
https://doi.org/10.1007/s11280-021-00930-2

Exploiting intra- and inter-session dependencies
for session-based recommendations

NanWang1 · Shoujin Wang1 ·YanWang1 ·Quan Z. Sheng1 ·Mehmet A. Orgun1

Received: 2 January 2021 / Revised: 2 June 2021 / Accepted: 12 July 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Session-based recommender systems (SBRSs) aim at predicting the next item via learning
the dynamic and short-term preferences of users. Most of the existing SBRSs usually make
predictions based on the intra-session dependencies embedded in session information only,
ignoring more complex inter-session dependencies and other available side information
(e.g., item attributes, users), which in turn greatly limits the improvement of the recommen-
dation accuracy. In order to effectively extract both intra- and inter-session dependencies
from not only the session information but also the side information, to further improve
the accuracy of next-item recommendations, we propose a novel hypergraph learning (HL)
framework. The HL framework mainly contains three modules, i.e., a hypergraph con-
struction module, a hypergraph learning module, and a next-item prediction module. The
hypergraph construction module constructs a hypergraph to connect the users, items and
item attributes together in a unified way. Then, the hypergraph learning module learns the
informative latent representation for each item by extracting both intra- and inter-session
dependencies embedded in the constructed hypergraph. Also, a latent representation for
each user is learned. After that, the learned latent representations are fed into the next-item
prediction module for next-item recommendations. We conduct extensive experiments on
two real-world datasets. The experimental results show that our HL framework outperforms
the state-of-the-art approaches.

Keywords Next-item recommendation · Session-based recommendations · Hypergraph
learning

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering
2020
Guest Editors: Hua Wang, Zhisheng Huang, and Wouter Beek

� Yan Wang
yan.wang@mq.edu.au

Extended author information available on the last page of the article.

Published online: 6 August 2021

World Wide Web (2022) 25:425–443

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00930-2&domain=pdf
http://orcid.org/0000-0002-5344-1884
mailto: yan.wang@mq.edu.au

1 Introduction

In the current information era, a huge amount of information leads to the critical issue of
information overload. Recommender systems (RSs) have been proposed to solve this chal-
lenge through information filtering, and thus can effectively provide suggestions for users’
choices on a large number of items [7, 35]. Various approaches have been developed for RSs
during the past few years, including collaborative filtering-based approaches, content-based
approaches, and hybrid approaches [17, 23]. These approaches mainly focus on learning the
long-term static preferences of users for recommendations [25–27], which have two major
drawbacks: (1) long-term and static preferences of users are sometimes unavailable, and (2)
the short-term and dynamic preference of users are usually ignored [28].

Session-based recommender systems (SBRSs) have emerged in recent years, which can
alleviate these two drawbacks. SBRSs learn a user’s short-term and dynamic preferences
based on the items interacted by the user within sessions. In general, there are four basic
types of SBRSs, including (1) Markov chain based SBRSs, (2) factorization based SBRSs,
(3) recurrent neural network (RNN) based SBRSs, and (4) graph neural network (GNN)
based SBRSs. Markov chain based SBRSs [10, 16] and factorization based SBRSs [2,
12] recommend the next item based on the previous one, which can capture the first-order
dependencies (i.e., the dependencies between any two adjacent items within a session).
RNN-based SBRSs [5, 6, 13] can further capture the high-order dependencies (i.e., the
cascaded dependencies between multiple items within a session) across multiple items by
modelling each session as a sequence for next-item recommendations. To further capture
the complex transitions over items within each session, GNN-based SBRSs [20, 21, 31]
have been proposed. GNN-based SBRSs firstly map each session to a subgraph separately,
and then takes the subgraph as the input of a GNN to further capture the dependencies over
nodes (i.e., items) in the subgraph for next-item recommendations.

However, most of the existing GNN-based SBRSs have two shortcomings: (1) they often
utilize the limited session information only for next-item recommendations, while ignoring
other important side information including item attributes and user IDs, which can greatly
complement the limited session information; and (2) they usually model the intra-session
dependencies (i.e., the dependencies between items within one session) and ignoring the
complex inter-session dependencies (i.e., the dependencies between items across multiple
sessions). Both shortcomings greatly reduce the performance of next-item recommenda-
tions. Accordingly, to address these shortcomings and further improve the performance of
SBRSs, there are two challenges still need to be addressed:

– CH1: How to effectively make full use of the available side information including item
attribute information and user information for improving the accuracy of next-item
recommendations?

