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Abstract

Recently, topic modeling has been upgraded by neural variational inference, which simul-
taneously allows the model structures deeper and proposes efficient update rules with the
reparameterization trick. We formally call this recent new art as neural topic model. In
this paper, we investigate a problem of neural topic models, where they formulate topic
embeddings and measure the word weights within topics by linear transformation between
topic and word embeddings, resulting in redundant and inaccurate topic representations.
To solve this problem, we propose a novel neural topic model, namely Generative Model
with Nonlinear Neural Topics (GMNNT). The insight of GMNNT is to replace the topic
embeddings with neural networks of topics, named neural topic, so as to capture nonlin-
ear relationships between words in the embedding space, enabling to induce more accurate
topic representations. We derive the inference process of GMNNT under the framework of
neural variational inference. Extensive empirical studies have been conducted on several
widely used collections of documents, including datasets of both short texts and normal long
texts. The experimental results validate that GMNNT can output more semantically coherent
topics compared with traditional topic models and neural topic models.
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1 Introduction

Nowadays, the volume of text data becomes increasingly large everyday, e.g., online news
and reports generated by a variety of daily web services [33]. Automatically mining the
latent theme information from them with unsupervised learning is a significant and chal-
lenging research subject. Topic models [2], e.g., Latent Dirichlet Allocation (LDA) [6] and
Hierarchical Dirichlet Processes (HDP) [48], have become one of the great successful unsu-
pervised techniques for inducing latent topics from text documents. In the past decades,
topic models surveyed by [7] have been applied to numbers of fields, e.g., sociology,
marketing, and political science, to name just a few.

Most traditional topic models, built on the spirit of LDA [6], are probabilistic generative
models of documents, basically supposing that each document is represented by a topic pro-
portion and each topic is a multinomial distribution over words. With conjugacy designs,
e.g., Dirichlet-Multinomial distributions, the posterior distributions associated with the top-
ics can be efficiently inferred by either variational inference [3, 6, 24] or sampling methods,
e.g., collapsed Gibbs sampling [18]. Generally, the expressiveness of topic models grows
with more complicated model structures, however, this also results in intractable inference
problems. Recently, topic modeling has been upgraded by neural variational inference [26,
35, 39, 45], which approximates the posterior distribution of a generative model with a
variational distribution parameterized by a neural network [34]. This simultaneously allows
the model structures deeper and proposes efficient update rules with the reparameterization
trick [26, 49], developing a new trend of topic modeling, formally referred to as neural
topic model, i.e., the art that marries topic modeling with deep neural networks.

The previous research literatures have introduced dozens of neural topic models [8, 10,
12, 13, 19, 22, 33-35, 41, 43, 47, 52-54]. From the perspective of model inference by
variational Bayes, in neural topic models the neural network serves as a variational distri-
bution to the target distribution, i.e., often the posterior of latent variables. Or they can be
read as Variational Auto-Encoders (VAE) kind of models [26]. As an example, the Neural
Variational Document Model (NVDM) [35] involves two halves, i.e., an encoding network
for latent topics and a generative decoding model for document reconstruction from topics.
The subsequent study [34] normalizes the latent topics of NVDM for achieving distribu-
tion expressions of topics, and proposes three versions of neural topic models with different
neural structures. However, the aforementioned models suffer from a shared weakness:
they formulate topics as embeddings, i.e., distributed representations in the word embed-
ding space, and measure the word weights within topics by linear transformation between
topic and word embeddings. This results in the problem of redundant and inaccurate topic
representations, which is going to be discussed in the following part.

1.1 Problem, motivation and contribution

To deeply discuss the prior neural topic models, we briefly introduce a standard genera-

tive formulation of documents [13, 34]. Specifically, the generative process of a document
Ny . .

{wan}, <, can be described as follows:

04 ~ G(o, 00),

Zan ~ Multinomial(6;), n € [Ny],
Wgn ~ Multinomial(¢,, ), n € [Ny], (D)

@ Springer



World Wide Web (2022) 25:131-149 133

where 6; denotes the topic proportion drawn from G(uo, 09), i.e., a neural network condi-
tioned on an isotropic Gaussian N (o, 00), e.g., logistic-normal distribution [13], Gaussian
softmax distribution, and Gaussian stick breaking distribution [34]; z4, the topic assign-
ment drawn from 6;; and ¢, the topic distribution over words, constructed by the softmax
function of the product of word embeddings p and topic embedding S;:

¢: = softmax(o ' B;) 2)

For simplicity, we now by no means introduce the notations too much, which will be
detailedly described in the latter section (also see Table 1).

Referring to (2), we notice that the word weights within topics are actually computed by
the inner product distance between topic and word embeddings. In this situation, neighbor-
ing words tend to share similar weights in the same topic, resulting in potentially redundant
top topical words, also observed in the early models [1, 11, 28]. To visualize this problem,
Figure 1 shows two examples (i.e., topic embeddings and embeddings of top words) learnt
by the prior model [13] across NewYorkTimes. We can observe that many the top word lists
contain many similar words, resulting in redundancy.

