
Vol.:(0123456789)

https://doi.org/10.1007/s11280-021-00982-4

1 3

An efficient and effective approach for multi‑fact extraction
from text corpus

Jianfeng Qu1 · Wen Hua2 · Dantong Ouyang3 · Xiaofang Zhou4

Received: 10 May 2021 / Revised: 24 September 2021 / Accepted: 22 November 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Relation extraction (RE) is a fundamental task with various real-world applications.
Although significant progress has been achieved in this research field, it is still limited
to single-fact extraction. In practice, however, people tend to describe multiple rela-
tions in a single sentence. Apparently, multi-fact extraction is more reasonable yet chal-
lenging due to the mixture of diverse information. To address this issue, we introduce
a novel syntax-based model for multi-fact extraction. Specifically, we propose a rela-
tional-expressiveness-based pruning strategy to refine the dependency parsing tree of
each sentence, and then incorporate the customized and simplified syntax information
into sentence encoding via Graph Convolutional Networks. Besides, distance embed-
dings are developed in our model to inform the extractor of the status of each word
regarding different entity pairs in a sentence based on its shortest dependency path to
the entities of interest. In addition, we explore fine-grained pooling strategy to integrate
various evidences for the relation extractor to make accurate predictions. We conduct
extensive experiments on the publicly-available datasets, and the experimental results
verify the superiority of our model for multi-fact extraction in terms of both effective-
ness and efficiency.

Keywords Relation extraction · Multi-fact · Pruning strategy · Dependency parse tree ·
Graph convolutional networks

 * Dantong Ouyang
 ouyd@jlu.edu.cn

1 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2 School of Information Technology and Electrical Engineering, The University of Queensland,

St Lucia, QLD 4072, Australia
3 College of Computer Science and Technology, Jilin University, Changchun 130012, China
4 Department of Computer Science and Engineering, The Hong Kong University of Science

and Technology, Hongkong, China

Published online: 14 December 2021

World Wide Web (2022) 25:195–218

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00982-4&domain=pdf

1 3

1 Introduction

Relation extraction focuses on identifying relational facts for entity pairs of interest from
plain texts. Since it can facilitate various downstream applications such as question answer-
ing (QA) [8, 12] and knowledge graph construction (KGC) [6, 29], the task has become a
hot research topic in the field of natural language processing (NLP).

Previous works on relation extraction [13, 20] are mainly based on a simple assumption:
each sentence expresses at most one relational fact, which, however, is inconsistent with
the habit of human expression. In other words, people tend to simultaneously describe mul-
tiple relational facts in a single sentence for convenience. Consider the following sentence
as an example.

Example 1 His father John, who was born in County Kerry, was educated at Saint Colum-
bas College and his mother Mary, who was born in Courtmacsherry, County Cork, studied
at the Moscow Conservatory.

An ideal relation extractor should be able to identify the following triplets: born_
in(John, County Kerry), born_in(Mary, Courtmacsherry), educated_at(John, Saint Colum-
bas College) and educated_at (Mary, Moscow Conservatory). Although it seems quite
easy to discover these triplets by human work, it brings great challenges to an automatic
extraction model since multiple relational information is blended in one sentence. More
specifically, the challenges lie in two aspects:

Challenge 1: How to effectively encode the sentence to equip the relation extractor with
the ability of capturing links between target entity pair. In Example 1, when predicting
the facts educated_ at(John, Saint Columbas College) and educated_at (Mary, Moscow
Conservatory), existing sequential encodings (e.g., convolutional neural networks (CNNs)
and recurrent neural networks (RNNs)) pay more attention to features that are sequentially
closer to the target entities, making the model deficient and inevitably produce mislead-
ing features for the extractor. Specifically, “Saint Columbas College” is closer to its irrel-
evant word “Mary” but farther away from its related word “John”. Additionally, “Moscow
Conservatory” is far from any other entity of interest. In this case, the encoder tends to
generate features which imply that “Mary” and “Saint Columbas College” have a certain
relationship while any remaining entity pairs are unrelated. Moreover, the key words (i.e.,
“educated” and “studied”) for predicting the relation type “educated_in” also have long
sequence distance to their head entities (i.e., “John” and “Mary” respectively). Obviously,
sequential encoding methods cannot deal with the heterogeneous structure of multi-fact
sentences.

To address this problem, we resort to the syntax of sentences and incorporate a tailored
syntactic structure into sentence encodings through graph convolutional networks (GCNs).
Specifically, we first obtain the dependency parse tree of a sentence using an external syn-
tactic parser, as shown in Figure 1. Since the original intention of dependency tree is to
represent the complex semantic structure of a sentence [7] rather than serving for the task
of relation extraction, let alone multi-fact extraction, the obtained tree inevitably contains
a large number of trivial and even confusing edges (e.g., born

auxpass
��������������������������→ was), resulting in

excessive time and space consumption of GCNs, and even degrading the effectiveness
of GCNs. Thus, conventional usage of the entire dependency tree structure without any
pruning often brings too much useless information [18] while a straight treatment of only
using short dependency path might ignore some crucial information [30]. Unlike them, we

196 World Wide Web (2022) 25:195–218

1 3

propose a relational-expressiveness-based pruning strategy to refine the acquired tree and
generate a tailored tree structure for multi-fact extraction. Based on this, for each word in
the sentence, we combine all the relevant information (i.e., words that have syntactic arcs
connected with the target word) to construct an informative vector representation. Such a
representation achieves a deep view of which word is indeed semantically related to the
target word instead of a shallow view of its immediate neighbors in the sentence. Consider-
ing the predicate “educated” in Example 1, our model can successfully identify the sub-
ject “John” and the adverbial “Saint Columbas College” via the respective connection arcs
(e.g., educated nsubjpass

�������������������������������→
 John, educated nmod

������������������→
 Saint Columbas College), and fuse them into

the vector representation of “educated”. In addition, our fusion process attempts to allevi-
ate errors introduced by the external syntactic parser through an attention mechanism so
as to assign less attention weight for erroneous links. Consequently, our GCNs can get rid
of the limitation of sequence distance and efficiently encode these syntactic-related words
more tightly.

Challenge 2: How to separately encode the same sentence regarding different tar-
get entity pairs. Since multiple information is mixed together in a single sentence, it is
indispensable to produce corresponding sentence features for each entity pair of inter-
est. However, previous methods utilize the final hidden state of RNNs or the global
max pooling layer subsequent to CNNs as sentence features to serve as the evidence
for predicting different target entity pairs. In other words, all the pairs are given the
same information hybrid to identify the relationship between each pair, which confuses
the extractor and makes the extraction less effective. To generate differentiated encod-
ings for each entity pair, [23] simply uses shallow marker embeddings, which indicates
whether the current word is the target entity or a common word, to obtain a custom-
ized feature representation. This kind of treatment is evidently insufficient to generate
an effective sentence encoding since it regards all the words, except target entities, as
equal. An alternative way is position embeddings proposed by [31], which considers the
relative sequence distance to the target entities in the sentence. For instance, the relative
distances from “educated” to the head entity “John” and the tail entity “Saint Columbas
College” are 9 and 2, respectively. Obviously, such embeddings cannot always provide
useful information, especially in the multi-fact situation, since the word far away from
the target entity pair is not necessarily insignificant in expressing relational facts. In this
case, position embeddings will inversely mislead the relation extractor.

