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Abstract
Blockchain technology is becoming familiar to the public, along with the widespread use of
cryptocurrency. The blockchain protocol requires that full nodes need to save the complete
blockchain data, which limits the joining of resource-constrained nodes. A small number of
full nodes will reduce the decentralize and security of system. Elasticchain was proposed in
2018 to solve this problem by saving fragments of the entire blockchain in reliable nodes.
However, Elasticchain does not give an effective method to evaluate the reliability of nodes.
If the fragmented data is stored in unreliable nodes, such as malicious tampering, are often
not online or the latency is too high, the security of blockchain system will be seriously
impacted. Therefore, in this paper, we propose an ELM-based method to comprehensively
evaluate node reliability, and the blockchain system distributes the fragmented data to reli-
able nodes for storage. In the new method, ELM is used as a classifier to select reliable
nodes because the ELM has a higher performance of training and classification compared
to other machine models. Moreover, in ELM classifier five novel evaluation features are
considered: the security, the trustworthiness, the activeness, the stability and the commu-
nication costs. Finally, the experimental results on synthetic data demonstrate the accuracy
and efficiency of the optimized data distribution model.

Keywords Blockchain · Node reliability · Classification · ElasticChain ·
Extreme learning machine

1 Introduction

The first blockchain was conceptualized by Satoshi Nakamoto in 2008 [17]. The goal of
Blockchain technology is to create a decentralized open environment to store information,
execute transactions and perform functions [26]. With the increasing popularity of digital
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encryption currency such as Bitcoin [7], Ethereum [3] and DCEP (Digital Currency Elec-
tronic Payment) proposed by the People’s Bank of China, blockchain technology is gaining
more and more attention and development.

In blockchain systems, there are two kinds of nodes [27]. One is a full node, which
contains a complete copy of the blockchain, and the other is a light node, which is just a
client to access the data from full nodes. One of the bottlenecks in the current blockchain
is that many nodes who want to participate in the blockchain system do not have enough
storage space to be full nodes. When there are a small number of full nodes in the system,
the decentralization and security of the system are insufficient.

ElasticChain [12] was proposed to solve the bottleneck. In [12], the entire blockchain
data is fragmented and stored in relatively stable nodes. However, the node reliability evalu-
ation method is very simple in [12]. It only detects the integrity of the data in storage nodes
and the number of responses of the nodes. These two features cannot fully describe the reli-
ability of nodes. Many other factors affect the reliability of a node, such as the performance
of nodes, the length of time the nodes stay in the system, and the size of the data saved by
the nodes, etc.

Challenges: Some methods have been proposed to improve the node reliability evaluation
in ElasticChain, such as [11]. However, there are two shortcomings in the work of [11].
One shortcoming is that the calculation process of some evaluation features is relatively
simple and only a small number of factors are considered. As a result, the current calculation
results of these features are unrepresentative. The other is that the features of evaluating
node reliability are still incomplete. Some important features are not taken into account.
These two shortcomings greatly reduce the accuracy of classifying reliable nodes. If the
blockchain data is stored in some unreliable nodes, which may exist problems such as node
downtime, excessive latency, etc., the security of data will be seriously impacted.

Our contributions: This paper first proposes an optimized data distribution model for the
ElasticChain. The Extreme Learning Machine (ELM) method [8] is used to be the classi-
fier in this model. ELM [8, 28] is one of the machine learning models. We can produce
reliable, repeatable decisions and uncover hidden insights through learning from historical
relationships and trends in the data [18] by using machine learning methods. We use the
ELM method instead of other machine learning methods because the ELM classifiers have
a good performance in training and classification [9] (the details are in Section 3.3).

Second, we design a comprehensive evaluation method of node reliability. In the method,
we define five evaluation indicators: the security, the trustworthiness, activeness, stability
and communication costs of storage nodes. According to this evaluation standard, we can
accurately classify truly reliable nodes and save blockchain data in them.

Finally, we conduct extensive experiments to demonstrate the efficiency and effective-
ness of the optimized data distribution model based on the synthetic data.

