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Abstract
Large-scale Knowledge Graphs (KGs) support applications such as Web search and per-
sonal assistants and provide training data for numerous Natural Language Processing tasks.
Nevertheless, building KGs with high accuracy and domain coverage remains difficult, and
neither manual nor automatic efforts are up to par. Link Prediction (LP) is one of many tasks
aimed at addressing this problem. Its goal is to find missing links between entities in the
KG based on structural by exploiting regularities in the graph structure. Recent years have
seen two approaches emerge: using KG embeddings, and modelling complex relations by
exploiting correlations between individual links and longer paths connecting the same pair
of entities. For the latter, state-of-the-art methods traverse the KG itself and are hampered
both by incompleteness and skewed degree distributions found in most KGs, resulting in
some entities being overly represented in the training set leading to poor generalization. We
present HOPLoP: an efficient and effective multi-hop LP meta method that performs the
equivalent to path traversals on the KG embedding space instead of the KG itself, marry-
ing both ideas. We show how to train and tune our method with different underlying KG
embeddings, and report on experiments on many benchmarks, showing both that HOPLoP
improves each LP method on its own and that it consistently outperforms the previous state-
of-the-art by a good margin. Finally, we describe a way to interpret paths generated by
HOPLoP when used with TransE.
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1 Introduction

Open and large-scale Knowledge Graphs (KGs) built from the Web, such as Wikidata
[69], Freebase [6], YAGO [62], to name just a few, power important tasks such as ques-
tion answering [45] and automated reasoning [55]. These tasks require KGs that are both
accurate and comprehensive, with extensive coverage of topics of interest to users.

Building KGs that are accurate and complete is difficult. On one hand, manually con-
structing KGs lead to accuracy that is high enough to support these tasks but requires experts
and takes too much time [3]. For example, developing WordNet, a manually constructed KG
with information about 155,287 English words and phrases, which are linked via semantic
relations such as Hypernymy and Synonymy, took 27 years. And yet, it covers only a small
fraction of the ever-changing English language. On the other hand, KGs constructed auto-
matically with the help of Information Extraction (IE) tools [43] applied to Web-scale text
corpora cover many topics but are less accurate as the state-of-the-art is not sophisticated
enough to understand the nuances of natural language [2, 49].

Even when they succeed, IE methods can only capture facts explicitly mentioned in the
text. For example, consider the following excerpt from an article in Wikipedia describing
the movie “The Terminator”:1

The Terminator is a 1984 science fiction action film released by Orion Pictures, co-
written and directed by James Cameron and starring Arnold Schwarzenegger, Linda
Hamilton and Michael Biehn. It is the first work in the Terminator franchise. ...

At the time of writing, the best IE methods applied to that text would find facts mentioned
explicitly such as (James Cameron, Director Of, The Terminator) and (The Terminator,
Genre, Science Fiction), but would miss facts that are implied, such as (James Cameron,
Directs Genre Of Movies, Science Fiction). We need a way to close that gap, for example by
exploiting correlations between (x, Directs Genre Of Movies, z) edges and paths of the form
(x, Director Of, y), (y, Genre, z) connecting the same pairs of entities.

1.1 Building knowledge graphs

Building accurate and comprehensive KGs is often done through a combination of extrac-
tion methods that capture facts explicitly expressed in the source, and inference methods
that can derive implicit facts missed by the extractors. A promising strategy for inferring
missing facts that emerged in recent years is called Link Prediction (LP). The field of LP
has been dominated by methods based on KG embeddings [8, 42, 56], since they provide
an elegant solution to the incompleteness problem. By controlling the dimensionality of the
embedding space, these models are able to generalize to unseen facts [20]. However, these
consider only two entities and one relation at a time to make a prediction. Thus, they cannot
model complex relations and reason over multiple relations to solve our problem.

Multi-hop inference for link prediction There is strong evidence in the literature show-
ing that leveraging graph traversals as features can help with LP as it allows correlations
between paths and direct relations [35] to be exploited. Multi-hop link prediction algorithms
leverage structural information gathered through exploring the graph looking for paths

1https://en.wikipedia.org/wiki/Terminator (franchise)#The Terminator (1984)
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connecting pairs of entities involved in a given relation [36]. Although these algorithms
greatly help with LP, existing methods perform the traversals on the KG itself and are thus
constrained by its deficiencies. KGs are notoriously incomplete and have highly skewed
degree distribution of nodes, resulting in some nodes being over represented in training and
leading to models that do not generalize well. For example, at the time of writing, about
half of all Citizenship (wdt:P27) facts in Wikidata involve just 10 countries, with the United
States (wd:Q30) alone having 13.7% of all facts. LP methods that exploit graph traversals
are likely to attend to those paths related to the United States disproportionately more than
other countries.

In passing, we also note that this data skew also bias embedding-based LP methods
towards the so-called supernodes which are over-represented during training. What is worse,
the evaluation of LP methods is based on removing individual relations (i.e., single edges)
from the KG and attempting to re-construct them. This results in supernodes appearing
disproportionately more in the validation sets used in the literature. As a result, many authors
report impressive, yet misleading, results [56].

1.1.1 Motivation

We hypothesize that the performance of a LP algorithm can be improved if it is allowed to
leverage graph traversals that are not constrained by the KG itself. To that end, we develop
a method in which graph “traversals” and “paths” are defined over the embedding space
where the entities are represented.

To verify our hypothesis, we introduce a simple yet efficacious multi-hop link predic-
tion framework called HOPLoP which is, in effect, a meta-algorithm that can be used with
any underlying embedding method. HOPLoP is an end-to-end differentiable multi-hop LP
framework that learns to traverse a KG in the embedded space while distinguishing between
existent and non-existent links of the KG. By doing so, HOPLoP is able to recognize and
account for errors in the embedded representation of the KG and create appropriate decision
boundaries, which leads to performance boosts in LP.

Figure 1 illustrates a “traversal” on an embedding space resulting from a geometric
method such as TransE [7]. Recall that in such an embedding, relations (represented as
dashed lines in the figure) act as constraints on the positioning of the entities which tend
to be clustered together by type. Assume we are given many pairs of directors and the gen-
res of their movies; for the sake of the example, assume we are given the fact that James
Cameron directs Science Fiction movies but not Drama movies. HOPLoP’s pathfinder will
search for both paths associated with positive examples (shown in green above) and paths
associated with negative examples (red). As illustrated in the figure, a “traversing” path of
length k amounts to applying the k corresponding vectors to the point in space representing
the starting entity. In the case of TransE, we do that by adding vectors. Note that the end-
point of each application may not correspond to an actual entity in the graph, but that is not
a concern: HOPLoP learns to traverse such a partial representation of the KG to accurately
distinguish between positive and negative examples.

Contributions Our contributions are as follows:

1. We propose an end-to-end differentiable multi-hop link prediction framework for
LP over large KGs. End-to-end differentiability improves computational efficiency,
allowing for simpler optimization algorithms such as Gradient Descent [57].
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Figure 1 Illustration of how a trained HOPLoP model may learn correlations between

2. We introduce the idea of traversing over the embedded space instead of the discrete
KG space to solve the LP task. Doing so mitigates issues related to incompleteness and
skewed degree distributions for nodes.

3. We evaluate our method on 2 well known benchmarks, and introduce 2 new ones for the
task of multi-hop LP. The evaluation is done on 2 tasks: entity prediction and relation
prediction, and the results show our method consistently outperform previous methods
across datasets and metrics.

