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Abstract
In social networks, the strength of relationships between users can significantly affect the
stability of the network. Two users are more likely to build the friendship if they share
some common friends. Meanwhile, the breakdown or enhancement of critical connections
may lead to a cascaded phenomenon and cause the social network collapsed or reinforced.
In this paper, we leverage the k-truss model to measure the stability of a social network.
To identify the critical edges, we propose two novel problems named k-truss minimization
problem and k-truss maximization problem. Given a social network G, a positive integer k

and a budget b, it aims to find b edges for deletion (resp. addition), which can lead to the
maximum number of edges collapsed (resp. added) in the k-truss of G. We prove that both
problems are NP-hard. To accelerate the computation, novel pruning rules and searching
paradigms are developed for the corresponding problem. Comprehensive experiments are
conducted over 9 real-life networks to demonstrate the effectiveness and efficiency of our
proposed models and approaches.

Keywords Critical edge · NP-hard · k-truss · Minimization · Maximization

1 Introduction

As a key problem in graph analysis, the mining of cohesive subgraphs, such as k-core, k-
truss, clique, etc, can find many important real-life applications [6, 15, 16, 20, 24, 26].
The mined cohesive subgraph can serve as an important metric to evaluate the properties
of a network, such as network engagement and stability. In this paper, we use the k-truss
model to measure the cohesiveness of a social network. Unlike k-core, k-truss not only
emphasizes the users’ engaged activities (i.e., number of friends), but also requires strong
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connections among users (i.e., common friends). That is, the k-truss of a graph G is the
maximal subgraph where each edge is involved in at least k −2 triangles. Note that, triangle
is an important building block for the analysis of network structure [7, 19]. The number of
edges in the k-truss can be utilized to measure the stability of network structure.

Motivation The breakdown of a strong connection may affect other relationships, which
can make certain relationships involved in less than k − 2 triangles and removed from the
k-truss. Hence, it will lead to a cascading breakdown of relationships eventually. Likewise,
the addition of new connections to the graph can also strengthen the communities in the
graph and expand the size of the corresponding k-truss. To identify the critical edges, in this
paper, we propose and investigate the k-truss minimization (KMIN) problem and k-truss
maximization (KMAX) problem through edge manipulation. Given a graph G and a budget
b, k-truss minimization (resp. maximization) problem aims to find a set B of b edges, which
will lead to the largest number of edges broken (resp. engaged) in the k-truss by deleting
(resp. adding) B.

Example 1 Figure 1 shows a small network with 12 users. The engagement of users in
the group is affected by the number of his friends and strong connections. The withdrawal
or construction of certain connections will significantly influence size of the community
structure, i.e., k-truss. Suppose k = 5. The subgraph in the dotted circle is the corresponding
5-truss. If we delete the connection between u5 and u6, it will cause the whole community
collapsed, i.e., all the connections dropped from the 5-truss. This is because they are no
longer fulfilling the requirement of 5-truss. On the contrary, if we establish a new connection
between u3 and u9, then the subgraph in the dotted rectangle, except for edges (u3, u4) and
(u7, u8), will be the new 5-truss. We can see, the deletion or addition of one single edge can
seriously influence the structure of the community.

The k-truss minimization and maximization problems can find many applications in real
life. For instance, given a social network, we can reinforce the community by paying more
attention to the critical relationships. In addition, we can provide some incentives to users
and make them build new connections in order to strength the network. This is very essen-
tial for an emerging social network platform, which requires to enlarge the number of active
users inside. Also, we can detect vital connections in enemy’s network for military pur-
pose. Moreover, in road network, facility network and biology network, we can protect the

Figure 1 Motivating example
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identified connections in order to enhance the corresponding network or attack them if they
belong to the enemies.

Challenges and contributions To the best of our knowledge, we are the first to investigate
the k-truss minimization and maximization problems through edge manipulations. We prove
both of the problems are NP-hard. Although we can compute the k-truss in polynomial
time, i.e., O(m1.5), where m is the number of edges in the graph, while the enumeration of
all combination of b edges makes the problem hard to compute. To avoid verifying all the
combinations, we adopt a greedy framework in the paper by selecting the best edge in each
iteration. In addition, in real applications, the graph is usually large in size, which results in
a large size of candidate space. Moreover, the real-life networks are usually sparse. It makes
the k-truss maximization problem even harder, since the candidate space of this problem is
O(n2 − m) instead of O(m) for the k-truss minimization problem, where n is the number
of nodes in the graph.

In the literature, there are some researches that focus on modifying important nodes or
edges to influence the community, e.g., [21, 28]. However, they either aims to find important
nodes (e.g., [21]) or focus on different cohesive subgraph models (e.g., [28]), which make
them hard to apply for the problems investigated in this paper. Even though the greedy
framework can accelerate the search and return competitive results, it is still hard to scale. In
this paper, we leverage the properties of k-truss to filter the candidate space. Group structure
and layer-based techniques are developed to reduce the computation cost. In addition, novel
upper bound based methods are proposed to skip unpromising candidates. Our principal
contributions are summarized as follows.

– To find critical connections, we conduct the first research to investigate the k-truss
minimization and maximization problems. We prove both of the problems are NP-hard.

– To scale for large graphs, optimized algorithms are developed. Together with early ter-
mination and pruning techniques, we further reduce the number of candidates, which
can significantly enhance performance of the algorithms.

– Extensive experiments are conducted over 9 real-world social networks to verify the
performance of the proposed techniques.

2 Preliminaries

In this section, we first present some related concepts and then formally define the k-truss
minimization and maximization problems, respectively. Finally, we prove the properties of
the investigated problems. The notations that are frequently used throughout the paper are
shown in Table 1.