– CH2: How to effectively extract both intra- and inter-session dependencies to further
improve next-item recommendations?

To address the aforementioned two challenges, in this paper, we propose a novel hypergraph
learning framework. Specifically, to address CH1, we introduce item attribute information
and user information simultaneously to enrich the information for next-item recommen-
dations. To effectively incorporate such side information, we construct a hypergraph to
connect the items, item attribute values and users together by integrating the session-based
item-item graph, the item-item attribute value graph and user-session graph into a unified
hypergraph. In such a case, items are connected not only by sessions, but also by their

426 World Wide Web (2022) 25:425–443

shared attribute values and the joint users (see Figure 1). A hypergraph is a generalization
of graphs in which the edges are arbitrary non-empty subsets of the vertex set. To address
CH2, we propose a hypergraph learning framework to learn both the intra-session depen-
dencies (i.e., the dependencies between items within the same session) and inter-session
dependencies (i.e., the dependencies between items from different sessions) with a focus on
learning inter-session dependencies. For intra-session dependencies, we take each subgraph
built on each session into gated graph neural networks to learn the dependencies between
items within sessions. For inter-session dependencies, we devise three types of aggregation
operations to learn the inter-session dependencies to absorb information from other sessions
to benefit the next-item recommendation in the current session. Each aggregation is based
on one type of hyperedges in the hypergraph.

The first aggregation operation, called user aggregation, is utilized to learn the dependen-
cies between items that are purchased by the same users. Here the hyperedges connecting
each user and all the sessions from this user serve as the bridges to connecting items from
different sessions from the same user. The second aggregation operation, called item aggre-
gation, is utilized to learn the dependencies between items from different sessions. The
hyperedge connecting a given item and all of its co-occurred items (i.e., those items that
concurred with the given item in the same sessions) forms the bridge to connect items from
different sessions. The third aggregation operation, called attribute aggregation, is utilized
to learn the dependencies between items which have shared attribute values. Here the hyper-
edge connecting each item and all of its attribute values serve as the bridge to connect
different items sharing attribute values.

In addition, we devise session aggregation to learn a given user’s preference towards
items. Specifically, session aggregation aggregates all the historical sessions of a user to
represent her/his preference. Session aggregation is based on hyperedges connecting each
users and all of her/his historical sessions.

The main contributions of our framework are summarized as follows:

– We propose a hypergraph to encode not only the session information, but also the user-
session information and the item-attribute information. In this way, all the items and
users in a given data set are comprehensively connected together in a unified way. This
greatly enriches the information for SBRSs.

– We propose a hypergraph learning framework to effectively learn not only the intra-
session dependencies, but also the widely existed inter-session dependencies for more
accurate next-item recommendations. In addition, each user’s preference towards items

Session 1: {(Dress, <Dress, Zara>) (Bread, <Food, Coles>) (Milk, <Drink, Coles>)}

Session 2: {(Dress, <Dress, Zara>) (Bread, <Food, Coles>) (Cola, <Drink, Coca>)}

Session 3: {(Bread, <Food, Coles>) (Ham, <Food, Don>)}

Hypergraph

FoodDrink

Dress

Coles

Don

Zara

Coca

Session 1
Session & A�ribute Informa�on

Figure 1 An example of a Hypergraph constructed on user transaction information and item attribute infor-
mation. The hyperedges connecting user and session sets (i.e., the sessions purchased by one user) indicate
the user-session relations, the arrowed edges connecting two items indicate the sequential relations between
items from a given session, and the dotted edges connecting item and item attribute values mean the
item-attribute relations

427World Wide Web (2022) 25:425–443

has also been well captured by the devised session aggregation to further improve the
recommendation accuracy.

– The extensive experiments have been conducted on two real-world datasets, and the
experimental results show that our HL framework outperforms the state-of-the-art
methods.

The rest of this paper is organized as follows. we provide a comprehensive discus-
sions on related work in Section 2. Section 3 presents the problem statement. We present
our proposed hypergraph learning (HL) framework in Section 4. Datasets, evaluation met-
rics, comparison methods are introduced in Section 5. Finally, we conclude this paper in
Section 6.

