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Abstract
Topic models have been widely used for learning the latent explainable representation of
documents, but most of the existing approaches discover topics in a flat structure. In this
study, we propose an effective hierarchical neural topic model with strong interpretabil-
ity. Unlike the previous neural topic models, we explicitly model the dependency between
layers of a network, and then combine latent variables of different layers to reconstruct
documents. Utilizing this network structure, our model can extract a tree-shaped topic hier-
archy with low redundancy and good explainability by exploiting dependency matrices.
Furthermore, we introduce manifold regularization into the proposed method to improve
the robustness of topic modeling. Experiments on real-world datasets validate that our
model outperforms other topic models in several widely used metrics with much fewer
computation costs.

Keywords Neural topic modeling · Hierarchical structure · Tree network ·
Manifold regularization

1 Introduction

As one of the most successful and prevalent language models, topic modeling can learn
the latent explainable representation of documents automatically. Traditional topic models
often utilize directed probability graph to describe their generative processes. However, as
the expressiveness and structure of generative processes grows, the deviation of parame-
ters tends to be tough and complicated, which also hinders the model’s efficiency when
it is trained on a large scale dataset [17]. Recently, many studies focus on utilizing neu-
ral networks [20, 28] to extract the topic information, and these neural topic models can
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Figure 1 Topics inferred by our model from the 20NEWS dataset [20]. We present five most representative
words for each topic and manually label these topics

easily scale to a larger amount of training data than classical probabilistic models like the
latent Dirichlet allocation (LDA) [4] and its extensions. But most of the current neural topic
models are flat models, which means the extracted topics are at the same level. This is a
significant limitation because in many domains, topics can be naturally organized into hier-
archies, where the root of each hierarchy represents the most general topic, and the topics
become more specific toward the leaf nodes. For instance, when we want to post a review
of a laptop, we may first determine its overall topic/aspect using words such as “cost perfor-
mance” and “quality”. Then, we select the “appearance”, “hardware”, and other sub-topics
to write the review in detail.

In probabilistic topic models, a hierarchical topic structure has been proven as useful for
many tasks, including text categorization, text summarization, and aspect extraction [3, 12,
18, 22], because such a model can provide much explainable information with desirable
granularity. Furthermore, explicitly modeling the hierarchical patterns allows us to learn
more interpretable topics and clearly show the main topics of a corpus in a hierarchical
structure, rather than the traditional word cloud. An example of topic hierarchy is shown in
Figure 1. Such a hierarchy can be used to sharpen a user’s understanding of the text content.

Although several probabilistic topic models have been proposed to extract the hierarchi-
cal topic structure of a corpus [3, 12], the Markov chain Monte Carlo (MCMC) method [25]
they employed for inference is quite time-consuming and is impractical to train for a large-
scale dataset. Recently, TSNTM [11] is developed to model the topic hierarchy based on the
neural variational inference (NVI) framework with good scalability, but the topic hierarchy
extracted by TSNTM is not reasonable enough because the DRNN it applied is unsuitable
to discover hierarchical semantics.

In this paper, we also focus on grouping documents into reasonable hierarchies based
on NVI. With the rapid development of neural networks, it is possible to employ multi-
level latent variables and obtain a hierarchical model. But few methods explicitly model
the dependency among different layers and get interpretable hierarchical latent variables,
e.g., topics, which is largely due to the weak interpretability of neural networks. Latent
variables inside the network can hardly be displayed explicitly, so modeling the hierarchy
of them is very difficult. To address this issue, we propose a novel NVI based method
called hierarchical neural topic model (HNTM)1 for hierarchical topic modeling with a

1The code of our model is available in public at: https://github.com/hostnlp/HNTM.
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pyramid-shaped structure. The model can also extract a tree-shaped structure by adding two
constraints.

To enhance the robustness of our HNTM, we also incorporate a manifold regularization
term to the NVI framework. Generally, manifold learning assumes that the points connected
to each other should be as close as possible after dimensionality reduction. As a result, we
introduce Laplacian Eigenmap [1] as a regularization term to make the related documents as
similar as possible in the topic distribution at the document level. To summarize, our main
contributions are as follows:

– We propose HNTM, a novel NVI based model for hierarchical topic modeling, which
outperforms the existing models in several widely adopted metrics with much fewer
computation costs.

– We introduce the manifold regularization into the NVI framework with the aim of mak-
ing nearby document pairs have similar latent topic representations, which reduces the
impact of noisy words and enhances the robustness of HNTM.

The rest of this paper is organized as follows. In Section 2, we introduce related work
about hierarchical topic models and neural topic models. In Section 3, we present our
model, introduce the network structure, and describe the regularization terms. In Section 4,
we present empirical results and compare HNTM with baseline methods. In Section 5, we
conclude the paper with discussions and future directions.

2 Related work

After proposing the classical LDA model [4], Blei et al. [3] extended it to a hierarchical
version called HLDA by introducing a nested Chinese restaurant process (nCRP). Given a
certain depth, HLDA constructs a topic tree through Gibbs sampling. However, each doc-
ument in HLDA is generated by the topics along a single path of the tree, so the ancestor
topic and its offspring topic generate the document together, making the hierarchical rela-
tion unclear. To overcome the weakness of single path sampling, Kim et al. [12] proposed a
recurrent CRP (rCRP), which enables a document to have a distribution over the entire topic
tree with unbounded depth and width. Experiments indicated that rCRP achieved remark-
able performance in hierarchical topic modeling. However, the aforementioned sampling
based methods suffer from the limitation of data scalability.