2.1 Problem definition

We consider a social network G = (V ,E) as an undirected graph, where V and E represent
the sets of nodes and edges in G, respectively. Given a subgraph S ⊆ G, we use VS (resp.
ES) to denote the set of nodes (resp. edges) in S. N(u, S) is the neighbors of u in S. D(u, S)

equals |N(u, S)|, denoting the degree of u in S. m = |E| (resp. n = |V |) is the number of
edges (resp. nodes) in G. Assuming the length of each edge equals 1, a triangle is a cycle
of length 3 in the graph. For e ∈ E, a containing-e-triangle is a triangle that contains e,
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Table 1 Summary of notations

Notation Definition

G an unweighted and undirected graph

S a subgraph of G

u, v; e a node in G; an edge in G

(u, v) the edge between u and v

n (m) the number of nodes (edges) in G

sup(e, S) the number of triangles containing e in S

k a positive integer

b, B a budget for the number of deleted (added) edges; the set of b edges

Tk the k-truss of G

|Tk | the number of edges in Tk

T −B
k the k-truss after deleting B from G

F(B, T −
K ) the edges that are removed from Tk due to the deletion of B

T +B
k the k-truss after adding B to the graph G

F(B, T +
K ) the edges that are added to the new Tk due to the addition of B

τ(e) the trussness of an edge e in G

�e a triangle which contains the edge e

�s ↔ �t �s and �t are triangle connected

�uvw a triangle consists of u, v,w

�s
k↔ �t �s and �t are k-triangle connected

denoted by �e. We say a node u is incident to an edge e or e is incident to u, if u is one of
the endpoints of e.

Definition 1 (k-core) Given a graph G, a subgraph S is the k-core of G, denoted by Ck , if
(i) S satisfies degree constraint, i.e., deg(u, S) ≥ k for every u ∈ VS ; and (ii) S is maximal,
i.e., any supergraph of S cannot be a k-core.

Definition 2 (edge support) Given a subgraph S ⊆ G and an edge e ∈ ES , the edge support
of e is the number of containing-e-triangles in S, denoted as sup(e, S).

Definition 3 (k-truss) Given a graph G, a subgraph S is the k-truss of G, denoted by Tk , if
(i) sup(e, S) ≥ k − 2 for every edge e ∈ ES ; (ii) S is maximal, i.e., any supergraph of S

cannot be a k-truss; and (iii) S is non-trivial, i.e., no isolated node in S.

Definition 4 (trussness) The trussness of an edge e ∈ EG, denoted as τ(e), is the largest
integer k that satisfies e ∈ ETk

and e /∈ ETk+1 .

Based on the definitions of k-core and k-truss, we can see that k-truss not only requires
sufficient number of neighbors, but also has strict constraint over the strength of edges. It is
easy to verify that a k-truss is at least a (k − 1)-core. Therefore, to compute the k-truss, we
can first compute the (k − 1)-core and then find the k-truss over (k − 1)-core by iteratively
removing all the edges that violate the k-truss constraint. The detailed algorithm is shown
in Algorithm 1, whose time complexity is O(m1.5) [17].
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As discussed in Section 1, the deletion of certain edges in the graph G can significantly
affect the structure of the community, i.e., k-truss. Given an edge set B ⊆ E, we use T −B

k

to denote the k-truss after deleting B and |T −B
k | denotes the number of edges in T −B

k .
We define the followers F(B, T −

k ) of B as the edges that are removed from Tk due to the
deletion of B. Then, we can define the k-truss minimization problem as follows.

Problem Statement 1 Given a graph G and a budget b, the k-truss minimization (KMIN)
problem aims to find a set B∗ of b edges, such that the |T −B∗

k | is minimized. It is also
equivalent to finding an edge set B∗ that can maximize |B∗, T −

k |, i.e.,
B∗ = argmax

B⊆E∧|B|=b

|B, T −
k |

Similarly, adding new edges to the graph can also enlarge the corresponding community
size. Given an edge set B ⊆ (V × V ) \ E, we use T +B

k to denote the k-truss after adding
B to the graph G. We use |T +B

k | to denote the number of edges in T +B
k . We define the

followers F(B, T +
k ) of B as the edges that are added to the new k-truss due to the addition

of B. Then, we can define the k-truss maximization problem as follows.

Problem Statement 2 Given a graph G and a budget b, the k-truss maximization (KMAX)
problem aims to find a set B∗ of b edges, such that the |T +B∗

k | is maximized. It is also
equivalent to finding an edge set B∗ that can maximize |F(B, T +

k )|, i.e.,
B∗ = argmax

B⊆(V ×V )\E∧|B|=b

|F(B, T +
k )|

2.2 Properties of the k-truss minimization problem

Theorem 1 The k-truss minimization problem is NP-hard for k ≥ 5.

Proof For k ≥ 5, we sketch the proof for k = 5. A similar construction can be applied
for the case of k > 5. When k = 5, we reduce the k-truss minimization problem from the
maximum coverage problem [10], which aims to find b sets to cover the largest number of
elements, where b is a given budget. We consider an instance of maximum coverage problem
with s sets T1, T2, .., Ts and t elements {e1, .., et } = ∪1≤i≤sTi . We assume that the maximum
number of elements inside T is R ≤ t . Then we construct a corresponding instance of the
k-truss minimization problem in a graph G as follows. Figure 2(a) is a constructed example
for s = 3, t = 4, R = 2.
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Figure 2 Example for the NP-hard proof of the k-truss minimization problem

We divide G into three parts, V , N and P . 1) V consists of s parts. Each part
Vi corresponds to Ti in the maximum coverage problem instance. 2) N consists of
t parts. Each part Ni corresponds to ei in the maximum coverage problem instance.
3) P is a dense subgraph. The support of edges in P is no less than k − 2 + b.
Specifically, suppose Ti consists of ri ≤ R elements, Vi consists of 4R − ri + 1
nodes and 8R − ri edges. To construct Vi , we first construct a (4R − 2ri)-polygon.
Then, we add a node vi