In this paper, we introduce the proposed generative model that extracts nonlinear neu-
ral topics in embedding spaces, namely Generative Model with Nonlinear Neural Topics
(GMNNT). In GMNNT we replace the topic embeddings with neural networks of topics, for-
mally referred to as neural topic, which can capture nonlinear relationships between words
in the embedding space. Therefore, even similar words, i.e., neighbors measured by word
embeddings, are allowed with totally different probabilities in the same topic distribution,
leading to more accurate topic representations.

The main contributions of this paper are described below:

—  We investigate the problem of prior neural topic models, where they may output
inaccurate topics with redundant top topical words.

— We develop a new GMNNT model that uses neural topics, describing nonlinear
relationships between word embeddings.

— Empirical studies show that GMNNT can generate semantically coherent topics in
contrast to traditional neural topic models.

«minister Jyield
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*rate
erates .
einterest «inflation
Topic 58
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Figure 1 Top topical word redundancy in ETM [13]. Each topic is visualized by its 24 top words on a 2-
dimensional space compacted by principle component analysis. The topic embeddings and word embeddings
are represented by red and black points, respectively
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The rest of this paper is organized as follows: In Section 2, we introduce the most
related works. We present the proposed GMNNT and its inference process in Section 3. The
empirical studies are shown in Section 4. Finally, we conclude this work in Section 5.

2 Related work

In this section, we briefly introduce the previous studies on traditional topic models and
neural topic models.

2.1 Traditional topic model

On referring to reviews [2, 7], traditional topic modeling, such as LDA [6] and its nonpara-
metric version (i.e., HDP) [48], has been well studied as probabilistic generative models of
documents. Generally speaking, they are probabilistic generative models of documents. For
example, in the context of LDA, it considers the corpus as a mixture of K topics and each
document corresponds with a topic proportion 6;, drawn from the Dirichlet prior «. Each
topic presents a multinomial distribution over the vocabulary ¢, drawn from the Dirichlet
prior B. Specifically, the generative process of a document collection can be described as
follows:

—  For each topic k € [K]
— Sample a topic ¢ ~ Dirichlet(8)
—  For each document wy, d € [D]

—  Sample a topic proportion 6; ~ Dirichlet(«)
—  For each word token wy,,, n € [N4]

e Sample a topic assignment 74, ~ Multinomial(6,)
e Sample a word wy, ~ Multinomial(¢,,,)

where z4, represents the topic assignment for each word token.

In the past decades, researchers have developed many extensions built on the above for-
mulation, and they have been successfully applied to deal with various problems as well
as various kinds of text data, e.g., topic correlations [5, 23, 27, 30], dynamic topics vary-
ing over time [4, 51], and sparse topics within short texts [9, 16, 31, 44], etc. Commonly,
the popular model inference methods include variational inference often with mean-field
approximations [6, 24], Gibbs sampling [18], and hybrid methods [29, 38]. However, to
maintain model inference efficient, traditional topic models are more willing to be designed
as shallow structures with conjugate priors, which somehow limits expressiveness.

2.2 Neural topic model
Recently, a new trend of topic modeling, i.e., neural topic model, has raised lots of concerns
[8, 10, 12, 13, 19, 22, 33-35, 41, 47, 53, 54]. For ease of understanding, we briefly intro-

duce these models from the eye of VAE, i.e., the encoder-decoder perspective of documents.
Encoding: In this situation, the original document representations, e.g., bag-of-words, are
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encoded as (unnormalized) topic proportions by variational neural networks!. Decoding:
The reconstructed document representations, i.e., probabilities of the vocabulary, are com-
puted by a LDA-like generative process [13, 34], which starts from topic proportions with
topic-word distributions specified by topic embeddings. Specially, the variational distribu-
tions are often fixed as Gaussians for efficiently applying the reparameterization trick [26,
39, 45]. Generally speaking, several typical neural topic models include NVDM [35], Gaus-
sian Softmax Model (GSM) [34], LDA with Products of Experts (ProdLDA) [47], Neural
Variational LDA (NVLDA) [47], and Embedded Topic Model (ETM) [13], etc.

Due to the reparameterization property of the Gaussian distribution, many existing neu-
ral topic models [13, 34, 35] employ it as the prior distribution for efficient inference.
NVDM [35] is an early attempt modeling topics with Gaussian prior, in which a two-layer
multi-layer perception is applied for encoding. NVDM can achieve rather superior perplex-
ity scores and meanwhile generates incoherent topics in many cases, as reported in [13].
Inspired by the context embedding [37], ETM [13] incorporates word and topic embed-
dings into neural topic models, assuming that each topic is presented in a word embedding
space. ETM generates topic and word embeddings simultaneously during training and has
a variant with pre-trained word embeddings. Due to the inner product of the topic and
word embeddings in the decoder of ETM, words with high semantic correlations are more
likely to gather in the same topic embedding space, leading to topical words redundancy.
Besides, to capture topic correlations, [33] proposed Neural Variational Correlated Topic
Model (NVCTM), which incorporates Centralized Transformation Flow (CTF), enabling to
model Gaussian distributions with covariance matrix.