To resolve this problem, we first develop distance embeddings to better reveal
the importance of each word regarding different target entity pairs. In particular, we

Fig. 1 A dependency tree for the sentence “His father John, who was born in County Kerry, was educated
at Saint Columbas College and his mother Mary, who was born in Courtmacsherry, County Cork, studied
at the Moscow Conservatory”

197World Wide Web (2022) 25:195–218

1 3

investigate the shortest path distances from the current word to the head and tail entities
in the dependency tree, and integrate them into word embeddings as the initial input for
the neural networks. For example, the shortest distances from “educated” to “John” and
“Saint Columbas College” are equal to 1 (likely, the shortest distance from “studied” to
“Mary” and “Moscow Conservatory” are also equal to 1), which provides neural net-
works with more accurate information about the importance of this word, compared to
marker embeddings and position embeddings. Furthermore, we abandon the convention
of using the final state or the global max pooling layer, and intend to construct distinct
features for each target entity pair separately. To this end, words in a sentence will be
grouped into different sets according to the relative position of the current entity pair. In
fact, the components of each sets will be dynamically changed as we need to predict the
relationship between various candidate entity pairs in a sentence. Then a fine-grained
pooling strategy is developed to obtain the final sentence features for these candidate
pairs. In this way, our pooling layer retains more valid information, and produces an
individual sentence encoding for each pair of target entities in the sentence.

Our major contributions can be summarized as follows:

– We incorporate the syntactic information into multi-fact sentence encoding through
GCNs, providing an effective sentence feature for relation extraction.

– We design a relational-expressiveness-based pruning strategy to generate a tailored
dependency tree for GCNs, promoting both the effectiveness and efficiency of the entire
model.

– We propose various techniques to handle the co-existence of multiple facts in a sen-
tence. In particular, we introduce the distance embeddings to explicitly inform neural
networks about the importance of each word regarding different target entity pairs, and
investigate a fine-grained pooling strategy to separately consider every component in
describing the desired relational fact.

– We conduct extensive experiments on the widely-used dataset, and the experimental
results verify the superiority of our model compared with various strong baselines.

The remaining of the paper is organized as follows: we will elaborate on the details of our
proposed model in Section 2. Our experimental results will be reported in Section 3, fol-
lowed by a literature review in Section 4 and a brief conclusion of the work in Section 5.

2 Methodology

Suppose that a sentence S is represented as a sequence of words: {w1,w2,w3,⋯ , wn} , and
several entities are recognized from the sentence: {e1, e2, e3,⋯ , em} . Considering the co-
existence of multiple relational facts, the trained extractor should be able to identify the
relation between each candidate entity pair (i.e., r1(e1, e2) , r2(e3, e4) , ⋯), where each r rep-
resents either a predefined relation label (i.e., r ∈ {R}) or NA (i.e., no relation between enti-
ties). To this end, we design a distinct and effective feature representation for each entity
pair given the input sentence S. Figure 2 illustrates the framework of our proposed model.
We will elaborate on each component of the model in the following.

198 World Wide Web (2022) 25:195–218

1 3

2.1 Input representation

for each word in s, we transform it into a low-dimensional real-valued vector to serve as
the input of the neural networks. specifically, the vector is composed of three major parts:
word embeddings, marker embeddings and distance embeddings.

2.1.1 Word embeddings

Word embeddings employ distributed representations to convey the semantic information
hidden in words. In general, the embeddings are learned from millions of unlabeled docu-
ments according to the co-occurrence statistics of words. In this work, we directly adopt a
pre-trained tool, GloVe,1 to obtain such representations. The sentence S is represented as:
wE
1
,wE

2
, wE

3
,⋯ ,wE

n
 , in which wE

i
∈ ℝ

de and de is the dimension of the vector wE
i
.

2.1.2 Marker embeddings

Marker embeddings, proposed by [23], is utilized to denote whether a word is the head
entity e1 , the tail entity e2 , or neither of them. The marker embeddings for word wi is repre-
sented as wM

i
∈ ℝ

dm where dm is the dimension of the vector wM
i

 . We randomly initialize
the marker embedding matrix M ∈ ℝ

3×dm (corresponding to three marker types: the head
entity, the tail entity, and common words), and regard them as common parameters which
will be updated during the training of the entire model.

...

Word Emb Marker Emb

...

Word Emb Distance Emb

w1

w2

w3

w4

...

wn

e1

e2

Max

Softmax
Classifier

Input Neural Encoding Output

r(e1, e2)
Bi-LSTM Layer

...

...

...

...

...

...

...

...

CNN Layer

GCN Layer

Max

Bi-LSTM Layer Pooling Layer(FP)

Fig. 2 Framework of the proposed model. The red parts are the main contributions of our proposed model
including distance embeddings, GCN layer on pruned dependency parse tree and fine-grained pooling strat-
egy

1 https://nlp.stanford.edu/projects/glove/

199World Wide Web (2022) 25:195–218

1 3

2.1.3 Distance embeddings

In practice, marker embeddings only point out the position of the entity pair of interest,
while marking the remaining words (i.e., words not associated with the entity pair) with
identical flags. Obviously, such a representation cannot sufficiently deliver crucial clues
hidden in common words. A straightforward alternative is position embeddings, which
calculates the relative distance between a word and the target entity pair in the sentence.
However, position embeddings are sometimes problematic in relation extraction, especially
under the circumstance of multi-fact. For instance, “born” and “educated” in Example 1
are of nearly the same importance for triplets born_in(John, County Kerry) and educated_
in(John, Saint Columbas College). Whereas, the distances between these two words and
the head entity (i.e., John) are 2 and 9 respectively, resulting in totally different position
embeddings for them. This phenomenon violates the intuition of position embeddings that
the word closer to the entity pair plays a more important role in expressing their relation.
To resolve this problem, we propose a new embedding method, namely distance embed-
dings, to better reflect the importance of each word in the sentence.

Given a sentence S, we first acquire its syntactic information, as shown in Figure 1,
using an external dependency parsing tool (e.g., Stanford CoreNLP toolkit2). An adjacency
matrix A is used to store the syntactic dependencies, where each word in S is represented
by a node and each arc between words is formalized as an edge. For simplicity, arc direc-
tions are ignored. We then compute shortest path distance from the current word wi to the
head entity e1 and the tail entity e2 , respectively, by conducting a Breadth-First-Search
(BFS) on A . We can see from Figure 1 that both “born” and “educated” have the same
path distance (i.e., distance = 1) to the head entity (i.e., John) and tail entities (i.e., County
kerry and Saint Columbas College respectively), which provides a more reasonable and
informative position representation for extracting both relations. We denote the distance
embeddings for each word as wP

i
∈ ℝ

dp . The value of distance belongs to [0, max_sen-
tence_length]. Then we randomly initialize a dp-dimensional vector for each value and
construct a distance matrix D . In this way, distance embeddings of each word in a sentence
can be obtained by looking up D . During training process, this embedding will be treated
as normal parameters and updated via back-propagation on the objective function.

Based on these three types of embeddings, we generate the following compounds: wi

=[wE
i
 ; wM

i
] and w′

i
=[wE

i
 ; wP

i
], where [;] represents the concatenation operation. By regard-

ing these compounds as inputs to the neural networks, our model can provide semantic
message (word embeddings), together with sequence message (marker embeddings)
and syntactic-dependency message (distance embeddings), respectively, for multi-fact
extraction.

2.2 Dependency parse tree pruning

After processing sentences by an external dependency parsing tool, we can obtain a val-
uable dependency tree for each sentence, which is responsible for providing informative
syntactic signals and beneficial for producing an effective sentence encoding. However, the
original intention of the dependency tree is to represent the semantic structure of a sen-
tence rather than serving for the task of relation extraction. As a consequence, the number

2 https://github.com/stanfordnlp/CoreNLP

200 World Wide Web (2022) 25:195–218

1 3

of dependency edges is extremely large in practice, resulting in massive space consumption
and excessive computational cost when directly utilizing the tree for sentence encoding.
Take the widely-used dataset of multi-fact sentences as an example.3 We apply the Stand-
ford CoreNLP toolkit on the dataset and report the statistical results of the dependency
information in Table 1. As we can see, there are 9,245,458 edges, 3,076,170 edges and
9,035,076 edges in the training, validation and testing set respectively. Furthermore, each
edge connects to two endpoints (i.e., words), which means we need to consider twice of
the syntactic dependency relationships (i.e., from parent node to child node of an edge, and
vice versa) when encoding them into the sentence representation. Hence, it is indispensable
to prune trivial or even misleading edges from the dependency tree while reserving salient
information such that the tailored tree structure can better meet our demand for relation
extraction.