4. We provide a method to interpret reasoning paths of HOPLoP based on the geometric
embedding method TransE and show that the such interpretations are meaningful.
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2 Preliminaries

2.1 Knowledge graphs

As customary, we define a Knowledge Graph (KG) as a labeled, directed graph G =
(E,R,L) consisting of a set of entities E which correspond to unique objects, a set of rela-
tions R which are labels applied to links and a set of links L ⊆ E × E × R. Each link
connects one so-called “query entity” eq ∈ E to a “target entity” et ∈ E , assigning a relation
r ∈ R to that pair, resulting in a triple represented as (eq, r, et ).

Often, KGs store facts of the world in a format usable by humans and machines [49].
They seamlessly organize and integrate data from multiple sources, based on an ontology, to
capture information about entities of interest in a given domain or task (e.g. people, places or
events), and forge connections between them. Each link in the KG represents a fact, which
is usually captured from natural language.

To remain current, KGs need to be constantly updated with new facts. This is done
through two approaches: Knowledge Base Population (KBP) [26] and Knowledge Base
Completion (KBC). In this paper, we focus on a special case of the latter (KBC), called Link
Prediction.

2.2 Link prediction

Given a link in the form of a triple (eq, r, et ), the Link Prediction (LP) task aims at producing
a score indicative of the likelihood for the link existing in the KG. Surveying the literature
uncovers 2 variants of the LP task: Relation Prediction and Entity Prediction, discussed next.

Relation prediction The relation prediction task focuses on predicting which relations hold
between query entity eq and a target entity et , ranking them by decreased likelihood. It can
be used to answer question like “how is James Cameron related to Avatar?”, which is often
denoted by the incomplete triple (James Cameron, ?, Avatar) in the literature.

Entity prediction Entity prediction is concerned with ranking target entities et that would
be linked to a given query entity through a given relation label. It is used to answer questions
like “who directed the movie Avatar?”, which is often denoted by the incomplete triple
(Avatar, Director Of−1, ?). Note the use of the relation inverse in this case, to indicate that
we want to “traverse” that edge of the graph backwards.

We show how to perform both entity and relation prediction using HOPLoP. Motivated
readers may refer to extensive surveys [27, 49, 56, 70] on LP methods applied on KGs.

2.3 Knowledge graph embeddings

KG embedding algorithms learn to map discrete entities and relationships in a KG onto
vector representations that capture the latent structure of the KG [70]. The key intuition
involves optimizing embedded representations of discrete components such that, the score
predicted for a link that exists in the KG is generally higher than a score predicted for a link
that is not present in the KG. Given a link, expressed as triple (eq, r, et ), a KG embedding
model takes as input eq, r, et, and computes a score representing the likelihood that the link
exists in the KG. By controlling the dimensionality of the embedding space, we observe that
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these models generalize to unseen facts [20, 47, 48]. The resultant embedded representation
of the KG is more-complete but less accurate than the discrete KG [8].

To verify our hypothesis introduced in Section 1, that KGs mapped onto an embed-
ded space can be traversed by HOPLoP, we experiment with three KG embedding models:
TransE [7], ComplEx [66], and TuckER [4]. TransE was introduced by Bordes et al. [7]
and is the first and the most competitive translational distance KG embedding model [51].
TransE views each relation label r as a vector which maps, via a translation, the query enti-
ties to their target entities in the vectorial space. By representing entities and relations in the
same vector space, TransE produces embeddings that are easier to interpret and is also less
computationally expensive. Tensor factorization models [32], such as RESCAL [48] and
DistMult [73], attempt to decompose a binary tensor representation of a KG. These models
learn to generate embeddings that assign higher scores to triples that represent links present
in the KG. Trouillon et al. [66] introduced ComplEx to improve asymmetric relation mod-
elling. By enabling the representation of real and imaginary numbers, entities can behave
differently based on their position (query or target) in a link. TuckER [4] is a fully expres-
sive bilinear tensor factorization model based out of the Tucker decomposition [67]. We
include TuckER in our experiments since it achieves state-of-the-art performance in LP [4].

2.4 Neural architectures

Neural Networks are based on a collection of connected units or nodes called artificial neu-
rons [19]. These neural architectures are used in conjunction with an optimization objective
and a learning algorithm to achieve state-of-the-art performance on various tasks [37]. The
performance of neural networks are backed by the Universal Approximation Theorem [12]
and the development of parallelized computation.

Recurrent neural networks [28, 58] are a class of deep neural networks that learn to
model temporal dynamic behaviour by utilizing an internal memory component that stores
the state of the network. Due to problems such as vanishing and exploding gradients [50],
RNNs have been superseded by gated networks such as LSTMs [24] and GRUs [11]. LSTM
networks learn to ignore noisy temporal patterns while paying a soft-attention to important
patterns of the sequence, making them more powerful that vanilla RNNs. For this reason,
we parameterize HOPLoP with an LSTM, but other architectures would work.

3 Related work

3.1 Path ranking algorithm

The Path Ranking Algorithm (PRA) [36] tackles the entity prediction variant of the LP task
using an inference mechanism based on Random Walk with Restart (RWR) [35] that ranks
related target entities. Each PRA model is specific to a relation (label) and is trained over
a set of query entities and predefined paths to find a distribution over all target entities
reachable through the paths and for which the relation holds. Given a set of query entities
and pre-defined paths, a relation-specific PRA model performs a “weighted random walk”
over all paths to predict links for that relation. The training phase allows PRA to tune the
weight associated with each path such that paths that are more likely to reach the required
target entities will be scored or ranked higher.
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Composition of KG embeddings Frameworks following PRA used continuous represen-
tations of the KG, which helped the model understand the global structure of the graph
[18]. Neelakantan et al. [47] introduced Path-RNN to tackle relation prediction by reasoning
about composition of binary relations connected in a path. Similar to PRA, one Path-RNN
model was used to model one relation. For a given task, Path-RNN uses PRA, in a pre-
processing step, to generate relational paths relevant to the task. Embedded representations
of relations, in a PRA path, were composed using a RNN, which predicted whether two
entities were linked via a particular relation. Das et al. [13] extended the work of Neelakan-
tan et al. [47] to introduce a multi-task framework called Single-Model that outperforms
Path-RNNs by including entity type information in the LP process. Guu et al. [20] tackles
the entity prediction problem by introducing a novel compositional training objective that
produced a structural regularization effect in the LP process.

Differences to HOPLoP Approaches that train models in a supervised fashion over paths
collected using PRA are affected by large fan-out areas caused by certain entities known as
supernodes [61], making the LP process inefficient. In contrast, our framework does not uti-
lize PRA to collect relational paths. Instead, it learns to traverse an embedded representation
of the KG by modifying the representation for the query entity such that, after the traversal
process, the resultant embedding represents the target entity embedding. This sequence of
modifications is analysed by an LSTM network, which estimates the probability with which
that particular relation holds between the query and the target entity.

HOPLoP shares similarities to the work of Guu et al. [20], with some key differences.
First, their method explicitly requires paths to be fed into their model, whereas HOPLoP
does away with this requirement and searches for paths on its own. Second, they operate on
a discrete state space since pre-computed paths are given as input, whereas HOPLoP tra-
verses a continuous embedding space and is not restricted by the links in the discrete graph.
Third, their approach looks to retrain KG embeddings to provide a form of structural regu-
larization, whereas HOPLoP utilizes separate neural architectures that learn to traverse over
a constant embedding space. Fourth, their approach is only compatible with compositional
KG embeddings such as RESCAL [48], DistMult [73] and TransE [7], whereas HOPLoP
can work with any KG embedding method.