0 in the center of (4R − 2ri)-polygon and add 4R − 2ri edges
between vi

0 and vi
1, ..., v

i
4R−2ri

. Finally, we further add ri nodes vi
4R−2ri+1, ..., v

i
4R−ri

and 3ri edges {(vi
0, v

i
4R−2ri+1), (v

i
1, v

i
4R−2ri+1), (v

i
2, v

i
4R−2ri+1), ..., (v

i
0,

vi
4R−ri

), (vi
2ri−1, v

i
4R−ri

), (vi
2ri

, vi
4R−ri

)}. With the construction, the edges in V have sup-
port no larger than 3. We use P to provide support for edges in V and make the support
of edges in V to be 3. Each part in N consists of 2R + 2 nodes and the structure is a list
of 4R triangles which is shown in Figure 2(a). For each element ei in Tj , we add two
triangles between Ni and Vj to make them triangle connected. The structure is shown in
Figure 2(b). Note that each edge in Ni and Vj can be used at most once. We can see that
edges in N have support no larger than 3. Finally, we use P to provide support for edges in
N and make the support of edges in N to be 3. Then the construction is completed. The
construction of Vi for R = 3 is shown in Figure 2(c).

With the construction, we can guarantee that 1) deleting any edge in Vi can make all
the edges in Vi and the edges in Nj who have connections with Vi deleted from the truss.
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2) Only the edges in Vi can be considered as candidates. 3) Except the followers in N ,
each Vi has the same number of followers. In Figure 2(a), deletion of each Vi can make
8R edges (except the edges in N ) removed. Consequently, the optimal solution of k-truss
minimization problem is the same as the maximum coverage problem. Since the maximum
coverage problem is NP-hard, the theorem holds.

Theorem 2 For the k-truss minimization problem, the objective function f (x) =
|F(x, T −

K )| is monotonic but not submodular.

Proof Suppose B ⊆ B ′. For every edge e in F(B, T −
K ), e will be deleted from the k-truss

when deleting B ′. Thus, f (B) ≤ f (B ′) and f is monotonic. Given two sets A and B, if f

is submodular, it must hold that f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B). We show that the
inequality does not hold by constructing a counter example. In Figure 1, for k = 4, suppose
A = {(u3, u8)} and B = {(u8, u9)}. We have f (A) = 2, f (B) = 2, f (A ∪ B) = 7 and
f (A ∩ B) = 0. The inequation does not hold. Therefore, f is not submodular.

2.3 Properties of the k-truss maximization problem

Theorem 3 The k-truss maximization problem is NP-hard for k ≥ 4.

Proof We reduce the k-truss maximization problem from the maximum coverage (MC)
problem [10], which is NP-hard. The MC problem is to find at most b sets to cover the
largest number of elements, where b is a given budget. We consider an instance of MC with
s sets T1, T2, ..., Ts and t elements {e1, ..., et } = ∪1≤i≤sTi . We assume that Ti consists of
xi elements, and ei belongs to yi sets. Let R be the maximum number of elements in T ,
i.e., R = max(xi). Then we construct a corresponding instance of the k-truss maximization
problem in a graph G as follows. Figure 3(a) is a constructed example for s = 3, t = 4, R =
2 and k = 4.

We divide G into three parts, V , N and P . 1) The part V corresponds to Ti contains s set
of nodes. For each set, we construct 
 R

2k−5� k-cliques that lack an edge (named le-clique),
and all le-cliques share the same two nodes (named s-nodes) without edge between them,
for example in Figure 3(c). 2) The part N contains t sets of nodes corresponding to ei .
For each set, we construct a triangle with three nodes ni

1, ni
2 and ni

3. 3) The part P is a k-
clique. Specifically, for each element ej contained in Ti , we add the structure in Figure 3(b)

between an edge in Vi and edge (n
j

1, n
j

2) to make them triangle connected. Note that every
edge in Vi can only be used once and only 2k − 5 edges in each le-clique in Vi can be
constructed. Finally, we need to use P to ensure that the support of each edge in Figure 3(b)
satisfy their corresponding conditions, making sure the support of (n

j

1, n
j

3) and (n
j

2, n
j

3) is

k − 1, and the support of (n
j

1, n
j

2) is k − 3 + yj . Then the construction is completed.
With the construction, we can guarantee that 1) every edge in P with stay in k-truss.

2) edges (n
j

1, n
j

3) and (n
j

2, n
j

3) are in k-truss. 3) edges (a, c) and (b, d) in Figure 3(b) are
in k-truss. 4) there must be an edge in Vi with support equal to k − 3. 5) Add an edge
between s-nodes in Vi can make Vi and the edge (n

j

1, n
j

2) in Nj who have connections
with Vi join in the k-truss. 6) Only the edge between s-nodes in Vi can be considered as
candidates. 3) Except the followers in N , each Vi has the same number of followers, i.e.,
itself. Consequently, the optimal solution of k-truss maximization problem is the same as
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the maximum coverage problem. Since the maximum coverage problem is NP-hard, the
theorem holds.

Theorem 4 For the k-truss maximization problem, the objective function f (x) =
|F(x, T +

k )| is monotonic but not submodular.

Proof Suppose B ⊆ B ′. For every edge e in F(B, T +
k ), e will be added to the new k-truss

when adding B ′. Thus, f (B) ≤ f (B ′) and f is monotonic. Given two sets A and B, if f

is submodular, it must hold that f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B). We show that the
inequality does not hold by constructing a counter example. In Figure 1, for k = 4, suppose
A = {(u1, u4)} and B = {(u3, u9)}. We have f (A) = 0, f (B) = 0, f (A ∪ B) = 1 and
f (A ∩ B) = 0. The inequation does not hold. Therefore, f is not submodular.

3 Solution to the KMIN problem

3.1 Baseline algorithm

For the k-truss minimization problem, a naive solution is to enumerate all the possible edge
sets of size b, and return the best one. However, the size of a real-world network, i.e., m,
is usually very large. The number of combinations is enormous. Due to the complexity and
non-submodular property of the problem, we resort to the greedy framework. Algorithm 2
shows the baseline greedy algorithm. It is easy to verify that we only need to consider the
edges in the k-truss as candidates (Line 1). The algorithm iteratively finds the edge with the
largest number of followers in the current k-truss (Line 3). The algorithm terminates when
b edges are found. The time complexity of the baseline algorithm is O(bm2.5).