Mimno et al. [22] used a directed acyclic graph (DAG) structure and proposed the hier-
archical pachinko allocation model (hPAM). The model includes a root topic, in addition to
several super-topics and sub-topics. The root topic and other topics are connected to lower-
level topics by multinomial distributions. A document can be generated by every topic in
the DAG. Liu et al. [18] proposed the hierarchical latent tree analysis (HLTA), which iter-
atively employed the Bridged-Islands algorithm to cluster words and topics. However, the
model failed to deal with polysemous words, which is one of the major contributions of
topic modeling over text.

With the popularity of neural networks, many researchers aimed at addressing the draw-
backs of traditional topic models by NVI. Miao et al. [21] assumed that topic distributions
in documents can be represented by hidden variables sampled from multiple Gaussian dis-
tributions, and they used the variational lower bound as the objective function of their
proposed model named NVDM. Since NVDM did not explicitly model the word distribu-
tions, Miao et al. [20] extended it to several models including GSM which conforms to
the assumption of topic models with multinomial distributions over both topics and words.
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Srivastava and Sutton [28] employed the Gaussian distribution to approximate the Dirichlet
distribution, which further improved the variational auto-encoder and LDA accordingly.
Based on the Wasserstein autoencoders framework, Nan et al. [24] proposed the WLDA,
which applied a suitable kernel in minimizing the Maximum Mean Discrepancy to per-
form distribution mapping. Burkhardt et al. [5] used the Dirichlet distribution as a prior and
meanwhile decoupled sparsity and smoothness. Wu et al. [29] utilized Negative-Binomial
process and Gamma Negative-Binomial process to improve the sparsity of topic distribu-
tions. For short texts, Wu et al. [30] proposed a new topic distribution quantization approach
in the auto-encoder framework to generate peakier distributions, as well as a negative sam-
pling decoder to avoid generating repetitive topics. Unfortunately, these neural topic models
can not model the topic hierarchy.

A few researches concentrated on modeling the hierarchical structure among latent vari-
ables based on NVI. Goyal et al. [9] combined nCRP with variational auto-encoder to enable
infinite flexibility of the latent representation. Their approach was applied in video represen-
tation learning and the joint training limited the efficiency. Isonuma et al. [11] incorporated
a doubly-recurrent neural network (DRNN) into NVI and proposed a tree-structured neural
topic model (TSNTM). The model greatly improved the computational efficiency compared
with hLDA. However, the adopted DRNN was only used to generate topic representations,
rather than taking document representations as input. Such an issue makes TSNTM fail to
extract a reasonable topic hierarchy. Moreover, the topic hierarchy constructed by DRNN
needs to be updated frequently via a heuristic method. This motivates us to propose HNTM,
which extracts a explainable topic hierarchy via a feedforward decoder automatically with
much fewer computation costs. Notice that the recent work of Chen et al. [7] also employs
NVI with a feedforward decoder to extract the topic hierarchy, but the proposed nTSNTM
is quite different from our HNTM. First, nTSNTM was a non-parametric model that used a
stick-breaking process as prior, while HNTM adopts Gaussian distribution as prior. Second,
nTSNTM used a softmax function with low temperature to ensure a tree-shaped structure,
but it did not consider the balance of the topic tree. For HNTM, two regularization terms and
manifold learning are applied to guarantee a balanced topic tree. To the best of our knowl-
edge, this is the first study on tackling the issue of imbalance by introducing the manifold
regularization into NVI based hierarchical topic modeling.

3 Hierarchical neural topic model

In this section, we first introduce the modeling of topic hierarchy based on the NVI
framework and then describe the details of our HNTM.

3.1 Topic hierarchy

Previous hierarchical topic models mainly take a tree-shaped structure, but they have a dif-
ference in how to generate a document from the hierarchical topics. Figure 2 shows the
tree structure of different models and topic distributions of a simulated document. Partic-
ularly, HLDA considers that a document is generated by topics of only one path, which
violates the multi-topic assumption of topic models (i.e., a document may span several top-
ics). Considering this issue, rCRP generates a document by all topics in the tree. We follow
rCRP to develop a tree structure that a document is generated by all layers of the topic tree
cooperatively.
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Figure 2 Tree structures and topic distributions of a simulated document for our HNTM and other models.
Each node represents a topic with its own word distribution except for the root node in HNTM. Red node
means that the topic is activated in the current document and the size of nodes represents the proportion

Based on the framework of NVI, we reconstruct the input document by multiple layers
of latent variables. Layers are connected with dependency matrices D, where Dl means the
dependency matrix between layers l and l + 1. To estimate Dl (i.e., the dependency strength
between the super-topics at level l and the sub-topics at level l+1), we introduce super-topic
vectors pl and sub-topic vectors bl , as follows:

Dl,k = sof tmax(pl ∗ bT
l,k). (1)

In the above, Dl,k , which represents the dependency vector of sub-topic k, approximates
a discrete one-hot vector after using the softmax function. The super-topic vectors pl ∈
R

Kl∗H , and the sub-topic vectors bl ∈ R
Kl+1∗H , where H is the length of each topic vector,

Kl and Kl+1 represent the numbers of topics at level l and level l + 1 . To construct a
pyramid-shaped topic tree, the topic number Kl is incremental from level 1 to level L.

