. 
We formulate it as follow:

where �N and �(l)

7
 are the topology specific attention vector and trainable weight matrix 

respectively, �(l)
ij

 defines the attention weight score which indicates the importance of 
neighbor node Vj and ��(l)

i
 is the neighbourhood topology representation of target node Vi in 

the l-th layer.

3.3 � Interaction module

In the above two modules, we consider the different contributions of attribute and topol-
ogy of neighbourhood to the target node representation, and independently learn the neigh-
bourhood attribute representation and neighbourhood topology representation of the target 
node. In this section, we explore the interaction and correlation between the two kinds of 
representations of the target node in current layer to obtain the global representation of the 
next layer. It can be formulated as follows:

where �(l)

8
,�

(l)

9
 are two type-specific weight matrices, �(l)

T
 is the layer-specific transforma-

tion matrix introduced in topology aggreagtion module and �(l+1)
i

 is the l + 1 layer global 
representation of node Vi . After several API-GNN iterations, the node global representation 
�L ∈ ℝ

N×d of the L-th layer is used as node final representation.

3.4 � Optimization objective

The final prediction result �̂ of API-GNN for various downstream tasks can be derived 
from node final representation �L via a single layer nonlinear projection. Specifically, we 
select node classification and link prediction as downstream tasks to evaluate model per-
formance in our paper, the model predictions of this two tasks �̂nc , �̂lp can be formulated 
as follow:

(14)r
(l)

ij
= LeakyReLU(�T

T
⋅ [�

(l)

7
�
(l)

i
||�(l)

7
��

(l)

j
])

(15)�
(l)

ij
= softmax(r

(l)

ij
) =

exp(r
(l)

ij
)

∑
j∈N(i) exp(r

(l)

ij
)

(16)��
(l)

i
= �

(∑
j∈N(i)

�
(l)

ij
⋅ ��

(l)

j

)

(17)�
(l+1)

i
= �

(l)

8
⋅ ��

(l)

i
+�

(l)

9
⋅ ��

(l)

i
+�

(l)

T
⋅ �

(l)

i

(18)�̂nc = softmax(𝜎(�L�nc))
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where �̂nc and �̂lp are the model prediction results for node classification and link predic-
tion respectively. �nc ∈ ℝ

d×|C| , �lp ∈ ℝ
2d×2 are the parameters of the single layer nonlin-

ear projection. �L
src

 , �L
dst

 are the node final representation matrices of edge endpoints.
After obtaining the model prediction, the supervised loss functions of API-GNN for 

node classification task and link prediction task can be defined as:

For node classification task, we randomly select some labeled nodes to construct the train-
ing set YC and C is the set of node label. For link prediction task, we randomly select some 
real-edges and some non-existent edges to construct the postive instances link set Y+ and 
negative instances link set Y−.

Then the total loss function of node classification or link prediction task based on API-
GNN is as follows:

It can be divided into three parts: Lsup is the loss of supervised downstream task such as 
Lnc , Llp in this paper. Lauto is the auto-encoder loss in topology aggregation module and 
Lreg is the l2-normalization regularization loss to prevent overfitting. �1, �2, �3 are the cor-
responding weight coefficients.

4 � Experiments

4.1 � Experiment setups

4.1.1 � Datasets

In order to verify the effect of API-GNN, we conduct extensive experiments on six real-
world attributed network datasets. Two citation networks ACM, DBLP [18], two social 
networks Facebook, Google+ [12], and two e-commerce networks Amazon [13], JD [2]. 
Their statistical information is summarized in Table 2. It is noticeable that we encode node 
features and use 0 as padding value to obtain the original attribute vectors with the same 
dimensional.

–	 ACM: In this dataset, we select papers as nodes and use metapath paper-author-paper to 
construct edges. Paper features correspond to elements of a bag-of-words represented 
of keywords.

–	 DBLP: Different from ACM, the node in DBLP network represents author and edge 
exists when the two authors publish their paper at the same conference. Author features 
are the elements of a bag-of-words represented of keywords.

(19)�̂lp = softmax(𝜎((�L
src
||�L

dst
)�lp))

(20)Lnc = −
1

|YC|
∑

i∈YC

|C|∑

c

yic ln ŷic

(21)Llp =
1

|Y+||Y−|
∑

i,j∈Y+∪Y−

(yij ln ŷij + (1 − yij) ln(1 − ŷij))

(22)Lall = �1Lsup + �2Lauto + �3Lreg
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–	 Facebook: We regard following relationship as the edge and transform it into undirec-
tion relation. Notice that all of node attributes are anonymized. We select birthday, edu-
cation, name, language, locale, hometown, location and work as node features.