3.2 Group based solution

The baseline method can greatly accelerate the search compared with the naive solution.
However, it is hard to scale for large networks. In this section, novel pruning techniques
are developed to speedup the search in baseline algorithm. Before introducing the pruning
rules, we first present some definitions involved.

Definition 5 (triangle adjacency) Given two triangles �1, �2 in G, they are triangle
adjacent if �1 and �2 share a common edge, which means �1 ∩ �2 �= ∅.
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Figure 3 Example for the NP-hard proof of k-truss maximization problem

Definition 6 (triangle connectivity) Given two triangles �s ,�t in G, they are triangle con-
nected, denoted as �s ↔ �t , if there exists a sequence of θ triangles �1,�2, ..., �θ in G,
such that �s = �1,�t = �θ , and for 1 ≤ i < θ , �i and �i+1 are triangle adjacent.

For two edges e and e′, we also say they are triangle adjacent, if e and e′ belong to the
same triangle. As shown in the baseline algorithm, we only need to consider the edges in Tk

as candidates. Lemma 1 shows that we only need to explore the edges in Q.

Lemma 1 Given a k-truss Tk , let P = {e | sup(e, Tk) = k − 2}. If an edge e has at least
one follower, e must be in Q, where Q = {e | e ∈ Tk ∧ ∃e′ ∈ P where e and e′ are triangle
adjacent}.

Proof We prove the lemma by showing that edges in EG \ Q do not have followers. We
divide EG \ Q into two sets. i) For edge with trussness less than k, it will be deleted during
the k-truss computation. ii) For an edge e in Tk , if e is not triangle adjacent with any edge
in P , it means e is triangle adjacent with edges such as e′ whose sup(e′Tk > k − 2. If we
delete e, all the edges triangle adjacent with e will still have support at least k − 2 in Tk .
Thus, e has no follower. The lemma is correct.
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Based on Lemma 2, we can skip the edges that are the followers of the explored ones.

Lemma 2 Given two edges e1, e2 ∈ Tk , if e1 ∈ F(e2, T
−
k ), then we have F(e1, T

−
k ) ⊆

F(e2, T
−
k ).

Proof e1 ∈ F(e2, T
−
k ), it implies that e1 will be deleted during the deletion of e2. There-

fore, each edge in F(e1, T
−
k ) will be deleted when e2 is deleted. Consequently, we have

F(e1, T
−
k ) ⊆ F(e2, T

−
k ).

To further reduce the searching space, we introduce a pruning rule based on k-support
group.

Definition 7 (k-support group) Given a k-truss Tk , a subgraph S ⊆ Tk is a k-support group
if it satisfies: (i) ∀e ∈ S, sup(e, Tk) = k − 2. (ii) ∀e1, e2 ∈ S, suppose e1 ∈ �s , e2 ∈ �t .
There exists a sequence of θ triangles �1, ..., �θ with �s = �1, �t = �θ . For i ∈ [1, θ),
�i ∩�i+1 = e and sup(e, Tk) = k − 2. (iii) S is maximal, i.e., any supergraph of S cannot
be a k-support group.

Lemma 3 shows that edges in the same k-support group are equivalent. The deletion of
any edge in a k-support group can lead to the deletion of the whole k-support group.

Lemma 3 S is a k-support group of Tk . For ∀e ∈ S, if we delete e, we can have S deleted
from Tk .

Proof Since S is a k-support group of Tk , for ∀e, e′ ∈ S, suppose that e ∈ �s , e
′ ∈ �t ,

there exists a sequence of θ triangles �1, ..., �θ with �s = �1,�t = �θ . For i ∈ [1, θ),
�i ∩ �i+1 = ei and sup(ei, Tk) = k − 2. The deletion of any edge inside the group will
destroy the corresponding triangles and decrease the support of triangle adjacent edges by
1. It will lead to a cascading deletion of subsequent triangle edges in the group due to the
violation of truss constraint. Therefore, the lemma holds.

According to Lemma 3, we only need to add one edge from a k-support group to the
candidate set, and the other edges in the group can be treated as the followers of the selected
edge. In the following lemma, we can further prune the edges that are adjacent with multiple
edges in a k-support group.

Lemma 4 Suppose that e ∈ Tk and sup(e, Tk) = w > k − 2. For a k-support group S, if
e belongs to more than w − k + 2 triangles, each of which contains at least one edge in S,
then e is a follower of S.

Proof According to Lemma 3, by removing an edge from S, we have S deleted from Tk .
Since e belongs to more than w − k + 2 triangles, each of which contains at least one edge
in S, the support of e will decrease by more than w − k + 2 due to the deletion of S. So its
support will be less than k − 2 and it will be deleted due to the support constraint. Thus, e
is a follower of S.
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Group-based algorithm We improve the baseline algorithm by integrating all the pruning
rules above, and the details are shown in Algorithm 3. In each iteration, we first find k-
support groups of current Tk and compute the candidate set T according to Lemma 3 (Line
4). This process, i.e., FindGroup function, corresponds to Lines 12-19. It can be done by
conducting BFS search from edges in Tk . We use a hash table to maintain the group id
(i.e., gID) for each edge and the gID starts from 0 (Line 13). For each unvisited edge with
support of k − 2, we conduct a BFS search from it by calling function GroupExpansion
(Lines 20-32). During the BFS search, we visit the edges that are triangle adjacent with the
current edge, and push the edges with support of k − 2 into the queue if they are not visited
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(Lines 25 and 28). The edges, which are visited in the same BFS round, are marked with
the current gID. For the visited edges with support larger than k − 2, we use a hash table to
record its coverage with the current k-support group, and update the candidate set based on
Lemma 4 (Line 31). According to Lemma 2, we can further update the candidate set after
computing the followers of edges (Line 7).