3.2 Network structure

As in probabilistic topic models, we use the latent variables θd and zn to capture the topic
proportion of document d and the topic assignment for the observed word wn, respectively.
To learn the hierarchical structure, sub-topics are generated using multinomial distributions
through dependency matrices D. The topic distribution of level L can be generated by:

θd,L ∼ G(μ0, σ
2
0 ), (2)

where G(μ0, σ
2
0 ) is composed of a multi-layer perceptron (MLP) θL = f (x) conditioned

on an isotropic Gaussian x ∼ N(μ0, σ
2
0 ), and L is the number of topic levels. Given θd,l

which represents the topic distribution of document d at level l, the topic distribution at the
upper level l − 1 can be inferred by:

θd,l−1 = Dl−1θd,l (l = 2...L). (3)

Then the generative process of each word is described as follows:

zl,n ∼ Multi(θd,l) (l = 1...L), (4)

t ∼ Multi(cd), (5)

wn ∼ Multi(βt,zt,n ), (6)

where zl,n and wl,n represent the topic assignment and word assignment of token n in docu-
ment d generated by level l. βt,zt,n is the word distribution of topic zt,n at level t. cd,l denotes
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the reconstruction weight of level l. Finally, the marginal likelihood of document d is:

p(d|μ0, σ0, β) =
∫

θd,1

p(θd,1|μ0, σ
2
0 )

∏
n

∑
l

cd,l

∑
zl,n

p(wn|βl,zl,n
)p(zl,n|θd,l)dθd,1, (7)

where θl can be calculated by Equation (2).
Following [20], we construct an inference network q(θ |μ(d), σ (d)) to approximate

the posterior p(θ |d), and employ the reparameterization trick [13] for parameter update.
Figure 3 shows the network structure of our HNTM. To explicitly model the word dis-
tribution of each topic, topic-word matrices β are constructed as similar to dependency
matrices D.

We introduce topic vectors tl ∈ R
Kl∗H for each level and word vectors v ∈ R

V ∗H , and
generate the topic distributions over words at level l by:

βl,k = sof tmax(v ∗ tl,k
T ). (8)

Given such word distributions and a sampled θ̂l , layer l reconstructs document d by:

p(wn|βl, θ̂l) =
∑
zn

[p(wn|βl,zn)p(zn|θ̂l )] = θ̂l ∗ βl . (9)

In fact, some documents may focus on general topics, which means topics from the
high level are more often used, while some documents talk about more specific topics.
Considering this, our model learns the weight c of topic levels from the original document,
which will affect the reconstruction process. Finally, the variational lower-bound is defined
as:

Ld = Eq(θ |d)

[∑
n

log

([∑
l

clp(wn|βl, θl)

)]]
− DKL [q(θ |d)||p(θ)] . (10)

Level weight c can be obtained from a latent document embedding with a fully connected
layer and softmax function. With the help of c, our model allocates the words of a document
to different topic levels flexibly. Topics at higher levels learn more general words, while
topics at lower levels learn more specific words.

MLP x = μ + ε · σ

ε  ~ N(0, I 2)

f(x)

c

log σ
N(μ0, σ0

2)

DL-1

d

μ
θL-1

θ1

d

…DL-2 D1

θLx

Figure 3 Network structure of an L-level HNTM
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3.3 Generating a tree-shaped structure

By training the dependency matrices between different layers, we can learn the latent rela-
tions of topics. The topic relations constitute a DAG, where the directed edges in the
graph point from the ancestor topics to the sub-topics. Every two adjacent layers are fully
connected, which means a sub-topic may belong to several super-topics. To make the hier-
archical affiliation obvious, we tend to organize topics to a tree structure. In this way, we
can clearly know which sub-topics are included in a field.

A straightforward method is to constrain the dependency matrices so that the topic
hierarchy can approximate a tree structure. We apply a negative L2 normalization to the
dependency matrices D as follows:

RV = −
L−1∑

l

∑
i,j

Dl,i,j
2, (11)

where Dl,i,j represents the probability that the i-th sub-topic at level l+1 belongs to the j-
th super-topic at level l. The negative L2 normalization constrains the row vectors in each
matrix to be discrete because the softmax function forces the vector sum up to 1, while
traditional positive L2 normalization forces the row vectors to be smooth. With such a con-
straint, every topic under level 1 belongs to only one parent topic, while parent topics can
own several child topics.

However, a major problem of only using the above constraint term to generate a tree-
shaped structure is that the model may learn very few super-topics from the bottom topics
at level L, because most sub-topics are gathered under one super-topic. To avoid this issue,
we further introduce a regularization term to adjust the number of children for each parent
topic as follows:

RN =
L−1∑

l

∑
j

(∑
i

Dl,i,j

)2

. (12)

Note that
∑

i

∑
j Dl,i,j = Kl+1, so reducing RN can adjust the total amount of sub-

topics for each super-topic. The above two terms work together to generate an effective and
balanced topic tree.

