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Abstract
Fine-grained annotations are indispensable for sequence tagging tasks like named entity
recognition and aspect-based sentiment analysis, which may incur extremely high time
and labor costs. Recent efforts are towards data augmentation which aims to generate syn-
thetic labeled instances. However, most existing methods adopt the random replacement or
perturbation strategy under pre-defined constraints, and thus often lead to unstable perfor-
mance. More importantly, these methods focus on producing more artificial samples yet
neglect to make good use of real training samples. In this paper, we propose a novel descrip-
tion and demonstration guided data augmentation (D3A) approach for sequence tagging.
On one hand, we collect dependency paths as descriptions to supervise the instance-level
augmentation process, such that we can consistently generate high-quality synthetic data.
On the other hand, we retrieve semantic or syntactic related features as demonstrations to
enhance the learning capability of neural networks under limited training data. We con-
duct extensive experiments on four sequence tagging datasets with various sizes of training
data. The results demonstrate that our proposed D3A approach can significantly improve
the performance of sequence tagging, especially in low-resource scenarios.

Keywords Data augmentation · Sequence tagging · Named entity recognition ·
Aspect-based sentiment analysis

1 Introduction

Deep learning methods usually need large-scaled labeled data to train neural networks. Con-
sidering that collecting and annotating data induce high time and labor costs, recent studies
have paid attention to data augmentation techniques for automatically generating synthetic
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instances and increasing the data diversity [38]. Data augmentation is firstly used in the field
of computer vision (CV), where photos are augmented by rotation, cropping, masking, color
jittering, gray scaling, etc [15, 41]. Then data augmentation is quickly extended to the field
of natural language processing (NLP). Different from photos in CV, languages in NLP are
more sophisticated since even a slight modification may change the original semantic mean-
ings. To avoid changing the labels after perturbing languages, existing data augmentation
studies in NLP mainly concentrate on coarse-grained sentence-level tasks such as machine
translation [8, 37], text classification [14, 44], and question answering [1, 21]. The fre-
quently used methods for perturbing languages include back translation, random insertion,
random swap, random deletion, etc.

Data augmentation research on fine-grained sequence tagging tasks like name entity
recognition (NER) and aspect-based sentiment analysis (ABSA) is still limited. The main
reason is that sequence tagging tasks are defined at the token level and neural models
are trained to capture the one-to-one correspondence between tokens and their labels, and
perturbing tokens sequences may produce the wrong label sequences.

For example, if “Disney” is deleted from the text segment “love Disney Land”
tagged as “O B-facility I-facility”, the perturbed label sequence will be “O
I-facility” which is not allowed by the tagging rule in NER (no beginning of an entity).

Among the few data augmentation methods for sequence tagging tasks, most of them
modify sentence-level perturbation methods by adding additional constraints to keep the
correspondence of labels [4]. Related techniques include label-wise token replacement,
shuffle within segments, mention replacement, etc. The main drawback of this type of
methods is that they are not stable enough to obtain high-quality synthetic data due to the
randomness in perturbation. Another type of methods generates synthetic instances by pre-
training a customized language model and then sampling from it [7]. However, the language
model needs to be trained on enough labeled data, which is not suitable for low-resource
scenarios. Moreover, when sampling synthetic instances from the language model, several
manual rules must be defined in advance and then be used to filter out low-quality out-
puts. Besides the above specific drawbacks, these two types of methods are both limited to
the instance-level augmentation. In other words, they only focus on how to generate more
synthetic instances, but neglect to promote sequence taggers1 under the limited training
data.

In this paper, we propose a description and demonstration guided data augmentation
(D3A) method for sequence tagging, which not only enhances the quality of the pro-
duced synthetic instances, but also generalizes the learning capability of the neural models.
In particular, the description is a collection of dependency paths that act as the refer-
ence for producing new data for instance-level augmentation, and the demonstration is
a set of syntactic or semantic related tokens that serve as the evidence for feature-level
augmentation.

At the instance level, our goal is to generate more reliable synthetic instances with the
help of descriptions. In the sequence tagging task, we can divide the token sequence into two
types of tokens, namely mentions (e.g., named entities in NER and aspect terms in ABSA)
and contexts (non-mention tokens). To increase the data diversity, mention replacement is
a feasible way that keeps a mention’s contexts unchanged and replaces itself with another
mention to create a synthetic instance. However, existing methods [4] often select mentions
for replacement at random and thus cannot ensure the high quality of synthetic instances. To

1In this paper, the sequence tagger denotes a specific neural network for sequence tagging.
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solve this problem, we propose to construct descriptions for mentions to refine the replace-
ment procedure. Specifically, we first summarize each mention with a description set that

includes the involved dependency paths (e.g., MENTION
nsubj−→JJ). Then, in order to find the

compatible mentions that match the original contexts, we calculate the correlation between
the original mention and each candidate substitutive mention. Lastly, we rank the candidate
mentions w.r.t their correlations and randomly choose several mentions that are qualified
for synthesizing new instances.

At the feature level, we turn to make better use of the real but limited training sample. For
this purpose, we introduce demonstrations for the token sequence to enhance the learning
capability of sequence taggers. Specifically, for a token in the sequence, its demonstrations
consist of a set of tokens that have appeared in training instances. These demonstration
tokens play similar syntactic and semantic roles as the original token and could provide extra
evidence for tagging. After augmenting token features with demonstrations in the learning
procedure, a sequence tagger can model an instance not only under the guidance of its own
label, but also under the guidance of other training instances. Consequently, the coupling
relationship among instances can help the sequence tagger converge to a better state than
before.

We conduct extensive experiments on two sequence tagging tasks including NER and
ABSA, with two datasets per task. The experimental results demonstrate that after intro-
ducing descriptions at the instance level and demonstrations at the feature level, our
proposed method can significantly improve the performance of sequence taggers, especially
in low-resource scenarios.

2 Related work

In this section, we first introduce two related sequence tagging tasks: NER and ABSA. We
then present a brief summarization of existing data augmentation methods towards sequence
tagging tasks.