3.2 DeepPath and reinforcement learning

To overcome the bottleneck caused by supernodes, subsequent approaches sought out tech-
niques from Reinforcement Learning (RL) [64]. Xiong et al. [72] introduced DeepPath,
which is the first algorithm that applies RL for link prediction. DeepPath [72] tackles the
problem of relation prediction by combining KG embeddings and reinforcement learning
that learn to traverse the graph, in search of paths that support the relation of interest.
DeepPath’s training phase is broken down into two parts. The first involves training the
mathematical model of the RL algorithm using standard supervised learning and paths col-
lected by a Breath First Search (BFS) procedure. During the second phase of training,
DeepPath uses the REINFORCE [71] algorithm to efficiently search for paths based on a
reward function that takes into account the accuracy, diversity and efficiency of a traversed
path. At each time-step, the RL agent outputs the relation to traverse, which is used by the
environment to discretely search for the “next-hop” entity. The KG environment operates
on a discrete space and provides the agent with rewards based on accuracy, efficiency and
diversity. As experience is gained, the RL algorithm aims to improve the rewards it receives.
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Das et al. [14] introduced MINERVA to tackle the entity prediction task. Their model
utilizes a policy network to find a chain of links that connects the query entity with a tar-
get entity such that the underlying relation is expressed. Rather than pre-training the RL
model using labeled data, MINERVA is an “RL-only” solution that uses a LSTM network
to generate a path embedding at each step. Path embeddings at each time-step are used to
predict the link to be taken at that time-step. MINERVA’s environment uses the discrete KG
to search and extend the path towards the target entity. Since the environment assigns equal
rewards to all paths that reach a required target entity, it ignores the quality of the path.

Lin et al. [39] aim to improve the quality of the path with a reward shaping strategy that
gives a full positive reward (+1) if the agent reaches the correct target entity. However, if the
agent does not reach the correct target entity, the reward is fractional based on a function of
a pre-trained KG embedding model. The underlying assumption is that the KG embedding
method is more complete than the discrete KG and contains information about links that
are not present in the KG. Shen et al. [60] introduced M-Walk, which consists of a RNN
network and Monte Carlo Tree Search guiding the search to pick entities that help the agent
move towards the target entity.

Variational inference for LP Ranganathan and Subramanyam [52] describe two phases in
the multi-hop LP process: Path-finding and Path-reasoning. Path-finding is the process of
searching for a path connecting two entities. Path-reasoning is the process of evaluating
whether a traversal path represents an underlying relationship. Approaches prior to Chen
et al. [10] did not facilitate adequate interactions between the two phases of multi-hop LP.
For instance, DeepPath and MINERVA can be interpreted as enhancing the Path-finding step
while compositional reasoning [13, 47] algorithms can be interpreted as enhancing the Path-
reasoning step. DeepPath is trained to find paths more efficiently between two given entities
while being agnostic to whether the link exists between the two entities. MINERVA learns
to reach target nodes given a source entity-relation pair while being agnostic to the quality of
the searched path. Compositional reasoning models learn to predict the underlying relation
given paths, while being agnostic to the path-finding procedure. Chen et al. [10] introduced
DIVA to tackle the relation prediction problem using neural architectures coupled with the
variational auto-encoder algorithm [31] for training and inference to cope with complex link
connections in a KG.

Differences to HOPLoP Unlike previous multi-hop approaches, which traverse a discrete
representation of the KG and suffer from incompleteness and skewed degree distribu-
tions, HOPLoP is allowed to traverse anywhere while boosting performance of LP. While
HOPLoP and DIVA aim to improve the interaction between the two subtasks of link pre-
diction process, HOPLoP operates entirely over an embedded space. By operating over an
embedded space, HOPLoP is not affected by the incompleteness problem since it oper-
ates over a more-complete representation of the KG and has the ability to create traversal
functions that can account for errors in the embedded space. Operating over an embedded
space also enables end-to-end differentiability. This allows HOPLoP to be optimized effi-
ciently using gradient descent methods [57], unlike variational inference based optimization
methods, which are computationally expensive [17].

3.3 Other approaches

Departing from multi-hop LP, there are methods that aim to embed conjunctive graph
queries [23, 53, 54], by mapping a subset of logic to efficient geometric operations in an
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embedding space, by jointly optimizing embeddings for components in the KG with prede-
fined logic computation graphs. Similar to problems with previous multi-hop link prediction
approaches, these algorithms requires queries (similar to paths) as input. HOPLoP does not
require any pre-processing steps, and automatically learns to find paths. R-GCN [59] uti-
lizes a relational graph convolutional network (GCN) to model entities as nodes of a graph
neural network (GNN). The nodes are embedded in high-dimensional space and each node
embedding contains information of a 1-hot neighborhood of facts around that entity. Similar
to HOPLoP, R-GCN “hops” over a entities, but different from HOPLoP, R-GCN does this
by evolving all node embeddings at each hop, making this method computationally expen-
sive. In contrast, HOPLoP simply adds a translation vector to it’s current position in the
embedding space, to move to the next-hop entity.

4 HOPLoP: multi-hop link prediction over knowledge graph
embeddings

Our motivating hypothesis is that the performance in multi-hop LP can be improved if the
KG representation is more complete than its discrete form and allows traversals that are
not affected by supernodes in the KG. Traversing a more complete representation of a KG
can uncover correlations between relations and paths that help with the LP task. HOPLoP’s
path-finder is a one-hop function that can perform multiple traversals to anywhere in the
embedded space, but we control its traversal from the source to the target entity.

Now, because we are traversing the embedded space, we have a much larger space of
paths from the source to the target entity. DL architectures, such as LSTMs, can form
appropriate compressed representations for all these paths, which then can be used by a
simple logistic regression function that performs the link prediction. Moreover, since KG
embeddings are neural representations of entities, a neural path-finder [72] can utilize this
information to model the relationship between the 2 entities using paths in the space that
connect the source to the target entity.

Since all operations (traversal as a sequence of translations and neural architectures) are
connected and differentiable, we can use standard optimization methods based on gradients
and back-propagation to tune the parameters of the model. This will be preferred over using
computationally expensive techniques such as, RL (which usually requires pre-training with
labeled data), and variational inference techniques [17]. Through backpropagation, a logis-
tic regression model can propagate error gradients to the path-reasoner, which in turn can
propagate errors to the path-finder, facilitating adequate interactions between the path-finder
and path-reasoner [10].

4.1 Task

Specifically, we tackle the problem of relation prediction (eq, ?, et ), i.e., finding the most
likely relation between the given query and target entity. To promote differentiability, we
convert this problem into the stochastic setting by predicting the probability that a relation
R = r exists between any two entities eq, et :

Pr(R = r|Q,T ) (1)

where Q and T are random variables representing all query and target entities respectively.
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Figure 2 Modelling our LP task.
Left: original task taking “paths”
into account. Right: once a path
p ∈ P is traversed, the parent
random variables Q and T no
longer influence the child
random variable R

HOPLoP is allowed to explore “paths” connecting (the representations) of eq, et and
defined in the embedded space, in which following a link is equivalent to following a traver-
sal vector, which may or may not correspond to to an actual link in the KG. A traversal
path p is a sequence of traversal vectors p = (v1, ..., vH) where H = |p| is the length of
the sequence. Each traversal vector characterizes a “hop” from one point in the embedding
space to another point in the same embedding space. In the next subsection, we describe the
path-finder whose job it is to attain a path p.