3.4 Manifold regularization

Although HNTM with RV and RN can learn effective hierarchical relations between topics,
they do not consider the impact of noisy words (i.e. non-topic words). In order to enhance
the robustness of our model, we introduce Laplacian Eigenmap as a regularization term
into our loss function with the aim of making the related texts as similar as possible in the
topic distribution at the document level, and reducing the impact of noisy words. Laplacian
Eigenmap is one of the famous methods in manifold learning for dimensionality reduction
[1], which operates on a manifold, aiming to construct a representation for data sampled
from a low dimensional manifold embedded in a higher dimensional space. Generally, man-
ifold learning assumes that the learned representation should be smooth, which means that
the points connected to each other should be as close as possible after dimensionality reduc-
tion. As an effective regularization term, manifold learning has been widely used in various
algorithms, such as semi-supervised models [2, 10] and the Dirichlet Multinomial Mixture
model [15].
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Suppose that each document d in the corpus is regarded as a node in the graph, and for
every two documents di, dj ∈ B, the adjacency matrix between documents di and dj is
defined as follows:

Wi,j =
{
1, if di ∈ Δ(dj ) or dj ∈ Δ(di);
0, otherwise.

(13)

In the above, B denotes a Batch in the neural network, and Δ(d) denotes the document
set of the R nearest neighbors of document d. Particularly, we employ the cosine distance of
bag of words to measure the similarity of two documents to obtain the R nearest neighbors.
The manifold regularization term is defined by:

RM =
D∑

i,j=1

K∑
k=1

Wi,j |θi,k − θj,k|, (14)

where D is the number of documents in B, K is the number of topics, θi,k and θj,k are the
kth items in the topic distributions of documents di and dj , respectively.

3.5 Loss function

Considering all regularization terms discussed above, the loss function of the model is
defined as:

L = Ld + λV RV + λNRN + λMRM, (15)

where λV , λN , and λM are the weights of RV , RN , and RM with respect to Ld , respectively.
By incorporating these three regularization terms, our proposed model can extract an effec-
tive hierarchical tree structure of latent topics. In the following, we denote HNTM with RV

as HNTM-RV , HNTM with RV and RN as HNTM-RV + RN , HNTM with RM as HNTM-
RM , HNTM with RV , RN and RM as HNTM-all. Since RN is used to alleviate the issue of
only using RV as the constraint, we do not consider HNTM with RN alone and other model
variants for simplicity.

3.6 Computational complexity

For the feedforward propagation in our HNTM, the computational complexity is:

O
(

nt

(
V H + (r − 1)H 2 + HKL +

L−1∑
l=1

Kl ∗ Kl+1 +
L∑

l=1

KlV

))
, (16)

where n is the number of training samples, t is the number of epochs, V is the vocabulary
size, r is the number of fully connected layers in the encoder, H is the hidden size, Kl is the
number of topics at level l, and L is the depth of the topic hierarchy. Note that V is much
larger than H, r, and Kl generally, so the computational complexity will be:

O
(

nt

(
V (H +

L∑
l=1

Kl)

))
. (17)

The computational complexity of back propagation in our HNTM is exactly the same.
Though the complexity is similar to that of TSNTM [11], our HNTM does not need another
heuristic process to update the topic hierarchy in the training process of TSNTM, which
will influence the training speed greatly.
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4 Empirical results

In this section, we first describe the datasets and the experimental settings. Then, we evalu-
ate the effectiveness of our method on the topic interpretability, hierarchical properties, data
scalability, and the quality of topic words.

4.1 Datasets

We conduct experiments on three widely used benchmark datasets: 20NEWS [21], Reuters
[29], and Wikitext-103 [19]. For 20NEWS, we use the same version as Miao et al.
[21] which consists of 18,845 news articles under 20 categories. The news articles
are divided into 11,314 training documents and 7,531 testing documents. The Reuters
dataset contains 7,769 training documents and 3,019 testing documents. The Wikitext-103
[19] dataset is extracted from Wikipedia. It contains 28,472 training documents and 60
testing documents. Furthermore, the Wikitext-103 dataset has 20,000 words in the vocab-
ulary to preserve enough information. Following Wu et al. [29], the first two datasets
both have vocabularies with 2,000 most frequent words after stemming and stop words
filtering.

4.2 Experimental setup

For hierarchical topic models, we use rCRP [12], HLDA [3], TSNTM [11], and nTSNTM
[7] as our baselines. The other two models, i.e., hPAM [22] and HLTA [18], are not adopted
for the following reasons. First, hPAM assumes that the hierarchy contains a root topic,
super-topics, and sub-topics. The fixed depth setting limits the model’s flexibility. Second,
HLTA actually is more like a word clustering model, because it assumes that each word
only belongs to one topic and fails to deal with polysemous words. For completeness, we
also compare our model with several popular NVI-based flat topic models, including GSM
[20], DVAE [5], NB-NTM & GNB-NTM [29].