2.1 Named entity recognition (NER)

NER is a task for identifying and categorizing target keyphrases (entities) such as person,
organization, time, and location. NER usually acts as the first step in the NLP processing
pipeline, and serves as the information source for downstream tasks like question answering,
information retrieval, and relation extraction. Early studies mainly use handcrafted features,
manual rules, and linguistic lexicons [22, 30, 35]. Recent studies focus on designing neural
models which require little feature engineering and expert knowledge [16, 19, 46, 48, 53].
Under the deep learning framework, NER is typically defined as a sequence tagging task.
For example, in the text sentence “Made it back home to GA. Time to start planning the next
Disney World trip.”, “GA, Disney World” are tagged as “B-Location, B-facility
I-facility”, respectively, while other tokens are tagged as “O”.2

2In this paper, we use the B(beginning)-I(inside)-O(outside) tagging scheme throughout. Other schemes such
as B-I-O-E(end)-S(single) can also be used as labels. The choice of tagging scheme does not affect the
implementation of our method.
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2.2 Aspect-based sentiment analysis (ABSA)

ABSA is a fine-grained task that aims to summarize the opinions of users towards specific
aspects in reviews. With the rapid growth of the world wide web and social media, ABSA
has been widely applied to various fields to analyze texts like product reviews, forum dis-
cussions, and blog posts. For example, given a sentence “The pizza here is also absolutely
delicious.”, ABSA needs to extract the aspect term and classify the corresponding sentiment
polarity, then tag “pizza” with “B-positive” and other tokens with “O”. Most existing
studies treat ABSA as a two-step task and develop separate methods for aspect term extrac-
tion [23, 24, 26, 34, 42, 47, 51] and aspect-level sentiment classification [2, 11, 12, 18, 20,
25, 54]. To obtain the complete ABSA predictions, results from two steps must be merged
together in a pipeline manner, which however may lead to error propagation. To address
this problem, recent studies in ABSA design end-to-end sequence taggers that directly map
tokens to their collapsed labels [3, 17, 28, 50].

2.3 Data augmentation for sequence tagging

Data augmentation are originated from computer vision [38] and then quickly applied to
natural language processing [9]. Most existing data augmentation methods are designed for
document-level and sentence-level tasks such as machine translation [8, 37], text classifi-
cation [14, 44], and question answering [1, 21]. Frequently used methods for perturbing
languages include back propagation, random insertion, random swap, random deletion, etc.
In this scenario, synthetic data is relatively easy to obtain since the labels usually remain
unchanged after language perturbation.

For fine-grained sequence tagging tasks, where tokens and labels have a fragile one-to-
one correspondence, there are only a few studies available. Sahin and Steedman [36] use
dependency tree morphing (sentence cropping and sentence rotating) to generate synthetic
data for POS tagging, but the produced synthetic data is not semantically smooth and hard
to interpret. Ding et al. [7] first pre-train a customized language model by concatenating
tokens with their labels, then sample outputs from this language model and transform them
to the synthetic data. Their language model is trained on at least 1k annotated sentences,
which is not suitable for low-resource scenarios. Moreover, several manual rules need to be
pre-defined and then used to filter out low-quality outputs. Dai et al. [4] modify sentence-
level augmentation methods by adding additional constraints, and propose several methods
for NER including the label-wise token replacement, synonym replacement, and mention
replacement. These methods show improved performance in both recurrent and transformer
models, but the synthetic data is not stable enough and contains harmful noises. Zhang et al.
[52] adapt the MIXUP [49] technique for active sequence labeling by augmenting queried
samples which also requires manual labor. Guo et al. [10] also refer to MIXUP and create
new synthetic instances by softly combining token/label sequences following the Beta dis-
tribution, which blends mentions with non-mentions and does not perform well for sequence
tagging. Apart from the specific drawbacks, existing methods for data augmentation are all
limited to instance-level augmentation. They only pay attention to synthesize instances, but
neglect to promote taggers to make better use of the limited training data.

Different from prior methods, our proposed approach generates synthetic samples with
the guidance of descriptions, and hence it can produce stable results. In addition, our
approach performs feature-level augmentation for training samples, which can further
improve the learning capability of neural networks with limited training data.
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3 Methodology

In this section, we first introduce the definition of sequence tagging and the overview of the
proposed method. We then present two backbone sequence taggers as the carrier and tester
of data augmentation methods. Lastly, we illustrate our method in detail.

3.1 Problem definition

In sequence tagging tasks, a sequence tagger is trained to learn a mapping function f

between a token sequence x = {x1, ..., xn} and a label sequence y = {y1, ..., yn}, i.e.,
f : x → y. Each xi is a token in natural language and each yi belongs to the label set {B-X,
I-X, O}. Specifically, the first token of a mention with the type X is tagged as B-X, and
the tokens inside that mention are tagged as I-X and the contexts (non-mention tokens) are
tagged as O.

In this work, we focus on the data augmentation issue for sequence tagging. Given a
training set containing (usually limited) gold-labeled instances Dtrain, our goal is to gener-
ate some synthetic labeled instances Dsyn to improve the diversity of the training set, and
promote the sequence tagger’s performance in tagging the unseen test set Dtest .

3.2 Backbone sequence tagger

To examine the effectiveness of different data augmentation methods, we consider two types
of backbone sequence taggers: one is based on static GloVe embeddings, and the other is
based on contextual BERT representations.