Ideally, edges preserved in the dependency tree should be expressive of the relationships
and distinctive of multiple facts. To this end, we design a heuristic relational-expressive-
ness-based (REB) pruning strategy for tree simplification based on the following intuitions:

– The nodes with higher degrees sit in the center of sentence semantics and play more
crucial roles in describing a specific relation between an entity pair, and thus should be
considered first in the pruning process (e.g., the nodes “born”, “educated” and “stud-
ied” in Figure 1) and remove redundant or confusing edges connected to them.

– An edge is usually of less importance if it is connected to a leaf node (e.g., “born auxpass
��������������������������→

was”, “Kerry case
���������������→in”, “College case

���������������→at” and “John punct
������������������→ ,” in Figure 1), and thus is safe

to be removed from the dependency tree. However, since the tree pruning should not
break the semantic meaning of the original sentence, we still need to preserve edges
that reflect semantics of entities and their relations. In particular, we keep edges in the
following cases: (1) The syntax relationship on the edge is compound which is used for
expressing noun-phrases; (2) The edge belongs to the shortest dependency path from
the head entity to the tail entity; (3) The syntax relation is advmod reflecting an adver-
bial modifier of a word. This sometimes has a decisive role in predicting relations (e.g.,
the negative modifier “born advmod

�������������������������→
not”).

– If the edge’s child node is a non-leaf node and meanwhile the nearest neighboring
entity pairs (this is based on the tree structure regardless of the direction of edges)
of the edge’s endpoints are different, we need to delete the edge between these two
nodes so as to avoid the confusing message-passing due to the existence of multi-
ple facts. Consider the edge “born conj∶and

������������������������������→
died” in Figure 3. It is obvious that we

should delete the edge between these two nodes (i.e., “born” and “died”). Otherwise,
the semantic information of “born” and “died” will follow through this directly con-

Table 1 Statistics of dependency
information

Train Validation Test

Sentences 372,877 124,074 361,420
Dependency edges 9,245,458 3,076,170 9,035,076
Average edges (per sentence) 24.79 24.79 25.00

3 https://github.com/UKPLab/emnlp2017-relation-extraction

201World Wide Web (2022) 25:195–218

1 3

nected edge and pose great challenges for the extractor to predict the facts: born_
in(Jennifer, Bourges) and die_in(Jennifer, Paris).

Algorithm 1 describes the proposed REB pruning procedure. In this algorithm,
lines 2-4 are based on the first intuition, lines 11-12 correspond to the second intui-
tion, while lines 13-16 reflect the third intuition. Take the dependency tree in Fig-
ure 1 as an example. The number of initial dependency edges is 34. After performing
the pruning algorithm on this tree, 20 edges are removed according to the aforemen-
tioned heuristics while only 14 salient edges are preserved to produce the simplified
syntax structure for the follow-up sentence encoding. Another example is illustrated in
Figure 4, which is a pruned tree structure using Algorithm 1 for Figure 3. In particu-
lar, we need to remove the following edges: “ born

aux∶pass
������������������������������→ was ”, “ Bourges

case
���������������→ in ”,

“ died
cc
��������→ and ”, “ Paris

case
���������������→ in ” and “ born

punct
������������������→ . ”, w.r.t lines 11-12, and meanwhile

“‘born
conj∶and
������������������������������→ died ” w.r.t lines 13-16 in Algorithm 1.

Fig. 3 The original dependency tree for the sentence “Jennifer was born in Bourges and died in Paris”

202 World Wide Web (2022) 25:195–218

1 3

2.3 Neural networks

In order to obtain a more informative sentence feature for extracting multiple facts, we
simultaneously encode sequence information (CNN layer) and syntactic information (GCN
layer) from sentences in neural sentence encoding. In addition, considering the long-term
dependency, we apply a bidirectional long short-term memory (Bi-LSTM) layer to the
input of the entire model.

2.3.1 Bi‑LSTM layer

LSTM, one of the typical recurrent neural networks, has been successfully applied to many
NLP tasks, including machine translation, dialogue generation and information retrieval.
We formalize LSTM as LSTM(wi), (1 ≤ i ≤ n) , and the hidden state of the i-th word as
hi ∈ ℝ

dh . In sequence expression, the future context is also important sometimes. Hence,
we resort to Bidirectional LSTM: one for forward direction (i.e., →) and another for back-
ward direction (i.e., ←). The hidden states of these two directions for each word are con-
catenated as: hi=[

→

hi ;
←

hi]. We obtain two hidden states: hi and h′
i
 corresponding to different

inputs of Bi-LSTM: wi and w′
i
.

2.3.2 CNN layer

As the key clues for relation extraction can appear anywhere within a sentence, we apply a
CNN layer to extract every local features (namely consecutive information) with a sliding
window l over the sentence. Specifically, let vector qi be the concatenation of a sequence of
l-length hidden states:

When the window slides near the boundary, we pad all-zero values for the out-of-range
input hi (i ≤ 1 or i ≥ n) . A convolution operation is conducted over qi , and the output of
CNN layer is {ct

w1
, ct

w2
, ct

w3
, ct

w4
,⋯} , where the superscript t means the t-th filter and the

subscript wi is the central word of the convolutional window.

2.3.3 GCN layer

In traditional feature-based relation extraction, syntactic features are usually derived
from a sentence using a dependency parser and then share the same importance as sur-
face features when serving as the input for extractors. This proves that syntactic features
are indeed beneficial for the task of relation extraction. However, most neural models

(1)qi = hi−[l∕2]∶i+[l∕2] (1 ≤ i ≤ n)

Fig. 4 The pruned dependency tree for the sentence “Jennifer was born in Bourges and died in Paris”
according to Algorithm 1

203World Wide Web (2022) 25:195–218

1 3

only focus on surface sequential information while ignoring the syntax message due
to the lack of an effective syntactic encoder. To this end, we utilize a GCN layer in our
model to be applied on the graph structure of dependency parse tree.

We formalize the dependency parse tree of sentence S as a graph G⇐V⇔ E⇒ , where
V and E denote the collection of nodes and edges respectively. Each node in V cor-
responds to a word in the sentence {w1,w2,w3,⋯ ,wn} , and each edge (wi,wj) ∈ E
represents the dependency path from the head node wi to the dependent node wj with
the dependency function df (i.e., wi

df
��������→ wj). Considering the dependency path edu-

cated nsubjpass+
������������������������������������→

John in Figure 1, the head node is “educated”, the dependent node is
“John”, and the dependency relation is “nsubjpass”, which means “John” is the subject
of “educated” in the sentence. In addition, we also consider the inversely directed edge
(wj,wi) (e.g., John nsubjpass−

������������������������������������→
educated), and the self-loop edge (wi,wi) (e.g., John loop

���������������→

John) in this work. Then the final set of generated edges is denoted as follows:

where E− is the set of inverse edges and Loop is the set of self-loop edges. Given that, the
extended graph is represented as G≃⇐V⇔E≃⇒ . Let u, v be two nodes in V , the (k + 1)-th
layer representation for hv in GCNs is computed by graph convolutional operation on the
k-th layer:

where N(v) is the neighbour set of v in G≃ , W (k)

l(u,v)
 is the weight matrix, b(k)

l(u,v)
 is the bias

vector, and �(k)

(u,v)
 is the degree of relevance between u and v. It is worth noting that, to avoid

over-parameterization, the graph convolutional operation (i.e., W (k)

l(u,v)
 and b(k)

l(u,v)
) only varies

in the direction of edges (i.e., head-to-dependent, dependent-to-head or self-loop) regard-
less of the syntactic function (e.g., nsubjpass, auxpass, dobj, ⋯) [4]. We formalize them as
below:

We further define �(k)

(u,v)
 according to the semantic relatedness hidden in N(v) and v:

where gk
w
= W

(k)

dir(w,v)
h(k)
w

+ b
(k)

dir(w,v)
 . In this way, GCNs are able to capture the syntactically

related words instead of limited to the sequentially adjacent words. Since we employ an
external dependency parser to obtain these syntactic relationships, there inevitably contain
some erroneous syntactic edges. Therefore, we introduce an attention mechanism during
training, which will assign less weight to these suspected connections and reduce the side
effect of errors caused by the dependency parser.