For the aforementioned baseline models, the publicly available codes of rCRP2, HLDA3,
TSNTM4, nTSNTM5, DVAE6, NB-NTM & GNB-NTM7 are directly used. As an extended
model of NVDM, the baseline of GSM is implemented by us based on the code of NVDM8.
For NVI based models, the number of hidden variables at each layer is set to 256 and we use
the single sample by following [20]. For other model parameters such as λV , λN , and λM ,
grid search is carried out on the training set to determine their optimal values and achieve
the held-out performance. Training is stopped when the performance on the validation set
is not improved for 10 consecutive iterations.

We observe that hierarchical baselines can get relatively good performance when given
100 ∼ 150 topics for these three datasets. To generate a pyramid-shaped topic tree, we
develop a three-level structure for HNTM with 10 level-1 topics, 30 level-2 topics, and
90 level-3 topics. The number of topics for GSM is set to 130 for fair comparison. In

2https://github.com/uilab-github/rCRP
3https://github.com/joewandy/hlda
4https://github.com/misonuma/tsntm
5https://github.com/hostnlp/nTSNTM
6https://github.com/sophieburkhardt/dirichlet-vae-topic-models
7https://github.com/mxiny/NB-NTM
8https://github.com/ysmiao/nvdm
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the training stage, we observe that KL-divergence quickly converges at the beginning,
resulting the problem of component collapsing [5]. To avoid such a problem, we first
give KL-divergence a small coefficient u, and increase the coefficient to 1 gradually by
u = u + 0.003 ∗ epochs.

4.3 Quantitative results

Perplexity is a traditional metric used to evaluate the goodness-of-fit of a model. The
perplexity of each model on a testing set D̃ is calculated by:

Perplexity(D̃) = exp

(
−1

|D̃|
∑
d

1

Nd

logp(d)

)
, (18)

where logp(d) is the log-likelihood on document d, and Nd is the number of words in d.
For all neural topic models, the variational lower bound, which is proven as the upper bound
of perplexity [23], is used to calculate the perplexity by following [21].

Several studies [6, 26] pointed that perplexity is not suitable for evaluating topic inter-
pretability, and Lau et al. [14] showed that the normalized point-wise mutual information
(NPMI), which evaluates the topic coherence, closely corresponds to the ranking of topic
interpretability by human annotators. NPMI measures the relation between two words w1
and w2 as follows [14]:

NPMI (w1, w2) = log
P(w1, w2)

P (w1)P (w2)
/(− logP(w1, w2)). (19)

The higher the value of NPMI, the more explainable the topic is. Note that topic coher-
ence can not reveal the quality of all extracted topics, because high redundancy is not
conflict with high coherence. Thus, we further adopt topic uniqueness (TU) by following
[24] to evaluate the redundancy of topics. The TU for topic k is

T U(k) = 1

M

M∑
m=1

1

cnt (m, k)
, k = 1, ...,K, (20)

where cnt (m, k) is the total number of times the mth top word in topic k appears in the
top M words across all topics, and K is the number of topics. The final TU is computed as
T U = 1

K

∑K
k=1 T U(k). Topics with both high TU and high NPMI are considered as well

extracted. For NPMI and TU, we compute the average of three scores based on 5, 10, and
15 top words.

Table 1 shows the NPMI and TU of topics learned by each model respectively. All
of our models except for HNTM-RV outperform the other four hierarchical baselines on
NPMI, while achieve the second highest TU for each dataset. Without the help of RN ,
the constraint term RV might cause the issue of imbalance, which has been discussed in
Section 3.3, and HNTM-RV performs worse on Reuters. With a similar Gaussian softmax
framework, HNTM and its extensions perform better than GSM, which validates that hier-
archical modeling can help extract more explainable topics with a low topic redundancy.

Though it has been shown that perplexity is not a good metric for qualitative evaluation
of topics [26], this metric can still reveal the fitting ability. According to Table 2, our models
achieve competitive perplexity in comparison with other models except for rCRP. Previous
studies [11, 28] also reported that sampling-based models always achieve lower perplexity
when compared with NVI-based models.
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Table 1 NPMI and TU of different models, where the best results are bolded. For clarity, we present the
ranking of each method on these two metrics in parenthesis

Model 20NEWS Reuters Wikitext-103

NPMI TU NPMI TU NPMI TU

GSM 0.193 (13) 0.353 (11) 0.155 (13) 0.199 (13) 0.217 (8) 0.512 (12)

DVAE 0.263 (2) 0.404 (10) 0.357 (2) 0.413 (5) 0.423 (1) 0.584 (9)

NB-NTM 0.234 (8) 0.424 (8) 0.269 (3) 0.351 (8) 0.159 (13) 0.606 (7)

GNB-NTM 0.269 (1) 0.406 (9) 0.368 (1) 0.315 (9) 0.193 (11) 0.558 (10)

HLDA 0.210 (10) 0.497 (7) 0.207 (9) 0.366 (7) 0.180 (12) 0.586 (8)

rCRP 0.198 (12) 0.299 (13) 0.198 (10) 0.237 (12) 0.202 (10) 0.358 (13)