In the GloVe backbone, we first map each token in xi with the static GloVe embeddings
and obtain its vector ei , then use an additional encoder containing several convolutional
layers without pooling operation to extract the hidden state hi :

{e1, ..., en} = GloVe-Lookup ({x1, ..., xn}),
{h1, ..., hn} = CNN-Encoder ({e1, ..., en}), (1)

where the parameters of the CNN encoder are learned from scatch. On the contrary, in the
BERT backbone, we directly use the pre-trained BERT encoders to obtain the hidden state
hi :

{h1, ..., hn} = BERT-Encoder ({x1, ..., xn}) (2)

In both backbones, after extracting the hidden state of each token, a classifier which
consists of a linear transformation layer and a softmax function is used to predict the tags
of tokens:

{ŷ1, ..., ŷn} = Classifier ({h1, ..., hn}) (3)

Lastly, we compute the cross-entropy loss and train learnable parameters with back
propagation:

L = −
∑n

i=1

∑J

j=1
ŷij · log(yij ), (4)

where n is the length of x, J is the number of label categories, ŷi and yi are the predictions
and ground truth labels, respectively. Given the gold instances fromDtrain and the synthetic
instances from Dsyn, we can train the backbone sequence taggers accordingly and then
make inference on Dtest .
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3.3 Description guided instance-level augmentation

At the instance level, D3A aims to synthesize reliable instances and then adds them into the
training set for boosting the performance and generalization of sequence taggers. For exam-
ple, for a token sequence “Can’t upload payload to my apache 2 server, pentesting exercise.”
in the NER task, we can divide it into two types of tokens, namely the mention (i.e., “apache
2 server”) and the contexts (non-mention tokens). For improving the diversity of the training
data, Dai et al. [4] propose to keep a mention’s contexts unchanged and replace the mention
with another one to generate a synthetic instance. However, they select the substitutive men-
tions only based on the mention type (e.g., “PRODUCT” in this example). Consequently, an
incompatible mention like “Touchscreen” may be selected to join the contexts and cause
incongruity in semantics. Different from this naive mention replacement method, we pro-
pose to construct descriptions for mentions by resorting to the involved dependency paths
and then search compatible substitutive mentions for replacement. In this way, our proposed
D3A can ensure the quality of the synthetic data and can conduct effective instance-level
data augmentation.

3.3.1 Construct descriptions via dependency paths

To capture the correlation among different mentions, we need to characterize mentions
completely. Therefore, we propose to construct descriptions for mentions according to
their involved dependency paths. As shown in Figure 1, for the NER instance with the
mention “apache 2 server” and the mention type “PRODUCT”, we can construct the men-
tion’s description set by collecting the involved dependency paths. According to the parsing
results, the paths can be divided into two categories as follows.

• Head-related paths. In a dependency parse tree, each token has exact one head
token (a.k.a, governor). Inspired by a recent study for aspect-level sentiment clas-
sification [43], we first reshape the original parsing tree to a mention-oriented tree
so as to keep the integrity of the target mention. Specifically, we treat the mention
containing multiple tokens as a whole and only consider the paths outside the men-

tion. For example, two paths inside the target mention, i.e., apache
nummod−→ 2 and

Figure 1 Illustration of the description guided instance-level data augmentation
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server
compound−→ apache, are discarded. After reshaping, we can easily collect two

head-related paths: payload
nmod−→M and NN

nmod−→M that corresponds the head token and
its part-of-speech (POS) tag, respectively. (Here we use M to denote an arbitrary mention
for simplicity.)

• Tail-related paths. Similar to the head-related paths, after reshaping the parsing

tree, we can collect four tail-related paths: M
case−→to, M

case−→IN, M
nmod:pass−→ my, and

M
nmod:pass−→ PRP$. One small difference here is that the number of tail tokens (a.k.a,

dependent) is not limited to only one.

After traversing the entire training data, for each mention M, we can construct its description
(the set S) that contains all involved dependency paths.

3.3.2 Search compatible substitutive mentions

For the target mention M, we consider all other mentions that belong to the same type
as its candidate substitutive mentions. Once the descriptions are constructed, we start
to search compatible candidates to replace the target mention and generate synthetic
instances. Given the target mention M and a random candidate mention M̂, we calcu-
late their correlation via the Jaccard similarity of their corresponding description sets S
and Ŝ:

Correlation(M, M̂) = Jaccard(S, Ŝ) = |S ∩ Ŝ|
|S ∪ Ŝ| . (5)

By ranking candidate mentions based on the Jaccard similarities, we can preserve the
top τ% related candidates and filter out the others, where τ is a hyperparameter. Gener-
ally, τ is inversely proportional to the size of the training data Dtrain as we will show in
the analysis section. After that, we randomly select a substitutive mention M̂ from the pre-
served candidates, then fix M̂ and the contexts of M to generate a synthetic instance. By
this means, we refine the selection process in the naive mention replacement method and
obtain more reliable synthetic instancesDsyn. Finally, the instance-level data augmentation
can be achieved by training backbone sequence taggers with the combination of Dtrain and
Dsyn.

3.4 Demonstration guided feature-level augmentation

Existing data augmentation methods for sequence tagging tasks focus on synthesizing new
instances when the labeled training set is small. However, we can also consider this issue
from another point of view, i.e., how to make full use of limited labeled data. To this end, we
propose to further conduct feature-level data augmentation by enhancing the training pro-
cess with demonstrations. Specifically, when extracting features from the token sequence,
the sequence tagger will receive a set of demonstration tokens that can provide extra infor-
mation for tagging. As shown in Figure 2, for a rare token “apache” without enough sample
exposure, the tagger can hardly predict its correct label “B-PRODUCT”. However, if we
associate “apache” with some demonstrations like “proxy, git, anaconda, android”, the
tagging of “apache” will become less challenging.

We now illustrate the feature-level data augmentation in two steps, i.e., retrieving demon-
strations from the training data and augmenting token features with demonstrations. We take
a training instance x = {x1, ..., xn} in Dtrain as the example.
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Figure 2 Illustration of the demonstration guided feature-level data augmentation

3.4.1 Retrieve demonstrations from training data

For a target token xi ∈ x, we define its demonstrations as a set of tokens {d1, d2, ..., dK }
where each dj has similar syntactic and semantic characteristics with xi . For convenience,
we correspond both xi and dj to the word vocabulary V and change the notations accord-
ingly. Then the problem can be reformulated as follows: for a target token v, how to
select another token ṽ ∈ V train (the vocabulary of Dtrain) that is qualified to serve as v’s
demonstration. To answer the problem, we resort to three different attributes: the semantic
meaning, the part-of-speech tag, and the dependency relation.