2 Related work

In this section, we review several related studies on SBRSs and hypergraph learning, where
we divided SBRSs into two categories: (1) conventional SBRSs, including Markov chain
based SBRSs and factorization based SBRSs, and (2) deep learning based SBRSs, including
RNN-based SBRSs and GNN-based SBRSs.

2.1 Conventional SBRSs

Markov chain based SBRSs and factorization based SBRSs are two typical types of con-
ventional SBRSs. Markov chains based SBRSs mainly employ Markov chains to model
the users’ behaviour. Specifically, they learn the transition probabilities to capture the first-
order dependencies between two adjacent items, and then recommend the next item based
on this dependencies [2]. However, due to the property of Markov chains, this method only
captures the first-order dependencies between two adjacent items while ignoring the high-
order dependencies across multiple items. Factorization based SBRSs factorize the item
transition matrix into latent representations of users and items, which are subsequently used
to predict the next-item in which a given user may be interested [1]. However, because the
users’ preference is sometimes unavailable, factorization based SBRSs do not always work.
Further, Rendle et al. [16] firstly proposed Factorized Personalized Markov Chains (FPMC)
model for next item recommendation, which factorizes the user-item matrix to learn both
the general taste of a user and transitions over items by Markov chains method. However,
as the combination of Markov chains based SBRSs and factorization based SBRSs, FPMC
still cannot capture higher-order dependencies.

2.2 Deep learning based SBRSs

To capture the high-order dependencies, Hidasi et al. [6] proposed an RNN-based approach
for SBRSs, called GRU4Rec, which employs gated recurrent units (GRUs) as the basic
cells of an RNN to model the rigid order dependencies among items in each session. Hidasi
et al. [5] further introduced a novel ranking loss function to improve the performance of
GRU4Rec. However, RNN-based SBRSs usually rely on the rigid order assumption among
items within a session, leading to two drawbacks: (1) the rigid order is sometimes meaning-
less, since a user’s interactions with items in a session may not always follow a rigid order;
and (2) the complex transitions between distant items within a session cannot be effectively
captured with a single-way RNN.

428 World Wide Web (2022) 25:425–443

To capture the complex transitions over items within the entire session, Wu et al. [20]
proposed a GNN-based method for session-based recommendation, called SR-GNN. In SR-
GNN, first, a directed graph is built for each session, and then GNN are employed on the
graph to capture the complex transitions over items within the session. Xu et al. [31] fur-
ther proposed a graph contextualized self-attention network (GC-SAN), which introduces a
self-attention mechanism into GNN-based SBRSs to learn more attentive and informative
session representations for more accurate next-item recommendations. Wu et al. [21] further
proposed a personalizing graph neural networks with an attention mechanism (A-PGNN),
which employes a personalizing graph neural network to capture complex transitions in
users’ session sequence and employes a dot-product attention mechanism to explicitly
model the effect of historical sessions on the current session. Yu et al. [32] proposed a tar-
get attentive graph neural network (TAGNN) to activate each user’s different interests with
respect to varied target items for next item recommendations. Qiu et al. [18] proposed a
full graph neural network (FGNN) to learn the inherent order of item transition pattern
and proposed a weighted graph attention layer (WGAT) network to learn different weights
for different neighbors, which aims at improving the accuracy of next-item recommen-
dations. However, all the GNN-based methods mentioned above mainly capture the local
dependencies within one session and neglect the cross-session global dependencies.

A few studies tried to model the global dependencies across multiple sessions for accu-
rate session-based recommendations. Wang et al. [30] proposed a global context enhanced
graph neural network (GCE-GNN) to learn the session level latent representations of
items within one session, and learn the global level latent representations of items over
all sessions. However, there are two shortcomings of GCE-GNN: (1) it learns the latent
representations for items by modeling pairwise item-transitions, while ignoring the more
complex relationships of item-transitions (e.g., list-wise item-transitions); and (2) it fails to
explicitly capture the global dependencies based on item attribute information, leading to
information loss. To alleviate these shortcomings of SBRSs, Wang et al. [29] proposed a
heterogeneous mixed graph learning (HMGL) model to learn an informative representation
for each item over the heterogeneous graph by effectively modelling both local and global
dependencies for next-item recommendations. However, this work does not consider the
significant role of users in connecting the different but relevant sessions as well as items.
Such a mission the user information leads to information loss and subsequently deteriorates
recommendation accuracy.