Let P be a random variable, indicative of all paths in the embedded KG space. On
incorporating path information P in the LP process, we have:

Pr(R = r|Q,T ) = Pr(R = r|Q,T ,P) (2)

Since each path is generated based on the query and the target entities, the random vari-
able P is a child of random variables Q and T in our modelling. Figure 2 illustrates the
idea. Therefore, once P is known, Q and T no longer influence any descendants of P [22].
Therefore, we arrive at:

Pr(R = r|Q,T ,P = p) = Pr(R = r|P = p) (3)

4.2 Model

In the previous subsection, we have simplified and divided our task into 2 parts: generating
a path or “path-finding” and reasoning about a path to predict a link or “path-reasoning”. To
solve this problem of LP, we employ two neural network architectures [37]. The path-finder
is a single-layered fully-connected neural network, consisting of a hidden layer with 1000
ReLU-activated neurons, that learns to traverse the continuous representation of the KG.
The output layer contains neurons corresponding to the dimension of the KG embedding
space. Due to the shallow nature of our path-finder, we simply refer to a single-(hidden)-
layered fully connected neural network as an Artificial Neural Network (ANN). This neural
network accepts, as input, concatenated vector representations of the query and target entity.
It outputs a translation vector, which is added to the query entity embedding to represent it’s
current position in the embedding space. The point representing the current position may or
may not refer to an entity in the KG. HOPLoP’s current position is now concatenated with
the target entity embedding and fed into the neural network, to traverse another point in the
embedded space. This process continues until a maximum number of hops H is reached.

Our framework also includes a path-reasoner, which is an LSTM [24] network that anal-
yses the sequence of translation vectors. The LSTM network is single-layered, consisting
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of LSTM cells corresponding to the entity embedding dimension. The hidden state vector
of the LSTM at the end of the traversal can be interpreted as the path embedding. This
path embedding is sent to a sigmoid-activated neuron that performs logistic regression. The
LSTM network takes, as input, the sequence of translation vectors, outputted by the path-
finder. The output aims to predict the probability that the relation R = r holds between the
query entity and the target entity.

To summarize, our path-finder traverses the embedding representation of the KG to form
a path P = p as given by:

p = (v1, ..., vH) (4)

where vi is defined as:

vi = ANNr

([
eq +

i−1∑
h=1

vh; et

])
(5)

where ANNr represents the one-hop function modeled by the ANN and [; ] represents the
concatenation operation. At hop i = 0, v0 since undefined, since HOPLoP has not started
the traversal process. At hop i = 1, v1 = ANNr([eq; et ]); at hop i = 2, v2 = ANNr([eq +
v1; et ]); at hop i = 3, v3 = ANNr([eq + v1 + v2; et ]); at the end of the traversal, vH =
ANNr([eq + v1 + v2 + ... + vH ; et ])

Finally, our link prediction problem is formulated by:

Pr(R = r|P = p) = σ(uT
r × LST Mr(p) + br) (6)

where u is a trainable vector that are multiplied with the last hidden state of the LSTM, and
b represents a trainable bias. The result is squashed using the sigmoid function σ to obtain
a value between 0 and 1 that represents the probability that relation r connects the query
entity eq to the target entity et . Subscript r indicates relation-specific parameters.

4.3 Training

The path-finder is an ANN that aims to traverse the KG, from the query entity to the target
entity. To learn this traversal function, we control the path-finder by employing a distance-
to-target (D2T) loss. At the end of the traversal, we expect that the path-finder should reach
the target entity position. This loss can be given as follows.

LD2T =
D∑

d=1

(
etd −

(
eqd +

H∑
i=1

vid

))2

(7)

where et is a embedding representing the target entity, eq is a embedding representing the
query entity, vi is the traversal vector, outputted by the neural network, at the ith hop, d

represents the element at that position in the vector and D is the embedding dimension.
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We formulate the LP task as a classification problem. The model should learn to classify
between positive and negative pairs of entities for a relation r . A positive entity pair involves
two entities who are related via the relation r and the triple (eq, r, et ) represents a link, which
is observed in the KG. To perform this classification task, we use the binary cross-entropy
loss function. The classification loss can be given as follows.

LC = −y × log(o) + (1 − y) × log(1 − o) (8)

where o = Pr(R = r|P = p) is the value outputted by the LSTM network, and y is
a boolean variable that signifies if the relation r holds between the source entity and the
target entity. Since our model learns to classify between positive and negative entity pairs,
following [72], we train the model with positive and negative examples in a 1:1 ratio.

The two objectives, described in (7) and (8), are jointly optimized using Gradient Descent
[57]. The overall objective function can be given as follows.

min
Θ

L = LD2T + LC (9)

where Θr = ΘANNr ∪ ΘLST Mr ∪ ΘLogRr represents the parameters of the model. The
differentiability of our framework allows us to jointly optimize the parameters of the path-
finder and the path-reasoner.

Figure 3 describes both the path finding and reasoning processes in HOPLoP using the
notation of Probabilistic Graphical Models (PGMs) [33]. The left side of the figure shows
a PGM representing the path-finding process. The rectangle in the figure represents a plate
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Figure 3 Illustration of how we model the path-finder and a path-reasoner using PGMs

model, which is repeated for H hops. ec represents the current position in the entity embed-
ding space and ⊕ represents pointwise addition. Finding a path p from eq to et is performed
by an ANN, whose parameters are controlled by ΘANNr . The right side of the figure shows
a PGM diagram illustrating the path-reasoning process. The path is analyzed by the LSTM
network, whose parameterized by ΘLST Mr . The final hidden state of the LSTM is used as
a path representation to perform logistic regression, parameterized by ΘLogRr , to predict
whether the relation exists between the two entities.

4.4 Discussion

HOPLoP framework essentially performs a logistic regression [25] which learns a decision
boundary that can accurately distinguish positive and negative pairs of entities for a particu-
lar relation of interest. This classification is based on a vector representation of the traversed
path, generated by the LSTM that analyses the sequence of translation vectors used to tra-
verse from the query to the target entity. The traversal over an embedding space involves
modifying the query entity embedding several times, through vector addition, such that, at
the end of the traversal, the modified query entity should represent the target entity and
the sequence of modifications applied on the source entity by the neural network should
allow the LSTM to form effective path embeddings that characterizes the traversal pro-
cess. Through backpropagation [58], the LSTM network controls how the neural network
learns to traverse the embedding space, thus providing adequate interaction between the
path-finding and path-reasoning processes.

5 Experiments and results

5.1 Datasets

To test our framework on the task of (multi-hop) link prediction, we evaluate on standard
datasets such as NELL-995 [72] and FB15K-237 [65]. Dataset statistics have been provided
in Table 1. Every dataset contains a set of tasks, relations of interest for which links must

1049World Wide Web (2022) 25:1037–1065



Table 1 Statistics of KG datasets used in experiments

Dataset #Entities #Relations #Triples #Tasks

NELL-995 75,492 200 154,213 12

FB15K-237 14,505 237 310,079 20

WN18RR 40,714 11 86,835 10

YAGO3-10 123,143 37 1,079,040 23

be predicted. Each task is a query relation for which links must be predicted. These tasks
were extracted from different domains like Sports, People, Locations, Film, etc. For each
task, there is a set of query entities. Each query entity eq is related to a set of positive target
entities {..., e+

ti
, ...} via a specific task r . The datasets also include several negative target

entities {..., e−
ti
, ...} that are not linked to the query entity eq via the relation of interest r .

Following Guu et al. [20] and Xiong et al. [72], negative target entities are picked from the
same domain as the positive target entity, allowing for a fair evaluation of our framework.
Following our movie example, the set of negative target entities will not contain entities
such as Canada, Titanic, Football, etc., since these entities are out of the range of the relation
Directs Genre Of Movies, whose range is equivalent to the range of Genre. Futhermore,
following Lin et al. [38], we include the reverse relations for each relation in the KGs.
Specifically, for each triple (eq, r, et ), we add a triple (et , r

−1, eq) to the KG. This technique
has known to improve the performance of KG embeddings in the LP task [46], allowing
us to compare HOPLoP to stronger baseline KG embedding models. This technique helps
previous multi-hop algorithms by enabling bi-directional traversal of a link, i.e., a RL agent
is able to step backward in the KG [72]. This allows them to correct for mistakes in the
graph, due to incompleteness, or mistakes in the traversal process.