–	 Google+: This dataset is similar to Facebook, but the attributes are not anonymized. 
For node features, we select place, name, institution, university and job.

–	 Amazon: We build the subgraph of clothing items in Amazon.com and use co-rating 
relation as edge. The rank, price, brand, title, description, dimension and weight are 
selected as item features.

–	 JD: For JD dataset, we also select clothing items as nodes and construct edges by co-
click and co-order relation. The features of item include class-id, brand, price, descrip-
tion.

4.1.2 � Baselines

We compare our method with three kinds of strong baselines: conventional graph embed-
ding, conventional GNN-based graph embedding and improved GNN-based graph embed-
ding. Futhermore, we also design three variants of API-GNN to demonstrate the ability of 
different modules of our method.

–	 Conventional Graph Embedding: we select three methods based on random walk: 
Deepwalk [14], Node2vec [4] and GraphRNA [7]. We also select three graph embed-
ding methods based on exploiting proximity: LINE [17], SDNE [21], DANE [3]. 
Struc2Vec [15] which considers the spatial structure similarity is another baseline.

–	 Conventional GNN-based Graph Embedding: we use two average aggregation models: 
GCN [9] and GraphSAGE [5]. GAT​ [20] is also selected as baseline which introduces 
attention mechanism to neighborhood aggregation .

–	 Improved GNN-based Graph Embedding: CS-GNN [6] designs a new mechanism to 
aggregate information from dissimilar neighbors. GResNet [27] explores variations 
of residual connections and ALaGCN [24] uses an adaptive layer to achieve a better 
aggregation effect. DAGNN [10] decoupling representation transformation and propa-
gation in graph convolution operation.

–	 Variants of API-GNN: we design three variants A-GNN, T-GNN and AP-GNN of API-
GNN. Different from API-GNN, A-GNN only considers the original attribute aggrega-
tion module and ignores the topology aggregation module; while T-GNN contains both 
the original attribute aggregation module and the topology aggregation module, but its 
original attribute aggregation module only has node-level attention; the original attrib-
ute aggregation module and topology aggregation module are retained in AP-GNN, but 

Table 2   Statistics of datasets 
used in this paper

Datasets Nodes Features Links d Labels

ACM 3025 1870 6454 4.27 3
DBLP 3890 334 2347227 1206.80 4
Facebook 3401 1024 71254 41.90 2
Google+ 5807 640 885285 304.90 2
Amazon 5004 354 27313 10.92 5
JD 5289 3496 551825 208.67 4
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the iteraction module of each iteration is ignored, and the interaction is only carried out 
in the last iteration.

4.1.3 � Smoothness metrics

In order to quantify the attribute disturbance in neighborhood aggregation of graph neural 
networks, we calculate Smoothness Metric Value (SMV) to for our model and other GNN-
based baselines. SMV is proposed by [10] and it is a smoothness metric which reflects 
the similarity of node representations with Euclidean distance. The larger the distance (the 
larger the SMV value), the lower the smoothness (the lower the similarity).

It is defined as follow:

where hi is the node global representation learned by graph neural network of node Vi and 
‖ ⋅ ‖ is the Euclidean norm. We use SMVG to measure the overall smoothness of an attrib-
uted graph G , because SMVG represents the distance between all the node representations 
of G . Therefore, the larger the SMVG , the more dissimilar the node representations of G , the 
smaller the overall smoothness of G , i.e., the smaller the disturbance to the original attrib-
ute. On the contrary, the smaller the SMVG , the greater the overall smoothness of G , and the 
greater the disturbance to the original attributes.

4.1.4 � Parameters

We use the same set of hyper-parameters for API-GNN and GAT. The node representation 
dimension is set to 32 and the weight coefficients �1, �2, �3 are set to 0.5, 0.3, 0.2 respec-
tively. We set the learning rate to 0.001 and select Adam as optimizer. For other models, 
we use their reported default parameters. All models are trained for 2000 epochs with an 
early stopping strategy based on both convergence behavior and accuracy of the validation 
set.

4.2 � Node classification

For the node classification task, we select research area, gender and price as the node labels 
of citation network, social network and e-commerce network respectively. In all datasets, 
80% nodes are used as the training set, 10% nodes are used as the validation set and the rest 
as the test set. The accuracies on test sets are shown in Table 3.