3.3 Upper bound based algorithm

The group based algorithm reduces the size of candidate set by excluding the edges in the
same k-support group and the followers of k-support groups, which greatly accelerates the
baseline method. However, for each candidate edge, we still need lots of computation to
find its followers. Given an edge, if we can obtain the upper bound of its follower size, then
we can speed up the search by pruning unpromising candidates. In this section, we present
a novel method to efficiently calculate the upper bound required. Before introducing the
lemma, we first present some basic definitions. Recall that τ(e) denotes the trussness of e.

Definition 8 (k-triangle) A triangle �uvw is a k-triangle, if the trussness of each edge is no
less than k.

Definition 9 (k-triangle connectivity) Two triangles �s and �t are k-triangle connected,

denoted as �s
k↔ �t , if there exists a sequence of θ ≥ 2 triangles �1, ..., �θ with �s =

�1, �t = �θ . For i ∈ [1, θ), �i ∩ �i+1 = e and τ(e) = k.

We say two edges e, e′ are k-triangle connected, denoted as e
k↔ e′, if and only if 1) e

and e′ belong to the same k-triangle, or 2) e ∈ �s , e
′ ∈ �t , with �s

k↔ �t .

Definition 10 (k-truss group) Given a graph G and an integer k ≥ 3, a subgraph S is a k-

truss group if it satisfies: 1) ∀e ∈ S, τ(e) = k. 2) ∀e, e′ ∈ S, e
k↔ e′. 3) S is maximal, i.e.,

there is no supergraph of S satisfying conditions 1 and 2.

Based on the definition of k-truss group, Lemma 5 gives an upper bound of |F(e, T −
k )|.

Lemma 5 If e is triangle adjacent with θ k-truss groups g1, g2, ..., gθ , we have

|F(e, T −
k )| ≤

θ∑

i=1
|Egi

|.

Proof Suppose sup(e, Tk) = w, we have w ≥ k − 2, so e is contained by w triangles and is
triangle adjacent with 2w edges. We divide the edges which are triangle adjacent with e in
Tk into two parts. 1) τ(e′) > k. Since the deletion of e may cause τ(e′) to decrease at most
1 , we have τ(e′) ≥ k after deleting e, which means e′ has no contribution to F(e, T −

k ).
2) τ(e′) = k. Suppose e′ ∈ gi . The deletion of e can cause trussness of each edge in gi to

decrease at most 1. Then e′ can contribute to |F(e, T −
k )| with at most |Egi

|. Thus,
θ∑

i=1
|Egi

|
is an upper bound of |F(e, T −

k )|.
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Based on Lemma 5, we can skip the edges whose upper bound of follower size is less
than the best edge in the current iteration. However, given the trussness of each edge, it may
still be prohibitive to find the k-truss group that contains an edge e, since in the worst case
we need to explore all the triangles in the graph. To compute the upper bound efficiently,
we construct an index to maintain the relationships between edges and their k-truss groups.
To find the k-truss group for a given edge e, we extend the GroupExpansion function in
Lines 20-32 of Algorithm 3. It also follows the BFS search manner. The difference is that
when we explore an adjacent triangle, it must satisfy the k-triangle constraint, and we only
enqueue an edge, whose trussness satisfies k-triangle connectivity constraint. After the BFS
search starting from e, its involved k-truss groups can be found.

After deleting an edge e in the current iteration, the constructed k-truss groups may be
changed. Therefore, we need to update the k-truss groups for the next iteration. The update
algorithm consists of two parts, i.e., update the trussness and update the groups affected by
the changed trussness. Given the edges with changed trussness, we first find the subgraph
induced by these edges. Then we reconstruct the k-truss groups for the induced subgraph
and update the original ones. Based on the k-truss groups constructed, we can compute
the upper bound of followers for edges efficiently. The final algorithm, named MinEdge,
integrates all the techniques proposed above for the KMIN problem.

4 Solution to the KMAX problem

Different from the k-truss minimization problem, which aims to minimize the size of k-truss
through edge deletion, the k-truss maximization problem aims to add new connections to
the graph in order to enlarge the k-truss. In addition, for the KMIN problem, we only need
to consider the edges in Tk , i.e., O(m). However, for the KMAX problem, the candidate
space is (V ×V )\E, i.e., O(n2−m). In real-life networks, graphs are usually sparse, which
makes the KMAX problem even harder, due to the larger searching space. Moreover, some
techniques, such as group strategy, are no longer applied for the problem, since the edges
are newly added to the graphs. In this section, a baseline framework is first presented. Then,
novel techniques are developed to speedup the processing.

4.1 Baseline algorithm

For the k-truss maximization problem, the candidate space is (V × V ) \ E. A naive method

is to enumerate all the combinations of edge set of size b, i.e., O(
(
n2−m

b

)
), and return opti-

mal result. As discussed, the KMAX is much more challenging than the KMIN problem due
to the larger candidate space. For example, for the small graph Wildbird used in the experi-
ments with 149 nodes and 2,837 edges, the naive method requires 28,884.7s to find the result
for k = 10 and b = 2. While, for the KMIN problem, the naive method only takes 1,941.7s
to find the result. Due to the hardness of the problem, we turn to the greedy heuristic by itera-
tively selecting the best edge for addition and the greedy algorithm terminates when b edges
are selected. Algorithm 4 presents the details of the greedy framework. The algorithm ter-
minates when b edges are selected, which time complexity is O((n2 − m)bm1.5). However,
even equipped with greedy strategy, Algorithm 4 is still hard to perform on large graphs.
Therefore, we further integer Lemma 6, which will be presented later, into Algorithm 4 to
serve as the baseline, named BaselineMax.
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4.2 Candidate reduction

The greedy algorithm significantly reduce the time complexity by applying the greedy
heuristic, but it still cannot handle large graphs due to the huge searching space. In fact,
the greedy framework cannot even perform on small graphs because of the large candidate
size. In this section, we propose some pruning rules to reduce the size of candidates. Before
introducing the detailed lemmas, we first present some basic concepts.