This paper extends a preliminary work [11] in the following aspects. First, we analyze
the basic theory and the advantage of ELM method in detail, and then propose the optimized
data distribution model to further improve the accuracy of reliable node classification. Sec-
ond, we add new features of node reliability evaluation (such as the communication costs
between nodes) and redefine the incomplete features (such as the security of nodes, node
activeness, etc.) in the new optimized model. Moreover, compared with [11], we add two
sets of experiments to verify the efficiency of the new model and double the experiment to
prove the effectiveness of this model.
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Paper organization The remainder of the paper is organized as follows. Section 2 reviews
the related work on the technique and application background of blockchain. Section 3
introduces the ElasticChain model and ELM. Section 4 introduces the architecture of the
optimized data distribution model and the strategies of feature selection. Section 5 reports
experimental evaluation. Finally, conclusions are presented in Section 6.

2 Related work

In this section, we review some related work on the technique and application background
of blockchain.

In [21], the research directions in blockchain data management and analytics are
detailed. Four topics were mentioned: leverage existing capabilities of mature data and
information systems, enhance data security and privacy assurances, enable analytics ser-
vices on blockchain as well as across off-chain data, and make blockchain-based systems
active-oriented and intelligent. In [4], BlockBench is proposed, which is the first evalua-
tion framework for analyzing private blockchains. It serves as a fair means of comparison
for different platforms and enables a deeper understanding of different system design
choices. The results on Ethereum, Parity and Hyperledger Fabric demonstrate that these
systems are still far from displacing current database systems in traditional data processing
workloads.

Wang et al. [22] and Li et al. [15] and many models improve the query speed of data in
the blockchain. Wang et al. [22] presents ForkBase, a storage engine specifically designed
to provide efficient support for blockchain and forkable applications. By integrating the
core application properties into the storage, ForkBase not only delivers high performance
but also reduces development effort. Li et al. [15] proposes an effective model for analyzing
Ethereum data, called EtherQL. EtherQL provides highly efficient query primitives, such as
range queries and top-k queries.

Xu et al. [25] and Kokoris-Kogias et al. [13] and many other systems increase the scal-
ability of the blockchain. Xu et al. [25] describes a consensus unit-based storage scheme
for blockchain systems, called CUB. CUB organizes some nodes into a unit, and a unit
stores at least one copy of blockchain data. It addresses the high storage requirement in
the wide usage of blockchain on various devices such as mobile phones or low-end PCs.
Kokoris-Kogias et al. [13] presents OmniLedger, a novel scale-out distributed ledger that
preserves long-term security under permissionless operation. It ensures security and correct-
ness by using a bias-resistant public-randomness protocol for choosing large, statistically
representative shards that process transactions.

In terms of node reliability, there is no relevant research to fully describe the reliability
of blockchain nodes currently. Therefore, we give an evaluation method combined with
machine learning in this paper.

3 Preliminaries

In this section, we introduce preliminary knowledge of ElasticChain and extreme learning
machine. Furthermore, we propose the problem definition.

1087World Wide Web (2022) 25:1085–1102



Figure 1 The nodes in ElasticChain

3.1 Storage node reliability verification in ElasticChain

According to the node reliability verification method [12], nodes in ElasticChain include
three roles: the user node, the storage node, and the verification node, as shown in Figure 1.
A node in a network would have one, two or three roles at the same time. User nodes
are participants in the blockchain system. Blockchain operations, such as transactions, are
completed between user nodes. And the fragmented blockchain data is stored in storage
nodes. The role of the verification node is to provide reliable storage nodes for the user
nodes.

The process of storage node reliability verification [12] is shown in Figure 2. Firstly,
ElasticChain sets the same reliability values to each storage node. Then, the verification

Figure 2 Node reliability verification
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nodes check the reliability of data in storage nodes at every same period time. If the data in
the storage nodes is complete, the reliability value remains unchanged. If the storage node
data is modified or lost, the verification nodes will reduce its reliability value and store it in
the POR (Proofs of Reliability) chain. The ElasticChain uses the reliability values of each
storage node in the POR chain as a standard to select the highly reliable storage nodes. When
the user nodes apply for storing data, the verification nodes provide the latest reliability
value of storage node for the user nodes. Then, user nodes can select the most stable storage
nodes to store the block data.

3.2 Problem definition

In ElasticChain, the reliability verification method for storage nodes U (U = {u1, u2, ...,
ui}) is relatively simple. It only considers the integrity of the data in the storage node and
the number of responses. These two features cannot fully describe the reliability of nodes.

Threat model Data in storage nodes can be tampered with, and the malicious node may
transmit false information to user nodes. Furthermore, the unreliable storage nodes are often
offline or they drop frequently. In addition, the network where the storage node is located
has a huge delay and cannot deliver data to users in time.