Another group of attempts approximate the Dirichlet distribution as prior for neural topic
models as which in LDA, for lacking the intuitional non-central differentiable reparame-
terizations for Dirichlet distribution under neural variational inference [8]. ProdLDA [47]
explores the Laplace approximation for the Dirichlet prior. A relatively high learning rate
and batch normalization prevent ProdLDA from component collapsing. [40] approaches
the Dirichlet prior by a rejection sampler on Gamma distribution. The proposed Rejection
Sampling Variational Inference (RSVI) creates an elegant and extensible way for solving
the reparameterization challenge and studies the approximations of Gamma distribution and
Dirichlet distribution. Based on RSVI, [54] generates an approximation of Gamma distri-
bution utilizing Weibull distribution since reparameterization trick is available on Weibull
distribution. [8] proposes Dirichlet Variational Autoencoder (DVAE) and decouples sparsity
and smoothness in the Dirichlet distribution.

There also exist studies about variants of VAE-based topic models. Adversarial-neural
Topic Model (ATM) [52] generates an approach adapting Generative Adversarial Nets
(GANSs) with the Dirichlet prior to topic modeling. [41] broadens the Wasserstein Auto-
encoder [50] and proposes W-LDA which is capable of matching aggregated posteriors to
priors utilizing the Maximum Mean Discrepancy (MMD).

3 Model

In this section, we introduce the proposed generative model that extracts nonlinear neu-
ral topics in embedding spaces, namely Generative Model with Nonlinear Neural Topics
(GMNNT).

IWe will clarify the definition of variational neural network in Section 3.2.
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3.1 Model description

Consider a corpus of D documents, i.e., denoted by {wg} fl)z 1» with a fixed vocabulary of V
words. Each document of Ny word tokens is represented by {wg, flvi (- With any existing
embedding technique, e.g., Word2Vec [36] and GloVe [42], the pre-trained L-dimensional
word embeddings almost covering the current vocabulary are available, i.e., denoted by
p € REXY where each column p, is the corresponding embedding of word v.

In the context of traditional neural topic models [13, 34], the documents are generated
from distributions associated with topics. The topics are represented by L-dimensional topic
embeddings, and referring to (2), the word weights within topics are measured by linear
transformation between topic and word embeddings. However, such resulting topic-word
distributions may contain many redundant top topical words, i.e., outputting inaccurate topic
representations, which has been explained before (see Figure 1). To solve this problem, in
GMNNT we replace the topic embeddings with neural networks of topics (i.e., neural topics),
which can capture nonlinear relationships between words in the embedding space [32].
Therefore, even similar words, i.e., neighbors measured by word embeddings, are allowed
with totally different probabilities in the same topic distribution, leading to more accurate
topic representations. Specifically, we define that NT(p|¢;) denotes the neural topic ¢ with
word embeddings p, formulated as follows:

¢rv = NT(plgy)

= softmax([f(/ol @), -+ s f(PVWI)]T)‘U )

where f(py|g;) is a neural network parameterized by ¢; with the input of one word
embedding p, and the output of the corresponding untransformed word weight.

Overall speaking, the model structure of GMNNT is under the framework of traditional
neural topic models, described in (1). For clarity, we now formally introduce the generative
process of GMNNT as follows: Suppose that there are totally T neural topics ¢ (i.e., (3)),
representing multinomial distributions over words. For each document wy, GMNNT first
draws a topic proportion 6; from a neural network kind of prior G(ug, 0¢), named topic
proportion generator. Then, it draws a topic assignment z4, from 6,4, and then draws a
word wy, from ¢,,, . Repeat this process Ny times for Ny word tokens. In summary, the
generative process of GMNNT is described below:

—  For each document wy, d € [D]

— Sample a topic proportion 6; ~ G(uo, 00)
—  For each word token wy,,, n € [N4]

e Sample a topic assignment z4, ~ Multinomial(6,)
e Sample a word wg, ~ Multinomial(¢.,,) = NT(pl¢.,,)

In this work, we specify the topic proportion generator G (i, 0g) as the Gaussian soft-
max distribution [34]. For each document wy, it first generates an untransformed topic
proportion 8, from a isotropic Gaussian N (149, o) and then applies the softmax function
to compute the final 6,:

84 ~ N (o, 00), 64 = softmax(W ' 84), €

where W € RT*T is the linear transformation matrix. We would like to note that our
GMNNT is feasible to apply more complex topic proportion generator, leading to more prac-
tical variants of GMNNT. The important notations of this paper are shown in Table 1 for
convenience.
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Table 1 Descriptions of important notations

Notation Description

D number of documents

Ng number of word tokens in document d

\%4 number of words

T number of topics

L dimension of word embeddings

p € REXV word embeddings

(7} topic proportion of document d

Zdn topic assignment for word token wg,

0N topic distribution over words of topic ¢

B: € RE topic embedding of topic ¢ defined in [13, 34]
O parameter of neural topic ¢ defined by our GMNNT

3.2 Inference

From the perspective of topic modeling, the model parameters of GMNNT include the
neural topic parameter ¢ and the Gaussian hyper-parameters {110, 0o}, while the latent vari-
ables include the untransformed topic proportion § and topic assignment z. In our situation,
{10, oo} are fixed as known priors and z can be analytically integrated out. Therefore,
the inference problem refers to finding the optimum of {¢, §} by fitting GMNNT given a
collection of documents D and word embeddings p.