Definition 11 (k-hull) Given a graph G, the k-hull of G, denoted by Hk , is the subset of
edges that belongs to Tk but not Tk+1, i.e., Hk = Tk \ Tk+1.

We say an edge e can have followers, if it has triangle adjacent edges that satisfy
Lemma 6.

Lemma 6 Given a graph G, an edge e can have followers in current iteration, if it satisfies
that (i) sup(e,G) ≥ k−2 after e added to graph G, (ii) it can find at least one containing-
e-triangle �e such that ∀e′ ∈ �e \ e, e′ ∈ Tk−1 and ∃e′′ ∈ �e \ e, e′′ is in (k − 1)-hull.

Proof We prove the lemma by showing that the edge e will have no follower if any con-
straint is violated. For the first constraint, assume its support sup(e,G) < k−2 after adding
the edge e. Based on the definition of k-truss, it will not be involved in the k-truss or con-
tribute to the support of other edges. Therefore, the edge will not have any follower. For the
second constraint, if the edges in �e \ e are both in k-truss but not in (k − 1)-hull, which
means that they are already in k-truss initially, they will not be the followers of e. And if one
of the edges e′ in �e \ e is not in (k − 1)-truss, then e′ cannot be included in k-truss because
the trussness of each edge will change at most by one after one edge insertion [14]. Then,
the edge e also have not any follower. Therefore, at least one of edges in �e \ e should be
in (k − 1)-hull. Thus, the lemma is correct.

Based on Lemma 6, the candidate space is reduced significantly. By integrating Lemma 6
with the greedy framework (i.e., Algorithm 4), we come up with the baseline approach for
the KMAX problem, denoted as BaselineMax. That is, for each iteration, we only consider
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the edges that satisfy the lemma. To further filter the searching space, we leverage the layer
structure in the Tk−1. That is, we iteratively peeling the edges in Tk−1 and maintain the edges
in s + 1 layers. The layer construction procedure is shown in Algorithm 5. In each iteration,
we only peel the edges with support smaller than k −2 currently, until all the edges in Hk−1
are added to the corresponding layer. The final layer, i.e., Ls+1 consists of the edges in Tk .

Given an edge e, we use l(e) to denote its layer number in L. Let Ge be the subgraph
induced by edges in

⋃
i≥l(e) Li and s+(e) = sup(e,Ge). Then, an edge can have followers

if it satisfies the following lemma.

Lemma 7 Given a graph G, a candidate edge e can have followers, if it satisfies that there
exists a containing-e-triangle �e,e1,e2 , such that l(e1) ≤ l(e2) and s+(e1) = k − 3.

Proof Since s+(e1) = k − 3 and l(e1) ≤ l(e2), it means the added edge e can contribute
support to e1 when peeling the edges in Tk−1. Then, e1 will be follower of e. Thus, the
lemma is correct.

Example 2 Suppose k = 4. As shown in Figure 4(a), the graph is a 3-truss initially, i.e.,
Tk−1. Based on the layer structure, we know that all the red edges consist of the first layer
L1, whose support equals 1 currently. After peeling the edges in L1, the blue edges form
the second layer L2. Then, all the other edges belong to L3, i.e., Tk . As observed, the
edge (v1, v4), i.e., the dashed edge in Figure 4(b), satisfies the Lemma 7, where the newly
constructed triangle {v1, v3, v4} has l(v1, v3) ≤ l(v3, v4) and s+(v1, v3) = k − 3 = 1 hold.
Figure 4(b) shows the 4-truss after adding the edge (v1, v4).
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(a) Graph G (b) 4-truss after adding a new edge

Figure 4 Layer structure example
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In the k-truss minimization problem, we can leverage Lemma 2 to skip the edge that
belongs to the followers of previous computed edges. However, this rule does not hold for
the k-truss maximization problem, since the candidate edge set of the KMAX problem does
not exist in the graph originally. To compute the follower set for a newly added edge, we
can conduct a BFS from the added edge by leveraging triangle connection. The BFS is
processed layer by layer. Given a newly added edge e, let F1(e, T

+
k ) be the follower set of

e in the first layer of the BFS, i.e., the edges can form triangles with e and join the new
k-truss. Then, we can skip some unpromising edge based on Lemma 8.

Lemma 8 Given two candidate edges e1, e2, the follower set of e2 is computed. Then, we
can skip e1, if F1(e1, T

+
k ) ⊆ F(e2, T

+
k ).

Proof When adding a new edge e, it will first provide support for the edges that can form
new triangles with the edge, i.e., F1(e, T

+
k ). Then, F1(e, T

+
k )will further influence the other

edges in cascade. Therefore, if F1(e1, T
+
k ) ⊆ F(e2, T

+
k ), it means e2 can provide the same

support for F(e, T +
k ). That is, F(e, T +

k ) will be the subset of F(e2, T
+
k ). Thus, the lemma

is correct.

Based on Lemma 8, we can skip some unpromising edges by only explore F1(e, T
+
k ).

By integrating the pruning strategies above, we introduce the layer-based algorithm, which
details are shown in Algorithm 6. For each iteration, we construct the layer structure and
prune the candidate space based on the property of layer. In addition, we leverage Lemma 8
to further reduce the computation.

4.3 Upper bound based strategy

To further skip the unpromising edges, in this section, we propose the upper bound based
strategy by leveraging the concept of hull group.

Definition 12 (hull group) Given a graph G and an integer k, g is a hull group if it satisfies

the following conditions: (i) ∀e ∈ g, e is in (k − 1)-hull, (ii) ∀e, e′ ∈ g, e
k−1↔ e′, (iii) g is

maximal, i.e., there is no supergraph of g that fulfills the first two constraints.
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When adding a new edge e to the graph, new triangles will be generated. For a new
triangle, if the original two edges of this triangle belong to a hull group, we consider the edge
e is triangle adjacent to the group. Then, we can derive the upper bound based on Lemma 9.
The lemma is similar to that in Lemma 5, which correctness can be easily verified. Thus we
omit the detailed proof here.