• Semantic meaning. We use the pre-trained GloVe embedding to obtain the vectors vsem

and ṽsem for v and ṽ, respectively. We then calculate the semantic similarity between v

and ṽ:

sem.sim(v, ṽ) = cosine(vsem, ṽsem), (6)

where cosine(·, ·) is the cosine similarity.
• Part-of-speech tag. In each sentence where v has appeared, we can use a one-hot vector

vpos ∈ RNpos to represent its POS tag, where Npos is the number of POS types. Notice
that many tokens (e.g., “like”) are polysemous and can serve as different POS tags in
different contexts. Therefore, we choose to summarize the global usages < vpos > of
v by merging its POS vectors in all sentences:

< vpos >= {vpos,l=1 | vpos,l=2 |...| vpos,l=|Dtrain|} (7)

where | is the dimension-wise OR operation. Similarly, we can obtain < ṽpos > for ṽ:

< ṽpos >= {̃vpos,l=1 | {̃vpos,l=2 |...| {̃vpos,l=|Dtrain|} (8)

We then calculate the POS similarity between v and ṽ as follows:

pos.sim(v, ṽ) = cosine(< vpos >,< ṽpos >). (9)

• Dependency relation. As we illustrated in Section 3.3, dependency relations can be
divided into head- and tail-related ones. In each sentence where v has appeared, we can
use a one-hot vector vhead and a multi-hot vector vtail to represent the involved head and
tail relation, where each vector ∈ RNdep and Ndep is the number of relation types. Then
we concatenate them to form the whole dependency vector vdep ∈ R2×Ndep . Following
the steps in calculating the POS similarity, we can obtain the global usages < vdep >

for v and < ṽdep > for ṽ, then calculate the dependency similarity between v and ṽ:

dep.sim(v, ṽ) = cosine(< vdep >,< ṽdep >). (10)

After calculating three different types of attributes’ similarities, we can obtain the overall
similarity score between v and ṽ:

attr .sim(v, ṽ) = sem.sim + pos.sim + dep.sim, (11)
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Consequently, we can obtain a attr .sim score matrix Mtrain ∈ R|V train|×|V train|. After
ranking, for v, we select the top-K tokens as the demonstrations {d1, d2, ..., dK }, and record
their attr .sim scores {a1, a2, ..., aK }.

We retrieve demonstrations for both training and test data, so they can benefit both the
training and inference processes. During testing, we can calculate the attr.sim score matrix
Mtest ∈ R|V test |×|V train| in a similar way. However, a problem here is that we cannot obtain
< vpos > and < vdep > since the whole test data is unseen. Therefore, we use the local
vpos and vdep of the current test sample to calculate the part-of-speech and dependency
similarities. The retrieval process is a one-time job and often finishes in ten seconds.

3.4.2 Augment token features with demonstrations

After obtaining demonstrations, we can conduct the feature-level augmentation augment
with these demonstrations. Generally, we follow a simple rule, i.e., injecting the demon-
strations after the pre-trained module. Moreover, considering the difference in the amount
of information carried by GloVe and BERT, we propose two augmentation methods
accordingly.

In the GloVe backbone, our target is the vector ei of each token xi . Specifically, we first
map xi’s demonstration tokens di,k to the vectors di,k , then aggregate them to a single vector
d̃i according to the similarity scores ai,k:

{di,1, ..., di,K } = GloVe-Lookup ({di,1, ..., di,K }),
d̃i =

K∑
k=1

di,k · ai,k .
(12)

We then calculate a dimension-wise gate gi to augment ei with d̃i :

gi = σ (W1(ei ⊕ d̃i )),

ri = gi � (ei ⊕ d̃i ),
(13)

where ei is the GloVe word vector, d̃i is the demonstration vector, W1 is a transformation
matrix, σ is the Sigmoid function, ⊕ is concatenation, and � is element-wise multiplica-
tion. Lastly, we send the augmented vector ri instead of ei to the blank CNN encoder for
extracting hidden states while other modules remain unchanged.

In the BERT backbone, we adopt a different strategy since the contextualized BERT
representations are very informative. Therefore, we do not interfere the encoding process
but inject demonstrations into the hidden states hi . Specifically, we first use the embedding
layer inside BERT to transform di,k into d̃i , then pass them to the BERT encoder and obtain
the hidden states h̃i . Afterwards, we calculate a single-value gate gi to combine hi and h̃i :

gi = σ (W2(hi ⊕ h̃i )),

ri = gi · hi + (1 − gi) · h̃i ,
(14)

where W2 is a transformation matrix, hi and h̃i are the hidden states of input tokens and
demonstrations. Lastly, we send ri instead of hi to the token classifier and make predictions.
After augmenting token features with demonstrations in the learning procedure, a sequence
tagger can model an instance not only under the guidance of its own label, but also under
the guidance of other training instances. Consequently, the coupling relationship among
instances can help the sequence tagger converge to a better state given limited training data.
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4 Experiment

In this section, we first present the experimental setup, then compare the proposed D3A
method with the state-of-the-art data augmentation baselines.

4.1 Experimental setup

4.1.1 Datasets

We examine D3A on two sequence tagging tasks: named entity recognition (NER) and
aspect-based sentiment analysis (ABSA), each containing two datasets. For NER, we
use the WNUT16 [40] and WNUT17 [5] constructed from Twitter and adopt the origi-
nal train/test/development splits for the experiment. For ABSA, we merge the restaurant
datasets from the ABSA tasks in SemEval 2014 [33], 2015 [32], and 2016 [31], and the lap-
top dataset from SemEval 2014 Task 4 [33]. Since there are no official development data,
we randomly sample 20% training instances from each dataset as the development set, and
use the rest instances for training. The detailed statistics of datasets are presented in Table 1.
We use four different sizes of datasets to examine the effectiveness of data augmentation
methods in different scenarios. SMALL (S) contains 50 training instances, MEDIUM (M)
contains 150 training instances, LARGE (L) contains 300 training instances, and FULL
(F) uses the complete training set. Generally, S, M, and L settings can be considered as the
low-resource scenarios.