Commonly, the inference problem of GMNNT is intractable to compute, therefore we
resort to approximating inference by neural variational inference [34, 35] with the reparam-
eterization trick [26]. With the spirit of amortized inference [17], we posit the following
variational distributions over the untransformed topic proportion §:

q@alwa, 1) = N (Balpa, oa), {na, 04} = g(wql2), de€[D], (%)
where g(wg|)) is the variational neural network parameterized by A (i.e., considered as
the variational parameter). That is, the network ingests wy and outputs {i4, o4}. Following
[13], we form the input w,; by normalizing its bag-of-word representation by the number of
word tokens Ny. Applying these variational distributions, we can formulate the following
variational objective, i.e., Evidence Lower BOund (ELBO), with respect to {¢, A}:

D D
L(p,n) =Y B, [log p (walda, p, )] — Y KL (g Balwa, ) || p (Salpro, 00)),  (6)
d=1 d=1
The likelihood of each document in (6) is given by:

Na

T
pwalsa, . @) = [ D Oabruws» @)

n=1t=1

where ¢ and 6 are obtained by (3) and (4), respectively.
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Since variational distributions are Gaussians, we can replace the variational objective of
(6) with its Monte Carlo approximation by using the reparameterization trick [26]:

D D

L(p, ) =Y By [log p (walda, p, )] = Y KL (g Balwa, ») | p (Balo, 00))
d=1 d=1

Eq [log p (walda, p. ¢) +1og p (8alio. 00) — logq (8alwa. )]

Mo

d

1
S

1

D S
> logp (wdlh(fsff)), s <p) +log p (h(r?,(f))luo, oo) —logg (h(SEf))de, A)
d=1 s=1

A

8% ~ N'(0,1), d € [D], s € [S],
(3

where S is the number of Monte Carlo samples® and h(SC(f)) = 85,‘?)0(1 + g the mapping
function.

Algorithm 1 Approximating inference for GMNNT.

1: Initialize neural topic parameter ¢ and variational neural network parameter A

2: Compute the normalized bag-of-word representations of documents

3: Draw S Monte Carlo samples from the standard Gaussian to form the approximating
variational objective, referring to (8)

4: While {¢, A} almost unchanged Do

5: Compute the topic distributions ¢ using (3)

6: Draw a small subset of documents

7: For each document wy in the subset draw Do

8: Compute {14, 04} with the variational neural network, referring to (5)
9: Draw a sample 8, from the variational distribution, referring to (5)
10: Compute the topic proportion 6; by (4)

11: End For
12: Update {¢, L} with their gradients, and the adpative learning rate method can be used
13: End While

Given this approximating variational objective, we can form its gradients with respect
to {p, A}, where the subgradients of neural networks (i.e., variational neural networks and
neural topics) can be computed by backpropagation. We then update {¢, A} with their gra-
dients under numbers of updating cycles until {¢, A} are almost unchanged. To efficiently
deal with corpora of massive documents, the data subsampling methodology from [20, 21]
can be also applied. Finally, for fast and safe updating processes, we can adopt any adaptive
learning rate method, e.g., Adagrad [15], Adam [25], and Nadam [14], etc. The full infer-
ence procedure of GMNNT is briefly shown in Algorithm 1. Specially, we would like to note
that we can reform the approximating variational objective of (8) by drawing new Monte
Carlo samples during the updating cycles. We omit this detail in Algorithm I for concise
expression.

2In this work, we fix S to 1 as suggested in [26].
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4 Experiment

Corpora The experiments have been conducted across 5 publicly available datasets, whose
statistics are summarized in Table 2. Specifically, they include Trec?, StackOverflow®,
Abstract’, Tme2007°, and NewYorkTimes” . For each dataset, we removed the standard stop
words and infrequent words occurred in less than 5 documents. We randomly selected 85%
instances as the training dataset, 10% as test dataset and 5% as validation dataset.

Besides, we employed the pre-trained GloVe® word embeddings [42], i.e., the 300-
dimensional version trained on Wikipedia2014 and GigawordS. We randomly generated the
embeddings of words that have not been covered by GloVe embeddings.

Comparing Topic Models We compare the performance of GMNNT with four existing
topic models, including three neural topic models, i.e., ETM, NVDM and ProdLDA,
and also the standard Online LDA (OLDA) model. Details of all comparing models are
described below:

— LDA [6, 20, 21] is the standard LDA model trained by stochastic variational inference.
Here, the Dirichlet priors of document-topic proportions and topics are set to 0.1 and
0.01, respectively. The code is available on the net’.

— NVDM [35] is an unnormalized neural topic model with Gaussian prior. Following
[14], the encoder used in NVDM defines a fully connected network with 2 layers and
500 hidden neurons. It involves an inner iteration for optimizing the encoder. The code
is provided by its authors.'?