Therefore, these features checked in ElasticChain are not sufficient. In this paper, we
propose an optimized data distribution model, which can comprehensively describe node
reliability characteristics, and accurately classify nodes based on their reliability.

3.3 Extreme LearningMachine(ELM)

ELM has been originally developed for SLFNs and then extended to the “generalized”
SLFNs where the hidden layer need not be neuron alike [5, 14]. Firstly, ELM randomly
assigns the input weights and the hidden layer biases, and then analytically determines the
output weights of SLFNs. It can achieve better generalization performance than other con-
ventional learning algorithms at an extremely fast learning speed. Besides, ELM is less
sensitive to user-specified parameters and can be deployed faster and more conveniently
[9]. In recent years, a lot of research has been done on ELM. In [23], in order to effec-
tively use the information from multiple attributes, an upper integral network is considered
as a classification system by using multiple upper integral classifiers with a single layer
neural network, and the learning mechanism of ELM is used to train the single-layer neu-
ral network. In [24], a novel Distributed Extreme Learning Machine (ELM*) based on a
distributed MapReduce framework is proposed, which can learn massive data efficiently in
parallel. In [2], an image classification method was proposed based on extreme k-means
and EELM, and the method has superior performances on classification rate compared
with other traditional methods based on experimental results. Compared with the naive
implementation, the ELM-based implementation achieves much better performance.

The basic steps of ELM, as introduced in [8], are as follows. For n arbitrary distinct
samples (xj , tj ), where xj = [xj1, xj2, ..., xjn]T ∈ Rn ,and tj = [tj1, tj2, ..., tjm]T ∈
Rm, standard SLFNs with L hidden nodes and activation function g(x) are mathematically
modeled as

L∑

i=1

βigi(xj ) =
L∑

i=1

βig(wi · xj + bi) = oj (j = 1, 2, ..., N) (1)
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where wi = [wi1, wi2, ..., win]T is the weight vector connecting the ith hidden node and the
input nodes, βi = [βi1, βi2, ..., βim]T is the weight vector connecting the ith hidden node and
the output nodes, bj is the threshold of the ith hidden node, and oj = [oj1, oj2, ..., ojm]T is
the j th output vector of the SLFNs.

The standard SLFNs with L hidden nodes and activation function g(x) can approximate
these N samples with zero error. It means

∑L
j=1 ||oj − tj || = 0 and there exist βi , wi and

bi such that
L∑

i=1

βig(wi · xj + bi) = tj (j = 1, 2, ..., N) (2)

The equation above can be expressed compactly as follows.

Hβ = T (3)

where H(w1, w2, ..., wL, b1, b2, ..., bL, x1, x2, ..., xL)

= [hij ] =

⎡

⎢⎢⎢⎢⎢⎣

g(w1 · x1 + b1) g(w2 · x1 + b2) ... g(wL · x1 + bL)

g(w1 · x2 + b1) g(w2 · x2 + b2) ... g(wL · x2 + bL)

...
...

...
...

g(w1 · xN + b1) g(w2 · xN + b2) ... g(wL · xN + bL)

⎤

⎥⎥⎥⎥⎥⎦

N×L

(4)

β =

⎡

⎢⎢⎢⎢⎢⎣

β11 β12 · · · β1m

β21 β22 · · · β2m

...
...

...
...

βL1 βL2 · · · βLm

⎤

⎥⎥⎥⎥⎥⎦

L×m

and T =

⎡

⎢⎢⎢⎢⎢⎣

t11 t12 · · · t1m

t21 t22 · · · t2m

...
...

...
...

tN1 tN2 · · · tNm

⎤

⎥⎥⎥⎥⎥⎦

N×m

(5)

H is called the hidden layer output matrix of the neural network and the ith column of
H is the ith hidden node output with respect to inputs x1, x2, ..., xN . The smallest norm
least-squares solution of the above linear system is computed by

β = H†T (6)

where H† is the Moore-Penrose generalized the inverse of matrix H. Then the output
function of ELM can be modeled as follows.

f (x) = h(x)β = h(x)H†T (7)

Given a training set N = {(xj , tj ) | xj ∈ Rn, tj ∈ Rm, j = 1, 2, ..., N }, activation
function g(wi , bi , xj ) and hidden node number L, the pseudo code of ELM [9] is given in
Algorithm 1.