In each GCN layer, a node can only receive information from its immediate neigh-
bours in the graph G≃ . Hence, we deepen the layers of GCNs to obtain long-distance
information. That is, a node in the j-th layer receives information from neighbours at
most j hops away. However, the blind pursuit of deeper layers will inevitably bring seri-
ous problem of information redundancy (i.e., information flowing through edges will

(2)E� = E ∪ E− ∪ Loop

(3)h(k+1)
v

=
∑

u∈N(v)

�
(k)

(u,v)

(
W

(k)

l(u,v)
h(k)
u

+ b
(k)

l(u,v)

)

(4)W
(k)

l(u,v)
= W

(k)

dir(u,v)
, b

(k)

l(u,v)
= b

(k)

dir(u,v)

(5)�
k
(u,v)

=
exp(gk

u
gk
v
)

∑
u�∈N(v)

exp(gk
u�
gk
v
)

204 World Wide Web (2022) 25:195–218

1 3

grow exponentially) and make the networks less efficient. The trade-off solution is to
conduct GCNs on the top of the Bi-LSTM layer, denoted as:

2.3.4 Fine‑grained pooling strategy (FP)

Previous works often use the final hidden state (RNNs) or global max-pooling (CNNs)
to obtain the output of sentence features and feed into the relation extractor. These
methods are effective in single-fact extraction, but might be problematic when dealing
with multi-fact due to the lack of distinct treatments regarding different entity pairs. To
give the extractor more explicit and distinct sentence encoding for each entity pair, we
extend the piecewise pooling into multi-fact level. In particular, each word will be clas-
sified into three segments according to its relative position to the target entities: left,
middle and right. Each segment plays different roles in describing a relational fact.
Since multiple facts simultaneously exist in a single sentence, the components of each
segment will be dynamically changed corresponding to different locations of entity
pairs. Additionally, the vector representations of target entities are of great importance
in predicting the relation between them. This property has been widely adopted in the
task of knowledge graph completion (KGC) [33], which predicts relations using entity
information without any context evidence. Motivated by these works, we further parti-
tion a sentence into five segments: left window, entity1 , middle window, entity2 , right win-
dow. Given the output from GCNs: {hK

w1
, hK

w2
,⋯ , hK

e1
, hK

wi
, hK

wi+1
,⋯ , hK

e2
, hK

wj
, hK

wj+1
,⋯ , hK

wn
} ,

we conduct max-pooling operation on each segment, and concatenate them as the final
sentence features from GCNs Vgcn

s
:

The process of fine-grained pooling is illustrated in Figure 5. The final obtained sen-
tence features from GCNs Vgcn

s
 consist of information from each segment (i.e.,left window,

entity1 , middle window, entity2 , right window), which provide sufficient and individual
clues for the extractor to make predictions.

Similarly, with the fine-grained pooling strategy for the output of CNN layer, we obtain
the final sentence features from CNNs as Vcnn

s
 . We then concatenate these two parts of fea-

tures to serve as the input of the extractor:

2.4 Objective function and optimization

Given a training bag T, we define the conditional probability p(r�⟨e1, e2⟩,Vs;�) via a soft-
max operation to compute the confidence of each possible relation:

(6)h0
u
= h�

i
u ∈ V

(7)
Vgcn

s
=
[
max

(
hK
w1
, hK

w2
,⋯

)
;max(hK

e1
);max

(
hK
wi
, hK

wi+1
,⋯

)
;

max
(
hK
e2

)
;max

(
hK
wj
, hK

wj+1
,⋯ , hK

wn

)]

(8)Vs = [Vgcn
s

;Vcnn
s

]

205World Wide Web (2022) 25:195–218

1 3

where |R| is the total number of possible relations and o = Q ⋅ (Vs◦D) + d . Q is a transform
matrix from features to relations. Each value in Q represents the weight of the correspond-
ing feature for predicting a specific relation label. d is a bias vector, and D is a dropout vec-
tor of Bernoulli random variables with probability p used for regularization. or represents
the confidence that the sentence S expresses the relation r⟨e1, e2⟩.

Finally, we define the objective function for relation extraction using cross-entropy as
follows:

where rij is a possible relation label instantiated in Si , |S| denotes the total number of train-
ing sentences and |Ri| is the number of relations in Si . The entire model is trained by the
Adam optimizer over mini-batches B to maximize the objective function.

3 Experiments

We conduct extensive comparative experiments on a publicly available dataset to verify the
effectiveness of the proposed method. In this section, we first introduce the dataset and the
evaluation metrics used in the experiments. Then we describe some details about the model
implementation, followed by our experimental results and discussions.

3.1 Dataset and evaluation metrics

Since our model is designed to resolve the multi-fact problem, we use a newly developed
and challenging dataset Sorokin’17 proposed by [23], which mainly collects sentences

(9)
p(r�⟨e1, e2⟩,Vs;�) =

exp(or)

�R�∑
k=1

exp(ok)

(10)J(�) =

|S|∑

i=1

|Ri|∑

j=1

log p(rij|Si;�)

Pa
r�

�o
n

Le�
Window

e1
Window

Middle
Window

e2
Window

Right
Window

Max Pooling

Fig. 5 The process of fine-grained pooling. The process is subsequent to CNN layer and GCN layer, and the
information flows from the top to the bottom. The output of pooling layer serves as input for the softmax
layer

206 World Wide Web (2022) 25:195–218

1 3

containing multiple relational facts. The data is generated by aligning Wikidata and Wiki-
pedia. For each sentence in an article, they extract link annotations from articles and
retrieve Wikidata entity IDs corresponding to the linked articles. The association between
Wikidata entities and Wikipedia articles is built by unambiguous one-to-one mapping.
Additionally, for each pair of entities, they query Wikidata for relation types that connect
them and discard an occurrence of an entity pair if the relation is ambiguous (i.e., an entity
pair has multiple relation labels in Wikidata) [24]. Eventually, they randomly split the
dataset into training, validation and testing sets. The statistics of this dataset is shown in
Table 2. We can see that the phenomenon of sentences that express multiple relational facts
is very common in the dataset. The number of relation types is 354 (out of approximately
1700 non-meta relation types in the Wikidata scheme), including a NA label (i.e., no rela-
tion between the two entities).

Following [15, 17, 23], we adopt held-out evaluation. In testing phase, the precision and
recall are calculated by comparing the predictions with the relational facts in Wikidata.
Additionally, each relation label shares the same proportion in the composition of precision
and recall so that the results will not be influenced by uneven distribution of testing data.
To sufficiently demonstrate the performance of each model, we evaluate them using two
metrics: precision/recall curves, P@N metrics and F1 scores.

3.2 Implementation details

In this work, we straightforwardly use the pre-trained word embeddings, Glove, to obtain
the distributed representation of each word in the dataset. The marker and distance embed-
dings are randomly initialized and updated as normal parameters during training. Addition-
ally, to acquire the entire dependency tree of sentences, we employ the well-known syntac-
tic parser: Stanford CoreNLP.

