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Abstract
Gating transformation demonstrates great potential in recent deep convolutional neural net-
works design, enriching the feature representation and alleviating noisy signals by modeling
the inter-channel dependencies using learnable parameters. However, the utilization of scal-
ing approaches to reduce the redundancy of the hand-crafted attention mechanism has
rarely been investigated. This paper proposes a novel scaled gated convolution that enables
attention-enhanced CNNs to overcome the paradox between performance and redundancy.
Our scaled gated convolution is a simple and effective alternative compared with both
vanilla convolution and attention-enhanced convolutions, which can be easily applied to
modern CNNs in a plug-and-play manner. Exhaustive experiments demonstrate that stack-
ing scaled gated convolutions in baselines can significantly improve the performance in
a broad range of visual recognition tasks, including image recognition, object detection,
instance segmentation, keypoint detection, and panoptic segmentation, while obtaining a
better trade-off between performance and attentive redundancy.
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1 Introduction

Deep convolutional neural networks (CNNs) have attracted a broad range of research inter-
ests in the computer vision field and have achieved remarkable progress in various visual
recognition tasks, including image classification [20, 31, 35, 55], object detection [51,
52], semantic segmentation [5], instance segmentation [17, 28], and human keypoint
detection [17, 70]. Standard convolution layers containing collections of filters express
neighborhood spatial feature connectivity along input channels by a linear transformation,
together with non-linear activation functions, play a central role in CNNs. Traditional CNNs
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serve as robust feature extractors by stacking convolution layers followed by activation
layers; e.g., VGGNets [55] construct deep CNNs by modular designed 3x3 convolution
layers with non-linear activation functions capable of capturing global context informa-
tion. In order to further tap the potential of deeper architectures, modern CNNs introduce
skip-connection [20] and variants [9, 21, 27] to alleviate gradient vanish.

In addition to the deeper CNNs, another category approaches [3, 22, 25, 26, 64, 68] focus
on enriching feature representation according to long-range context dependencies learned
by extra parameters, which present considerable potential for practical applications. Some
methods [25, 26, 36] in-cooperate attention mechanism with convolution and have boosted
the performance of downstream tasks. One of the representative methods is Squeeze-and-
Excitation Networks (SENet) [26], combined with various network architectures, bringing
consistent performance gains in a wide range of vision tasks at the cost of additional param-
eters. Unlike the approaches mentioned above that suffer from a heavier computational
burden, this paper mainly focuses on the following question: Is it possible to tap the potential
of attention-enhanced CNNs while easing the computational burden of attentive modules?

To address this issue, we first revisit the gating mechanism in SENet [26] and sev-
eral variants [25, 42, 63, 68]. SE block is a micro-encoder-decoder architecture applied at
module-level, which aggregates long-range spatial dependencies by non-parametric global
average pooling first. It then encodes non-linear latent channel relationships by cascading
fully-connected (FC) layer and ReLU [48] activation function. The decoder part models
the saliency of channel information flow using another FC layer followed by the Sig-
moid function. Although SENet improves the performance of CNNs, it inevitably increases
unnecessary complexity compared with original models. In addition, empirical studies indi-
cate dimensionality reduction of SE block is unnecessary and inefficient due to its side effect
on cross-channel information flow [63] and increased memory access cost (MAC) [47].
GENet [25] further explores parametric sampling kernels with various fields of view,
which achieve better performance at the expense of increased computational budgets for
spatial conditioning than SENet. CBAM [68] enhances feature representations using a
dual-attention mechanism which consists of max pooling enhanced channel attention and
spatial attention captured by extra convolutional kernels. SCNet [42] proposes a conditional
calibration-based parallel, heterogeneous, dual-path architecture to enlarge receptive fields
and complement informative features, balancing complexity and performance. ECANet [63]
presents a locality-prior-driven design that overcomes the SE block dimension reduc-
tion defect and reduces the extra computational budgets for attentive modules with 1D
convolutions.

In order to further explore the potential of lightweight attentive architectures, we present
a scaled gated convolution as an efficient approach to strengthen the feature representations
of vanilla convolutional transformations and reduce redundancy of existing attentive mod-
ules in a plug-and-play manner. The proposed scaled gated convolution consists of a triplet
of operators: scaling, gating, and fuse. Specifically, the scaling operator re-scales feature
and kernel spaces into multiple portions for successive heterogeneous feature transforma-
tions. The gating operator aggregates global feature context to enlarge the receptive field
and leverages cross-channel information flow to generate self-adaptive attentive gating rep-
resentations. The fuse operator aggregates features across multiple heterogeneous feature
spaces adaptively for final semantic fusion.

As an enhanced version of standard convolution, three advantages of our scaled gated
convolutions can be offered. First of all, it strengthens cross-channel information flow by
adaptively encoding the informative long-range context features of multiple heterogeneous
feature spaces, which enlarges the receptive field and suppresses noisy signals compared to
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standard convolutions. Furthermore, the design of CNNs typically requires a wide selection
of complicated hyperparameters and configurations. By contrast, our scaled gated convolu-
tions can be directly deployed in existing state-of-the-art architectures by replacing original
vanilla or attentive counterparts, and the performance can be effectively boosted. Besides,
the scaled gated convolutions are computationally lightweight and require less redundancy
and computational burden compared to existing attentive counterparts.

To verify the effectiveness and provide evidence for these claims, we develop a series of
SGNets by plugging scaled gated convolutions into baselines, and conduct a comprehensive
evaluation on large scale datasets. We first evaluate the proposed approach on the large scale
ImageNet [31] dataset using ResNet variants [20, 26, 72] and obtain significant improve-
ments with comparable model complexity. We also present results on downstream tasks,
including object detection, instance segmentation, keypoint detection, and panoptic segmen-
tation, to verify the ability to generalize our models on various typical downstream vision
applications. Exhaustive experiments show that, by using SGNets, baseline results can be
effectively improved for all these tasks at the expense of comparable or less computational
budgets, which indicates our approach’s efficiency.

2 Related work

2.1 Modern architecture design

Remarkable progress has been achieved in the field of network architecture design in
recent years. AlexNet [35] laid the foundation for designing modern convolutional neural
networks, which dominant the image recognition field. VGGNets [55] introduce modu-
lar design and the receptive field equality principle of convolutions and construct deeper
networks with fewer parameters than AlexNet [35]. NIN [38] reduces overfitting by non-
parametric global average pooling (GAP). Highway network [16], ResNet [20, 21], and
DenseNet [27] alleviate vanishing gradient problems by various skip connections and help
deep networks convergence. DPN [9] combines residual connections and dense connec-
tions to learn robust feature representations. GoogleNet [58] and Inception series [57, 59]
enhance feature representations by stacking hand-engineered inception blocks, which intro-
duce heterogeneous multi-path convolutions. ResNeXt [72] further simplifies multi-path
networks by homogeneous group convolutions. WideResNet [75] strengthens shallow net-
works by adjusting the width of models. Xor is utilized for efficient deep hashing [45].
ShuffleNet [47, 77] enhances feature representations of lightweight models with channel
shuffle. EfficientNet [60, 61] scales width, depth, and resolution with NAS and achieves
remarkable performance gains.