We use the ELM method instead of other machine learning methods in this paper. The
reason is that compared to other machine learning methods, the ELM classifiers have higher
performance of training and classification [9]. For example [6], the testing accuracy of ELM
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is 99.14% in MNIST OCR dataset, which is 0.27%, 0.09%, 0.54% and 0.42% higher than
Deep Belief Networks (DBN), Deep Boltzmann Machines (DBM), Stacked Auto Encoders
(SAE) and Stacked Denoising Auto Encoders (SDAE), respectively. The training time of
ELM is 281.37s, while the training time of the other methods is more than 17 hours. Based
on the 3D Shape Classification dataset, the testing accuracy of ELM is 81.39%, which is
4.07% higher than the Convolutional Deep Belief Network (CBDN) method. The training
time of ELM is 306.4s, while the CBDN method needs more than two days.

Moreover, different from Deep Learning which requires intensive tuning in multi hidden
layers and hidden neurons, ELM theories show that hidden neurons are important but need
not be turned (for both single hidden-layer feedforward neural networks (SLFNs) and multi-
hidden-layer of networks) [20]. Therefore, the learning in ELM can simply be made without
iteratively tuning hidden neurons, and this is one of the reasons ELM is efficient.

Compared to other traditional efficient models, online sequential learning can be
achieved in ELM [16]. When new data is generated, traditional models need to put the new
data and old data together and retrain. ELM can retain previous training experience and
train new data based on current experience. Fast training can ensure that the training data of
the model is complete and real-time. Therefore, the predicted result by ELM can be more
accurate.

In ElasticChain, the fast classification will reduce the time for nodes to distribute
duplicates when each block is generated and reduces the impact on blockchain system
throughput. Thus, ELM is chosen as the classifier in our method.

4 The optimized data distributionmodel

In this section, we first describe the architecture of the optimized data distribution model.
Then we introduce the features used to classify reliable nodes. After that, we propose an
algorithm to describe the data distribution process.

4.1 Architecture

Figure 3 shows the architecture of the optimized model. It consists of three modules: the
ElasticChain system module, the node feature extraction module and the ELM classifier
module.

In the ElasticChain module, the verification nodes check the reliability of the storage
node at the same time interval. There are 6 inspection results in total, and the results are
saved in verification nodes. The verification nodes check the data volume and data integrity
in the storage nodes, the number of disconnections and the online time of the storage nodes,
the number of times the storage nodes have completed the verification work and the network
environment of the system.

In the feature extraction module, we get five main features of the storage node: the security,
the trustworthiness, the activeness, the stability and the communication costs by calculating
the inspection results. These features can describe the reliability of a node completely.

Finally, in the classifier module, the reliable storage nodes are classified based on these
five important features by using ELM. Then, user nodes save blockchain data in these reli-
able storage nodes. In ELM classifier, some of the nodes are sampled as training data. The
sample nodes are input of the classifier module. They consist of two kinds of nodes, the reli-
able storage nodes, and the unreliable storage nodes. The way to create and sample training
data are introduced in Section 4.3.
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Figure 3 Architecture of the optimized data distribution model

Next, we describe the feature selection process in detail.

4.2 Feature selection

In ElasticChain system, multiple features will affect the reliability of storage nodes, and
we choose five important features among them in this paper. The chosen features are the
security of storage nodes (S), the trustworthiness of storage nodes (T R), node activeness
(NA), node stability (NS) and communication costs (CC). The system can make a correct
evaluation on the reliability of nodes in most cases by using these five features. Admittedly,
other features will also have an impact on node reliability in some special environments.
This problem is easy to solve because new features that have an impact on the environment
can be added to the evaluation criteria without changing the structure of the model.

For the five features, each of them is calculated from two to four related features. The
work of summarizing several related features into one feature can reduce the dimension of
the classifier. The dimension reduction can reduce the calculation of classifiers and increase
the speed of classification.

The storage nodes U (U = {u1, u2, ..., ui}) will be detected at a fixed interval. The five
features are updated after each detection. When there are i storage nodes in the system, i

sets of feature data will be generated. Each set has five features, so the data sets (DS) of the
storage node ui can be expressed as a 5 × i matrix:

DS =

⎡

⎢⎢⎢⎢⎢⎣

S1 T R1 NA1 NS1 CC1

S2 T R2 NA2 NS2 CC2

...
...

...
...

...