4.1.2 Settings

We pre-process each dataset by lowercasing all words and use Stanford CoreNLP [27]
for dependency parsing. There are Npos=45 classes of POS tags and Ndep=40 classes of
dependency relations in four datasets.

In the GloVe-based backbone, we use the glove.840B.300d.txt vectors. The ker-
nel size and the number of convolution layers in the CNN encoder are set to 3 and 4,
respectively. Dropout [39] is applied to convolution layers’ outputs with the probability of

Table 1 The statistics of datasets

Task Dataset Split Sentences Tokens Mentions Types

ABSA Restaurant Train 3102 48094 3433 4

Dev 775 11875 881 4

Test 2158 32639 2289 4

Laptop Train 2436 40748 1830 4

Dev 609 10027 473 4

Test 800 11699 634 4

NER WNUT16 Train 2394 49004 1496 11

Dev 1000 17698 661 11

Test 3850 68015 3473 11

WNUT17 Train 3394 66702 1975 7

Dev 1008 15785 835 7

Test 1287 24471 1079 7
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0.5. In the BERT-based backbone, we use the officially released bert-base-uncased
pre-trained model [6]. We train the GloVe/BERT backbone for 100/15 epochs using Adam
optimizer [13] with the learning rate 1e-4/3e-5 and batch size 8 in a 3090 GPU, respectively.

In the description guided instance-level augmentation, the threshold τ for preserving
candidate mentions are tuned from 0.1 to 1.0, stepped by 0.1. In the demonstration guided
feature-level augmentation, we set the number of demonstrations K=10. If there are syn-
thetic instances in the training data, feature-level augmentation will also be conducted on
these instances.

4.1.3 Evaluation protocol

We report F1-scores for both NER and ABSA tasks in different scenarios, and also present
the mean improvement δ for clear comparison. To compute F1 scores, the prediction would
be considered correct if it exactly matches the mention span and mention type. We run
the experiments five times with random initialization and report the averaged results. The
checkpoint achieving the maximum F1-score on the development set is used for evaluation
on the test set.

4.2 Comparedmethods

Details of compared methods are listed below. For all data augmentation methods, the ratio
of gold data to synthetic data is 1:3, which means the augmented training set is four times
larger than before.

• NoAug : No augmentation. It only uses the gold training data.
• DUP : Duplication. A naive augmentation method that simply duplicates the gold data

three times. This is an important baseline to observe the effectiveness of other data
augmentation methods.

• LwTR : Label-wise token representation [4]. For each token in the sequence, a binomial
distribution is used to randomly decide whether it should be replaced. If yes, the token
is replaced by a randomly selected token with the same label.

• SR : Synonym replacement [4]. It is similar to LwTR, except that the token is replaced
with one of its synonyms retrieved from WordNet.

• MR : Mention replacement [4]. For each mention in the instance, a binomial distribu-
tion is used to randomly decide whether it should be replaced. If yes, the mention is
replaced by another mention from the original training set which has the same entity
type.

• SiS : Shuffle within segments [4]. It first splits the token sequence into segments of
the same label and makes each segment corresponds to either a mention or a sequence
of out-of-mention tokens. Then for each segment, a binomial distribution is used to
randomly decide whether it should be shuffled. If yes, the order of the tokens within
the segment is shuffled, while the label order is kept unchanged.

• SeqMix : Sequence mixup [10]. It creates new synthetic instances by softly combining
token/label sequences from the training data. The proportion of the mixture is sampled
from a Beta distribution.

• DAGA : Data augmentation with a generation approach [7]. It is a two-step augmenta-
tion method. First, a language model over sequences of labels and words linearized as
per a certain scheme is learned. Second, sequences are sampled from the fixed language
model and de-linearized to generate new tokens and labels.
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4.3 Main results

The comparison results of different methods are shown in Table 2. Clearly, our proposed
D3A achieves a new state-of-the-art performance on all four datasets. For GloVe-ABSA,
BERT-ABSA, GloVe-NER, and BERT-NER,3 D3A outperforms NoAug by 11.94%, 5.22%,
7.40%, and 6.77%. It also outperforms the second-best augmentation baselines by 2.90%,
1.75%, 0.66%, and 1.60%, respectively. When inspecting the results in detail, we can further
draw three conclusions.

Firstly, compared with the backbone models without synthetic data (i.e., NoAug in each
table), almost all data augmentation methods can improve the performance in sequence tag-
ging tasks. However, we found that simply duplicating gold data several times (i.e., DUP)
can also achieve promising performance, and even surpass some baseline methods like
LwTR occasionally. The reason is that, in NoAug, the hyper-parameters of sequence taggers
are identical to other methods but the training instances in settings S, M, and L are very lim-
ited. Therefore, the insufficient exposure of instances causes the underfitting of sequence
taggers and deteriorates the performance. After duplicating training instances, the taggers
can converge to a better state than before and achieve a performance gain. We believe that
the comparison with DUP is an important standard for judging the effectiveness of data aug-
mentation methods, but it is often ignored by previous work. Obviously, the proposed D3A
consistently outperforms DUP on the mean δ of F1-scores in all scenarios.

Secondly, compared with NoAug, the performance gain brought by data augmentation
methods is approximately inversely proportional to the size of training data. In small (S)
training sets, all data augmentation methods achieve significant improvements over NoAug.
While in full (F) training sets, the performance becomes stable and even decreases in some
scenarios. The reason is intuitive. When the training instances are inadequate, the mentions
only co-occur with limited contexts. Therefore, synthetic instances can increase the data
diversity and brings about performance gains. As the training set grows, more and more
collocations between mentions and contexts are already covered by the gold data. On the
contrary, some low-quality synthetic instances act as noise and even poison the sequence
taggers. Therefore, the data augmentation methods sometimes become optional when there
is enough training data.

Thirdly, augmenting BERT-based sequence taggers is more difficult than augmenting
GloVe-based ones. For example, in the ABSA task, D3A improves GloVe backbone by
11.94%, but this value for BERT backbone is only 5.22%. As shown in previous studies [4,
6], the stacked transformer encoders pre-trained on large-scale external data make BERT
more powerful than static word embeddings like GloVe in natural language understand-
ing. Therefore, compared with GloVe backbones, the knowledge carried by the synthetic
instances is less useful for BERT backbones.