To further evaluate our model, we introduce the WN18RR and YAGO3-10 [15] datasets
for our task of relation prediction. These datasets have been previously used for entity pre-
diction [29], in the literature of KG embeddings. To maintain consistency with well-known
datasets in this literature of multi-hop LP, we pick several tasks from each dataset and
generate negative target entities for facts involved in these relations:

5.1.1 WN18RR [15]

We take advantage of the hierarchical structure of WordNet [44] to generate negative exam-
ples. Given a positive entity pair, we include all hyponyms of the hypernyms of the positive
target entity as negative target entities for that query entity. This ensures negative target
entities are from the same domain as the positive target entity. We pick 10 tasks from 11
relations from the KG such that the relation is involved in atleast 1% of all facts. This covers
99.9% of the WN18RR KG.

5.1.2 YAGO3-10 [41]

Since YAGO is not hierarchically structured, we do not use the approach we used for the
WN18RR dataset. Instead, we used Breadth First Search (BFS) to obtain negative exam-
ples. BFS traversed the links of the graph, while remaining agnostic to the relation, to reach
entities that are connected to a query entity. We made sure that the negative target entities,
picked by BFS, were in the range of the query relation. We used BFS rather than random
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sampling techniques to make the dataset more competitive, following the intuition that base-
line KG embedding models will be able to distinguish between positive and negative entity
pairs simply based on the distance between the entities [40]. We pick 23 tasks from 37 rela-
tions from the KG such that there are atleast 3,000 facts per relation to ensure adequate
representation of the relation in embedded representation of the KG. This covers 99% of
the YAGO3-10 KG. Following previous work, we extracted 10 negative target entities per
positive target entity. For the relation hasGender in the YAGO3-10 dataset, there was only
1 negative target entity per positive target entity. This is because the hasGender relation
is binary in that KG. The datasets, and codes for building them, are publicly available at
https://github.com/U-Alberta/HOPLoP.

5.2 Experimental setup

Although our framework is agnostic to the KG embedding model, HOPLoP relies on a base
KG embedding model to provide an embedding space to traverse over. We experiment with
3 popular KG embedding models as described in Section 2.3. In short:

• TransE [7] was the first, yet extremely competitive [51], translational distance LP model
that capture relations between entities such that eq+r ≈ et. ComplEx [66] and TuckER
[4] are derived from tensor factorization methods (ComplEx: [48, 73], TuckER: [67])
which looks to decompose the binary tensor representation of the KG. The optimization
goals between the two methods are very different: translational distance models look to
minimize the distance, in euclidean space, between two related entities whereas tensor
decomposition methods look to maximize the probability that a link exists in the KG
through classification.

• Although ComplEx and TuckER are both tensor factorization methods, ComplEx rep-
resents embeddings in complex space and computes dot products for complex vectors
such that positive links have a lower dot product value than negative links. This gen-
erates embeddings that generally have more negative values, due to the minimization
procedure explained in Section 2.3, which is leveraged later by Ding et al. [16] to
introduce sparsity and interpretability to the embeddings. On the other hand, TuckER
decomposes the binary tensor representation of the KG B ∈ {0, 1}|E|×|R|×|E| into
B ≈ W ×1 E ×2 R ×3 E , such that W ∈ R

de×dr×de , E ∈ R
|E|×de , R ∈ R

|R|×dr ,
and the product of matrices should be result in higher dot product for positive link. The
objective between two tensor factorization methods differs widely due to their view of
their KG model.

We perform hyperparameter tuning for those hyperparameters introduced by HOPLoP.
To leverage computation gains from compiled static graphs generated by ML packages such
Tensorflow [1], HOPLoP requires a pre-determined path length, which allows for compile
time optimizations.2 Therefore, we tune the maximum number of hops H choosing from
{1, 3, 5, 10, 15, 20}.

We provide a fair comparison between HOPLoP and baseline KG embedding models,
we set the dimensionality of all embeddings to 100. We re-train for embeddings follow-
ing the hyperparameters selected by the creators of the KG embedding. Embeddings and

2In the next section, we see that HOPLoP learns to not hop; this is non-trivial because we do not explicitly
provide HOPLoP with feedback regarding when not to hop, nor do we set up any constraints in the traversal
process.
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network parameters were optimized using Adam [30] with the default hyperparameter
settings (initial learning rate μ = 0.001). Details regarding hyperparameter selection is
available in the supplementary material.

We evaluate HOPLoP on 2 tasks: Relation prediction and Entity prediction. We describe
how HOPLoP can be used to perform both entity and relation prediction while comparing
it to the state-of-the-art in both tasks.

5.2.1 Relation prediction

The relation prediction task is commonly used to evaluate multi-hop link prediction algo-
rithms [14, 36, 60, 72]. The reason for evaluating HOPLoP on relation prediction stems its
mathematical derivation, making relation prediction the intrinsic evaluation method.

Methodology Given a test query entity eq , a relation r and a set of target entities et |q,r =
{e+

t1, e
+
t2, e

−
t3, e

−
t4, ...}, we compute the link prediction scores HOPLoPr (eq, e′) for each

entity in e′ ∈ et |q,r . e+
t i refers to a positive target entity, whereas e−

t i refers to a negative
target entity. In the ideal situation, the scores for all positive target entities will be higher
than all negative target entities, i.e., all positive target entities will be ranked higher than all
negative target entities.

Following previous literature, our evaluation metric is the Mean Average Precision
(MAP) score. Given a query relation, the MAP score is the mean AP across all query enti-
ties. AP is a strict metric since it penalizes when a negative target entity is ranked above a
positive target entity. We evaluate HOPLoP in the relation prediction task on four datasets:
NELL-995, FB15K-237, WN18RR and YAGO3-10.

5.2.2 Entity prediction

The entity prediction task is commonly used to evaluate KG embedding-based LP algo-
rithms [29]. Although HOPLoP is designed for relation prediction, we describe a procedure
for the extrinsic evaluation of HOPLoP on the more-common entity prediction task.

Methodology Given a test triple (eq, r, et ), we calculate the probability that link exists,
HOPLoPr(eq, e′) for all possible e′ where e′ ∈ E is an entity, such that, (eq, r, e′) does not
represent a link in the KG, unless e′ = et . This allows us to compute metrics in the filtered
setting [7], which does not penalize the model for ranking other correct target entities higher
than the correct target entity et in question. We sort this list of scores in decreasing order
and compute the rank for the correct target entity et . Since we do not train a HOPLoP model
for every relation in the dataset, we consider the worst case prediction possible, i.e., the rank
for the correct target entity et at worst is |E |.

Following previous literature, we compute 2 types of metrics: Hits@k (H@k) k ∈
{1, 3, 10} and Mean Reciprocal Rank (MRR) and evaluate on two standard datasets:
WN18RR and YAGO3-10.

5.3 Results

Hypothesis If a multi-hop LP algorithm is allowed to traverse the graph, unconstrained,
then this will boost performance in the LP task. To this end, we proposed HOPLoP,
which traverses the KG embedding space in a unconstrained yet controlled manner. In the
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context of HOPLoP, our hypothesis can be re-worded: If HOPLoP is trained, then it learns
to uncover correlations between the controlled path traversals and the relation of interest,
thus boosting LP performance. Table 5 observes that, without any training, HOPLoP does
not perform as well as the baselines. This shows that the training process helps HOPLoP
correlate traversal paths to a relation. This boost in LP performance can also be observed
across all datasets and metrics.