Si T Ri NAi NSi CCi

⎤

⎥⎥⎥⎥⎥⎦

5×i

(8)
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Then, we define the five node reliability features.

Definition 1 (Security of storage nodes (S)) For the storage nodes U = {u1, u2, ..., ui},
where i is the number of storage nodes in the blockchain system, they keep the duplicates of
blockchain. When some of the storage nodes attempt to modify the data in the blockchain,
these malicious nodes will tamper with the local data stored. It will have a great impact
on the security of blockchain data. There is another situation where the blockchain data in
the storage nodes is lost. This will cause great difficulties in data recovery. Therefore, the
verification nodes V = {v1, v2, ..., vj }, where j is the number of verification nodes in the
blockchain system, check the integrity of blockchain data stored in the storage nodes at
every same period time. The inspection results are the security of storage nodes, which are
represented by S. It can be expressed as follows:

S =
K∑

k=1

(ωk − μka
−(N−n)) (9)

where k is the kth inspection, and K is the total number of inspections. ω is the weight
when data is complete, while μ is the weight when data is modified. If the blockchain data
is integrated in the kth inspection, μk = 0 and ωk = ω. If the data is modified, μk = μ

and ωk = 0. Security is one of the most important evaluation indicators of the blockchain,
and we do not tolerate the emergence of malicious nodes. Therefore the value of μ is much
greater than ω.

Next, we explain the coefficient of μk . We assume a complete blockchain B = {b1, b2, ...,
bN }, where N is the total number of blocks in the system. n (1 ≤ n ≤ N ) is the number of
blocks in which the modified data resides. Then, we know that the security of a block shows
an exponential relation with its distance from the latest block [17]. Therefore, we add this
coefficient (a−(N−n)) for μk (here, a > 1). When the location of this modified data is near
by the latest block, this data is easier to modify. Thus, if the newer data is modified in one
storage node, we will give more weight to μk in order to the punishment and significantly
reduce the security of this node.

Definition 2 (Trustworthiness of storage nodes (T R)) In ElasticChain, the user nodes just
like light nodes that do not store the blockchain data. Operations of the user node, such as
querying and validating data, must be completed by visiting the storage node. Each time a
user node generates a transaction, the transaction needs to be verified. The querying process
is as follows. First, the user node sends the transaction information to the storage nodes.
Then, the result and the validation path of this transaction obtained by the query between
storage nodes will be returned to the user node. Since the user node saves all block header
data, the user node can verify the authenticity of this result by performing a Merkle check
on the path information. The validation results can be regarded as the trustworthiness of
storage nodes, which are represented by T R. It is stored in the verification nodes, and it can
be expressed as follows:

T R =
P∑

p=1

(ψp − φp) (10)

where P is the total number of times the storage node completes the verification request
initiated by the user nodes. ψ is the weight when the user node verifies the returned result
successfully, while φ is the weight when the result is verified to be false. If the verification
is successful in pth verification, φp = 0 and ψp = ψ . If validation fails, ψp = 0 and φp = φ.
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The security (S) and trustworthiness (T R) are two different evaluation indicators. The
security (S) evaluates whether the data stored locally by a storage node is safe. The trust-
worthiness (T R) evaluates whether the storage node can honestly return the correct data to
the user nodes.

Definition 3 (Node activeness (NA)) A storage node ui cannot perform their job well in
this case that it stays a few times in the network and only a few data stored in it. The system
tends to choose storage nodes that can store large amounts of data and work online for a
long time. Therefore, we have added this indicator, node activeness (NA), which can be
expressed as follows:

NAi = ξiAi × Ti (11)

where i is the ith storage node, and ξi is the activeness weight of the ith node, and we set
this weight to 1 in the paper. Ai is the amount of blockchain data in the ith storage node. Ti

is the online time that the ith storage node stays in the network. The value of Ai ×Ti shows
the total amount of data that can be retrieved traceable in the network for the ith storage
node.

Definition 4 (Node stability (NS)) In ElasticChain, each storage node ui can not be online
at all times. If the storage nodes are always offline, the user nodes cannot get the blockchain
data in time, and the security of blockchain system will be reduced. Moreover, although an
active node has a long online time, it is incompetent to finish its job when the online time is
intermittent. Therefore, the number of times a node disconnects to the network affects the
stability of this node. Here, the stability (NS) for a storage node ui is given as follows:

Ns =
Q∑

q=1

λqf (tq) (12)

where q is the qth disconnection to the network, and Q is the total number of discon-
nections. λq is the weight of the qth disconnection. f (tq) is the time weight of the qth

disconnection. f (tq) = k

tq
, where k > 0. tq is the time from the qth disconnection occurred

to now. The function f (tq) decreases with the increase of tq , which means that when the
time of disconnection is far from now, this disconnection will have less effect on the current
system.