5 Deep analysis

In this section, we present an in-depth analysis including the augmentation of SOTA
methods with D3A, ablation study, parameter study, and case study.

3For simplicity, we here use Backbone-Task (e.g., GloVe-ABSA) pairs for illustration.
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Table 2 Comparison of different methods for two sequence tagging tasks

(a) Comparison results of aspect-based sentiment analysis (ABSA)

naeMpotpaLtnaruatseRdohteMreggaT δ
S M L F S M L F

GloVe NoAug 26.56 36.32 39.87 62.36 5.49 14.66 25.16 50.33 /
DUP 33.70 42.87 46.86 67.00 21.95 29.19 35.31 51.43 8.45

LwTR 31.21 40.93 44.98 61.81 21.16 25.87 33.35 48.19 5.84

SR 33.01 42.19 46.12 63.94 20.48 26.28 32.81 49.01 6.64

MR 32.93 43.19 47.49 65.75 23.40 30.28 36.81 53.20 9.04

SiS 32.97 43.23 46.41 64.95 22.69 29.23 35.03 52.08 8.23

SeqMix 30.44 40.73 44.40 63.05 22.08 26.49 34.59 50.42 6.43

DAGA 31.62 42.07 44.99 63.50 26.62 31.14 36.03 52.56 8.47

D3A 35.95 45.48 48.25 67.63 28.06 34.41 41.25 55.22 11.94†

BERT NoAug 32.79 44.68 48.15 72.19 22.07 36.94 46.73 60.92 /
DUP 35.68 46.62 50.05 70.77 26.95 35.99 45.72 62.10 1.18

LwTR 32.83 41.32 46.76 70.94 26.05 34.85 38.97 57.14 − 1.95

SR 37.25 45.85 51.62 72.20 29.13 37.19 45.89 61.86 2.07

MR 36.70 46.55 51.58 72.06 32.91 42.35 49.16 60.89 3.47

SiS 34.59 46.51 49.76 72.55 31.56 34.80 41.41 61.29 1.00

SeqMix 33.44 41.95 49.04 69.53 29.37 40.49 47.89 59.25 0.81

DAGA 35.27 44.71 50.86 70.65 34.64 41.03 48.08 57.36 2.27

D3A 37.71 47.51 51.97 71.63 39.05 45.64 48.58 64.18 5.22†

(b) Comparison results of named entity recognition (NER)

naeM71TUNW61TUNWdohteMreggaT δ
S M L F S M L F

GloVe NoAug 5.95 15.15 20.01 35.44 3.51 14.14 23.78 30.58 /

DUP 14.44 21.31 27.92 37.29 13.10 22.31 27.04 33.10 5.99

LwTR 13.52 20.92 27.49 38.06 16.26 23.14 25.87 33.63 6.29

SR 13.66 20.26 27.45 36.95 14.16 22.97 28.33 32.16 5.92

MR 12.38 20.36 26.91 36.21 14.87 21.78 27.06 34.37 5.67

SiS 14.75 22.84 27.59 37.47 15.97 24.23 27.24 32.35 6.74

SeqMix 11.00 19.23 25.82 36.47 14.52 19.72 25.04 31.42 4.33

DAGA 11.33 20.36 27.59 38.20 13.06 22.86 27.09 32.23 5.52

D3A 13.23 22.32 27.70 38.36 17.00 25.86 28.39 34.91 7.40

BERT NoAug 0.76 22.67 30.12 43.10 1.45 22.66 30.72 41.86 /

DUP 17.98 27.12 31.75 42.63 15.71 25.58 32.16 41.74 5.17

LwTR 16.15 26.48 29.85 38.38 14.80 25.28 34.36 37.36 3.67

SR 19.25 26.72 30.81 42.58 12.71 29.06 28.80 38.62 4.40

MR 18.61 27.73 32.76 41.14 12.02 24.63 33.25 39.63 4.55

SiS 18.42 26.14 32.89 42.17 11.98 25.27 30.47 38.39 4.05

SeqMix 17.10 26.83 30.08 37.96 15.66 26.92 32.46 36.67 3.79

DAGA 16.25 25.23 29.31 37.71 17.50 28.30 33.73 39.09 4.22

D3A 19.32 29.57 33.14 41.09 18.70 29.96 33.73 41.97 6.77†

The results in blue are derived from the backbone taggers without data augmentation. The best scores after
augmentation are in orange and the second best ones are underlined. All results are average scores of 5 runs
with random initialization, and those with † are significantly better than the second-best methods (p < 0.01)
based on one-tailed unpaired t-test
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Table 3 Augmentation of SOTA methods in ABSA and NER with D3A

(a) Comparison with the SOTA method (BERT-PT) for ABSA

Tagger Method Restaurant Laptop Mean δ

S M L F S M L F

BERT-PT NoAug 43.39 53.55 58.20 74.84 38.69 48.29 54.62 66.03 /

D3A 44.18 55.91 59.85 74.94 40.48 54.20 59.41 64.77 2.02†

(b) Comparison with the SOTA method (SANER) for NER

Tagger Method WNUT16 WNUT17 Mean δ

S M L F S M L F

SANER NoAug 0.32 14.93 29.17 48.22 0.18 3.14 30.52 46.08 /

D3A 14.73 23.53 34.33 49.02 6.31 23.59 37.44 48.60 8.12†

For the results of NoAug, we directly run the source codes of SOTA methods under different settings. The
improvements are significant under p < 0.01 based on one-tailed unpaired t-test

5.1 Augmentation of SOTAmethods with D3A

To demonstrate the effectiveness of D3A, we further examine it with state-of-the-art
methods for aspect-based sentiment analysis and named entity recognition, respectively.
According to the public leaderboards,4 we select BERT-PT5 [45] and SANER6 [29] as the
competitors and present the results in Table 3.