TSNTM 0.210 (10) 0.320 (12) 0.179 (11) 0.253 (11) 0.215 (9) 0.531 (11)

nTSNTM 0.227 (9) 0.705 (1) 0.229 (5) 0.524 (1) 0.237 (2) 0.670 (1)

HNTM 0.244 (5) 0.600 (5) 0.217 (8) 0.395 (6) 0.231 (6) 0.608 (4)

HNTM-RV 0.238 (7) 0.614 (3) 0.176 (12) 0.300 (10) 0.227 (7) 0.608 (4)

HNTM-RV + RN 0.245 (4) 0.605 (5) 0.228 (6) 0.420 (4) 0.235 (5) 0.610 (3)

HNTM-RM 0.243 (6) 0.616 (2) 0.223 (7) 0.446 (3) 0.237 (2) 0.612 (2)

HNTM+all 0.247 (3) 0.614 (3) 0.243 (4) 0.486 (2) 0.237 (2) 0.608 (4)

To evaluate the impact of manifold regularization on the proposed method, we present
our models’ perplexity, NPMI and TU with different manifold regularization term coeffi-
cients (i.e., λM = 0, 0.3, 1, and 3) in Figures 4 and 5. For Reuters and 20NEWS, HNTM-RM

with λM = 0.3 and λM = 1 achieve better NPMI and TU scores than HNTM to a certain
extent while HNTM-RM with λM = 3 performs worse than HNTM. This suggests that the
constraints of the characteristics of the data on the manifold can indeed improve the per-
formance of HNTM, but too strong constraints will also make the model hard to converge.

Table 2 Perplexity of different models, where the best results are bolded and the ranking of each method is
presented in parenthesis for clarity

Model 20NEWS Reuters Wikitext-103

GSM 1080.2 (11) 270.8 (10) 1869.5 (2)

DVAE 5131.6 (12) 5296.4 (12) 3461.9 (12)

NB-NTM 811.3 (1) 209.4 (2) 2214.5 (8)

GNB-NTM 871.6 (3) 221.4 (7) 2382.2 (10)

rCRP 811.5 (2) 181.8 (1) 1722.3 (1)

TSNTM 973.2 (9) 248.3 (9) 2267.7 (9)

nTSNTM 1000.3 (10) 357.2 (11) 2525.2 (11)

HNTM 883.8 (5) 217.3 (6) 2122.9 (4)

HNTM-RV 890.2 (7) 223.3 (8) 2200.7 (7)

HNTM-RV + RN 898.1 (8) 212.8 (3) 2145.5 (6)

HNTM-RM 884.7 (6) 215.4 (5) 2133.4 (5)

HNTM-all 880.5 (4) 214.5 (4) 2114.6 (3)

For HLDA, note that the inference of held-out documents will change the structure of topic trees, which
involves another training process, thus we do not present its perplexity
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Figure 4 NPMI and TU for HNTM-all with various manifold regularization coefficients

For Wikitext-103, the manifold regularization term has no obvious effect on the improve-
ment of HNTM. This might be due to the sparse connections caused by the large scale of
Wikitext-103.

4.4 Topical hierarchy analysis

In this part, we adopt topic specialization as an indicator of topical hierarchy [12]. An impor-
tant feature of the tree structure is that the topics close to the root are more general, while
the topics close to the leaves are more specific. Following [12], we calculate the cosine
similarity of the word distribution between the corpus topic and all topics at each level of
the topic tree, and measure the specialization score by 1 − similarity. The corpus topic is
defined as the word distribution of the entire corpus. A higher score indicates that the topic
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Figure 5 Perplexity for HNTM-all with various manifold regularization coefficients

has drifted farther away from the entire corpus, which implies that the topic has become
more specialized. Figure 6 presents the average topic specialization scores for each model.
Though the scores of HLDA rise sharply, the topics are too general at level 1 and level 2,
especially for 20NEWS. This is because the words of a document are divided into very few
topics, and the general words are concentrated at shallower levels. We observe that TSNTM
achieves higher specialization scores at level 1 than deeper levels for all datasets, which
means the topics at level 1 are more specific than their offspring topics and it indicates a bad
topical hierarchy. nTSNTM obtains the highest specialization scores at every level for each
dataset, indicating a poor progressive semantic structure. Our proposed model performs the
best in topic specialization scores because it can learn general topics from the bottom topics
flexibly.

A problem of topic specialization score is that it can not reflect the relations between
parent topics and their children. In addition, since NPMI can only measure the relation
between words inside the topic, we thus compute the cross-level NPMI (CLNPMI) [7] to
measure the relation of top words between two connected topics by calculating the aver-
age NPMI value of every two different words from an ancestor topic and its sub-topic.
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Figure 6 Topic specialization of different models at each level. Since the results of all our models are quite
similar, we here present the result of HNTM for simplicity

The CLNPMI is defined by:

CLNPMI (Wp,Wc) = 1

N2

∑
wi∈Wp

∑
wj ∈Wc

[NPMI (wi,wj )
I(wi �= wj)

I(wj ∈ Wp) + 1
], (21)

where Wp and Wc denote the top N words of a parent topic and one of its children. The
words that appear in both topics will bring a penalty to the value of CLNPMI. We also
compute the averaged overlap rate (OR) [7] to measure the repetitions between parent topics
and their children. OR is defined as:

OR(Wp, Wc) = |Wp ∩ Wc|
N

. (22)

As shown in Table 3, although HLDA achieves the lowest OR scores, the poor CLNPMI
indicates that the relation between parents topics and their children are not very close. rCRP
seriously suffered from the high topic redundancy, since it achieves high OR scores and
high TU scores as aforementioned. HNTM with all regularization terms (i.e., HNTM-all)
achieves the best CLNPMI in all datasets, with relative low OR scores. The improvement

Table 3 CLNPMI and OR of hierarchical topic models, in which, a higher CLNPMI and a lower OR indicate
better performance

Model 20NEWS Reuters Wikitext-103

CLNPMI OR CLNPMI OR CLNPMI OR

HLDA 0.084 (7) 0.020 (1) 0.065 (6) 0.034 (1) 0.083 (6) 0.045(1)

rCRP 0.114 (4) 0.317 (7) 0.079 (5) 0.528 (7) 0.107 (5) 0.436 (7)

TSNTM 0.115 (3) 0.289 (6) 0.081 (4) 0.181 (6) 0.083 (6) 0.132 (6)

nTSNTM 0.114 (4) 0.061 (4) 0.106 (3) 0.102 (3) 0.117 (2) 0.111 (5)

HNTM-RV 0.110 (6) 0.022 (2) 0.020 (7) 0.070 (2) 0.109 (4) 0.062 (2)

HNTM-RV + RN 0.124 (2) 0.054 (5) 0.110 (2) 0.102 (3) 0.115 (3) 0.082 (4)

HNTM-all 0.125 (1) 0.043 (3) 0.114 (1) 0.112 (5) 0.120 (1) 0.078 (3)

SinceRV is necessary to generate a tree structure for HNTM, wemainly compare the performance of HNTM-
RV , HNTM-RV + RN , and HNTM-all with other tree-structured baselines. For clarity, the best results are
bolded and the ranking of each method is presented in parenthesis
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Figure 7 CLNPMI and OR for HNTM-all with various manifold regularization coefficients

from HNTM-RV and HNTM-RV + RN validates that the manifold regularization term can
help extract the topic relations. In detail, Figure 7 explores the impact of different weights
of manifold regularization on these two measurements. To validate the effect of RN , we
display the distributions over different numbers of children for all parent topics in Figure 8.
The results indicate that our model with RN has more proper distributions over numbers
of children. Considering the poor results of HNTM-RV presented in previous tables, the
regularization term RN could indeed help avoid the problem of failing to extract high level
topics.

We also demonstrate the discretization of the row vectors in dependency matrices D.
As shown in Figure 9, most of the maximum elements in the row vectors are larger than
0.95 with regularization term RV , which means these sub-topics largely belong to one
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Figure 8 Distributions over the amounts of children for HNTM-RV and HNTM-RV + RN

super-topic. In other words, this term makes sure that the hierarchical topic structure
extracted by our HNTM is a tree.

4.5 Data scalability

To evaluate the efficiency of our method, we randomly sample several numbers of docu-
ments (1,000, 2,000, 4,000, 8,000, 16,000, and all) from the training set of Wikitext-103.

Figure 9 Distributions over the value of the maximum elements in matrices D for HNTM and HNTM-RV

2154 World Wide Web (2021) 24:2139–2160



Figure 10 Training time of different models on various numbers of documents. Since the time costs of all
our models are nearly the same, we here present the result of HNTM for simplicity

Figure 10 shows the training time of all hierarchical topic models, in which, the experi-
ments are conducted on an Intel Xeon Skylake 6146 CPU with 8 cores and an Nvidia Tesla
P4 GPU. Sampling-based models are run on CPU, and NVI-based models are tested on
GPU. HNTM shows an advantage in time cost when compared with all these baselines.
Different from flat sampling-based topic models, HLDA and rCRP spend considerable
computation time on path sampling, which is much more serious when dealing with a large-
scaled dataset. Additionally, these two sampling-based models are serial, which means they
can only utilize one core of the CPU. TSNTM and nTSNTM respectively apply a doubly-
recurrent network and a stick-breaking prior, which largely slow down the speed of both
models. HNTM can be trained around 1.8 times faster than nTSNTM, 3.6 times faster
than TSNTM, 10.4 times faster than rCRP, and 74 times faster than HLDA with all 28,372
documents.

4.6 Evaluation on the topic words

Figures 11, 12, 13, 14, 15 show some representative military-related branches generated by
hierarchical topic models on Wikitext-103. Top 5 words are shown for each topic, and red

he said day american life

war american british men ship

war british font state army

colbert test island air ship

vietnamese vietnam diem south force

film game art work song

film festival game ha music
33 irrelevant topics

german war hitler state jew

soviet government party church state

government party state war woman

Figure 11 Topic branches extracted by hLDA on Wikitext-103
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king war army force government

lord peer house royal assent

aircraft air flight engine service
mission space apollo flight crew

aircraft engine tank production gun

soviet government war state military

byzantine al army roman emperor

king army persian battle war

german war hitler croatian serb

persian greek battle bc athenian

german hitler jew nazi war

king henry england century edward

al city emperor chinese china

church catholic cardinal king people

king queen prince duke royal

king bastille city war sicily

armenian king war keynes government

government war pedro army spanish

british india state war government

Figure 12 Topic branches extracted by rCRP on Wikitext-103

marked topics with italic words are irrelevant to military by manually checking. Topics are
truncated from level 1 to level 3.