—  ProdLDA [47] is a neural topic model with Dirichlet prior, solved by Laplace approx-
imation. Following [47], we define its encoder as a fully connected network with 3
layers and 100 hidden neurons, where the tricks of batch normalization and 0.2 dropout
are also used. The code is provided by its authors'!.

— GSM [34] is a neural topic model using Gaussian Softmax which constructs a finite
topic distribution. We inherit the same encoder from NVDM and the number of hidden
neurons and word vectors dimension are both set as 500. We adopt the document model
version. The code is available on the net.!2

— ETM [13] is a neural topic model with Gaussian prior. Following [13], the encoder
used in ETM defines a fully connected network with 3 layers and 800 hidden neurons.
The code is provided by its authors.!?

— GMNNT is our proposed neural topic model with nonlinear neural topics. We use the
same encoder as ETM. The neural topics are designed as fully-connected networks
with A4 layers and A,, hidden neurons, and the batch normalization is applied. The

3http://cogcomp.cs.illinois.edu/Data/QA/QC/
“https://github.com/jacoxu/STC2

Sdataset of paper abstracts
Shttp://mulan.sourceforge.net/datasets-mlc.html
7https://bitbucket.org/franrruiz/data-nyt-largev-6/src/master/
8hitps://nlp.stanford.edu/projects/glove/
%https://github.com/blei-lab/lda-c
10https://github.com/ysmiao/nvdm
https://github.com/akashgit/autoencoding_vi_for_topic_models
2https://github.com/linkstrife/NVDM-GSM
Bhttps://github.com/adjidieng/ETM
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Table 2 Summary of dataset statistics. “#Validation” and “AvgL” denote the validation set size and the
average document length, respectively

Dataset #Train #Test #Validation #Word AvgL
Trec 4972 492 291 1036 3.0
StackOverflow 16662 1798 980 2195 3.7
Abstract 21481 2526 1266 25955 74.5
Tmc2007 24305 2859 1431 24593 59.4
New YorkTimes 85000 10000 5000 32746 290.9

parameters of neural topics are tuned over the following ranges: 14 € {2, 3,4,5,6, 7, 8}
and A, € {60, 80, 100, 120}. We will analyze these parameters later.

For all comparing models, the mini-batch size is set to 1000. The learning rate and epoch
for GMNNT are set as 0.0001 and 2000, respectively. Besides, the Adam method is used
for adaptively tuning the learning rate under the following settings: 81 = 0.9, B2 = 0.999.
Specifically, we study two variants of ETM and GMNNT following [13] where the one
applies the pre-trained word embeddings, and the other leaves the word embeddings as
trainable parameters. The versions with pre-trained word embeddings are called p-ETM and
p-GMNNT, respectively.

4.1 Qualitative study

The first concern is whether GMNNT enables to alleviate the problem of redundant top top-
ical words that have been observed in previous neural topic models. To answer it, as shown
in Table 3 we list 10 same topics learned by p-ETM and p-GMNNT across the New York-
Times dataset. We may find that p-ETM severely suffers from the topical words redundancy,
where 17 pairs of words with same etyma exist in 10 topics, i.e., “restaurant” and “restau-
rants”. As for p-GMNNT, there only exist 4 pairs in 4 topics which indicates that our method
significantly relieves the topical words redundancy.

More specifically, ETM and p-ETM apply an inner product decoder, which gathers closer
words in the word embedding space and generate topics closest to these gathered words.
These close words are mostly semantically related and result in topical words redundancy.
Our GMNNT and p-GMNNT learn word weights for each topics independently in a non-
linear manner, which weakens the words gathering in the embedding space. Furthermore,
different topics in ETM and p-ETM exist in the same embedding space and therefore words
under different topics may be duplicated when the word embeddings are not discriminative
enough, especially for the version without pre-trained embeddings. The topic uniqueness
results in Section 4.2.3 coincide with this analysis.

We further compare topic quality over all methods and present topics about “aircraft
fire” from Tmc2007 in Table 4. We find that NVDM and ProdLDA generate many identical
topics, which severely suffer from topic redundancy. Comparing with baselines, GMNNT
and p-GMNNT only generate one topic with more meaningful words, corresponding with
the high topic uniqueness in Section 4.2.3. There seems to exist a trade-off between the
number of topics and topic uniqueness scores on NVDM and ETM. Actually, topical words
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Table 3 Top topical words of 10 same New YorkTimes topics generated by ETM and GMNNT, respectively.
Redundant words are given in boldface

Method Topical words

p-GMNNT street city people york town manhattan east place restaurant local neighborhood bar
dr health drug medical disease patients doctors aids cancer study research drugs
care health hospital york services program people city state center hospitals
energy space power nuclear dr environmental scientists air gas plant research earth
fashion ms clothes black designer dress white women wear design collection style
bush republican campaign president clinton party senator democratic democrats
computer internet technology company software web system companies microsoft
editor article news page times newspaper york paper writer magazine daily press
court case judge justice federal trial lawyers law lawyer charges jury state attorney
president white house clinton office committee investigation told asked report

p-ETM restaurant wine food restaurants sauce menu dinner dishes cheese wines dining
health medical drug patients care hospital doctors cancer disease treatment drugs
people home middle years high low families class year homes community live
oil energy power car cars gas production fuel ford plant auto vehicles vehicle
fashion clothes hair dress wear designer dresses wearing black leather pants
republican campaign democratic party senate election senator democrats vote
computer technology internet information software computers web system
editor news times magazine newspaper press paper editorial writer newspapers
court law judge case federal justice rights legal supreme state decision states

investigation report information documents officials department records official

generated by NVDM on Tmc2007 are quite infrequent and even less repeated, leading to
higher topic uniqueness scores, which will be analyzed below. As for ETM, it generates
plenty of identical words among different topics, e.g., “aircrafts”, which severely harm the
topic uniqueness.