Compared with the conventional graph embedding, conventional GNN-based graph 
embedding and improved GNN-based graph embedding methods, our method API-GNN 
improves the accuracy by 2.8%, 3.3% and 1.5% respectively on six datasets. This shows 
that API-GNN can learn better node representation by solving the problems of attribute 

(23)D(hi, hj) =
1

2
‖

hi

‖hi‖
−

hj

‖hj‖
‖
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∑
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disturbance and the influence differences of attribute and topology on node representation 
in GNN aggregation. In order to further verify the performance of API-GNN, we com-
pare the performances of three variants of API-GNN (A-GNN, T-GNN and AP-GNN) with 
improved GNN-based methods. A-GNN is superior to the improved GNN-based meth-
ods in most datasets, which shows that it is very important to consider both attribute-level 
attention and node-level attention for attributed networks. T-GNN is better than A-GNN, 
which indicates that it is better to consider the influences of topology and attribute on node 
representation than to consider attribute only. However, the performance of AP-GNN is not 
better than that of A-GNN and T-GNN, which indicates that the interaction of attribute and 
topology information in each interation is also very important for node representation.

4.3 � Link prediction

For link prediction task, we randomly hide 10% edges for validating, 10% edges for test-
ing and train node representation on the rest network. We regard the real-edges as positive 
instances and randomly select 10 non-existent edges as negative instances for each positive 
instance. We use the concatenating of node pair representations as input and construct the 
Multilayer Perception (MLP) to predict the edges of test set. Area Under Curve (AUC) is 
adopted to quantify the performance and the experiment results are shown in Table 4.

It is the same as the performance on the node classification task, API-GNN performs 
consistently much better than all baselines on all datasets. On average, compared with 
the conventional graph embedding and conventional GNN-based graph embedding and 
improved GNN-based graph embedding methods, our method API-GNN improves the 
accuracy by 9.5%, 7.0% and 1.8% respectively on six datasets. It validates the effective-
ness of our proposed model architecture once more. Moreover, we compare A-GNN 

Table 3   Accuracy on the six 
datasets for node classification

Methods ACM DBLP Facebook Google+ Amazon JD

DeepWalk 0.713 0.920 0.633 0.826 0.457 0.416
Node2vec 0.723 0.864 0.630 0.830 0.465 0.431
GraphRNA 0.934 0.884 0.654 0.826 0.475 0.493
LINE 0.908 0.918 0.648 0.835 0.449 0.410
SDNE 0.901 0.918 0.628 0.821 0.459 0.403
Struc2vec 0.686 0.812 0.584 0.802 0.449 0.374
DANE 0.799 0.794 0.663 0.804 0.477 0.342
GCN 0.888 0.900 0.666 0.804 0.477 0.363
GraphSAGE 0.875 0.905 0.657 0.790 0.461 0.482
GAT​ 0.911 0.920 0.689 0.804 0.477 0.461
GresNet 0.861 0.910 0.657 0.790 0.479 0.533
CS-GNN 0.901 0.918 0.669 0.793 0.479 0.509
ALaGCN 0.927 0.923 0.704 0.814 0.487 0.535
DAGNN 0.927 0.906 0.666 0.828 0.487 0.488
A-GNN 0.917 0.925 0.692 0.818 0.487 0.505
T-GNN 0.931 0.928 0.710 0.833 0.491 0.522
AP-GNN 0.924 0.920 0.704 0.826 0.477 0.520
API-GNN 0.944 0.933 0.716 0.845 0.495 0.548
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with conventional GNN-based graph embedding methods and find that the former out-
perform the latter. It indicates that modeling the different node attributes influence in 
neighborhood aggregation improves link prediction ability. T-GNN achieve the similar 
performance comparing with improved GNN-based methods, which indicates that the 
importance of topology aggregation in link prediction task. The performance of API-
GNN decreases severely without interaction module, it proves once again the important 
role and irreplaceable of interaction module of API-GNN.

4.4 � Attribute disturbance analysis

As mentioned in Section 5.1, because the smoothness of node representations is caused 
by attribute disturbance, the smaller the SMVG , the bigger the attribute disturbance in 
neighborhood aggregation.