5.3.1 Relation prediction

We compare HOPLoP with embedding-based algorithms [4, 7, 66], supervised path traver-
sal approaches [36], reinforced path traversal approaches [14, 60, 72]. We also compare
with DIVA [10], a probabilistic approach tackling the relation prediction task, but report
their results in the captions of tables since their paper does not disclose MAP scores for
each relation. Table 2 reports the results from experiments involving the NELL-995 dataset,
a simple dataset for which many existing algorithms observe very high accuracies. We eval-
uate HOPLoP over the FB15K-237 dataset, which is considered to be more challenging
arguably more relevant for real-world scenarios than the NELL dataset [10]. Results from
this experiment have been reported in Table 3, showing that our approach performs signif-
icantly better than state-of-the-art approaches. From Tables 2 and 3, we can also observe
that HOPLoP improves the performance of all KG embedding models. On the NELL-
995 dataset, HOPLoP traverses over TransE’s embedding space to boost performance by
+ 0.106 MAP. HOPLoP boosts performances of TransE, ComplEx, TuckER by + 0.137,
+ 0.050 and + 0.159 MAP on the FB15K-237 dataset. We also observe that less performant
KG embedding models, such as TransE, are highly benefited by HOPLoP since their sim-
ple representation allows HOPLoP to easily understand the structure of the KG and create
appropriately complex decision boundaries (Table 4).

Futhermore, we evaluate HOPLoP on two new datasets introduced for the task of multi-
hop link prediction. We compare HOPLoP to baseline KG embedding models and observe

Table 2 Performance of HOPLoP against baseline path-based and embedding-based approaches to the
relation prediction task on the NELL-995 dataset

Task HOPLoP M-Walk Minerva DeepPath PRA TransE

(TransE) (Bernoulli)

AthletePlaysForTeam 0.953 0.847 0.827 0.721 0.547 0.727

AthletePlaysInLeague 0.998 0.978 0.952 0.927 0.841 0.726

AthleteHomeStadium 0.930 0.919 0.928 0.846 0.859 0.798

AthletePlaysSport 0.929 0.983 0.986 0.917 0.474 0.805

TeamPlaysSport 0.980 0.884 0.875 0.696 0.791 0.759

OrgHeadquaterCity 0.956 0.950 0.945 0.790 0.811 0.912

WorksFor 0.993 0.842 0.827 0.699 0.681 0.901

BornLocation 0.965 0.812 0.782 0.755 0.668 0.744

PersonLeadsOrg 0.962 0.888 0.830 0.790 0.700 0.899

OrgHiredPerson 0.930 0.888 0.870 0.738 0.599 0.868

Overall 0.934 0.899 0.876 0.788 0.697 0.828

Values represent MAP scores. DIVA attained an overall MAP score of 0.886
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Table 3 Performance of HOPLoP against baseline path-based and embedding-based approaches to the
relation prediction task on the FB15K-237 dataset

Task HOPLoP HOPLoP HOPLoP DeepPath PRA TransE ComplEx TuckER

(TransE) (ComplEx) (TuckER) (Bernoulli) (Bernoulli)

Team/Sport 0.989 0.993 0.995 0.955 0.987 0.924 0.985 0.953

Person/ 0.986 0.960 0.958 0.531 0.441 0.842 0.928 0.569

PlaceOfBirth

Person/ 0.964 0.977 0.981 0.823 0.846 0.849 0.900 0.934

Nationality

Film/Director 0.654 0.679 0.671 0.441 0.349 0.534 0.553 0.604

Film/WrittenBy 0.994 0.978 0.972 0.457 0.601 0.770 0.783 0.789

Film/Language 0.971 0.971 0.935 0.670 0.663 0.720 0.698 0.780

TvProgram/ 0.984 0.987 0.979 0.969 0.960 0.935 0.934 0.971

Languages

CapitalOf/ 0.906 0.851 0.838 0.783 0.829 0.599 0.905 0.560

Location

OrgFounder/ 0.812 0.796 0.757 0.309 0.281 0.711 0.864 0.473

OrgFounded

Artist/Origin 0.966 0.883 0.866 0.514 0.426 0.744 0.903 0.519

Overall 0.864 0.859 0.849 0.572 0.541 0.709 0.809 0.690

DIVA attained a MAP score of 0.598

a significant improvement in MAP scores. Specifically, on the WN18RR dataset, HOPLoP
improves the performance of TransE, ComplEx, and TuckER by + 0.266, + 0.279, + 0.404
MAP respectively. Experiments on the YAGO3-10 dataset show that HOPLoP improves

Table 4 Performance of HOPLoP against baseline embedding-based approaches for relation prediction on
the WN18RR dataset

Task HOPLoP HOPLoP HOPLoP TransE ComplEx TuckER

(TransE) (ComplEx) HOPLoP (Bernoulli) (Bernoulli)

Hypernym 0.968 0.860 0.865 0.556 0.496 0.472

DerivationallyRelated 0.993 0.977 0.909 0.955 0.953 0.460

InstanceHypernym 0.966 0.966 0.995 0.844 0.700 0.811

AlsoSee 0.938 0.841 0.844 0.411 0.301 0.264

MemberMeronym 0.706 0.643 0.898 0.152 0.112 0.112

SynsetDomainTopic 0.976 0.941 0.979 0.856 0.524 0.771

HasPart 0.832 0.738 0.906 0.345 0.382 0.307

MemberDomainUsage 0.571 0.518 0.482 0.388 0.201 0.288

MemberDomainRegion 0.669 0.652 0.696 0.468 0.507 0.237

VerbGroup 0.991 0.992 0.816 0.843 0.965 0.347

Overall 0.848 0.793 0.811 0.582 0.514 0.407
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Table 5 Performance comparison between untrained HOPLoP models, baseline KG embedding models and
trained HOPLoP models

Embedding dataset TransE ComplEx TuckER

NELL-995 0.465 | 0.828 | 0.934 – –

FB15K-237 0.403 | 0.709 | 0.864 0.388 | 0.809 | 0.859 0.371 | 0.690 | 0.849
WN18RR 0.415 | 0.582 | 0.848 0.403 | 0.514 | 0.793 0.386 | 0.407 | 0.811
YAGO3-10 0.422 | 0.545 | 0.908 0.396 | 0.564 | 0.861 –

Results are of the form untrained HOPLoP MAP | baseline KG embedding MAP | trained HOPLoP MAP

the performance of baseline KG embedding models TransE and ComplEx by +0.363 and
+0.297 MAP respectively. Due to the enormous size of the YAGO3-10 dataset coupled with
computational constraints, we do not run experiments with TuckER (Tables 5 and 6).

Table 6 Performance of HOPLoP against baseline embedding-based approaches for relation prediction on
the YAGO310 dataset

Task HOPLoP HOPLoP TransE ComplEx

(TransE) (ComplEx) (Bernoulli) (Bernoulli)

IsAffiliatedTo 0.941 0.965 0.815 0.843

PlaysFor 0.955 0.904 0.778 0.814

IsLocatedIn 0.918 0.824 0.643 0.593

HasGender* 0.973 0.971 0.946 0.940

WasBornIn 0.883 0.766 0.415 0.390

ActedIn 0.861 0.839 0.369 0.397

IsConnectedTo 0.979 0.948 0.694 0.734

HasWonPrize 0.843 0.878 0.540 0.561

Influences 0.869 0.714 0.354 0.374

DiedIn 0.842 0.776 0.451 0.397

HasMusicalRole 0.923 0.935 0.646 0.538

GraduatedFrom 0.853 0.891 0.456 0.385

Created 0.916 0.837 0.523 0.604

WroteMusicFor 0.896 0.940 0.368 0.434

Directed 0.942 0.840 0.517 0.558

ParticipatedIn 0.790 0.770 0.476 0.552

HasChild 0.966 0.841 0.396 0.330

HappenedIn 0.955 0.877 0.600 0.628

IsMarriedTo 1.000 0.990 0.524 0.940

IsCitizenOf 0.934 0.975 0.634 0.548

WorksAt 0.968 0.997 0.581 0.621

Edited 0.988 0.948 0.328 0.426

LivesIn 0.967 0.965 0.484 0.356

Overall 0.908 0.861 0.545 0.564

Due to the biased nature of this task, a link prediction algorithm that always predicts male will achieve a
MAP score of 0.963 in this task