We tune all the hyper-parameters on the validation data. In detail, we use a grid search
to determine the optimal parameters. The parameter settings are as follows: word dimen-
sion de: 50; marker dimension dm: 3; distance dimension dp: 3; convolutional filter: 256;
the number of LSTM layer: 1; the number of GCN layer: 1; the number of CNN layer: 1;
hidden state in LSTM layer: 128; dropout probability p: 0.5; learning rate: 0.01 and batch
size B: 64.

3.3 Baselines

We compare our model, denoted as SAE, with several state-of-the-art relation extractors as
listed below:

– CNN-ATT is a fine-grained CNN model [15] previously tested on single-fact extraction
and achieves the state-of-the-art performance on the dataset [22].

– Context-Sum assumes that facts expressed in a sentence are relevant and combines all
the encodings for the sentence by a simple addition [23].

– Context-Aware aims to capture the relevance between facts in a single sentence, which
uses attention mechanism on sentence-level to obtain context-aware sentence represen-
tation for prediction [23].

207World Wide Web (2022) 25:195–218

1 3

– GP-GNN is designed to inference multi-hop relations in a sentence via graph neural
networks [34].

– RECON uses a graph neural network to learn representations of both the sentence as
well as facts stored in a KG [5].

To guarantee a relatively fair comparison, we use their publicly released source codes4 for
these baselines.

3.4 Effectiveness of the proposed model

3.4.1 Comparison with baselines

The precision/recall curves for SAE and all baselines are shown in Figure 6(a). We can see
that: (1) SAE substantially outperforms all the baselines, demonstrating that our model is an
effective way to capture syntactic information. In general, SAE obtains over 2% improve-
ment on precision against RECON at the same recall. This is due to the fact that our model
can construct a distinctive and informative feature representation for each entity pair in the
same sentence, enabling the extractor to make precise predictions. (2) The recent method,
i.e., GP-GNN, seems to be not comparable to other methods. This is because the method
is effective only when the number of entities in the sentence is larger than 3 and there is at
least one circle in the ground-truth label of the sentence. Apparently, the constraint is too
strict and loses the ability of generalization. In contrast, SAE does not have any specific
requirements on the dataset, which can be more fit to the real-world data.

3.4.2 Effectiveness of each component

To separately evaluate the effectiveness of each component in our model, we design the
following variants of SAE: SAE-X, which means the removal of the component X and X can
be DE, GCN, FP, CNN and REB.

We depict the precision/recall curves for SAE and its variants in Figure 6(b-f). We
can see that: (1) the performance of SAE-(DE) is inferior to SAE. This is because marker
embeddings, which only point out the positions of target entities and treat all the remain-
ing words with the same marker, are too coarse for the networks to identify the key clues
in sentences. In contrast, our distance embeddings consider the dependency path distance
to the entities of interest, and are able to inform the networks of the importance of each
word with respect to the entity pair. (2) SAE-(GCN) is constantly worse than SAE. This
result demonstrates the necessity of syntactic features in multi-fact extraction. Besides,

Table 2 Statistics of the
experimental dataset

Train Validation Test

Sentences 372,877 124,074 361,420
Relation instances 578,199 190,160 600,804
Multi-fact sentences 34% 32% 39%

4 Available at https://github.com/UKPLab/emnlp2017-relation-extraction & https://github.com/thunlp/gp-
gnn

208 World Wide Web (2022) 25:195–218

1 3

the GCN layer is an effective approach to incorporating syntax into neural networks. (3)
The precision of SAE-(FP) is lower than SAE, especially when recall is low, which reveals
the confidence and stability of SAE-(FP) is not enough. The reason is that global max-
pooling strategy mixes all the information together regardless of the difference between
entity pairs. Moreover, global max-pooling strategy loses too much informative clues even
if GCNs can provide syntax information. (4) SAE outperforms SAE-(CNN) in all the region
of the curves, which proves that every local part feature is of great importance in relation
extraction, including multi-fact extraction, and provides useful sequential information for
predicting relations. (5) SAE is superior than SAE-(REB) which straightforwardly adopts
the initial entire dependency tree. This superiority indicates that our designed REB pruning
strategy is able to filter these useless and even misleading edges and retain the informative
dependency relationships which is beneficial to multi-fact extracting model.

To give a further inspection of the pruning strategy, we produce the number of syntactic
edges belonging to each part of the dataset with or without pruning process in Figure 7.
We can find that the number of syntactic edges dramatically decreases with our elaborated
pruning strategy, approximating to 1/3 of the original. The result indicates that the trivial
and confusing syntactic relationship is a severe problem regarding multi-fact extraction,
and our pruning process effectively discerns them so as to produce a customized tree struc-
ture for the GCN layer. On the other hand, although the volume of syntactic information

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

CNN-ATT
Context-Sum
Context-Aware
GP-GNN
RECON
SAE

(a) Baselines and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE-(DE)
SAE

(b) SAE-(DE) and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE-(GCN)
SAE

(c) SAE-(GCN) and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE-(FP)
SAE

(d) SAE-(FP) and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE-(CNN)
SAE

(e) SAE-(CNN) and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE-(REB)
SAE

(f) SAE-(REB) and SAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

SAE(one layer)
SAE(two layer)
SAE(three layer)
SAE(four layer)

(g) Various sizes of GCN

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

CNN-ATT
Context-Sum
Context-Aware
GP-GNN
RECON
SAE

(h) Single-fact sentence ex-
traction

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Recall

CNN-ATT
Context-Sum
Context-Aware
GP-GNN
RECON
SAE

(i) Multi-fact sentence ex-
traction

Fig. 6 Precision/recall curves of models

209World Wide Web (2022) 25:195–218

1 3

has been reduced, the performance of SAE is inversely improved (shown in Figure 6(f))
which sufficiently demonstrates the necessity of the pruning.

3.4.3 Effectiveness of size of GCN layer

In addition, we evaluate SAE with different size of GCN layer. The results are shown in
Figure 6(g). Obviously, the deepening of GCNs does not bring any improvement to the
performance of the extractor, which is consistent with our anticipation that LSTM can help
GCNs capture the long-term dependency information and improve both the efficiency (i.e.,
deeper GCN layers require more training time) and the effectiveness of GCNs. Besides,
deeper GCN layers result in the redundancy of information and make the networks less
effective.

3.4.4 P@N scores

Following [15, 17], we also use P@N metrics to evaluate these models. In particular, the
predictions of each model are ranked in descending order of confidence scores. Then we
fetch the top N results and check the accuracy of these predictions, which is shown in
Table 3. As expected, in P@200, P@300 and P@500, SAE always obtains higher precision
than all the previous methods and the variants, and eventually achieves the highest average
precision which is 3.4 points higher than CNN-ATT , 2.1 points higher than Context-Aware,
10.7 points higher than GP-GNN and 8.0 points higher than RECON.

3.4.5 Highest F1 scores

Table 4 shows the highest F1 scores for the evaluated models. Among them, SAE achieves
the highest F1 score (10.2% higher than CNN-ATT , 9.5% higher than Context-Sum, 4.9%
higher than Context-Aware, 10.4% higher than GP-GNN and 1.1% higher than RECON).
We conclude that our model SAE improves the performance of the extractor and make up

0.0

2.0M

4.0M

6.0M

8.0M

10.0M

Ed
ge

s

without pruning
with pruning

Train Validation Test

Fig. 7 The number of syntactic edges before and after pruning

210 World Wide Web (2022) 25:195–218

1 3

for the disadvantages of previous shallow sentence encodings. Additionally, each of pro-
posed components (e.g, distance embeddings, GCNs, fine-grained pooling and REB prun-
ing) can facilitate the task of relation extraction, and the combination is best.