2.2 Attention and gatingmechanisms

In addition to plain architectures, effective attention and gating mechanisms design
also attract more and more research interests. Attention and gating mechanisms can
be interpreted as self-adaptive content-aware computational resource reallocation mecha-
nisms based on informative components, demonstrating their utility across various tasks.
SENet [26] firstly adopts Squeeze-and-Excitation blocks among channel dimensions.
Beyond channel, GENet [25] leverages extra 2D convolutions to generate spatial region-
aware attention weights. SKNet [36] further extends attention and gating mechanisms
on kernels, which adjusts the receptive field of convolutions dynamically. CBAM [68]
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combines spatial and channels attention mechanisms to recalibrate feature representations.
SCNet [42] proposes an hourglass-style calibration-based operator to enhance the standard
convolution. NLNet [64] models long-range dependency using self-attention. GCNet [3]
further simplifies the NL block and proposes a lightweight GC block compatible with the
SE block. DANet [12] aggregates dual-path heterogeneous attention to capture large-scale
feature dependency. Fuzzy attention [44] is utilized to extract robust features. CCNet [29]
proposes a lightweight recurrent criss-cross attention block to reduce the computational
budget for large resolution scene parsing. ECANet [63] generates attentive weights based
on locality prior to overcome the paradox of performance and complexity trade-off.

2.3 Dynamic neural networks

Different from static neural networks, which recognize visual objects by utilizing static and
content-independent filters, dynamic neural networks construct sample-aware architectures
using parametric components. CondConv [74] and DyConv [7] generate dynamic kernels
conditioned on input samples. WeightNet [46] further introduces SE block and sparse block
diagonal matrix to save computational budget. SkipNet [65] learns specific components
with reinforcement learning. DRSS [37] builds a gating mechanism to adjust feature scales
according to input samples. DyReLU [8] and APReLU [78] are capable of adaptive rectified
factor correction using a learnable parametric rectified linear unit to boost performance.

2.4 Neural network scaling

In order to overcome the paradox of complexity and performance, scaling deep neural
networks are widely explored in both hand-crafted and automated-searched neural net-
work architectures. After the modular design principle introduced by VGGNets [55] is
applied widespread, the ResNet [20, 21] series further tap the potential of depth scaling
of models using residual connections and achieve remarkable gains with less complexity
compared to VGGNets. MobileNets [23, 24, 53] scale the width of bottleneck struc-
ture to enhance feature representations. WideResNet [75] proposes depth-width scaled
shallow-wide architectures and reaches comparable performance compared to deep-narrow
counterparts [20, 21]. EfficientNet [61] introduces a neural architecture search-based com-
pound search approach to scale input resolution, depth and width automatically and achieves
a better balance between complexity and performance. RegNet [50] proposes a statistical
information-based principle to adjust design spaces to sample a series of compound scaled
ResNeXt-style networks with neural architecture search.

2.5 Transfer learning on vision tasks

Extracting informative and robust feature representations is of great importance to a wide
range of modern deep transfer-learning-driven vision recognition tasks, including object
detection, instance segmentation, human skeleton keypoint detection, and panoptic segmen-
tation. Plenty of previous architectures demonstrate the ability to generalize on multiple
aforementioned transfer-learning tasks.

2.5.1 Object detection

Recognizing and locating various objects in a scene requires backbone networks to balance
the collision of feature representations between classification and localization and overcome
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the aliasing effect caused by the uncertainty of localization. ImageNet [31] pre-trained net-
works, e.g., VGGNets [55], are firstly utilized as feature extractors for R-CNN families [13,
14, 52]. In order to generate fixed-sized feature representation, SPPNet [19] proposes spa-
tial pyramid pooling to bridge the gap between convolution and fully connected layers. Fast
R-CNN [13] extends the SPPNet and proposes ROI pooling to ease the difficulty of the
learning process. The feature pyramid network (FPN) [39] further enhances multi-scale
feature representations extracted by backbone networks at different stages with pyramid
structure and alleviates the feature aliasing effect using a lateral connection.

2.5.2 Instance segmentation

In order to segment instances both accurately and precisely, segmentation networks [1,
2, 17] extract instance-aware representative context features and alleviate irrelevant noise
with various backbones [20, 55]. Mask R-CNN [17] alleviates feature misalignment by
bi-linear sampling-based RoI align operation, which reduces quantization error compared
to RoI pooling [13] and introduces an extra mask prediction head for high-resolution
dense prediction. Inspired by a single-stage object detector [40], YOLACT networks [1,
2] regard instance segmentation as a mask coefficients prediction task based on fully
convolutional networks (FCNs). PolarMask [71] constructs a unified framework in polar
coordinate space with center-guided classification and dense distance regression, which
unites the coarse-grained bounding box localization and fine-grained edge prediction with
the same representations. SOLO [66, 67] proposes a fast and straightforward FCN frame-
work to segment objects by different locations. BlendMask [4] further fuses the instance
feature representations and dense segmentation features using Blender and achieves higher
performance.

2.5.3 Keypoint detection

In recent years, deep CNNs have significantly advanced keypoint detection, and various net-
works have been proposed to extract instance-aware skeleton features. Mask R-CNN [17]
introduces a joint training scheme of keypoint and object detection based on the ResNet [20]
backbone. HRNet [56] splits the main single-scale branch into multiple branches with differ-
ent scales to enhance features with multi-scale representations. CPN [6] proposes a cascade
pyramid refinement network together with online hard keypoint mining loss to extract
keypoint features from coarse to fine. In contrast to complicated keypoint detection mod-
els, SimpleBaseline [70] constructs a simple and effective keypoint detection benchmark.
DarkPose [76] designs a novel and model-agnostic encoding-decoding-based coordinate
representation to boost the performance of keypoint detection.