For ABSA, BERT-PT post-trains the BERT model with in-domain corpus from the
large-scale Yelp and Amazon reviews. With full training data, BERT-PT achieves 74.84%
and 66.03% F1-scores on the Restaurant and Laptop datasets (our best backbone achieves
72.19% and 60.92%). For NER, SANER trains the transformer encoders with semantic aug-
mentation. With full training data, SANER achieves 48.22% and 46.08% F1-scores on the
WNUT16 and WNUT17 datasets (our best backbone achieves 43.10% and 41.86%).

After augmenting SOTA methods with D3A, we further obtain 2.02% and 8.12% mean
improvements on two tasks. The improvements mainly come from situations with limited
training data like S and M. Since BERT-PT is fully pre-trained, it is relatively stable under
all settings. On the contrary, the encoders inside SANER are trained from scratch and can
only achieve promising performance when training data is adequate.

5.2 Ablation study

To validate the effectiveness of designs in D3A, we conduct a series of ablation study on
both instance- and feature-level augmentation. The results are presented in Table 4.

In variants 1∼2, we remove the feature-level or instance-level augmentation respectively,
and the drop of F1-scores demonstrates the effectiveness of both levels of augmentation.
Moreover, the description guided instance-level augmentation is more important than the
demonstration guided feature-level augmentation, especially in low-resource scenarios (S,

4https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval-7 for ABSA and https://
paperswithcode.com/sota/named-entity-recognition-on-wnut-2016 for NER.
5https://github.com/howardhsu/BERT-for-RRC-ABSA.
6https://github.com/cuhksz-nlp/SANER. Since the best method CL-KL uses external resources, we select the
second-best one SANER. We do not include the development set for training.
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Table 4 Ablation study

(a) Ablation study of aspect-based sentiment analysis (ABSA)

Tagger Method Restaurant Laptop Mean δ

S M L F S M L F

GloVe D3A 35.95 45.48 48.25 67.63 28.02 34.41 41.25 55.22 11.94

1.remove feature 33.96 44.05 47.79 65.73 23.31 30.82 37.56 53.20 9.46

2.remove instance 31.78 41.01 44.46 64.82 10.16 15.88 33.33 55.73 4.55

3.only head path(I) 35.88 44.74 48.32 67.31 26.56 33.80 39.91 55.85 11.45

4.only tail path(I) 35.21 45.97 48.96 66.97 29.36 32.84 38.93 55.99 11.69

5.only sem.sim(F) 35.23 45.18 48.49 67.30 27.96 34.25 39.06 55.90 11.58

6.only pos.sim(F) 35.59 43.51 48.62 67.22 28.95 36.03 38.05 55.07 11.54

7.only dep.sim(F) 35.47 46.05 48.27 67.18 27.04 34.94 40.88 55.91 11.87

BERT D3A 37.71 47.51 51.97 73.29 39.05 45.64 48.58 64.18 5.22

1.remove feature 37.77 48.06 52.38 72.94 32.97 41.36 50.76 61.67 4.18

2.remove instance 36.92 44.42 51.40 72.38 30.65 39.24 47.96 61.93 2.55

3.only head path(I) 35.61 46.52 51.63 72.45 35.32 38.66 49.58 59.34 3.08

4.only tail path(I) 37.28 46.66 51.92 72.86 37.05 42.92 50.73 61.28 4.53

5.only sem.sim(F) 38.95 47.17 52.59 72.66 36.50 42.67 48.09 59.32 4.19

6.only pos.sim(F) 37.30 46.45 52.76 73.44 32.58 40.45 49.17 60.76 3.55

7.only dep.sim(F) 35.60 47.47 51.45 71.50 34.07 42.63 47.70 61.14 3.39

(b) Ablation study of named entity recognition (NER)

Tagger Method WNUT16 WNUT17 Mean δ

S M L F S M L F

GloVe D3A 13.23 22.32 27.70 38.36 17.00 25.86 28.39 34.91 7.40

1.remove feature 14.61 22.27 29.09 38.30 15.69 22.78 27.99 34.58 7.09

2.remove instance 9.49 14.11 21.35 35.10 15.42 22.43 25.62 33.56 3.57

3.only head path(I) 10.71 20.78 28.71 38.61 16.85 24.75 28.64 35.21 6.96

4.only tail path(I) 12.46 20.75 26.69 37.87 16.71 24.42 28.26 35.02 6.70

5.only sem.sim(F) 13.47 22.02 30.30 39.36 16.77 23.96 27.93 32.05 7.16

6.only pos.sim(F) 10.17 20.49 27.84 40.16 15.42 24.49 27.98 34.48 6.56

7.only dep.sim(F) 11.45 18.93 27.07 38.79 15.62 21.86 26.65 34.28 5.76

BERT D3A 19.32 29.57 33.14 41.09 18.70 29.96 33.73 41.97 6.77

1.remove feature 19.21 28.01 32.56 42.29 15.71 30.50 33.46 39.85 6.03

2.remove instance 0.76 24.06 31.12 43.47 2.00 19.57 29.50 40.00 − 0.36

3.only head path(I) 18.76 27.63 31.63 41.03 17.02 26.99 34.58 39.88 5.52

4.only tail path(I) 18.13 27.80 31.97 39.90 16.05 26.90 33.61 37.72 4.84

5.only sem.sim(F) 18.47 26.87 32.84 40.51 19.06 28.87 35.26 40.40 6.12

6.only pos.sim(F) 18.22 26.80 31.63 40.06 18.68 30.35 36.58 41.00 6.25

7.only dep.sim(F) 19.35 26.81 32.90 42.77 18.45 29.20 35.11 40.91 6.52

“(I)” or “(F)” bebind the variants denote the augmentation modules which they belong to (i.e., instance-level
or feature-level augmentation). The best scores are in orange and the second best ones are underlined

M, L). The reason is that the feature-level augmentation also needs to learn from the training
data, and thus is inferior when lacking labeled instances. Therefore, in practice, we suggest
a hierarchical augmentation framework by placing the feature-level augmentation on top of
the instance-level augmentation.
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Figure 3 Impacts of the threshold τ in the instance-level augmentation

In variants 3∼4, we examine the effectiveness of different dependency paths for con-
structing the descriptions in the instance-level augmentation. In ABSA, the tail-related paths
are more important than the head-related paths, but the opposite is true in NER. Since the
tails of a given token could contain multiple tokens while its head is exactly a single token,
tail-related paths show more diversity while head-related paths show higher accuracy. In
ABSA, the polarity of an aspect term is determined by its contexts like verbs (“love”) and
adjectives (“good”), thus considering more related words is beneficial to the classification of
sentiment. In contrast, the categories of named entities in NER only depend on themselves,
and hence the accurate paths are more useful for generating synthetic instances.