Definition 5 (Communication costs (CCi)) The blockchain technology is based on the
P2P network, and the communication costs are one of the important indicators for select-
ing the node for communication. The fewer communication costs, the less network load
will be generated. Many factors that affect communication costs, and we considered three
important factors: the distance between nodes, link capacity and network conditions. The
communication costs(CCi) for the ith storage node can be expressed as follows:

CCi =
R∑

r=1

ρr

Lr

R
× Cr × σr (13)

where R means the storage node ui connects R user nodes, and ρr is the weight of the rth
link, and we set this weight to 1 in the paper. Lr is the distance between ui and the rth user
node, and the cost increases with distance. C is the weight of the network link capacity. C

can be evaluated by the Shannon formula [19]. A small amount of cost requires sufficient
capacity. σr is the evaluation index for network conditions. Due to the existence of a large
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number of evaluation indicators, the evaluation process is not described in detail in this
paper. In practice, σr can be given by professional organizations.

4.3 Training ELM

After the feature extraction, ELM is selected as the classifier to learn security feature, trust-
worthiness feature, node activeness feature, node stability feature and communication costs
feature. Each storage node responds to different user node requests, and the array of features
is generated. This array is used as inputs to train his ELM. In the ELM-based classifier, each
storage node can be classified into “reliable” class or “unreliable” class.

4.4 The optimized data distributionmodel

The pseudo-code of the main program of the optimized data distribution model for
ElasticChain based on ELM is shown in Algorithm 2.

Firstly, the weight values(ω,μ, ψ, φ, ξ, λ, ρ) will be given according to system require-
ments. Secondly, the verification nodes V (V = {v1, v2, ..., vd}) visit storage nodes {u1, u2,
..., ui} at every same period time and record its evaluation data (each ωk and μk; each ψp

and φp; each Ai and Ti ; each tq ; each Lr , Cr and σr ). Then, the optimized model calcu-
lates the feature values of these storage nodes according to the evaluation data. The features
include the security (S), the trustworthiness (T R), the activeness (NA), the stability (NS),
and the communication costs (CC). Next, these feature values are input into the trained
ELM classifier and output the classification of node reliability. Verification nodes update
and record the classification results (reliable node or unreliable node) in the ledger of the
POR chain. Finally, when user nodes H (H = {h1, h2, ..., hg} ) generates new data, the
verification nodes will provide reliable storage nodes for user nodes to store the new data.

In the optimized data distribution model, the process of the user nodes reading the reli-
able storage nodes from the verification nodes and the process of the verification nodes
classifying the reliable storage nodes through the ELM method are asynchronous. In other
words, the verification nodes will evaluate the reliability of the storage nodes after a fixed
period of time and then save the evaluation result locally. When a user node initiates a stor-
age request, the verification nodes will provide the user nodes with reliable storage nodes
in the evaluation result within this period. In this way, although the node feature extraction
module and the ELM classifier module take some time, these two modules will not affect
the working efficiency of the ElasticChain system.
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For the efficiency of the node feature extraction module, the time complexity is propor-
tional to the number of storage nodes. When a new storage node is added, six knowledges of
this node need to be extracted. Therefore, the time complexity of the node feature extraction
module can be expressed as O(n). Here, n is the number of storage nodes.

For the efficiency of the ELM classifier module, the training complexity of the model
is the same as the ELM model, the main computational cost comes from calculating the
Lagrange multipliers [8]. ELM can get the calculation result based on Equation (37) in [8],
where H†H (size: L × L) is used. The number of hidden nodes L can be much smaller than
the number of training samples.

5 Evaluation

In this section, a series of experiments are implemented to verify the accuracy and efficiency
of the optimized data distribution model in synthetic data. Experiments are carried out on
the machine of Microsoft Windows 7, Intel Core i5 CPU, 3.20 GHz, and 16GB memory in
java JDK 1.6. In the following, first, experiment settings are described in Section 5.1. Then
we present and discuss the experimental results of the evaluation in Section 5.2.