As shown in Figure  4, our API-GNN is superior to all baselines in the aspect of 
eliminating attribute disturbance. Conventional graph neural networks such as GCN, 
GraphSAGE and GAT don’t consider the attribute disturbance problem in neighborhood 
aggregation, so the SMVG of these methods is very small, which means that the node 
representation obtained by these methods is easy to oversmooth. Improved graph neural 
networks such as GresNet and DAGNN alleviate the attribute disturbance problem by 
designing a sophisticated neighborhood aggregation. Therefore, their SMVG s are larger 
than that of the conventional GNN method. Our method is superior to the improved 
GNN, which proves that our proposed strategy, i.e. original attribute aggregation strat-
egy, is better than the sophisticated neighborhood aggregation methods.

Table 4   AUC on the six datasets 
for link prediction

Methods ACM DBLP Facebook Google+ Amazon JD

DeepWalk 0.555 0.537 0.574 0.584 0.586 0.559
Node2vec 0.552 0.543 0.572 0.577 0.590 0.555
GraphRNA 0.687 0.547 0.693 0.764 0.774 0.746
LINE 0.559 0.542 0.573 0.566 0.596 0.553
SDNE 0.531 0.525 0.546 0.557 0.570 0.537
Struc2vec 0.547 0.543 0.579 0.593 0.607 0.566
DANE 0.640 0.606 0.651 0.651 0.606 0.635
GCN 0.734 0.574 0.724 0.760 0.756 0.736
GraphSAGE 0.726 0.564 0.713 0.813 0.730 0.706
GAT​ 0.697 0.536 0.671 0.820 0.778 0.694
GresNet 0.658 0.641 0.746 0.832 0.802 0.774
CS-GNN 0.706 0.675 0.777 0.882 0.787 0.777
ALaGCN 0.737 0.666 0.755 0.885 0.814 0.788
DAGNN 0.744 0.689 0.775 0.894 0.822 0.797
A-GNN 0.712 0.645 0.733 0.838 0.796 0.754
T-GNN 0.739 0.686 0.762 0.883 0.816 0.788
AP-GNN 0.726 0.636 0.751 0.868 0.787 0.766
API-GNN 0.756 0.707 0.786 0.894 0.836 0.804
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It can also be seen from Figure 4 that with the increase of GNN iteration layers, the 
decrease of SMVG is very small, which can be almost ignored. This proves the robustness 
of the proposed strategy in avoiding attribute disturbance.

4.5 � Impact difference analysis

In order to intuitively show the influence of neighbor topology and attributes on the global 
representation of the target node in API-GNN, we randomly sample an item B01B756BAE 
as the target node and extract its ego-network (Figure 5(a)) from Amazon dataset. In Fig-
ure 5(b), we use the hot-map to show the attention distribution (obtained from API-GNN) 
of different neighbors’ attribute and topology on the target node representation. The lighter 
the color in the hot-map, the higher the attention of the neighbor node on the attribute or 
topology. In Figure 5(b), the colors of node 0 (B01EO2P1C6) and node 4 (B01B74YXH8) 
in the attribute block of hot-map are very light, which indicates that the attribute infor-
mation dominates the information that these two nodes propagate to the target node 
in the aggregation process. As we can see that in Figure  5(a), node 0 and node 4 have 

Fig. 4   Attribute Disturbance analysis of different methods

Fig. 5   Influence difference of neighbor attribute and topology on global representation of target node
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more similar attributes to the target node. Conversely, in Figure 5(b), the colors of node 1 
(B018RMQV2S) and node 5 (B00YWSWGCQ) in the topology block of hot-map are very 
light, which indicates that the topology information of two nodes is more important to the 
target node in the aggregation process. As we can see that in Figure 5(a), there are more 
neighbor nodes to share among those nodes.

4.6 � Visualization

For a more intuitive comparison and to further show the effectiveness of our proposed 
model, we conduct the task of visualization on ACM and DBLP dataset. Specifically, we 
learn the node representations based on API-GNN and other baselines, then we utilize 
t-SNE [11] to project the learned node representations into a 2-dimensional space. The 
results in Figures 6 and 7 are colored by real labels. From the visualization, we can see that 
API-GNN performs best as the learned node representations have the hightest intra-class 
similarity and the clearest distinct boundaries among different classes.