2.5.4 Panoptic segmentation

Different from instance segmentation [4, 17] and semantic segmentation [5, 43, 49, 79],
which focus on stuff/thing segmentation tasks in isolation, panoptic segmentation [34]
requires a reconciliation between these tasks and recently attracted increasing research
interests. Panoptic FPN [33] combines FPN [39] with mask R-CNN [17] and semantic seg-
mentation head to generate a robust panoptic prediction. UPSNet [73] alleviates feature
conflicts between semantic and instance segmentation by utilizing deformable convolu-
tion [11, 80] and a parametric-free panoptic segmentation head in a unified framework.
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introduces attentive structure to alleviate feature noise and improve the performance of
panoptic segmentation.

3 Methodology

In this section, we present the details of the proposed scaled gated convolutions for
image recognition. It is a lightweight module based on transformation ˜F , capable of
mapping an input tensor X = [x1, x2, . . . , x˜C] ∈ R

˜C× ˜H× ˜W to feature representation
U = [u1, u2, . . . , uC] ∈ R

C×H×W . Conventional convolution transformation F consists
of homogeneous filters V = [v1, v2, . . . , vC] and learns local representations with a fixed
receptive field. Given the above notations, the transformed feature representations at the i-th
channel can be written as:

ui = vi ∗ X =
∑˜C

j=1
v

j
i ∗ xj (1)

where ∗ denotes convolution operator, ui ∈ R
H×W , vi = [v1i , v2i , . . . , v˜C

i ] v
j
i is a 2D single-

channel convolutional filter with a fixed kernel size that acts on the corresponding channel
of X. Spatial dimension and bias terms are omitted for neat notations. As can be seen in (1),
traditional convolutions extract local information by sliding windows with predefined kernel
sizes. The channel correlation of feature representations is built by the inherent weighted
summation of convolutions. We expect discriminative convolutional feature transformation
learning to be strengthened by explicitly exploring long-range spatial semantic information
and combining cross-channel correspondence with lightweight and powerful computational
components. To this end, we propose scaled gated convolution.

3.1 Scaled gated convolutions

In SENet, Squeeze-and-Excitation modules are cascaded after the main branch, which
constructs cross-channel information flow as auxiliary branches and imposes post-gating
transformation to enhance feature representations. Different from SENet-style design cas-
caded after the main branch. Our scaled gated convolutions can apply gating mechanisms
in a parallel paradigm, which combines both convolutional and gating transformation. Sim-
ilar to group convolutions, the input feature representations are parted at the beginning and
merged to generate final outputs. However, differently, group convolutions perform homo-
geneous transformation for groups, while ours introduce heterogeneous transformation to
construct relationships among groups so that they may complement each other.

3.1.1 Overview

The overall pipeline of our scaled gated convolution is illustrated in Figure 1. The given
input feature representation is denoted as X ∈ R

C×H×W . The output feature map Y ∈
R

C×H×W is designed to keep the same dimension as input X so that the scaled gated con-
volution can be applied to existing architectures in a plug-and-play manner. In order to
reduce the redundancy of scaled gated convolution, the given input features X are scaled by
λ and divided into two branches using scaling operator, i.e., X1,X2 for lightweight hetero-
geneous transformation. The overall framework of our proposed scaled gated convolution
is formulated as:

Y = {X1;X2} = {X1−λ; ˜F(Xλ)} (2)

1588 World Wide Web (2022) 25:1583–1606



CxHxW CxHxWCxHxW
CxHxW

(1- )CxHxW

CxHxW

Scale

Ga�ng 
Transform

Ga�ng 
Ac�va�on

Ga�ng 
Adapta�on

Residual Global 
Embedding
Cx1x1 Cx1x1

CxHxW CxHxW CxHxW

Ga�ng 
Ac�va�on

Residual Global 
Embedding
Cx1x1 Cx1x1

CxHxW

element-wise summa�on

element-wise product

squeeze opera�on

embedding filters

ga�ng probability generator

local feature filters

feature concat and fusion

ga�ng ac�va�on

Self-Gated Convolu�on

Figure 1 The pipeline of our proposed scaled gated convolution. The given input features representations are
divided into gating branch and identity branch for heterogeneous processing. The heterogeneous branches
are scaled by λ so as to reduce redundancy and improve performance. The gating mechanism is composed of
a scaled gated transformation module that is succeeded by a scaled gated activation using lightweight filters.
More details can be found in Section 3.1. Best viewed in color

where {·; ·} denotes feature fusion and ˜F denoted scaled gated transformation. Inspired by
[77], the first branch uses identity mapping to generate the identity intermediate feature
representation Y1, i.e., Y1 = X1 ∈ R

(1−λ)C×H×W , which preserves spatial context based
on high-resolution feature representation, and avoids loss of informative details caused by
introducing extra learnable parameters. More importantly, the identity branch also preserves
an auxiliary constant gradient flow where ∂y

∂x
= 1 so as to accelerate model convergence.

The second branch adaptively adjusts input feature X2 ∈ R
λC×H×W using global context

embedding guided scaled gated operation to obtain the other intermediate feature repre-
sentation Y2. The scaled gated operation consists of a two-stage gating mechanism, more
specifically, a scaled gated transformation module succeeded by a scaled gated activation.
The final output feature representation Y is obtained by concatenating and fusing Y1,Y2.
The details of our gating mechanism will be described in the following sections.

3.1.2 Scaled gated transformation

In order to effectively tackle the issue of exploiting the input information flow of scaled
gated convolutions, we propose a scaled gated transformation module based on cross-
channel information flow. Specifically, the channel-wise statistics μ ∈ R

λC are created
using non-parametric global average pooling. Formally, given the input feature representa-
tions of second branch X2 ∈ R

λC×H×W , the channel-wise statistics μ ∈ R
λC are generated

by operation ϕ, which shrink the spatial dimension of X2 ∈ R
λC×H×W . Thus, the c-th

channel μc of channel-wise statistics μ is calculated by:

μc = ϕ(Xc
2) = 1

H × W

H
∑

i=1

W
∑

j=1

Xc
2(i, j) (3)
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Furthermore, in order to construct a self-adaptive selection and adjustment mechanism, we
utilize lightweight linear projection to model cross-channel information flow. A lightweight
learnable parameter matrix W ∈ R

λC×λC which contains only around 1.3% parameters
of the whole model (e.g., 0.3M vs. 22.3M for SGNet-50), is introduced to build cross-
channel information flow among arbitrary pairs (μi, μj ) of channel-wise statistics μ, so as
to enhance the robustness of features. Formally, W is defined as:

W =
⎡

⎢

⎣

w1,1 · · · w1,λC

...
. . .