5.1 Experiment settings

In our experiments, all experimental nodes are created using VMware Workstation 12.5.2.
Each node has an ubuntu16.04 system with 300MB of memory and 1GB of hard disk space.
We built ElasticChain and POR chain by use of the open-source Hyperledge fabric v0.6.
The experiment established 10, 20, 30, 40 and 50 nodes, respectively. All nodes are storage
nodes, user nodes and verification nodes. So, the feature values for a storage node is 9, 19,
29, 39 and 49 groups, and each group has five features.

We assign a value to each weight: ωk = 1, μk = 10, a = 1, ψp =1, φp = 10, ξi = 1, λq

= 1, ρr =1. And we set multiple groups of parameters for the storage nodes through the
control variable method. The parameters includes ωk , μk , ψp , φp , Ai , Ti , tq , Lr , Cr and σr .
Therefore, we calculate the feature values (S, T R,NA,NS,CC) of this storage node by
(9), (10), (11), (12) and (13), respectively.

For the dataset used in the experiment, the real dataset is the best choice. However,
there is no real dataset suitable for the experiment. For example, the data in popular public
blockchain systems, such as Bitcoin and Ethereum, contains a large amount of block infor-
mation and transaction information, but the reliability information about the nodes is hard
to find (e.g. the number of disconnections for a node, the online time of a node, etc.). There-
fore, the node features (S, T R,NA,NS,CC) cannot be calculated by these real datasets,
and synthetic data is used in this experiment. In the future, if we can get the node features
in the public blockchain systems, the optimization model is suitable for most blockchain
systems.

The synthetic data is obtained by multiple testing the running results of the storage nodes
when we set different groups of parameters in the ElasticChain. In the fabric v0.6, the
system will continuously initiate PBFT-based consensus [1] requests. The running results
of our test are whether the storage nodes obtain the correct verification information and
broadcast the information on time in each round of consensus. The broadcast information
includes pre-prepare message, prepare message and commit message [1]. If the storage
nodes broadcast the three messages authentically and promptly, this node is considered to
be reliable in this round of consensus. In the data set, after multiple rounds of consensus,
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when a storage node is a reliable node in more than 90% of the rounds, we define this node
as a reliable node. In other applications, a higher ratio (maybe 99%, 99.9%, or more) can be
used to define reliable nodes according to requirements.

Next, we divide the data set into four groups. Each group of dataset has contains 50
sets of data and each has its unique characteristics. 60% of nodes are reliable in Dataset1
and Dataset2. In Dataset3, there are more reliable nodes (80%), and more unreliable nodes
appear in Dataset4 (40% reliable nodes). Then, we use the Dataset1 to train the ELM clas-
sifier, and use Dataset2, Dataset3 and Dataset4 to test the performance. We set the number
of hidden layer nodes as 10 when using the ELM classifier.

Furthermore, an SVM-based classifier is added to compare performance with the ELM
classifier. The SVM-based classifier replaces the ELM classifier in the classifier module
of the optimized model, and distinguishes reliable storage nodes. We choose a sigmoidal
kernel function and set the penalty parameter as 10 for the SVM-based classifier.

5.2 Experimental results

We experimented on the accuracy, precision, recall and F1-measure of node reliability eval-
uation in different datasets(Dataset2, Dataset3 and Dataset4) by using the optimized data
distribution model(ELM-OM), SVM-based optimized model(SVM-OM) and ElasticChain
model when there are 10, 20, 30, 40 and 50 nodes in model.

The accuracy of a model can be expressed as follows:

Accuracy = (T P + T N)/(T P + FN + FP + T N) (14)

where T P is True Positive, FP is False Positive, T N is True Negative, FN is False
Negative. And the precision of a model can be expressed as follows:

Precision = T P/(T P + FP) (15)

The recall of a model can be expressed as follows:

Recall = T P/(T P + FN) (16)

The F1-measure of a model can be expressed as follows:

F1 − measure = 2 × Precision · Recall

P recision + Recall
(17)

Experimental results on Dataset2, Dataset3 and Dataset4 are shown in Figures 4, 5 and 6,
respectively. We can get the following conclusions from these figures.

(1) Overall, the first conclusion we can draw is that the accuracy, precision, recall and
F1-measure of node reliability evaluation in ELM-OM are higher than that in the SVM-OM
when 10, 20, 30, 40 and 50 nodes exist in models. The reason is that ELM method has a
higher performance of training and classification than the SVM method.