4.7 � Parameter sensitivity analysis

In this section, we investigate the parameter sensitivity (Figure  8). More specifically, 
we evaluate how different numbers of the node representation dimension d and different 
values of loss weight coefficients �1, �2, �3 can affect the results. We report accuracy of 
node classification on the dataset of ACM, similar results are observed on other datasets 
and other tasks as we omit them. From the results in Figure 8, we can find that the per-
formance of API-GNN increases as d increases from 8 to 32 and API-GNN achieve the 
best performance as d = 32 . When d continues to increase, the performance of API-GNN 
will decrease, because too large d will lead to over fitting problem. For loss weight coef-
ficients, the optimal settings of �1, �2, �3 are 0.5,0.3,0.2 respectively. It demonstrates that 

Fig. 6   2D visualization of node representation on DBLP using t-SNE. The different colors represent differ-
ent classes

Fig. 7   2D visualization of node representation on ACM using t-SNE. The different colors represent differ-
ent classes
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the supervised loss is the most important loss and the regularized loss has the least effect 
on the model.

5 � Related work

Our model aims at learning node representation on attributed network. At present, the 
mainly graph embedding methods are conventional graph embedding and GNN-based 
graph embedding. For convolutional GNN-based graph embedding, there are some prob-
lems ignored such as over-smoothing and some researches have been proposed to address 
those problem. Therefore, we can divide GNN-based graph embedding into two categories: 
conventional GNN-based graph embedding and improved GNN-based graph embedding.

5.1 � Conventional graph embedding

Early researches on graph embedding merely focus on finding node similarity with graph 
structure. Perozzi et al. propose DeepWalk [14] which deploys truncated random walks on 
nodes to learn node representation. Node2vec [4] extends DeepWalk with more sophis-
ticated random walk and breadth-first research schema. Different from the random walk 
model, LINE [17] separately exploits the first-order proximity and second-order proxim-
ity to capture both the local and global network structure. SDNE [21] follows and extends 
LINE, it designs an AutoEncoder and jointly optimizes first-order proximity and second-
order proximity to learn graph embedding. Struc2Vec [15] consider that there is a high 
similarity between nodes that are not neighbor nodes. It adopts spatial structure similar-
ity to learn graph node representation. Most of conventional graph embedding methods 
only use graph topology information and ignore node attribute information, However, 
node attribute information is important auxiliary information for graph embedding task 
and ignoring it will damage model performance. There are also some works use both node 
attribute information and graph structure information such as GraphRNA [7] and DANE 
[3] and so on. GraphRNA explores the random walk in attribute graph and topology graph, 
DANE preserves various proximities in topological structure and node attributes. However, 
those methods can’t make full use of the attribute information of neighbor nodes.

Fig. 8   The impacts of parameters the node representation dimension d and loss weight coefficients �1, �2, �3
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5.2 � Conventional GNN‑based graph embedding

Recently, more attention are paid to applying Graph Neural Networks to learn node rep-
resentation due to their amazing performances. Bruna et al. [1] first designs the graph 
convolution operation in Fourier domain by the graph Laplacian. Kipf and Welling [9] 
simplify previous methods via first-order approximation of localized spectral filters on 
graphs to reduce the complexity of convolution. In order to improve the generalization 
ability of GNNs, GraphSAGE [5] proposes to sample and aggregate attributes from a 
node’s local neighborhood with mean/max/LSTM. GAT [20] considers the influence 
of different neighbor nodes in neighborhood aggregation and introduces the attention 
mechanism to aggregate node attributes with the learned weights. Although these con-
ventional GNNs can use both attribute information and topology structure information, 
they suffer from the deviation of original attribute and the decrease of node discrimina-
bility during neighborhood aggregation.

5.3 � Improved GNN‑based graph embedding

In order to address the problems of conventional GNN-based methods, some researches 
have been proposed to improve the neighborhood aggregation in conventional GNNs. 
CS-GNN [6] focuses on aggregating information from dissimilar neighbors and Xie 
et al. [24] designs a intricate neighborhood aggregation which drops some noise nodes 
to avoid that all nodes learn the identical node representation. Meanwhile, GResNet 
[27] explores variations of residual connections and DAGNN [10] decouple the repre-
sentation transformation and propagation in graph convolution operations for increas-
ing the depth of GNN model. However, none of these models explicitly takes into 
account the attribute disturbance and different effects of attribute and topology on node 
representation.

6 � Conclusion

In this paper, we analyse ubiquitous problems in most existing GNN-based models: 
the original attribute deviation and the influence differences of attribute and topology 
on node representation. To overcome this vital issue, we proposed a novel API-GNN 
model. Extensive experiments on six real-world datasets demonstrate the rationality and 
effectiveness of API-GNN.

In the future work, an potential direction is to extend the API-GNN to heterogeneous 
network which contains different types of nodes and edges.
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