...
wλC,1 · · · wλC,λC

⎤

⎥

⎦
(4)

However, the lightweight linear projection W ∈ R
λC×λC limits the capability of mod-

eling cross-channel information flow. On the one hand, such a linear parameter matrix
limits the capability of non-linear projection; On the other hand, the introduced parameters
might increase the optimization difficulty and potential risk of overfitting. Thus, residual
global embeddings e ∈ R

λC are generated by combining both linear projection and resid-
ual connection to accelerate convergence, mitigate the risk of overfitting, and suppress the
vanishing gradient problem. Formally, e ∈ R

λC is calculated as follows:

e = f (μ) = θ(μ) + μ = W ◦ μ + μ (5)

where ◦ denotes matrix multiplication, + denotes element-wise summation. The residual
global embeddings e ∈ R

λC are then soft-gated by gating operation δ, and applied on large
scale feature representations to construct powerful feature representation z ∈ R

λC . As afore-
mentioned, vanilla convolutions are able to enhance informative local details with fixed
receptive fields. Thus, we introduce convolutional filters ψ to model local feature patterns
of large-scale input feature representations X2. Formally, the c-th channel of the output of
scaled gated transformation zc can be calculated by:

zc = (ψ ∗ Xc
2) � δ(ec) (6)

where ∗ denotes convolution, and � denotes element-wise multiplication. The soft-gating
selection operation δ adaptively selects large scale feature representation based on residual
global embeddings e using a sigmoid function.

3.1.3 Scaled gated activation

Conventional rectified linear unit [48] provides sparsity and non-linear fitting ability by
suppressing negative feature representations yet limiting the robustness of negative feature
representations. Parametric alternatives, e.g., PReLU [18] and ELU [10], introduce extra
hyperparameters, which require parameter tuning for various downstream tasks.

Inspired by the success of applying APReLU [78] for fault diagnosis, we hypothesize that
negative embeddings surpassed by ReLU [48] encode noise disturbed class-distribution-
aware information whose potential has not been fully explored for visual recognition. Thus,
to adaptively enhance the non-linear fitting ability of feature representations and inhibit
noise, we propose a hyper-parameter-free module called scaled gated activation to tap the
potential of class-aware negative embeddings and ease the learning process for our model.
Formally, given the output z ∈ R

λC of (6) as input, the activated amplitude m ∈ R
λC can be

calculated as:

m = δ(f (ϕ(z)) (7)
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where δ, f, ϕ are defined in Section 3.1.2. After the activated amplitude is obtained, the
output feature representation of the second branch Y2 ∈ R

λC×H×W can be calculated as
follows:

Y2 = G(z) = max(z, 0) + min(z, 0) � m (8)

Different from dual-branch APReLU [78], which constructs statistical correlations for
positive/negative embeddings separately using cascaded fully-connected layers, which are
computational costly. Our scaled gated activation module extracts non-linear representa-
tions based on our lightweight scaled gating mechanism. Thus, our scaled gated activation
module can be plugged into our scaled gated convolution as an auxiliary non-linear feature
extractor with a bit of additional computational budget, while APReLU [78] can not.

3.1.4 Post fusion

Inspired by the success of linear bottleneck in MobileNet-V2 [53] and calibration operator
in SCNet [42], we propose a post-fusion module as the post-process of our scaled gated
convolution to gather local feature context and fuse heterogeneous output feature repre-
sentations. The intermediate feature representations Y1,Y2 are concatenated and fused to
generate final output feature representations. Formally, given the output of heterogeneous
output Y1,Y2 ∈ R

λC×H×W , and post fuse convolutional filters U, the final output feature
representation is fused by:

Y = F(Y1,Y2) = U ∗ [Y1;Y2] (9)

whereU denotes group convolutions which are divided intoK groups. ∗ denotes convolution
operation and [·; ·] represents feature concatenation.

3.2 Network architecture

Based on the scaled gated convolution, the overall architecture of our proposed SGNet is
listed in Table 1. The reasons why our scaled gated convolution is applied to ResNet [20]
are as follows. First of all, the design choices of ResNet follow modular design principles
introduced by VGGNets [55], which are easy to extend to various downstream tasks, e.g.,
object detection and pose estimation, and compatible with existing methods like feature
pyramid network [39]. In other words, plenty of tasks can benefit from replacing origi-
nal convolutions with scaled gated convolutions in a plug-and-play manner. Moreover, the
application of scaled gated convolution can benefit from residual connections for deep mod-
els, which avoids vanishing gradient problems. Last but not least, due to the design of the
efficient bottleneck modules, ResNet is one of the state-of-the-art architectures with a low
computational budget and model complexity. Specifically, our proposed SGNet consists of
multiple bottlenecks containing scaled gated convolutions, termed ”SG Bottleneck”. Each
SG bottleneck is composed of stacking 1 × 1 convolution, scaled gated convolution, and
1 × 1 convolution sequentially. By replacing large-size convolutions with our scaled gated
convolutions, our SGNet is able to enhance cross-channel information flow, suppress fea-
ture noise, and strengthen the robustness of representations. The detailed configurations of
SGNet-50 is shown in Table 1. Similar to ResNet-50, SGNet-50 contains four stages which
consists of {3, 4, 6, 3} SG bottlenecks respectively. Different SGNet architectures can be
obtained by varying the number of bottleneck blocks of each stage. Compared with ResNet-
50, our SGNet-50 is capable of maintaining comparable performance while saving around
8.6% parameters and 10.1% computational budget. Furthermore, our SGNet-50 can reduce
16.8% parameters and save 10.3% computational budget compared with SENet-50.
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Table 1 Architectures comparison among ResNet-50, SENet-50 and our proposed SGNet-50

Output ResNet-50 SENet-50 SGNet-50

112 × 112 7 × 7, 64, stride 2

56 × 56 3 × 3 max pool, stride 2

56 × 56

⎡

⎢

⎣

1 × 1, 128

3 × 3, 128

1 × 1, 256

⎤

⎥

⎦
× 3

⎡

⎢

⎢

⎢

⎢

⎣

1 × 1, 128

3 × 3, 128

1 × 1, 256

f c, [16, 256]

⎤

⎥

⎥

⎥

⎥

⎦

× 3

⎡

⎢

⎣

1 × 1, 128

SG[3 × 3,K = 2], 128
1 × 1, 256

⎤

⎥

⎦
× 3

28 × 28

⎡

⎢

⎣

1 × 1, 256

3 × 3, 256

1 × 1, 512

⎤

⎥

⎦
× 4

⎡

⎢

⎢

⎢

⎢

⎣

1 × 1, 256

3 × 3, 256

1 × 1, 256

f c, [32, 512]