3.4.6 Case study

To further verify the effect of the proposed model, we conduct a deeper check on the pre-
dictions. Table 5 lists some examples of the results produced by Context-Aware and SAE
respectively: (1) In S1, Context-Aware only retrieves the last expressed fact (i.e., place_
of_bir-th(Nathan Bedford Forrest, Chapel Hill)) while missing the prior fact (i.e., mem-
ber_of(Nathan Bedford Forrest, Ku Klux Klan)). This is because Context-Aware uses the
final state of LSTM as the output of the sentence feature which is too coarse and loses
prior useful clues. Unlike them, SAE crafts a fine-grained pooling strategy and is able
to construct an individual encoding for each pair of entities. (2) S2 poses a great chal-
lenge for Context-Aware as the opposite facts simultaneously existed in the sentence are
easy to be mistakenly labelled without syntax. Consequently, Context-Aware produces an
incorrect prediction: place_of_birth(Geoffroy Tory, Paris). In contrast, SAE is of enough
capability to recognize that “Bourges” is the modifier for “born” while “Paris” is the
modifier for “died”(as shown in Figure 8), and achieves the desired results. Through
GCNs, the vector representation of the entity “Bourges” contains the semantic clues of
“born” and “Paris” includes the semantic information of “died”. Further, the fine-grained
pooling strategy retains the features of target entities. Finally, our model successfully
predicts true relationships between these two pairs of interest without any hesitation. (3)
Similarly, S3 also needs syntactic features together with distance embeddings to help
with the process of sentence encoding. Context-Aware gives the wrong prediction of
date_of_death(62 AD, Nero) due to the lack of syntax. (4) We apply only one GCN layer
in our model, to avoid information redundancy and excessive parameterization (Fig-
ure 6(g)). Hence, it is less accurate when dealing with entity pairs that are too far away
in the dependency parse tree, which actually requires a very deep GCN layer to transmit
information. For example, in S4, the dependency path from the actress “Sienna Miller”
to the movie “Casanova” is too long. Therefore, our model SAE cannot predict the rela-
tional fact: cast_member(Casanova, Sienna Miller). But this phenomenon is infrequent
in the dataset.

Table 3 P@N scores for relation
extraction

P@N(%) 200 300 500 Average

CNN-ATT 93.5 90.8 78.4 87.6
Context-Sum 92.1 85.7 73.6 83.8
Context-Aware 92.8 92.2 81.7 88.9
GP-GNN 84.0 83.3 73.6 80.3
RECON 89.2 83.4 76.3 83.0
SAE-(DE) 91.8 87.1 79.3 86.1
SAE-(GCN) 87.9 88.2 75.9 84.0
SAE-(FP) 91.1 85.7 75.6 84.1
SAE-(CNN) 90.8 86.9 78.3 85.3
SAE-(REB) 93.6 90.0 85.1 89.6
SAE 94.0 93.7 85.2 91.0

211World Wide Web (2022) 25:195–218

1 3

3.4.7 Effectiveness on single‑fact extraction and multi‑fact extraction

Although our model is for multi-fact extraction, we believe that our model is also effective in single-
fact extraction. To prove our claim, we divide the dataset into two parts according to the number of
relational facts expressed in the sentence: single-fact sentences and multi-fact sentences. We sepa-
rately test our model on these two datasets. The precision/recall curves for SAE and all the baselines
on single-fact sentences and multi-fact sentences are shown in Figure 6(h) and (i), respectively.

In Figure 6(h), when the recall is low, the precision of SAE is comparable to CNN-ATT that
achieves the previous state-of-the-art performance on single-fact extraction. When the recall is
greater than 0.13, SAE achieves much higher precision than CNN-ATT . And eventually, the recall of
SAE is over 10% greater than CNN-ATT . It indicates that syntax information and fine-grained pool-
ing are useful for single-fact extraction. In particular, when the structure of a sentence is complex,
syntax information can help the extractor to find the semantically related words with respect to the
two entities, which is not limited by sequence distance, so that the extractor is able to discover more
relational facts (higher recall). And fine-grained pooling strategy retains valid information, rather
than arbitrarily discards many useful clues in the previous method. In contrast, Context-Aware is
constantly and substantially inferior to CNN-ATT . It means that the scope of Context-Aware is lim-
ited to multi-fact extraction and the model is not a good option for single-fact extraction.

In Figure 6(i), as expected, SAE is superior to all the baselines, including RECON.
Finally, our model obtains the highest recall score. It demonstrates that GCNs can effec-
tively embed syntax information into sentence encoding, and the generated syntactic fea-
tures is beneficial for the extractor to discern the key cues for predicting different relations
expressed in one sentence.

According to the above experimental results, the proposed model SAE is of sufficient
capacity to deal with single-fact extraction, multi-fact extraction and hybrid-fact extraction
(the evidence is shown in Figure 6(a)), and achieves the new state-of-the-art performance.

3.5 Results on ACE2005

We also test our model on another widely-used dataset, namely ACE2005.5 This data-
set has 4525 training, 705 validation, 3720 testing sentences of which 932, 112 and 319

Table 4 F1 scores for relation
extraction

Model Precision(%) Recall(%) F1(%)

CNN-ATT 61.8 18.9 28.9
Context-Sum 48.3 21.3 29.6
Context-Aware 53.6 25.1 34.2
GP-GNN 51.6 19.9 28.7
RECON 59.5 27.9 38.0
SAE-(DE) 58.1 28.0 37.8
SAE-(GCN) 59.6 26.2 36.4
SAE-(FP) 56.1 28.5 37.8
SAE-(CNN) 59.4 26.4 36.6
SAE-(REB) 55.0 29.0 38.0
SAE 60.1 29.0 39.1

5 https://catalog.ldc.upenn.edu/LDC2006T06

212 World Wide Web (2022) 25:195–218

1 3

Ta
bl

e
5

 E
xa

m
pl

es
 o

f p
re

di
ct

io
ns

 fr
om

 C
on

te
xt

-A
wa

re
 a

nd
 S

AE

Se
nt

en
ce

s
Re

la
tio

na
l f

ac
ts

C
on

te
xt

-A
wa

re
SA

E

S1
: I

t i
s n

am
ed

 fo
r N

at
ha

n
B

ed
fo

rd
 F

or
re

st,
 a

 C
on

fe
de

ra
te

 g
en

er
al

 a
nd

 fi
rs

t
m

em
be

r_
of

(N
at

ha
n

Be
df

or
d

Fo
rr

es
t,

K
u

K
lu

x
K

la
n)

√

G
ra

nd
 W

iz
ar

d
of

 th
e

K
u

K
lu

x
K

la
n,

 w
ho

 w
as

 b
or

n
in

 C
ha

pe
l H

ill
.

pl
ac

e_
of

_b
ir

th
(N

at
ha

n
Be

df
or

d
Fo

rr
es

t,
C

ha
pe

l H
ill

)
√

√

S2
: G

eo
ffr

oy
 T

or
y

(a
ls

o
G

eo
fro

y,
 L

at
in

 G
od

of
re

du
s T

or
in

us
) w

as
 b

or
n

in
 B

ou
rg

es
pl

ac
e_

of
_

bi
rt

h(
G

eo
ffr

oy
 T

or
y,

 B
ou

rg
es

)
√

√

ar
ou

nd
 1

48
0

an
d

di
ed

 in
 P

ar
is

 b
ef

or
e

14
 O

ct
ob

er
 1

53
3.

pl
ac

e_
of

_d
ea

th
(G

eo
ffr

oy
 T

or
y,

 P
ar

is
)

√

S3
: R

om
an

 E
m

pe
ro

r N
er

o
or

de
re

d
th

e
de

at
h

of
da

te
_o

f_
de

at
h(

62
 A

D
, O

ct
av

ia
)

√

hi
s fi

rs
t w

ife
, O

ct
av

ia
, s

oo
n

af
te

r d
iv

or
ci

ng
 h

er
 in

 6
2

A
D

.
po

si
tio

n_
he

ld
(N

er
o,

 R
om

an
 E

m
pe

ro
r)

√
√

S4
: H

e
al

so
 p

la
ye

d
a

la
rd

 m
er

ch
an

t n
am

ed
ca

st
_m

em
be

r(
C

as
an

ov
a,

 S
ie

nn
a

M
ill

er
)

Pa
pp

riz
zi

o
in

 L
as

se
 H

al
lst

rö
m

 [d
ire

ct
or

]’s
C

as
an

ov
a

[m
ov

ie
],

w
ho

 c
om

pe
te

s w
ith

ca
st

_m
em

be
r(

C
as

an
ov

a,
 H

ea
th

 L
ed

ge
r)

√
√

C
as

an
ov

a[
ch

ar
ac

te
r]

 (H
ea

th
 L

ed
ge

r[
ac

to
r]

)
fo

r m
ar

ria
ge

 to
 F

ra
nc

es
ca

[c
ha

ra
ct

er
]

di
re

ct
or

(C
as

an
ov

a,
 L

as
se

 H
al

ls
trö

m
)

√
√

(S
ie

nn
a

M
ill

er
[a

ct
re

ss
])

.