1055World Wide Web (2022) 25:1037–1065



Table 7 Performance of HOPLoP(TransE) in the entity prediction task on the WN18RR dataset compared
against state-of-the-art (multi-hop) LP algorithms

Model MRR H@1 H@3 H@10

M-Walk 0.437 0.414 0.445 –

ComplEx 0.440 0.410 0.460 0.510

MINERVA 0.448 0.413 0.456 0.513

TransE 0.466 0.423 – 0.556

TuckER 0.470 0.443 0.482 0.526

Reward Shaping (ComplEx) 0.472 0.437 – 0.542

CompGCN 0.479 0.443 0.494 0.546

ComplEx-N3 0.480 – – 0.570

HOPLoP(TransE) 0.760 0.753 0.767 0.790

5.3.2 Entity prediction

We compare HOPLoP(TransE) with several state-of-the-art KG embedding models such
as [7, 9, 15, 34, 63, 66, 68, 73] and multi-hop link prediction approaches [14, 39, 60]
on WN18RR and YAGO3-10 dataset. From Tables 7 and 8 we see that HOPLoP(TransE)
consistently outperforms previous state-of-the-art approaches by a good margin. On the
WN18RR dataset and YAGO3-10, HOPLoP(TransE) achieves an error reduction (with
respect to MRR) of 53.85% and 56.67% respectively.

5.4 Analysis

The main hypothesis of this paper is that the performance of a LP algorithm can be improved
if it is allowed to leverage graph traversals that are not constrained by the KG. To ver-
ify this hypothesis, we introduced HOPLoP, a multi-hop link prediction framework that
learns to traverse an embedding space, provided by a base KG embedding model. From
Tables 2, 3, 4, and 6, we can observe that HOPLoP consistently outperforms baseline KG
embedding models and previous state-of-the-art multi-hop link prediction algorithms. We
support our hypothesis with the intuition that traversing an embedding space uncovers cor-
relations between paths and relations facilitating better understanding of the global structure

Table 8 Performance of HOPLoP(TransE) in the entity prediction task on the YAGO3-10 dataset compared
against state-of-the-art KG embedding models

Model MRR H@1 H@3 H@10

DistMult 0.340 0.240 0.380 0.540

ComplEx 0.360 0.260 0.400 0.550

ConvE 0.440 0.350 0.490 0.620

RotatE 0.495 0.402 0.550 0.670

RefE 0.577 0.503 0.621 0.712

ComplEx-N3 0.580 – – 0.710

HOPLoP(TransE) 0.818 0.817 0.818 0.820
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Table 9 Runtime of HOPLoP(TransE) compared to M-Walk and MINERVA on the WN18RR dataset

Model Training (hrs.) Testing (sec./sample)

MINERVA (S = 3, L = 100) 3 2 × 10−2

M-Walk (S = 5, M = 128) 14 6 × 10−3

HOPLoP(TransE) (H = 1), fastest 3.7* 3.6 × 10−3

HOPLoP(TransE) (H = 5), best perf. 0.5 5.9 × 10−3

HOPLoP(TransE) (H = 20), worst 1.1 1.4 × 10−2

S indicates search horizons, L indicates number of rollouts and M indicates the number of MCTS simula-
tions. * Early stopping mechanism with a high patience of 100 epochs did not allow quick termination of the
training process

through KG embeddings. To verify this, Table 5 compares untrained versions of HOPLoP
to baselines and the trained versions of HOPLoP to show that untrained HOPLoP mod-
els are not as performant as baseline KG embedding models and trained HOPLoP models.
This shows that the training process helps HOPLoP discover correlations between paths
and relations that help boost performance in the link prediction task. Futhermore, we show
that HOPLoP is computationally inexpensive. In Table 9, we observe that the runtime of
HOPLoP (Tensorflow-gpu) is lower than that of M-Walk (C++ & Cuda) and MINERVA
(Tensorflow-gpu).

6 Interpretability of HOPLoP

In general, a limitation of operating over an embedding space is that reasoning paths cannot
always be easily interpreted because they result from latent factors that are embedded in the
KG embedding space [5] and the weights learned by HOPLoP. HOPLoP(TransE), however,
operates on the TransE embedding space, where both entities and relations are represented
[7], geometrically allowing one to interpret it’s reasoning process by observing the transla-
tion vectors v1...vH. This is not possible in the case of ComplEx and TuckER since HOPLoP
traverses the embedding space where only entities are represented. Following the intuition
that similar relationships will be represented by similar vector representations [5], we use
a function of the euclidean distance as a similarity measure between a translation vector vh
and an embedding for a relation. Let s(vh, �ri) be the similarity function.

s(vh, ri) = −
√√√√ D∑

d=1

(vhd − rid)2 (10)

where D is the dimensionality of the vectors. Negating the euclidean distance allows us to
produce a higher similarity score for more similar vectors.

Methodology Now, we shall describe our process for interpreting the traversal paths of
HOPLoP(TransE). To generate interpretable relational paths for a given task r , we remove
the relations r and r−1 from the graph. This forces beam-search [21] to find other single-
hop3 or multi-hop relational paths that may represent the task. For the task hasGender in

3This would imply that the single-hop relation r ′ present in the graph is semantically similar to the task r .
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the YAGO3-10 dataset, we do not remove the relation hasGender from the dataset since
it’s range {male, female} is connected to other entities only via the hasGender relation. We
also add a “NO-OP” relation, represented by a 0-vector, to interpret the scenario where
HOPLoP(TransE) does not hop to a new entity. At each hop, we compute the similarity
between the translation vector vh and all relation embeddings ri ∈ R as given by (10). At
each hop, the similarity scores are used to beam-search relational paths, which first explores
relations in the graph whose embedded representations are most similar to the translation
vector.

6.1 Example paths and their interpretation

We next give several examples of interpreted HOPLoP(TransE) paths, describing query
relations from different KGs. In each case, a positive path is one that connects a positive pair
of entities that belong to the relation while a negative path for the same relation connects a
pair of entities that are not related as discussed before.

AthletePlaysSport (NELL-995)

– Positive: AthletePlaysForTeam → TeamPlaysSport.
Meaning: if an athlete A plays for team B and if team B is known to play sport C, then
athlete A plays that sport C.

– Negative: PersonHasCitizenship → SportFansInCountry−1

Meaning: just because an athlete A has citizenship in a country B which contains fans
of sport C, it does not imply athlete A plays sport C, since a country may contain fans
of multiple sports.

PersonBornInLocation (NELL-995)

– Positive: PersonHasCitizenship → CountryAlsoKnownAs
Meaning: if a person A has citizenship in a country B, it is highly probable that person
A was born in country B.

– Negative: PersonBelongsToOrganization → OrganizationAlsoKnownAs−1

→ AtLocation
Meaning: if a person A belongs to an organization B and it is located at C, it does not
mean person A was born at location C, since a large number of people move for work.

Ethnicity/LanguagesSpoken (FB15K-237)

– Positive: Ethnicity/GeographicDistribution → Country/OfficialLanguage
Meaning: if an ethnic group A is from a country B and country B’s has an official
language C, it is highly probable that the ethnic group B speaks language C.

– Negative: Ethnicity/People → Actor/DubbingPerformances/Language
Meaning: if a dub actor A performs in language B, it does not mean that the ethnic
group C of actor A can speak the language C, since dub actors learn to speak multiple
languages.