The second conclusion is that the accuracy, precision, recall and F1-measure of the
node reliability evaluation in ElasticChain model are the lowest, and far below ELM-OM
and SVM-OM. Because the ELM-OM and SVM-OM use the new evaluation strategy. The
five features (security, trustworthiness, activeness, stability and communication costs) in
new evaluation strategy can describe the reliability characteristics of a storage node in a
comprehensive way.

(2) Under the same dataset, except for 10 nodes, when the number of nodes is small, the
values of the four evaluation indexes of the classification result are relatively low. The accu-
racy, precision, recall and F1-measure of node reliability evaluation in ELM-OM, SVM-OM
and ElasticChain model become more and more higher with the increasing number of nodes
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Figure 4 Experimental results on Dataset2

in models. It is because that there are few reliability evaluations for a node when the num-
ber of nodes is small, while the number of reliability evaluations increases as the number of
nodes increases, then the classification of reliable nodes is more accurate.

Figure 5 Experimental results on Dataset3
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Figure 6 Experimental results on Dataset4

(3) When the number of nodes in the models is the same, the accuracy, precision, recall
and F1-measure of the three models under Dataset4 are slightly higher than the values under
Dataset3 and Dataset2. It is because that the proportion of reliable nodes is large in Dataset4,
and the characteristics of nodes are obvious. Therefore, the classification results in Dataset4
are better.

Next, we tested the efficiency of the optimization model. We tested the processing time
of the optimized data distribution model and ElasticChain when there are 4, 8, 12 and 16
nodes in systems. Both systems are implemented based on fabric v0.6, and the condition for
fabric v0.6 to operate normally is that there are at most 16 nodes [4]. Therefore, we set the
number of nodes as above.

Meanwhile, the nodes in both systems are set as reliable nodes. The reason why we did
not choose unreliable nodes for testing is that the job of the optimized model is to select
reliable nodes to store the fragmented data. Reliable nodes can respond to query requests in
a timely manner and ensure that there are enough copies of data in the entire system.

The job of the optimized model will not affect the consensus process of ElasticChain.
The reason is that when the optimized model and ElasticChain produce new blocks, the
blocks will be confirmed based on the PBFT consensus. The condition for confirmation
is that more than two-thirds of the participating nodes are honest nodes. The new block
confirmation process and the long-term maintenance of the data by the storage node are two
different stages.

In the experiment, we executed the chaincode example02.go [10] transaction code 930
times and 1860 times, generating 5.00MB and 10.00MB data. 500KB of data will be stored
as a shard, and each shard will be stored in at least 2 copies. The running times of the
optimized model and ElasticChain are shown in Figure 7. The running is stopped recording
after the new data is verified and written into the block.
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Figure 7 The running times of the optimized model and ElasticChain

From Figure 7, we can see that as the number of nodes increases, the running time of
the two systems increases linearly. The reason is that a new block needs to be confirmed by
more than 2/3 of the nodes in the PBFT consensus. The systems contain a large number of
nodes and require a long confirmation time.

Meanwhile, the running times of the optimized model and ElasticChain are almost
the same. The reason is that there is not much difference in the process of generating
blocks between the two systems. However, in practical application, if the verification node
frequently classifies the storage node and the verification node reaches the performance
bottleneck, the block validation may be delayed. Therefore, we should set an appropriate
interval time to classify storage nodes, rather than blindly set the interval time too small.

6 Conclusion

In our study, we present an optimized data distribution method for the ElasticChain, which
combines the blockchain technology with the machine learning method. This method classi-
fies the nodes according to their reliability by using the Extreme Learning Machine (ELM)
and distributes the blockchain data in reliable nodes to increase data security. Moreover, we
propose a new strategy to extract the node reliability in order to fully evaluate the reliabil-
ity of the node. It includes five features, which are the security, trustworthiness, activeness,
stability and communication costs of storage nodes. Finally, the experimental results on
synthetic data demonstrate the accuracy and efficiency of the optimized data distribution
model.

In the future, we will focus on studying the optimized method to achieve the safe distri-
bution of data and extracting the other more features for the storage nodes in ElasticChain
to improve the comprehensiveness of node evaluation. Furthermore, we will experiment
with multiple machine learning algorithms and nature-inspired algorithms as classifiers. By
analyzing and comparing the classification results, we find a more accurate classification
method and save the blockchain data in high-reliability nodes.
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