We also notice that NVDM and ProdLDA generate “low-quality” topics on larger
datasets. For smaller datasets, e.g., Trec and StackOverflow, the two methods generate
“high-quality” topics with meaningful words. However when facing the larger Abstract
and Tmc2007, they begin to generate some infrequent words which harm the topic quality.
As for the large New YorkTimes, they generate rather poor topics with numerous infre-
quent words, e.g., names of persons and places. For validating the guess that NVDM and
ProdLDA suffer from topic quality descending with the increment of dataset scale, we
examine NVDM and ProdLDA on different truncation sizes of NewYorkTimes and the
results show the same case.

4.2 Quantitative study

We quantitatively evaluate the proposed GMNNT model by three tasks of held-out likeli-
hood, topic coherence and topic uniqueness.
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Table 4 Topical words on topics about aircraft fire generated by GMNNT and other baselines on Tmc2007
dataset

Method Topical words
LDA smoke engine fire light auxiliarypowerunit start aircraft maintain electric report
NVDM enginefire firebottle firewarning flame firebell firelight enginefirewarning firehandle

fanblade enginefire firewarning firewarninglight aircraftrescuefirefightingequipment
odor smell fume acrid smoke dissipate goggle electric electricalfire tennis
ProdLDA gey fire evacuate smoke engineoilpressure oilpressure smell oilquantity declare
fire overweight extinguish evacuate oilpressure qrh declare smoke cabinaltitude
gey fire oilquantity oilpressure engineoilpressure evacuate smoke overweight declare
fire overheat aircondition recirculation cardiac acrid overwingexit cabin electric pack
fire enginefire declare overweight extinguish smoke oilquantity engineindication
GSM smell smoke evacuate paramedic odor fume deplane doctor maincabin fire rescue

medicalpersonnel paramedic defibrillator fume dissipate minorinjury smell evacuate

ETM emergency declare engine land cabin flightattendant checklist passenger smoke fire
p-ETM door smoke sit seat back fire window smell touch inside burn floor front button nose
GMNNT oilpressure enginefirechecklist oilquantity fireindication lowoilpressure firelight
p-GMNNT emergency flightattendant declare cabin passenger gate engine cockpit smoke

4.2.1 Evaluation on held-out likelihood

Perplexity The perplexity is a widely used metric for measuring the held-out likelihood.
Considering a test dataset W = {@d}l?zl, its perplexity can be computed as follows:

X2 10g (p (@)
ZdD:I N

where log(w,) represents the log probability of document w,. Following [35], we use the
variational lower bound to approximate the perplexity.

Perplexity(W) = exp

)

Results We show the results in Table 5. Overall speaking, our GMNNT with trainable word
embeddings achieves the best perplexities among all baselines and the p-GMNNT with pre-
trained word embeddings ranks the second. According to the average ranks, the performance
order of perplexity is given by GMNNT > p-GMNNT > NVDM > ETM =~ p-ETM > LDA
> ProdLDA > GSM. More observations and discussions are detailed below.

Our GMNNT achieves the best perplexities and the two versions both perform well
among all settings. GSM has the worst results on short text datasets, i.e., Trec and Stack-
Overflow, and LDA also performs badly on these two datasets which coincides with the
fact that LDA fails to handle short texts due to the lack of word patterns. As for long
text datasets, i.e., Abstract, Tmc2007 and New YorkTimes, LDA lies in middle position and
performs better than ProdLDA and GSM, which gain the worst perplexities on long text
datasets. NVDM performs well on long text datasets and the performance gaps comparing
with our GMNNT are quite small. NVDM achieves the best perplexity on New YorkTimes,
corresponding with the best topic coherence and topic uniqueness which will be analyzed
later. ProdLDA has the worst perplexities on most settings, especially for long text datasets.
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Table 5 Experimental results of Perplexity. The lower score means better performance, and the best scores
are in boldface

Dataset T LDA  NVDM ProdLDA GSM ETM  p-ETM GMNNT p-GMNNT
Trec 25 5903 5074 578.9 745.7 406.7 322.6  188.0 193.5

50 6965 506.3 556.2 801.8 4443 3219 2014 211.5
StackOverflow 25  1147.0 862.6 987.0 1267.9 799.8 598.8 3459 3729

50 13472 8629 896.5 12483 7986 5775 3818 431.5
Abstract 25 2199.6 18242 3260.6 2607.2 21594 22355 1927.1 1742.7

50 2330.8 1828.2 32532 2660.5 22464 2078.1 2064.4 1928.8
Tmc2007 25 1507.8 1293.0 2269.2 1693.3 1406.5 1784.7 11959  1217.7

50 1701.8 1321.0 2179.0 1774.1 14803 1647.2 1298.0  1468.3
NewYorkTimes 100 3615.5 3040.7 10466.7 4757.0 4382.0 4232.1 3338.8  3278.0
AvgRank - 5.00 2.63 5.82 591 3.55 3.55 1.36 1.63

The cause for the extreme high perplexity goes to the high KL-divergence for approximat-
ing the Dirichlet prior in the encoder, and these observations are consistent with [8]. We
have the same observations on the objective values in Section 4.3.