⎤

⎥

⎥

⎥

⎥

⎦

× 4

⎡

⎢

⎣

1 × 1, 256

SG[3 × 3,K = 2], 256
1 × 1, 512

⎤

⎥

⎦
× 4

14 × 14

⎡

⎢

⎣

1 × 1, 512

3 × 3, 512

1 × 1, 1024

⎤

⎥

⎦
× 6

⎡

⎢

⎢

⎢

⎢

⎣

1 × 1, 512

3 × 3, 512

1 × 1, 512

f c, [64, 1024]

⎤

⎥

⎥

⎥

⎥

⎦

× 6

⎡

⎢

⎣

1 × 1, 512

SG[3 × 3,K = 2], 512
1 × 1, 1024

⎤

⎥

⎦
× 6

7 × 7

⎡

⎢

⎣

1 × 1, 1024

3 × 3, 1024

1 × 1, 2048

⎤

⎥

⎦
× 3

⎡

⎢

⎢

⎢

⎢

⎣

1 × 1, 1024

3 × 3, 1024

1 × 1, 1024

f c, [128, 2048]

⎤

⎥

⎥

⎥

⎥

⎦

× 3

⎡

⎢

⎣

1 × 1, 1024

SG[3 × 3,K = 2], 1024
1 × 1, 2048

⎤

⎥

⎦
× 3

1 × 1 7 × 7 global average pool, 1000-d f c, softmax

Params 24.4M 26.8 M 22.3M

FLOPs 3.86G 3.87G 3.62G

The building blocks are presented in brackets, including receptive fields and the number of feature channels,
with the stacked blocks of each stage outside the brackets. The f c together with inner brackets indicates the
fully connected layers integrated into the SE module. ”K = 2” denotes the number of groups of convolutions
U defined in Section 3.1.4. Params denotes the number of parameters and the FLOPs represents the number
of multiply-adds

3.2.1 Relation to attentive architectures

Our proposed SGNet is quite different from existing attentive architectures. SENet [26]
applies homogeneous attention to all channels, which leads to a lack of feature diversity. Dif-
ferently, we apply heterogeneous operations, i.e., identity mapping and scaled gated design,
to enhance the diversity and preserve the informative features and improve efficiency. Also,
SENet [26] applies channel-wise reduction to reduce the complexity, introducing informa-
tion loss, while ours scales the gating path to achieve a similar purpose without channel
reduction. Furthermore, SENet [26] inserts channel-wise attention module after convolution
as an individual operator, while ours integrates gating module with convolution as a whole
to replace the original convolution operator in a plug-and-play manner. In order to gener-
ate heterogeneous features, SCNet [42] applies filters in hourglass-style, which inevitably
requires extra computational budgets due to reserved large spatial scale, while ours is based
on identity mapping together with scaled gating transformation, which is more lightweight.
CBAM [68] also preserves large spatial resolutions and applies an attention mechanism to
improve performance. However, our work demonstrates that even without the help of large
spatial scale reservation, competitive performance can also be achieved, and computational
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budgets might be reduced a little in terms of flops. Besides, heterogeneous filters utilized in
SCNet [42] might introduce bias and lead to information loss, while ours may not. More-
over, our scaled gated activation is capable of enhancing non-linear fitting ability, while
SCNet cannot. ECANet [63] explores a locality-based attention mechanism to reduce atten-
tion redundancy using 1D convolution, while ours scale the gating branch to achieve such
purpose. In short, Table 2 shows the relationship to existing attentive architectures.

3.3 Complexity analysis

Given scaling coefficient 0 < λ ≤ 1, fusion groups K ∈ N
+, kernel size S × S and input

feature X ∈ R
C×H×W , the complexity of our scaled gated convolution can be formulated

as:
{

#P = (λ2 + S2/K)C2

#F = [λ2(HW + 1) + S2HW/K]C2 (10)

where #P and #F denote the number of parameters and flops of our scaled gated convolu-
tion, respectively. Compared to vanilla convolutions, the saved computational budget can be
calculated as follows. Note that �#P and �#F denote the number of saved parameters and
flops, respectively.

{

�#P = [(K − 1)S2/K − λ2]C2

�#F = [(K − 1)S2HW/K − λ2(HW + 1)]C2 (11)

Note the complexity might increase in some cases, e.g., when K = 1 and λ = 1. Yet, as
presented in Section 4.1.2, we typically set K = 2 and λ = 0.5 to overcome the paradox
between redundancy and performance if not otherwise noted.

4 Experiments

We evaluate the performance on large-scale datasets on various tasks, including Ima-
geNet [31] classification, object detection, instance segmentation, and keypoint detection

Table 2 Relation to attentive architectures

Model CA. CR. SA. SR. Hetero. Pos.

ResNet [20] (baseline) ✗ ✗ ✗ ✗ ✗ ✗

SENet [26] � bottleneck-style ✗ GAP ✗ after conv

CBAM [68] � bottleneck-style � GAP+GMP ✗ after conv

ECANet [63] � conv 1D ✗ GAP ✗ after conv

SCNet [42] ✗ ✗ � hourglass-style � in conv

SGNet (ours) � scaling factor ✗ GAP � in conv

”CA.” denotes channel-wise attention, ”CR.” denotes channel reduction approaches, ”SA.” denotes spatial-
wise attention. ”SR.” denotes spatial reduction methods. ”Hetero.” denotes if models are capable of
generating heterogeneous features. ”Pos.” denotes the position to apply attentive modules. ”GAP” and
”GMP” denote global average pooling and global max pooling, respectively
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on COCO [41]. Specifically, classification performance is evaluated on ImageNet [31], and
SGNet is adopted as the backbones for these tasks. Faster/Mask R-CNN [17, 52] and [70]
are utilized as code bases for object detection, instance segmentation and keypoint detection,
respectively. SGNet is also applied to the keypoint detection task to verify the transferability.

4.1 ImageNet classification

ImageNet [31] contains 1.28 million training images and 50k validation images of 1k
classes. Models are trained on the training set, and accuracy is reported on the validation
set. We adopt the official code based on the widely used Pytorch framework to run our
experiments.

4.1.1 Implementation details

The standard data augmentation is applied as done in [20]. Specifically, the training images
are randomly cropped to 224× 224 with random horizontal flipping. All models are trained
on 8 GPUs with batch size 256 for 100 epochs, and parameters are optimized by stochastic
gradient descent (SGD) with a weight decay of 0.00005 and momentum of 0.9. The initial
learning rate is set to 0.2, and we utilize a cosine learning rate schedule [30] with a linear
warmup [15] for the first five epochs. Note that all experiments share the same environment
and experimental settings using the same code base.