Event/Locations (FB15K-237)

– Positive: NcaaBasketballTournament/Team → SportsTeamLocation/Teams−1

Meaning: If an NCAA Basketball Tournament A hosts a team B, and team B plays at
location C, this implies that event A happened at location C.

1058 World Wide Web (2022) 25:1037–1065



– Negative: Film/FilmFestivals−1 → NetflixGenre/Titles−1 → Location/Contains−1

Meaning: If a Film Festival A hosts Film B and the film B is part of the NetflixGenre
C and C contains location D, it does not imply that event A happened at location D.

hasGender (YAGO3-10)

– Positive: playsFor → isAffiliatedTo−1 → hasGender
Meaning: If an athlete A plays for team B, another player C is affiliated with team B

and player C has gender D, then player A also has gender D. This is because clubs
form different teams for each gender.

– Negative: isMarriedTo−1 → hasGender
Meaning: If a person A is married to another person B who has gender C, person A

most likely does not have the gender C of their spouse.

graduatedFrom (YAGO3-10)

– Positive: hasAcademicAdvisor → worksAt
Meaning: If a person A has an academic advisor B who works at organization C, the
likelihood of person A graduating from C is high.

– Negative: wasBornIn → isLocatedIn → isLocatedIn−1

Meaning: If a person A was born in location B and a particular school C is located at B,
it does not imply that person A graduated from school C, since many students graduate
from schools farm from their birth place.

6.2 Distribution of path lengths

Figure 4 presents the distribution of number of unique paths by path length of all tasks from
the NELL-995 dataset. Note that the figure spans two pages. In this case, a unique path
is a unique sequence of both relations and entities, i.e., p = [eq, v1, e1, ..., vH , et ]. This
examples the high number of unique paths observed, as compared to previous methods,
which only look at relations in the path. We observe that the number of unique negative
paths is higher than the number of unique positive paths. We also observe that the average
path length for positive paths is consistently lower than the average path length for negative
paths across all tasks.

These observations show the extent to which HOPLoP “explores” the embedded KG
space in search for paths with strong support either way. Figure 4 also shows that some
tasks have a fairly unique distributions, which indicates that HOPLoP can adapt to them.
We observe that HOPLoP(TransE) utilizes the “NO-OP” relation, which does not change it
current entity position. This explains the observation that path lengths rarely cross 10, since
“NO-OP” is not a relation in the KG. We also observe that, for a few tasks, a substantial
number of paths have been found exceeding path lengths 15. This could be attributed to
“over-fitting”: since HOPLoP’s path-finder can traverse unconstrained, during the training
phase, it learns complex traversal patterns that model the traversal process between only
training pairs of entities. These complex traversal patterns lead to path embeddings that
efficient encode training information only, leading to poor generalization performance of
HOPLoP with higher hop H value.

We observe that HOPLoP(TransE) finds more negative paths than positive paths. We also
observe that path length rarely cross 10. This shows that HOPLoP(TransE) is utilizing the
“NO-OP” operation, which is not counted as a relation in the KG. We also observe that, for
a few tasks, a substantial number of paths have been found exceeding path lengths 15.
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Figure 4 Distribution of unique paths founds by path length for each task in the NELL-995 dataset. The y-
axis is log-scaled. The light grey bars represent number of unique positive paths. The black bars represent
number of unique negative paths
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7 Conclusion and future work

In this paper, we hypothesized that the performance of a multi-hop link prediction algo-
rithm may be improved if it traverses over a more-complete but inaccurate representation
of the KG. We introduced HOPLoP, an end-to-end differentiable multi-hop framework that
traverses over an embedding space to distinguish between existent and non-existent links
of the KG. Upon performing standard LP evaluation practices, we observe that HOPLoP
outperforms previous state-of-the-art multi-hop and KG embedding approaches across 4
datasets and 2 variants of the LP task. On the intrinsic relation prediction task, HOPLoP
advances previous state-of-the-art methods by reducing errors by 46.53% on NELL-995 and
54.97% on FB15K-237. On the extrinsic entity prediction task, HOPLoP advances previous
state-of-the-art methods with an error reduction of 53.85% on WN18RR and 56.67% on
YAGO3-10. We also described a method to interpret HOPLoP(TransE)’s reasoning paths.
Experiment codes, scripts and additional materials can be obtained at https://github.com/
U-Alberta/HOPLoP.

7.1 Applicability of HOPLoP

Similar to all KG embedding methods, HOPLoP provides a score for any link, expressed as a
triple (eq, r, et ). The adoption of HOPLoP would be similar to any KG embedding method,
but would require an existing embedding space. Motivated practitioners may use the scripts
available in the supplementary material to generate an embedding space. To replace an
existing embedding space in use would reap the highest benefits. HOPLoP can be trained
to operate over any embedding space to directly replace that KG embedding method for
LP, without any change in the training pipeline. Since HOPLoP uses separate parameters, it
would not “fine-tune” the embeddings, which might be in use by different ML systems.

7.2 Future research directions

We believe this new approach of “generating” traversal paths over an embedded space can
shed light onto a new approach for modeling sequential data. Path lengths are not lim-
ited by the size of the model, and thus, they may be the answer to expressing lengthy and
∞-length sequences. Paths can be created, on the go, by an hypothetical one-hop model,
similar to HOPLoP, that receives its current state and a new input, and performs composi-
tion, to “move” to a new hidden state. This approach can be used to create representations
for sequences, which then can be analyzed by a stronger “reasoning” model. By enabling
end-to-end multi-hop reasoning over large-scale KGs, we can reason over different types of
data (text, image, audio, video) in the same space, opening up several opportunities for a
“data-centric” framework for machine learning.
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69. Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of the 21st
international conference on world wide web, pp. 1063–1064 (2012)

70. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and
applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017). https://doi.org/10.1109/TKDE.
2017.2754499

71. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8(3-4), 229–256 (1992). https://doi.org/10.1007/BF00992696

72. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge
graph reasoning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, Copenhagen, Denmark, pp. 564–5730.
https://doi.org/10.18653/v1/D17-1060 (2017)

73. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and infer-
ence in knowledge bases. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings.
arXiv:1412.6575 (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1065World Wide Web (2022) 25:1037–1065

https://proceedings.neurips.cc/paper/2018/file/c6f798b844366ccd65d99bc7f31e0e02-Paper.pdf
https://doi.org/10.1109/ICDE.2003.1260809
https://doi.org/10.1109/ICDE.2003.1260809
https://doi.org/10.1145/1242572.1242667
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/P16-1136
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/D17-1060
http://arxiv.org/abs/1412.6575

	HOPLoP: multi-hop link prediction over knowledge graph embeddings
	Abstract
	Introduction
	Building knowledge graphs
	Multi-hop inference for link prediction
	Motivation
	Contributions



	Preliminaries
	Knowledge graphs
	Link prediction
	Relation prediction
	Entity prediction


	Knowledge graph embeddings
	Neural architectures

	Related work
	Path ranking algorithm
	Composition of KG embeddings
	Differences to HOPLoP


	DeepPath and reinforcement learning
	Variational inference for LP
	Differences to HOPLoP


	Other approaches

	HOPLoP: multi-hop link prediction over knowledge graph embeddings
	Task
	Model
	Training
	Discussion

	Experiments and results
	Datasets
	WN18RR dettmers2018conve
	YAGO3-10 mahdisoltani2013yago3

	Experimental setup
	Relation prediction
	Methodology

	Entity prediction
	Methodology


	Results
	Hypothesis
	Relation prediction
	Entity prediction

	Analysis

	Interpretability of HOPLoP
	Methodology
	Example paths and their interpretation
	Distribution of path lengths

	Conclusion and future work
	Applicability of HOPLoP
	Future research directions

	References