213World Wide Web (2022) 25:195–218

1 3

sentences describe multiple facts, respectively. Moreover, we use a new competitive base-
line BERT-SP [26] which adopts a pre-trained language model BERT and completes this
task with one-pass encoding. To achieve a relatively fair comparison, we replace our origi-
nal Bi-LSTM with BERT. The experimental results are shown in Table 6. From this table,
we can see that our model SAE(BERT) gets the highest F1 score that is 2.5 points higher
than BERT-SP. We believe that the results further demonstrate the effectiveness of our pro-
posed model.

3.6 Efficiency of the proposed model

To reveal the efficiency of the proposed model, we calculate the entire running time for a
training iteration w.r.t an increasing size of GCN layer. For fairness, all the models are imple-
mented by PyTorch and executed on a linux sever with a GeForce RTX 2080 Ti. The results
are shown in Figure 9. We can see that with the size of GCN layer increases, the consump-
tion of time in an training iteration will grow in an approximately straight line (around 1500s
per GCN without pruning). We argue that the results demonstrate the necessity of our usage
of the Bi-LSTM which can further help GCNs to capture long-term dependency so that the
entire model achieves the best performance with only one GCN layer (shown in Figure 6(g)),
avoiding the demand of deep GCNs and promoting the efficiency of the entire model. From
the perspective of information redundancy, since our proposed REB pruning strategy dra-
matically reduces the trivial and misleading syntactic edges (shown in Figure 7), the training
time has been greatly shortened compared with the original model. More specifically, the
time difference between these two models is: 500s , 1312s, 1986s and 2427s for one, two,
three and four GCN layers, respectively. In summary, with the help of Bi-LSTM and REB
pruning strategy, our syntax encoder can be efficient in tackling with multi-fact extraction.

4 Related work

In this section, we provide a brief summarization of existing methods for relation extrac-
tion, including feature-based models, neural models, multi-fact extraction and open infor-
mation extraction (OpenIE).

Feature-based relation extraction Relation extraction is one of the most important
research tasks in NLP. Many efforts based on supervised learning have been invested to
boost the performance of relation extractors [1, 14, 21]. These models have the ability to

born

Bourges

Geoffroy Tory

nsubjpass

nmod

died

Paris

Geoffroy Tory

nsubjpass

nmod

Fig. 8 Partitial dependency tree of “Geoffroy Tory was born in Bourges around 1480 and died in Paris
before 14 October 1533”

214 World Wide Web (2022) 25:195–218

1 3

achieve outstanding performance on domain-specific data. However, the training data used
in these models are labelled by human effort and cannot scale to big data. To address this
issue, [17] develop distant supervision strategy which heuristically aligns an existing KB
with free texts to automatically produce labelled data. For the aligned relation mentions,
lexical and syntactic features are extracted by an external NLP toolkit and are vectorized
using the bag-of-words representation. Later works focus on alleviating noise problem in
distant supervision [24]. More recently, [20] considers feature sparsity in traditional feature
representation.

Neural relation extraction Recently, neural networks have been successfully applied to
many NLP tasks, including knowledge graph completion [9] and text classification [28]. To
avoid hand-designed features, researchers have investigated the possibility of using neural
networks to automatically learn features for relation extraction: RNNs [10], CNNs [15] and
LSTM [18]. Some works have already noticed that syntactic features can also take effect
in neural models and attempted to incorporate dependency tree structure into neural model
[30]. However, their methods only focus on shortest dependency path (SDP), wasting too
much information that is not included in SDP. More related works are [25, 32], which also
adopt GCNs to encode syntax feature. The main differences between our work and the
existing solutions are as follows: (1) These methods are based on single-fact extraction.
In contrast, in this paper, we focus on a more promising and challenging topic: multi-fact

Table 6 Results on ACE2005 Model Precision(%) Recall(%) F1(%)

CNN-ATT 60.0 59.4 59.7
Context-Sum 46.8 38.2 42.1
Context-Aware 48.5 25.3 33.3
GP-GNN 64.3 60.9 62.6
BERT-SP 68.9 66.8 67.8
SAE(BERT) 71.8 68.8 70.3

1 2 3 4

2000

3000

4000

5000

tim
e(
s)

Varying number of GCN layers

without pruning
with pruning

Fig. 9 Time of an iteration w.r.t varying size of GCN layer

215World Wide Web (2022) 25:195–218

1 3

extraction. (2) Except for GCNs, we develop REB pruning strategy, distance embeddings
and dynamic fine-grained pooling strategy to construct a more effective and efficient sen-
tence representation.

Multi-fact extraction Multi-fact extraction aims at recognizing relations of multiple pairs
of entity mentions from text. Sorokin and Gurevych [23] construct a dataset of multi-rela-
tion per sentence and introduce a neural network architecture that considers other relations
from the same context. After that, many works have been proposed to solve this task. Wang
et al. [26] complete this task with only one-pass encoding on top of BERT. Due to the suc-
cess of GNN, [5] study the effect of KG context using Graph Neural Networks(GNN) to
learn representations of both the sentence as well as facts stored in a KG. Since not all KG
context forms are necessary for every input sentence, KGPool [19] utilize a self-attention
mechanism in a GCN for selecting a sub-graph from the KG to extend the sentential con-
text. Others also perform named entity recognition and relation extraction collaboratively.
Liu et al. [16] use GCNs to integrate entity information and multiple pairs of relations
information to enhance the performance of both. Unlike their usage of GNN for encoding
the structure of external KG, here, we exploit the dependency information from sentences
and craft GCN to effectively obtain this crucial information.

Open information extraction OpenIE is a well-known technology in relation extraction,
which is often regarded as unsupervised strategy and does not need any training data [3,
11, 27]. Among them, [2] is one of the most relevant to our work. More specifically, their
model is able to extract multiple relational facts in one single sentence. However, they use
the surface text linking two entities in a sentence as the relation name, which results in a
large quantity of useless results (e.g., “have”, “get” and “has” as the types of relations).
Hence, the outputs cannot be easily mapped to a particular knowledge base. In contrast,
our work focuses on distantly supervised relation extraction that is able to extract instances
with reference to given relations and achieves high precision and recall in practice. There-
fore, our model is a more suitable way to construct knowledge graph.

5 Conclusion

In this paper, we craft a relational-expressiveness-based pruning strategy to build a tailored
syntactic tree structure, and then incorporate syntax information into the task of multi-
fact extraction through GCNs. Besides, distance embeddings are developed to inform the
networks of the status of each word in a sentence with respect to different target entity
pairs. In addition, we investigate a fine-grained pooling strategy to produce a distinctive
and informative sentence encoding for the extractor so that the extractor can make accurate
predictions with explicit evidence. We conduct extensive experiments and the experimental
results demonstrate that the efficiency and effectiveness of our proposed method.