In variants 5∼7, we examine the impacts of different similarities for retrieving the
demonstrations in the feature-level augmentation. By only preserving one of three similar-
ities, we can find that all the similarities are important and none of them can completely
cover the others.

5.3 Parameter study

There are two key hyperparameters in D3A: the threshold τ in constructing descriptions at the
instance level and the number of demonstrations K at the feature level. Here we investigate
their impacts by varying them in certain ranges and observing the performance trends.

Figure 3 shows the impacts of τ by varying its value in the range [0.1, 1.0] stepped by
0.1. Although the trends of curves are not very obvious, we can analyze by marking the
best-performing τ in different sizes of training data. For example, with small (S) training
data, diversity is more important since candidate mentions are rare, and the best results are
achieved when τ ∈ [0.6, 1.0]. On the contrary, with full (F) training data, τ ∈ [0.1, 0.4]

Figure 4 Impacts of the number of demonstrations K in the feature-level augmentation
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Table 5 Comparison of gold instances and synthectic instances generated by MR and D3A

Example

GOLD: But the staff was so horrible to us . (Restaurant)

MR: But the tables was so horrible to us .

D3A: But the maitre-d was so horrible to us .

GOLD: Going to bring it to service today . (Laptop)

MR: Going to bring it to 17 ince screen today .

D3A: Going to bring it to lg notebook service center today .

GOLD: is up and ready for his last day on the punt until Stakes Day (WNUT16)

MR: is up and ready for his last day on the punt until Army Run

D3A: is up and ready for his last day on the punt until National POW/MIA Recognition Day

GOLD: Win $ 100 Visa card ! [ URL ] (WNUT17)

MR: Win $ 100 Ball Metal Container card ! [ URL ]

D3A: Win $ 100 nintendo card ! [ URL ]

brings promising performance since accuracy becomes dominant when candidate mentions
are adequate.

Figure 4 shows the impacts of K by varying its value in the range [1, 10] stepped by
1. When more demonstrations are injected, the curves of GloVe-ABSA and GloVe-NER
are generally upward. This trend is reasonable since GloVe embeddings contain limited
knowledge and more demonstrations equal to more supporting information. While for
BERT-ABSA and BERT-NER, only 1∼3 demonstrations can achieve satisfactory perfor-
mance since the BERT backbone already embeds sufficient knowledge. In this case, the
latter demonstrations with low similarity scores seem to be noisy and not informative.

5.4 A Closer look at D3A

In this section, we take a closer look at D3A. As shown in Table 5, we first present several
synthetic instances generated by MR7 and D3A, and compare them with the gold instances
to observe the synthetic quality in description-guided instance-level augmentation. Take
the example from Restaurant as the example. For “staff” tagged as “B-Positive”, MR
replaces it with “tables” while D3A replaces it with “maitre-d”. Obviously, “maitre-d” is a
more suitable mention here than “tables” to serve as a subject having the attitude “horrible”.
Thanks to the qualified synthetic instances, D3A is powerful for the instance-level data
augmentation as shown in the ablation study. We then examine the retrieved demonstrations
in Table 6 to observe the influence of demonstration-guided feature-level augmentation.
For a target token like “food”, its encoded feature in the sequence tagger is augmented by
related tokens like “meal, pizza, dessert”. Therefore, it will be much easier than before for
sequence taggers to recognize “food” as an aspect term.

7We choose MR as the representative method because it performs well in most cases, and also because MR
adopts the mention replacement strategy which is of the same type as ours.
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Table 6 Case study of tokens and their demonstrations in different datasets

Token Demonstration

food (Restaurant) meal 2.48 | pizza 2.43 | restaurant 2.42 | dessert 2.35 | fish 2.35 | soup 2.30 |
chicken 2.29 | dinner 2.29 | seafood 2.29 | sushi 2.28

battery (Laptop) keyboard 2.29 | power 2.27 | screen 2.20 | system 2.19 | life 2.12 | time 2.11 |
charger 2.10 | warranty 2.10 | notebook 2.05 | hp 2.04

band (WNUT16) fans 1.91 | games 1.90 | videos 1.88 | friends 1.84 | eagles 1.82 | ones 1.77 |
books 1.74 | songs 1.73 | ears 1.72 | rappers 1.70

account (WNUT17) status 2.26 | Website 2.25 | exchange 2.23 | message 2.19 | office 2.14 | risk 2.14
| system 2.13 | country 2.09 | track 2.09 | password 2.08

The value behind each demonstration denotes its similarity score with the target token

6 Conclusion

In this paper, we propose a description and demonstration guided data augmentation method
D3A for sequence tagging. By combining both instance-level and feature-level augmenta-
tion, D3A can effectively improve the performance and generalization of sequence taggers.
Specifically, at the instance level, we construct descriptions for mentions via head-related
and tail-related dependency paths and generate reliable synthetic data. At the feature level,
we retrieve demonstrations for tokens to enhance the learning capability of sequence taggers
given limited training data. We conduct extensive experiments on NER and ABSA using
different sizes of training sets. The results on both GloVe-based and BERT-based back-
bone sequence taggers demonstrate that D3A can significantly improve the performance
for sequence tagging tasks, especially in low-resource scenarios. In the future, we plan to
investigate other methods for instance-level and feature-level augmentation, and general-
ize the data augmentation methods to more NLP tasks like relation extraction and event
extraction.
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