4.1.2 Ablation study

Fair comparison To compare the effectiveness of SGNet with other counterparts, the orig-
inal large fields-of-view convolutions used in ResNet [20] are replaced by our scaled gated
convolutions. We consider ResNet [20], ResNeXt [72], and attentive architectures [26, 42,
63, 68] with different depths and evaluate performance on the large-scale ImageNet [31]
dataset. Specifically, for single-branch gating, SGNet-50 and SGNet-101 are obtained
by replacing correspond convolutions of ResNet-50 and ResNet-101, respectively. For
multi-branch gating, we follow [72] to simplify multiple gating branches as a grouped
dual-branch scaled gated convolution containing a grouped gating branch and an identity
branch. We adjust cardinality settings to SGNeXt-8x14d for these ResNeXt-style models
to fit our scaled gated convolution instead of the default 32x4d settings in ResNeXt [72],
i.e., ResNeXt-8x14d and SENeXt-8x14d models are utilized as baselines when compared
with our SGNeXt-8x14d models for fair comparison if not otherwise specified. Speed is
evaluated on 8 GTX-1080Ti.

As shown in Table 3, our SGNet-50 improves 1.7% top-1 accuracy (76.8% vs.
78.5%) and 0.9% top-5 accuracy (93.4% vs. 94.3%). Compared to ResNet-101, our
SGNet-101 improves 1.0% top-1 accuracy (78.6% vs. 79.6%) and 0.5% top-5 accu-
racy (94.3% vs. 94.8%). Similar improvements can be seen for other counterparts. Note
that our SGNet achieves comparable performance using our lightweight scaled gated
convolution under same experimental settings compared to both attentive and vanilla
architectures.

Pooling choices The global embeddings are channel-wise statistics obtained by pooling
operations. Thus, we consider the influence of global average pooling (GAP) and global
max pooling (GMP). As shown in Table 4, using GAP improves 0.6% top-1 accuracy
(77.9% vs. 78.5%) and 0.4% top-5 accuracy (93.9% vs. 94.3%)). This might due to the fact
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Table 3 Fair comparison on ImageNet [31]

Model Params FLOPs Top-1 Top-5 FPS T. FPS I.

ResNet-50 [20] 24.4M 3.86G 76.8 93.4 1249 4987

SENet-50 [26] 26.8M 3.87G 77.9 94.0 1062 4166

CBAM-50 [68] 26.8M 3.87G 77.9 94.0 800 2743

ECANet-50 [63] 24.4M 3.81G 77.9 94.0 1094 4454

SCNet-50 [42] 24.4M 4.29G 78.3 94.2 957 4008

SGNet-50 22.3M 3.62G 78.5 94.3 1053 3831

ResNeXt-50 [72] 24.4M 3.97G 77.9 93.9 750 4246

SENeXt-50 [26] 26.8M 3.98G 78.2 94.1 788 3378

SGNeXt-50 25.2M 4.10G 79.0 94.4 731 2743

ResNet-101 [20] 42.5M 7.27G 78.6 94.3 773 2967

SENet-101 [26] 47.0M 7.27G 79.4 94.7 788 3378

CBAM-101 [68] 47.0M 7.28G 79.1 94.6 455 1612

ECANet-101 [63] 42.5M 7.27G 79.2 94.7 640 2604

SCNet-101 [42] 42.5M 7.75G 79.1 94.6 610 2478

SGNet-101 38.5M 6.57G 79.6 94.8 644 2301

ResNeXt-101 [72] 43.0M 7.52G 79.1 94.5 554 2169

SENeXt-101 [26] 47.6M 7.53G 79.4 94.8 478 1972

SGNeXt-101 44.6M 7.79G 79.5 94.8 366 1289

”T.” and ”I.” denote training and inference, respectively

that GMP captures global maximum as statistics while GAP constructs connections among
arbitrary spatial positions so as to generate more powerful representations.

Residual global embedding To evaluate the residual connections in global embeddings,
we compare global embeddings w/wo. residual connections. As presented in Table 4, intro-
ducing residual connections improves 0.4% top-1 accuracy and 0.2% top-5 accuracy. As
can be seen, residual connections accelerate model convergence.

Scaling factor In order to verify the parameter sensitivity of scaling factor λ and fusion
factor K for our scaled gated mechanism, we scale gating branch with different λ and K to
balance the redundancy and performance. As presented in Table 5, empirically, λ = 0.5 and

Table 4 Pooling methods and residual connection of embeddings

Model Max Pool Avg Pool Residual Top-1 Top-5

ResNet [20] 76.8 93.4

SGNet-50 � � 77.9 93.9

� 78.1 94.1

� � 78.5 94.3
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Table 5 Parameter sensitivity of λ and K using SGNet-50

λ 0.1 0.3 0.5

Top-1/Top-5 78.1/94.1 78.3/94.2 78.5/94.3

MParams/GFlops 19.1/2.97 20.2/3.19 22.3/3.62

λ 0.7 0.9 1.0

Top-1/Top-5 78.6/94.3 78.5/94.3 78.5/94.3

MParams/GFlops 25.4/4.25 29.6/5.12 32.2/5.64

K 1 2 4

Top-1/Top-5 78.6/94.4 78.5/94.3 78.1/94.2

MParams/GFlops 27.7/4.48 22.3/3.62 19.6/3.19

K = 2 overcomes the paradox between computational budget and performance. Note that
λ is fixed when varying K and vice versa.

Ablation study of scaled gated modules To evaluate the influence of each scaled gated
module, we remove scaled gated transformation, scaled gated activation as well as post
fusion and validate the performance. As can be seen in Table 6, removing post fusion module
leads to 1.8% top-1 accuracy and 0.9% top-5 accuracy drop. A similar trend can be observed
when removing scaled gated transformation and scaled gated activation.

Visualization analysis To explore the class-specific information encoded by scaled gated
activation, we uniformly sample 1k images from 20 randomly chosen classes and then
project the extracted high-level semantic features using t-SNE [62] to verify the discrim-
inability of class-specific distribution information before/after scaled gated activation. As
presented in Figure 2, scaled gated activation enables features in the same class closer to
each other and far from samples of other classes. Thus, the proposed scaled gated activation
module is capable of encoding class-specific information.

In order to demonstrate the intuitive insight of our heterogeneous design, we visualize
features at different positions and heatmaps [54] in Figure 3. Some filters focus on local
details of textures and edges, which is darker, while others pay more attention to overall
semantic information, which is brighter. The heterogeneous design is capable of making
different modules extract heterogeneous features that complement each other.