The branches extracted by HLDA contain many irrelevant topics, while rCRP, TSNTM,
and HNTM-RV + RN produce relatively clean branches. Furthermore, rCRP mixes topics
of “military”, “royalty”, and “religion” into a large topic, while TSNTM and HNTM-
RV + RN concentrate on “military”. Unfortunately, TSNTM also bring in some irrelevant
topics. This result validates that the single path assumption of HLDA may be inappropriate
for modeling the topic hierarchy. In addition, rCRP gets few level-3 topics in the branches,
because the probability of producing deeper topics decreases exponentially. Compared to
HLDA and rCRP, the hierarchical relation of topic branches obtained by HNTM-RV + RN

is clearer and the performance is remarkable. The level-1 topic consists of general words
about “military”, which contains four level-2 topics including “government”, “battle”,
“death”, and “colony”, each of which can be further divided into several level-3 topics. We
also present the results of HNTM to verify the impact of these two regularization terms.

ship gun fleet inch mm german

government british country state national

state election party president governor

government soviet party state country

police german war government al said

air squadron no. aircraft force

airport flight airline aircraft air

ship crew vessel british captain

division force battalion army german

war force army military general

french british battle army force

court law state case right

japanese force aircraft carrier island

state united american navy war

12 irrelevant topics

Figure 13 Topic branch extracted by TSNTM on Wikitext-103
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day did following second took

war british world officer order

war army military force state

al persian arab muslim ibn

french polish poland russian france

family prince queen child son

king henry william edward england

spanish san la mexican puerto

soviet croatian serb croatia force

british american fort men indian

emperor byzantine roman empire greek

police said report people investigation

state governor election republican vote

london lord john england royal

australian australia sydney south melbourne

german germany nazi hitler jew

army battle regiment brigade division

army war officer military united

trial murder death prison body

government said international right group

campaign president presidential nixon reagan

campaign president presidential nixon reagan

team season game player point race lap stage driver second

test match run inning australia

club league match cup goal

game yard season league run

Figure 14 Topic branch extracted by HNTM on Wikitext-103

Without the constraint of the tree structure, the topic hierarchy of HNTM is more like a
DAG. Though we connect the topics by max-probability, the affiliation is still not obvi-
ous, resulting some irrelevant topics. With RV and RN together, our model can extract an

state did including war early

party government election political national

battle army war force campaign

army french battle troop men

jew croatian croatia german jewish

king henry edward england william

al greek byzantine empire roman

war officer army general military

fort british american men river

king prince ii duke catholic

university project research nuclear workgeorge died life family son

court law case act state

campaign election republican president state

state governor virginia kentucky republican

soviet german polish russian war

government military country south vietnam

colony governor john massachusetts england

Figure 15 Topic branch extracted by HNTM-RV + RN on Wikitext-103
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effective and explainable topic tree. Since manifold regularization has little influence on
topic words, we do not present the results of our models with RM .

Although the hierarchical baselines can automatically adjust the number of topics, the
effects are severely affected by multiple hyper-parameters, and the resulting hierarchy is
not satisfactory. HNTM predetermines suitable numbers of nodes, and can adjust the gran-
ularity of each layer according to a held-out document set, so as to obtain an effective topic
hierarchy.

5 Conclusion

In this paper, we have proposed a hierarchical neural topic model named HNTM. The net-
work structure of HNTM explicitly models the dependency of latent variables at different
layers, and combines them to reconstruct the input. We further introduce manifold regu-
larization into the proposed method to improve its robustness on noisy words. Extensive
experiments validate that our network structure can extract a reasonable topic hierarchy
with high topic interpretability and low topic redundancy. Compared with the existing NVI
based nTSNTM, our HNTM has better data scalability because it can be trained in paral-
lel completely. Particularly, HNTM can be trained 1.8 times faster than nTSNTM on the
Wikitext-103 dataset. This makes our method possible to deal with the ever-increasing scale
of data on the Internet. The multiple explainable latent variables with optional granular-
ity extracted by our HNTM can be also used in many downstream tasks, like information
retrieval and text summarization. Furthermore, our model is not limit to text. A suitable
dataset might be a collection of images, a collection of DNA sequences or other collec-
tions. Modeling hierarchical latent patterns with interpretability from these data is also
meaningful.

However, HNTM still has some limitations. For instance, the numbers of topics at each
layer must be preset. Though other models [3, 7, 11, 12] can adjust the numbers of topics
dynamically, they still have to preset the hyper-parameters which control the numbers of
topics. A method for deciding the appropriate numbers of topics is very important. In addi-
tion, this study only explores the Gaussian prior, while various priors have been proposed for
neural topic modeling in recent years. It follows that adopting other priors deserves further
research. With the rapid development of cloud storage e-commerce platforms [27], cloud
computing [8, 31] and edge computing [16] services, we also plan to deploy our model
efficiently by these platforms or services.
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