4.2.2 Evaluation on topic coherence

Topic coherence Broadly speaking, the Topic Coherence (TC) measures the quality of top-
ics by counting the co-occurrences of their top words. In the experiment, we compute the
score of topic coherence by using the publicly available project Palmetto'* developed by
the previous study [46]. We employ the version of Cy suggested by [46].

Results Table 6 illustrates results of topic coherence. Our p-GMNNT and GMNNT achieve
significant improvements over other methods, especially on Trec and Abstract. The per-
formance improvements are up to 0.025 and 0.059 on Trec and Abstract when K = 25
and K = 50, respectively. Our GMNNT achieves much higher topic coherence scores than
ETM, especially on Trec, Abstract and New YorkTimes, which indicates that our method
generates more coherent topics with less redundant words, e.g., semantically related words,
which may seldomly co-occur and therefore harm the topic coherence. This observation
confirms the effectiveness of our motivation. Besides, both the two versions of GMNNT per-
form steady results for different topic numbers 7. LDA suffers from the sparsity problem on
short text datasets and therefore results in the bad performance on Trec and StackOverflow
and meanwhile beats most neural topic models on Abstract and Tmc2007.

Meanwhile, we find that high topic coherence scores may not always correspond with
higher topic qualities. For New YorkTimes, NVDM achieves the best topic coherence up
to 0.557. Back to the aforementioned topic quality decline problem in Section 4.1, when
facing larger datasets, NVDM and ProdLDA tend to generate more infrequent words for
each topic, e.g., names of persons or places. These infrequent words may strongly co-occur
in external mass corpus however leading to less meaningful topics.

14https://github.com/dice- group/Palmetto/wiki/Coherences
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Table 6 Experimental results of topic coherence. The higher score means better performance, and the best
scores are in boldface

Dataset T LDA NVDM ProdLDA GSM ETM p-ETM GMNNT p-GMNNT
Trec 25  0.384 0.400 0.391 0.405 0.379 0.396 0.419 0.430
50 0378 0.391 0.389 0.381 0.374 0.396 0.399 0.418
StackOverflow 25 0422 0.417 0.419 0.403 0.497 0.410 0.453 0.442
50 0416 0.427 0.402 0.402  0.466 0.407 0.464 0.450
Abstract 25 0403 0368 0.354 0.381 0.418 0.377 0.462 0.302
50 0397 0.386 0.354 0.388 0.420 0.367 0.431 0.307
Tmc2007 25 0362 0.308 0.328 0.385 0.367 0.364 0.331 0.307
50 0369 0.309 0.330 0.363 0.375 0.373 0.330 0.291
NewYorkTimes 100 0.432  0.557 0.462 0.528 0.392 0.419 0.510 0.518
AvgRank - 3.82  4.00 4.82 355 3.00 4.00 2.18 391

4.2.3 Evaluation on topic uniqueness

Topic Uniqueness Topic Uniqueness (TU) measures the redundancy of top-M words of

topics [41]. Given learned top-M words of all topics {€2;} thl’ TU is computed as follows:

1 & 1

t=1 w; ey

where cnt(w;) denotes the number of times that the word w; appears in top-M word lists of
all topics.

Results Table 7 illustrates the results of topic uniqueness. Overall speaking, our p-GMNNT
achieves the best topic uniqueness in most settings and ranks the first. Our p-GMNNT beats
p-ETM 7 times on 11 settings and GMNNT with trainable word embeddings beats ETM in
all settings, which indicates the effectiveness of topic-specific generation decoder.

Table 7 Experimental results of topic uniqueness. The higher score means better performance, and the best
scores are in boldface