Table 6 Ablation study of each scaled gated module, where ”T.”, ”A.” and ”F.” represent scaled gated
transformation, scaled gated activation, and post fusion defined in Section 3.1, respectively

Model T. A. F. Params Flops Top-1 Top-5

ResNet-50 [20] 24.4M 3.86G 76.8 93.4

SGNet-50 � � 16.9M 2.61G 76.7 93.4

� � 19.3M 2.99G 76.8 93.3

� � 22.0M 3.43G 78.3 94.1

� � � 22.3M 3.62G 78.5 94.3
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(a) before scaled gated activation (b) after scaled gated activation

Figure 2 Class-aware features before/ after scaled gated activation

4.2 Object detection

To evaluate the transferability of our scaled gated convolutions, our SGNet models serve as
backbones of object detectors and are trained on the COCO dataset [41].

4.2.1 Experimental settings

The widely used Faster R-CNN [52] with FPN [39] is utilized based on the Detectron2 [69]
benchmark to run our detection experiments. All models are trained on the COCO-2017
training set, and we report COCO-style metrics (AP, AP50, AP75, APS , APM , and APL) on
the COCO-2017 validation set. Images are resized so that the edges are not longer than 1333
pixels. We use 8 GPUs to train each model for 90000 iterations, with batch size set to 16.
The initial learning rate is set to 0.02 and divided by 10 after 60000 and 80000 iterations.
SGD is utilized to optimize parameters. The weight decay and momentum are set to 0.0001

(a) Input (b) Before SGT (c) After SGT (d) After SGA (e) After PF (f) Heatmap (g) Final

Figure 3 Visualization of selected features at different positions and heatmaps of the proposed scaled gated
convolution. SGT: scaled gated transformation; SGA: scaled gated activation; PF: post fusion. Filters that
generate darker visualizations focus more on textures and edges than those generate brighter visualization,
which focus more on overall semantic information
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and 0.9, respectively. For a fair comparison, multi-scale training and synchronized batch
normalization are enabled for all models.

4.3 Object detection

To evaluate the transferability of our scaled gated convolutions, our SGNet models serve as
backbones of object detectors and are trained on the COCO dataset.

4.3.1 Object detection results

As can be seen in Table 7, our SGNet-50 based detector outer-performs ResNet-50 based
one around 3.5% AP (38.9% vs. 42.4%). Besides, our SGNet-50 brings 4.2%, 3.7%, and
3.4% for APS , APM , and APL, respectively. The same phenomena can be observed for
other configurations in Table 7. Thus, our scaled gated convolution is capable of generating
scale-robust feature representations compared to ResNet-50. Moreover, our SGNeXt based
Faster R-CNN models bring large performance gaps (37.8% vs. 42.8% for 50 layers and
39.6% vs. 44.4% for 101 layers) compared to ResNeXt baselines, which indicates the het-
erogeneous gating transformation is able to generate much more powerful representations
than homogeneous baselines using group convolutions. Besides, our model also achieves
promising performance compared to attentive approaches [26, 42, 63]. In order to verify our
scaled gated convolution is capable of overcoming the paradox of complexity and perfor-
mance, we also evaluate the model complexity in terms of parameters and flops using the
same code base. As can be seen in Table 7, our lightweight scaled gated convolution can be
plugged into modern architectures and can achieve comparable performance with promising
computational budgets.

Table 7 Fair comparison of object detection results on COCO [41]

Backbone AP AP50 AP75 APS APM APL Params Flops

ResNet-50 [20] 38.9 59.1 42.3 22.7 42.2 50.8 43.1M 294.2G

SENet-50 [26] 40.8 61.9 44.2 25.4 44.9 52.0 45.6M 298.3G

ECANet-50 [63] 40.6 61.5 44.3 26.8 44.7 51.2 43.1 M 298.3G

SCNet-50 [42] 42.2 63.4 45.7 26.7 46.1 54.3 43.1M 295.5G

SGNet-50 42.4 63.7 46.2 26.9 45.9 54.2 40.9M 294.7G

ResNeXt-50 [72] 37.8 58.4 41.0 22.3 41.2 49.6 43.1M 294.3G

SENeXt-50 [26] 41.4 62.9 44.7 26.7 45.1 52.9 45.6M 301.6G

SGNeXt-50 42.8 64.0 46.7 27.5 46.4 55.4 44.0M 300.1G

ResNet-101 [20] 40.4 60.8 44.0 24.6 44.5 51.7 62.1M 361.0G

SENet-101 [26] 43.1 64.3 47.0 26.3 47.5 54.8 66.8M 365.2G

ECANet-101 [63] 42.8 64.0 46.6 26.7 46.7 55.1 62.1M 365.2G

SCNet-101 [42] 43.6 64.6 47.7 27.1 47.6 56.6 62.1M 354.0G

SGNet-101 43.8 65.3 47.9 28.3 47.8 55.6 57.9M 352.7G

ResNeXt-101 [72] 39.6 59.8 43.2 22.8 43.3 51.3 62.6M 362.9G

SENeXt-101 [26] 43.5 65.0 47.3 26.2 47.4 56.0 67.4M 370.2G

SGNeXt-101 44.4 66.0 48.5 27.4 48.3 56.7 64.2M 365.4G
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4.4 Instance segmentation

4.4.1 Instance segmentation results

In addition to objection detection, we apply our scaled gated convolution to Mask R-
CNN [17] and share the same settings as aforementioned in Section 4.2.1. As shown in
Table 8, our SGNet-50 based Mask R-CNN outer-performs ResNet-50 based Mask R-CNN
by 3.2% (34.9% vs. 38.1%), while SGNeXt-50 version outer-performs ResNeXt-50 one by
4.2% (34.5% vs. 38.7%). For deeper configurations, our SGNet-101 version brings 2.4%
absolute improvement compared to ResNet-101 based model, and SGNeXt-101 version
introduce additional 3.7% AP increase compared to ResNeXt-101 based model. As can be
seen, our scaled gated convolution can boost the performance of instance segmentation.
Compared to SCNet [42] and ECANet [63], our approach also achieves comparable or bet-
ter performance using a less computational budget. We also observe a slight performance
gap in terms of APM and APL compared to SCNet-50 based Mask R-CNN. It will be our
future work to further improve the capability of modeling large-scale instances.

4.5 Panoptic segmentation

In order to evaluate the capabilities to generalize on dense mask prediction task of our scaled
gated convolution, we adopt SGNet as the backbone network for Panoptic FPN [33] and
compare it with several modern counterparts [20, 26, 42, 63] using the same code base.