Lemma 9 If an edge e is inserted to the graph G and e is triangle adjacent with d hull

group g1, g2, ..., gd , we have |F(e, T +
k )| ≤

d∑

i=1
|Egi

|.

Based on Lemma 9, we can skip the edges whose upper bound is smaller than the current
best result. By further integrating the lemma with the layer-based method, we propose the
optimized algorithm for KMAX, denoted as MaxEdge. We omit the detailed pseudocode
here due to the space limitation.

5 Experiments

In this section, comprehensive experiments are conducted on 9 datasets to evaluate the
efficiency and effectiveness of the proposed models and techniques.

5.1 Experiment Setup

Algorithms To the best of our knowledge, there is not existing work on k-truss mini-
mization and maximization problem through edge manipulation. In the experiments, we
implement and evaluate the following algorithms.

– ExactMin/ExactMax.Naive algorithm for the KMIN/KMAX problem by enumerating
all the combinations.

– Support. Heuristic method for the KMIN problem. In each iteration, it selects the edge
that is triangle adjacent with the edge with minimum support in the k-truss.

– HullValue. Heuristic method for the KMAX problem. In each iteration, it selects the
edge with the largest sum score of the two end nodes. The score of a node is the number
adjacent edges in the k-hull.

– BaselineMin/BaselineMax. The baseline algorithm for the KMIN/KMAX problem
introduced in Sections 3.1/4.1.

– MinEdge/MaxEdge. Optimized method for the KMIN/KMAX problem by integrating
all the developed techniques.

– MinEdge-/MaxEdge-. MinEdge/MaxEdge method without upper bound based strat-
egy in Sections 3.3/4.3 for the KMIN/KMAX problem.

Dataset and workloads We employ 9 real-life networks (i.e., Bitcoin, Email, Facebook,
Brightkite, Gowalla, DBLP, Youtube, Orkut and LiveJournal) in our experiments to evaluate
the performance of the proposed methods. The datasets are public available on SNAP1 and
DBLP2. Table 2 present the statistic details of the datasets. Due to the different properties of
datasets, we set the default k as 15 for 6 datasets (i.e., Email, Facebook, Brightkite, Gowalla,

1https://snap.stanford.edu/data/
2https://dblp.org/xml/release/
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Table 2 Statistics of datasets

Dataset Nodes Edges davg

Bitcoin (BC) 7,605 14,124 3.7

Email (EL) 1,005 16,064 32.0

Facebook (FB) 4,039 88,234 43.7

Brightkite (BK) 58,228 214,078 7.4

Gowalla (GA) 196,591 950,327 9.7

DBLP (DB) 425,957 1,049,866 4.9

Youtube (YB) 1,134,890 2,987,624 5.3

LiveJournal (LJ) 3,997,962 34,681,189 17.4

Orkut (OT) 3,072,441 117,185,083 76.3

Dblp and Youtube), and set the default k as 10, 60 and 64 for Bitcoin, LiveJournal and Orkut,
respectively. For each setting, we run the algorithm 10 times and report the average value.
All programs are implemented in standard C++ and compiled with gcc-4.8. All experiments
are performed on a machine with an Intel i5-9600KF 3.7GHz CPU and 64 GB memory.

5.2 Effectiveness Evaluation for the KMIN Problem

Compare with exact solution To evaluate the performance of the proposed greedy frame-
work, we conduct the experiments compared with ExactMin and Support approaches by
deleting b edges, where the follower size is reported. Since MinEdge only improve the effi-
ciency of BaselineMin and MinEdge-, we only report the results of MinEdge here. Due to
high-computation cost of the exact solution, we only conduct the experiment on two small
datasets, i.e., Bitcoin and Artificial network for b = 3 and b = 4, respectively. The artificial
network is generated by GTGraph with 500 nodes and 5,000 edges. We set k = 11 and 8
for Bitcoin and Artificial network, respectively. For the convenience, we report the inclined
ratio here. That is, the ratio of ExactMin is 100%, and for the other approaches, we report
the ratio compared with ExactMin. The results are shown in Table 3. As observed, com-
pared with ExactMin, there is only slight drop for MinEdge. In addition, MinEdge is much
faster than ExactMin. For b = 2 on bitcoin, ExactMin requires 10.537s to find the result,
while it only takes 0.019s for MinEdge, which is 554.58X speedup. Moreover, MinEdge is
much better than the support based heuristic. It verifies that the proposed method can greatly
speedup the processing and provide competitive results.

Effectiveness evaluation by varying k and b To further evaluate the effectiveness, we
report the experiment results by varying k and b compared with Support. Figures 5 and 6
show the result by varying k and b, respectively. As observed, MinEdge always outperforms

Table 3 Effectiveness evaluation compared with ExactMin and Support

Ratio b = 3 b = 4

ExactMin MinEdge Support ExactMin MinEdge Support

Bitcoin 100% 91.252% 56.45% 100% 100% 46.43%

Artificial 100% 100% 33.13% 100% 97% 43%
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Figure 5 Effectiveness evaluation of the KMIN problem by varying k

Support significantly, which verifies the advantage of developed greedy framework. Fur-
thermore, the follower size of the two algorithms increases as b grows, sine more edges are
selected. In addition, the parameter k can greatly influence the results, since the size of Tk

decreases when k increases, and the candidate space also varies a lot.

Case study for the KMIN problem Figure 7 shows a case study on DBLP with k = 10,
b = 1. We can see that the edge between Lynn A. Volk and David W. Bates is the most
critical relationship. This edge has 264 followers (grey edges in the figure). Moreover, it is
interesting to observe that most followers have no direct connection with them.