Dataset T LDA NVDM ProdLDA GSM ETM p-ETM GMNNT p-GMNNT
Trec 25 0.692 0.774 0.852 0.608 0.422 0.935 0.877 0.956
50 0.624 0.646 0.723 0.614 0.239 0.888 0.520 0.729
StackOverflow 25  0.778 0.790 0.886 0.480 0.214 0918 0.629 0.976
50 0.678 0.702 0.898 0.474 0.190 0.924 0.334 0.667
Abstract 25 0.647 0.957 0.934 0.600 0.339 0.833 0.902 0.946
50 0.603 0.877 0.885 0522 0.238 0.813 0.591 0.916
Tmc2007 25 0500 0.885 0.545 0.806 0.310 0.765 0.697 0.962
50 0424 0.749 0.512 0.679 0.187 0.631 0.365 0.902
NewYorkTimes 100 0.714 0.967 0.566 0940 0323 0.774 0.682 0.953
AvgRank - 445 227 3.18 445 8.00 245 4.64 1.45
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p-ETM performs well on short text datasets while NVDM generates higher topic unique-
ness scores on long text datasets. GSM applies the topic uniqueness regularization and
achieves 0.940 on New YorkTimes, while the regularization plays a weak part and has lim-
ited effects in reducing topic redundancy. Furthermore, we find that GSM tends to collapse
to identical topics with longer training process, and this observation is rather similar with
the component collapsing mentioned in [8], from which the VAE family mostly suffer. The
reason for component collapsing is that the KL-divergence in objective tends to converge
much faster than the reconstruction loss and the model falls into local optima in early train-
ing. We indeed have the same observations, where the topic uniqueness scores have the
tendency of first rising and then descending. For our GMNNT and p-GMNNT, we apply a
relatively high learning rate at 0.0001 and Batch Normalization is employed before the repa-
rameterization trick for avoiding the component collapsing according to [8]. These settings
provide gradually rising topic uniqueness values during the entire training process.

4.3 Convergence analysis

In this section, we present the convergence analysis of neural topic models and plot the
objective, i.e., negative evidence lower bound (NELBO) values across Trec, StackOver-
flow, Abstract and Tmc2007 in Figure 2. Overall, our GMNNT and p-GMNNT converge
fast within 40 epochs. Due to the smaller learning rate comparing with our baselines, our
GMNNT and p-GMNNT converge a little slower than other methods. ProdLDA converges
hard due to the approximation of Dirichlet prior. In summary, GMNNT is more practical in
real applications due to its fast convergence.

4.4 Sensitivity analysis of parameters
In this section, we examine the impacts of number of layers A; and number of hidden neu-
rons X, in neural topics by perplexity, topic coherence and topic uniqueness on p-GMNNT.

We study the sensitivity experiment on Trec, StackOverflow, Abstract and Tmc2007 for
memory limitation.

——NVDM ProdLDA —— GSM ——ETM p-ETM —— GMNNT —— p-GMNNT

Trec K=25 Stackoverflow K=25 Abstract K=50 Tmc2007 K=50
45 50 850 700
Q35 40 750 600
=
z. 25 30 650 500\
&
15 20 550 400
0 25 50 75 100 "0 25 50 75 100070 25 50 75 100 0 25 50 75 100
Epoch Epoch Epoch Epoch
Trec K=50 80 Stackoverflow K=50 850 Abstract k=100 700 Tmc2007 k=100
Q35 60 750 600
=
Z 25% 40 650 500
15, 20 550 400
0 25 50 75 100 "0 25 50 75 100070 25 50 75 100 0 25 50 75 100
Epoch Epoch Epoch Epoch

Figure 2 Convergence curves of NELBO values on Trec, StackOverflow, Abstract and Tmc2007
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Figure 3 Perplexity, topic coherence and topic uniqueness performance varying A4 on Trec, StackOverflow,
Abstract and Tmc2007
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Figure4 Perplexity, topic coherence and topic uniqueness performance varying A,, on Trec, StackOverflow,
Abstract and Tmc2007
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For A4, we varied it from {2, 3, 4, 5, 6, 7, 8} and present results in Figure 3. In general, a
more complicated network leads to a worse perplexity under same settings. We find that for
all four datasets, perplexities of p-GMNNT show little change and a slight rising trend. As
for topic coherence, p-GMNNT shows insensitivity on Trec and StackOverflow and mean-
while shows slight decrements for Abstract and Tmc2007 when facing deeper networks. As
for topic uniqueness, a deeper network mostly leads to better topic uniqueness scores for
most datasets, which coincides with the fact that topic coherence and topic uniqueness are
more likely to have opposite tendencies. In a word, GMNNT is insensitive to the number
of layers in neural topic, making the model more robust in real scenarios. For A,,, we var-
ied it from {60, 80, 100, 120} and plot results in Figure 4. In keeping with A4, perplexities
shows small fluctuations on X,,. Topic coherence scores on Trec and StackOverflow are sta-
ble and insensitive to A,, and a wider network leads to higher topic uniqueness scores. In
brief, our GMNNT shows great robust on A4 and X,,, which makes it practical in real-world
applications.

5 Conclusion

In this paper, we aim at alleviating the problem that the existing neural topic models often
output redundant and inaccurate topic representations. To this end, we suggest a novel
GMNNT model by replacing the topic embeddings with neural topics, enabling to capture
nonlinear relationships between words in the embedding space. With this design, even sim-
ilar words are allowed with different probabilities in the same topic distribution, leading to
more accurate topic representations. By employing the spirit of neural variational inference,
we can efficiently train GMNNT with the reparameterization trick. We conduct numbers of
experiments to empirically compare GMNNT against several existing neural topic models
and also the standard LDA model. Experimental results show that GMNNT is on a par with
the existing baseline models over the evaluations of held-out likelihood, topic coherence
and topic uniqueness. Specifically, the topics learned by GMNNT are more semantically
coherent both qualitatively and quantitatively.
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