4.5.1 Experimental settings

Following the experimental settings in previous work [33], we utilize COCO-2017 [41]
data splits with 118k images for training, 5k images for validation with 80 thing classes

Table 8 Mask R-CNN [17] based instance segmentation results

Backbone AP AP50 AP75 APS APM APL Params Flops

ResNet-50 [20] 34.9 56.1 37.3 17.1 37.5 50.3 45.7M 326.6G

SENet-50 [26] 37.5 59.5 40.0 19.1 40.4 56.7 48.2M 324.1G

ECANet-50 [63] 36.8 58.5 39.2 18.5 39.5 52.4 45.7M 324.5G

SCNet-50 [42] 38.3 60.6 40.9 19.7 41.2 54.0 45.7M 321.0G

SGNet-50 38.0 60.7 40.5 19.9 40.7 53.8 43.5M 296.9G

ResNeXt-50 [72] 34.5 55.7 36.7 16.7 36.8 49.4 45.8M 321.5G

SENeXt-50 [26] 37.5 59.6 40.0 19.2 40.0 53.8 48.3M 326.9G

SGNeXt-50 38.6 61.6 41.0 20.2 41.4 54.9 46.6M 322.8G

ResNet-101 [20] 37.2 58.6 40.0 18.6 40.0 53.3 64.7M 386.5G

SENet-101 [26] 39.2 61.4 42.2 20.5 42.5 54.9 69.5M 387.4G

ECANet-101 [63] 38.7 60.9 41.3 20.0 42.1 54.4 64.7M 389.0G

SCNet-101 [42] 39.4 61.9 42.0 20.3 42.8 56.2 64.7M 377.2G

SGNet-101 39.6 62.6 42.7 21.0 42.5 56.7 60.6M 352.7G

ResNeXt-101 [72] 36.3 57.4 38.8 17.3 39.1 52.5 65.3M 390.2G

SENeXt-101 [26] 39.7 62.7 42.2 21.0 42.9 55.8 70.0M 391.3G

SGNeXt-101 40.0 63.0 42.8 20.9 43.4 56.9 66.8M 365.4G
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for instance segmentation. We also use COCO-2017 [41] stuff data including 40k training
images and 5k validation images with 92 stuff classes. The panoptic segmentation is trained
by all images containing 80 thing and 53 stuff classes as in [33]. For fair comparison, all
models are trained for 90000 iterations using the same code base, and the scale jitter is also
adopted as described in [33]. To evaluate the performance of both panoptic segmentation
and semantic segmentation, we report different metrics for these tasks. Specifically, the
mIoU,fwIoU,mACC and pACC are reported for semantic segmentation, and PQ, SQ, and
RQ related metrics are reported for panoptic segmentation, respectively.

4.5.2 Panoptic Segmentation Results

The panoptic segmentation results are listed in Table 9. As can be seen, our proposed scaled
gated convolution achieves comparable or better panoptic segmentation results compared
to both vanilla architectures [20, 72] and advanced attentive architectures. Compared to
ResNet-50 [20] based Panoptic FPN, our SGNet achieves 3.0% performance gains (39.4%
vs. 42.4%). For deep models, our SGNet boosts the performance of ResNet-101 [20] from
41.6% to 44.3%. Furthermore, our SGNet also achieves superior performance compared
to SENet [26] and other attentive counterparts [42, 63], as shown in Table 9. Thus, our
proposed scaled gated convolution can generalize on dense prediction tasks.

4.6 Keypoint Detection

To evaluate the ability to generalize on keypoint detection tasks, we also apply our scaled
gated convolution to the human keypoint-detection-based pose estimation pipeline and
report the OKS-based mAP on the COCO-2017 validation set.

4.6.1 Experimental settings

We strictly follow the default settings in [70], the initial learning rate is set to 0.001 and
divided by 10 after 90 and 120 epochs. For fair comparison, all models are trained with
batch size 32 for 140 epochs using Adam optimizer [32]. A Faster R-CNN detector with
56.4 mAP detection results of ”person” category is used during inference as done in [70].
We consider input sizes of 256×192 and 384×288 as in [70].

4.6.2 Keypoint detection results

The keypoint detection results are shown in Table 10. We omit the complexity metrics in
Table 10 since all the keypoint detection results are based on the same Faster R-CNN [52]
code base whose complexity has been discussed in Section 4.3.1, and the running speed of
our SGNet backbones has been discussed in Section 4.1.2. As can be seen, our proposed
scaled gated convolution outer-performs previous work [42, 70] in terms of OKS-based
AP. Specifically, given 256×192 input images, our SGNet-50 outer-performs ResNet-50
and SCNet-50 by 2.9% and 1.2%, respectively. Our SGNet-101 outer-performs ResNet-
101 and SCNet-101 by 3.2% and 2.0%, respectively. Similar phenomena can be observed
when larger images are given, as shown in Table 10. However, there is a performance gap
between SCNet [42] and our SGNet in terms of APL and APM , which indicates that SGNet
and SCNet complement each other. More specifically, SCNet might be helpful for large-
scale keypoint detection, while our SGNet is complementary to SCNet in terms of AP50,
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Table 10 Pose estimation results based on the same code base [70]

Backbone Input AP AP50 AP75 APM APL

ResNet-50 [70]

256×192

70.4 88.6 78.3 67.1 77.2

SCNet-50 [42] 72.1 89.4 79.8 69.0 78.7

SGNet-50 73.4 92.4 81.4 70.4 78.2

ResNet-50 [70]

384×288

72.2 89.3 78.9 68.1 79.7

SCNet-50 [42] 74.4 89.7 81.4 70.7 81.7

SGNet-50 75.8 92.5 82.7 72.5 80.7

ResNet-101 [70]

256×192

71.4 89.3 79.3 68.1 78.1

SCNet-101 [42] 72.6 89.4 80.4 69.4 79.4

SGNet-101 74.6 93.5 82.3 71.7 78.8

ResNet-101 [70]

384×288

73.6 89.6 80.3 69.9 81.1

SCNet-101 [42] 74.8 89.6 81.8 71.2 81.9

SGNet-101 76.4 93.5 83.5 73.1 81.0

AP75 and APM . Thus, we believe combining SGNet with other approaches might boost the
performance of models.

5 Conclusion

We propose a lightweight scaled gated convolution that introduces scaled heterogeneous
gating to generate powerful features and reduce redundancy and can be plugged into modern
architectures in a plug-and-play manner. The gating mechanisms consist of gating transfor-
mation, gating activation, and post fusion. Experiments on large-scale datasets verify the
effectiveness of our scaled gated convolution, and it can also be applied to downstream tasks
to boost performance. We hope this work might inspire the study of efficient convolution
design in the future.
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