5.3 Efficiency evaluation for the KMIN problem

To evaluate the efficiency of proposed techniques, we report the response time of MinEdge,
MinEdge- and BaselineMin by varying k and b. Figures 8 and 9 show the results by vary-
ing k and b, respectively. We can see that MinEdge and MinEdge- significantly outperform
BaselineMin in all the datasets because of the pruning techniques developed. As more
pruning techniques equipped, the algorithms run faster. In particular, MinEdge speedups
BaselineMin by two orders of magnitude on LiveJournal for any k and b. When b grows,
the response time increases for the algorithms since more edges need to be selected. When k

increases, the response time decreases for the most cases, since the searching space becomes
smaller.
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Figure 6 Effectiveness evaluation of the KMIN problem by varying b

Figure 7 Case study on DBLP for KMIN with k=10 and b=1

918 World Wide Web (2022) 25:899–926



Figure 8 Efficiency evaluation of the KMIN problem by varying k

5.4 Effectiveness evaluation for the KMAX problem

Comparewith exact solution To evaluate the effectiveness of proposed greedy framework,
we first conduct the experiments compared with ExactMax and HullValue. Compared with
the KMIN problem, the searching space of KMAX is much larger, which is cost-prohibitive
even for ExactMax on very small b and network. Thus, we conduct the experiments on
two small datasets, i.e., Species3 and Wildbird4, with 65/149 nodes and 1,139/2,837 edges,
respectively. We set k equals 10 for the two datasets. Table 4 shows the experiment results,
where the inclined ratio is reported. As observed, the greedy framework can achieve very
competitive results, and is much better than HullValue. When b = 2, ExactMax requires
557.493s to find the result on Species, while MaxEdge only needs 0.021442s.

Effectiveness evaluation by varying k and b To evaluate the performance, we report the
follower size by varying k and b. Figures 10 and 11 present the corresponding results.

3http://networkrepository.com/bn.php
4http://networkrepository.com/asn.php
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Figure 9 Efficiency evaluation of the KMIN problem by varying b

Clearly, MaxEdge outperforms HullValue significantly under all settings. In addition, for
many cases, HullValue can only reports few followers. This is because, for the KMAX
problem, the candidate space is huge. Even though HullValue seems to be a good heuristic,
it still cannot be effective under such a large candidate space. When b grows, the follower
size returned increases, since more edges are selected. Due to the different distributions of
edge support and k-truss, the results vary a lot by changing k.

Case study Figure 12 shows a case study on DBLP with k = 23, b = 1. We can see that the
edge between Jeffrey M. Rothchild and Julia M. Fiskio is the most critical relationship for
the KMAX problem, i.e., the dark edge in the figure. This edge has 251 followers, which
are in dark gray color. As observed from the results of case studies, by changing a single
connection, we can influence the community of the network a lot.

Table 4 Effectiveness evaluation compared with ExactMax and HullValue

Ratio b = 1 b = 2

ExactMax MaxEdge HullValue ExactMax MaxEdge HullValue

Species 100% 100% 39.47% 100% 96.08% 78.43%

Wildbird 100% 100% 88.89% 100% 100% 76.47%
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Figure 10 Effectiveness evaluation of the KMAX problem by varying k

5.5 Efficiency Evaluation for the KMAX Problem

In Figures 13 and 14, we report the response time of proposed methods by varying k and
b. Note that, we does not report the greedy framework in Algorithm 4, which is still hard
to perform even on small datasets. The BaselineMax method is Algorithm 4 by integrating
Lemma 6. As we can see, MaxEdge is much faster than MaxEdge- and BaselineMax under
all the settings due to the optimized techniques developed. The algorithms run faster when
more techniques are integrated, which verifies the effectiveness of developed strategies. The
response time is proportional to the size of b, as more edges are returned. When increasing
k, the response time decreases for most cases, since larger k will lead to smaller k-truss and
k-hull.

6 Related work

Graph is widely used to model the complex relationships among entities [4, 5, 18]. Cohesive
subgraph identification is of great importance to social network analysis. In the litera-
ture, different cohesive subgraph models are proposed, such as k-core [13], k-truss [8].

921World Wide Web (2022) 25:899–926



Figure 11 Effectiveness evaluation of the KMAX problem by varying b

The k-truss model not only emphasize the engagement of users, but also requires strong
connections among them. In the literature, numerous research is conducted for the k-
truss decomposition problem under different settings, including in-memory algorithms [6],
external-memory algorithms [17], distributed algorithms [3], etc. Huang et al. [9] inves-
tigate the truss decomposition problem in uncertain graphs. In [23], authors extend the
k-truss model for signed graph. In [8], authors leverage the k-truss property to mine required
communities. Recently, some research focuses on modifying the graph in order to maxi-
mize/minimize the corresponding metric, e.g., [1, 12, 25, 28]. In [22], Zhang et al. develop
layer based techniques for the anchored k-core and anchored k-truss problems. Bhawalkar
et al. [1] propose the anchored k-core problem, which tries to maximize the k-core by
anchoring b nodes. Zhang et al. [21] investigate the k-truss and k-core minimization through
node deletion. In [2, 28], authors study the problem of k-core minimization via edge mod-
ification. In [11], a game theory approach is considered for core resilience. In [12], Medya
et al. try to maximize the node centrality by adding new edges to the graph. In [27], authors
aim to minimize the number of butterflies in bipartite graphs. As we can see, in the previ-
ous studies, they either focus on finding important nodes or emphasize different cohesive
subgraph models, which makes them difficult to support the problem studied in this paper.
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Figure 12 Case study on DBLP, k=23, b=1

Figure 13 Efficiency evaluation of the KMAX problem by varying k
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Figure 14 Efficiency evaluation of the KMAX problem by varying b

7 Conclusion

In this paper, we investigate and propose the k-truss minimization and maximization prob-
lems. Given a graph G and a budget b, the problems aim to find a set of b edges in a
network, such that the size of the resulting k-truss is minimized or maximized We prove
both problems are NP-hard. Integrating with novel pruning strategies, greedy algorithms and
optimized searching approaches are developed to speedup the processing. Finally, extensive
experiments on 9 real-life network datasets demonstrate the effectiveness and efficiency of
the proposed models and techniques.
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