References

 1. Agichtein, E., Gravano, L.: Qxtract: A building block for efficient information extraction from
plain-text databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. San Diego, California, USA, June 9-12, 2003 (2003)

 2. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for open domain
information extraction. In: Proceedings of ACL, pp. 344–354 (2015)

216 World Wide Web (2022) 25:195–218

1 3

 3. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data. San Diego, California,
USA, June 9-12, 2003, pp. 337–348 (2003)

 4. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for
syntax-aware neural machine translation. In:Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1957–
1967 (2017)

 5. Bastos, A., Nadgeri, A., Singh, K., Mulang, I.O., Shekarpour, S., Hoffart, J., Kaul, M.: RECON: rela-
tion extraction using knowledge graph context in a graph neural network. In: Leskovec, J., Grobelnik,
M., Najork, M., Tang, J., Zia, L. (eds.) WWW ’21: The Web Conference 2021, Virtual Event / Lju-
bljana, Slovenia, April 19-23, 2021, ACM / IW3C2, pp. 1673–1685 (2021)

 6. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created
graph database for structuring human knowledge. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp.
1247–1250 (2008)

 7. Chen D, Manning CD A fast and accurate dependency parser using neural networks. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Octo-
ber 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 740–
750 (2014)

 8. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S., Wang, W.: KBQA: learning question answering
over QA corpora and knowledge bases. Proc VLDB Endow 10(5), 565–576 (2017)

 9. Ebisu, T., Ichise, R.: Generalized translation-based embedding of knowledge graph. IEEE Trans Knowl
Data Eng 32(5), 941–951 (2020)

 10. Ebrahimi, J., Dou, D.: Chain based RNN for relation classification. In: Proceedings of NAACL, pp.
1244–1249 (2015)

 11. Gulhane, P., Rastogi, R., Sengamedu, S.H., Tengli, A.: Exploiting content redundancy for web infor-
mation extraction. Proc VLDB Endow 3(1), 578–587 (2010)

 12. Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: (2018) Answering natural language questions by sub-
graph matching over knowledge graphs. In: 34th IEEE International Conference on Data Engineering,
ICDE 2018. Paris, France, April 16-19, 2018, pp. 1815–1816

 13. Kuang, J., Cao, Y., Zheng, J., He, X., Gao, M., Zhou, A.: Improving neural relation extraction with
implicit mutual relations. In: 36th IEEE International Conference on Data Engineering, ICDE 2020.
Dallas, TX, USA, April 20-24, 2020, pp. 1021–1032 (2020)

 14. Li, Z., Sharaf, M.A., Sitbon, L., Du, X., Zhou, X.: Core: A context-aware relation extraction method
for relation completion. IEEE Trans Knowl Data Eng 26(4), 836–849 (2014)

 15. Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with selective attention over
instances. In: Proceedings of ACL, pp. 2124–2133 (2016)

 16. Liu, H., Li, Z., Sheng, D., Zheng, H., Shen, Y.: Multi-entity collabora-tive relation extraction. In: IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021. Toronto, ON,
Canada, June 6-11, 2021, IEEE, pp. 7678–7682 (2021)

 17. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled
data. In: Proceedings of ACL, pp. 1003–1011 (2009)

 18. Miwa, M., Bansal, M.: End-to-end relation extraction using lstms on sequences and tree structures. In:
Proceedings of ACL, pp. 1105–1116 (2016)

 19. Nadgeri, A., Bastos, A., Singh, K., Mulang, I.O., Hoffart, J., Shekarpour, S., Saraswat, V.: Kgpool:
Dynamic knowledge graph context selection for relation extraction. In: Zong, C., Xia, F., Li, W., Nav-
igli, R. (eds.) Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, Association for Computational Linguistics, Findings of ACL, vol ACL/IJC-
NLP 2021, pp. 535–548 (2021)

 20. Qu, J., Ouyang, D., Hua, W., Ye, Y., Zhou, X.: Discovering correlations between sparse features in dis-
tant supervision for relation extraction. In: Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pp.
726–734 (2019)

 21. Reichartz, F., Korte, H., Paass, G.: Semantic relation extraction with kernels over typed dependency
trees. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28, 2010, pp. 773–782 (2010)

 22. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Pro-
ceedings of EMNLP, pp. 148–163 (2010)

 23. Sorokin, D., Gurevych, I.: Context-aware representations for knowledge base relation extraction. In:
Proceedings of EMNLP, pp. 1784–1789 (2017)

217World Wide Web (2022) 25:195–218

1 3

 24. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning for rela-
tion extraction. In: Proceedings of EMNLP, pp. 455–465 (2012)

 25. Vashishth, S., Joshi, R., Prayaga, S.S., Bhattacharyya, C., Talukdar, P.P.: RESIDE: improving dis-
tantly-supervised neural relation extraction using side information. In: Proceedings of EMNLP, pp
1257–1266 (2018)

 26. Wang, H., Tan, M., Yu, M., Chang, S., Wang, D., Xu, K., Guo, X., Potdar, S.: Extracting multiple-
relations in one-pass with pre-trained transformers. In: Korhonen, A., Traum, D.R., Màrquez L (eds.)
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Association for Computational Lin-
guistics, pp. 1371–1377 (2019)

 27. Wong, T., Lam, W.: Learning to adapt web information extraction knowledge and discovering new
attributes via a bayesian approach. IEEE Trans Knowl Data Eng 22(4), 523–536 (2010)

 28. Wu, M., Pan, S., Zhu, X., Zhou, C., Pan, L.: Domain-adversarial graph neural networks for text clas-
sification. In: 2019 IEEE International Conference on Data Mining, ICDM 2019. Beijing, China,
November 8-11, 2019, pp. 648–657 (2019)

 29. Wu, S., Hsiao, L., Cheng, X., Hancock, B., Rekatsinas, T., Levis, P., Ré C.: Fonduer: Knowledge base
construction from richly formatted data. In: Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018. Houston, TX, USA, June 10-15, 2018, pp. 1301–1316
(2018)

 30. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long short term memory
networks along shortest dependency paths. In: Proceedings of EMNLP, pp. 1785–1794 (2015)

 31. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural net-
work. In: Proceedings of COLING, pp. 2335–2344 (2014)

 32. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees improves relation
extraction. In: Proceedings of EMNLP, pp. 2205–2215 (2018)

 33. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: Nscaching: Simple and efficient negative sampling for knowl-
edge graph embedding. In: 35th IEEE International Conference on Data Engineering, ICDE 2019.
Macao, China, April 8-11, 2019, pp. 614–625 (2019)

 34. Zhu, H., Lin, Y., Liu, Z., Fu, J., Chua, T., Sun, M.: Graph neural networks with generated parameters
for relation extraction. In: Proceedings of ACL, pp 1331–1339 (2019)

218 World Wide Web (2022) 25:195–218

	An efficient and effective approach for multi-fact extraction from text corpus
	Abstract
	1 Introduction
	2 Methodology
	2.1 Input representation
	2.1.1 Word embeddings
	2.1.2 Marker embeddings
	2.1.3 Distance embeddings

	2.2 Dependency parse tree pruning
	2.3 Neural networks
	2.3.1 Bi-LSTM layer
	2.3.2 CNN layer
	2.3.3 GCN layer
	2.3.4 Fine-grained pooling strategy (FP)

	2.4 Objective function and optimization

	3 Experiments
	3.1 Dataset and evaluation metrics
	3.2 Implementation details
	3.3 Baselines
	3.4 Effectiveness of the proposed model
	3.4.1 Comparison with baselines
	3.4.2 Effectiveness of each component
	3.4.3 Effectiveness of size of GCN layer
	3.4.4 P@N scores
	3.4.5 Highest F1 scores
	3.4.6 Case study
	3.4.7 Effectiveness on single-fact extraction and multi-fact extraction

	3.5 Results on ACE2005
	3.6 Efficiency of the proposed model

	4 Related work
	5 Conclusion
	References