Most of the existing SBRS methods [21, 31, 32] mentioned above usually capture intra-
session dependencies and omit to consider the inter-session dependencies. This omission
leads to both information loss and low recommendation accuracy. In this paper, we propose
an HL framework based on a previous study [29]. In addition to capturing intra-session
dependencies, our proposed HL framework can further capture the inter-session dependen-
cies by taking the items occurring in different sessions, users shared by different sessions,
and attribute values shared by the items from different sessions as the bridges to con-
nect multiple sessions. Therefore, our proposed framework can capture the more complex
dependencies, and as a result get better recommendation results.

2.3 Hypergraph learning

Traditional graph learning methods focus on pairwise relationships between objects [11,
24]. To capture more complex relationships, Zhou et al. [34] generalized the spectral clus-
tering graphs into hypergraphs, based on which they further developed an algorithm for

429World Wide Web (2022) 25:425–443

hypergraph embedding and transductive classification. Huang et al. [8] employed the hyper-
graph learning in video object segmentation, where they formulated the task of extracting
prominent objects into hypergraph cut. To learn the weights of hyperedges, Gao et al. [4]
introduced a l2 regularizer. With the development of deep learning, Feng et al. [3] firstly pro-
posed a hypergraph neural network (HGNN) framework, where they employed hypergraph
convolution operation to learn representation of high-order data correlation in a hypergraph
structure. Jiang et al. [9] further separated a dynamic hypergraph neural network frame-
work (DHGNN) into dynamic hypergraph construction (DHG) and hypegraph convolution
(HGC) operations to capture both the inherent and dynamic hypergraph structures.

3 Problem statement

Given a user-transaction dataset, U = {u1, u2, ..., u|u|} is the user set consisting of all unique
users, |u| is the number of users in the dataset. VI = {v1, v2, ..., v|VI |} is the item set con-
sisting of all the unique items, |VI | is the number of items. LetD = {S1, S2, ..., S|u|} be the
set of all user-transactions in this dataset. Each user-transaction Si = {si,1, si,2, ..., si,|s|} is
the set of sessions that are associated with a user ui . Each session si,j = {vi,j,1, vi,j,2, ...,
vi,j,|si,j |} consists of all the unique items sequentially interacted by the corresponding
user ui in her/his j th session. VA = {a1, a2, ..., a|VA|} is the set of all item attribute
values in the dataset. A = {A1, A2, ..., A|VI |} is the set of attributes for all items, and
Ah = {ah,1, ah,2, ..., ah,|Ah|} the set of attribute values associated with item vh. The task
of our work is to recommend the next item based on the purchased items in the current
session. Formally, given the session si,j of user ui , take vl (vl ∈ si,j) as the target item,
C

si
vl

= {v1, v2, ..., vl−1} is the corresponding session context consisting of all the items that
have occurred prior to item vl in session si,j , while the corresponding item attribute value
set Ca

vl
= {Av1 ,Av2 , ...,Avl−1} forms the corresponding attribute context. Hence, given a

context set Cvl
= [Csi

vl
, Ca

vl
], the task of our work is to recommend the lth item vl in session

si,j .

4 Hypergraph learning framework

In this section, we present our proposed hypergraph learning (HL) framework. In particu-
lar, first, the HL framework constructs a hypergraph to connect the items, users and item
attribute values by integrating the session-based item-item graph, the item-item attribute
value graph, and user-session graph into a unified hypergraph. Then, the hypergraph learn-
ing model is built to learn the latent representations of users and items for next-item
recommendations from the hypergraph. Accordingly, as shown in Figure 2, the HL frame-
work consists of three components: the hypergraph construction module, the hypergraph
learning module, and the next-item prediction module.

4.1 Preliminaries

Graphs can only indicate pairwise relationships. In contrast, hypergraphs preserve the multi-
wise relationships, and thus, are a natural choice for the modeling complex relationships.
We define a hypergraph as follows:

430 World Wide Web (2022) 25:425–443

User1：
Session 1: {(Dress, <Dress, Zara>),
(Bread, <Food, Coles>), (milk,
<Drink, Coles>)}
Session 2: {(Dress, <Dress, Zara>),
(Bread, <Food, Coles>), (Cola,
<Drink, Coca>)}
Session 3: {(Bread, <Food, Coles>),
(Ham, <Food, Don>)}

Input
Hypergraph Construction

Session 1

a3

v2 v4

v6

v1

a7

a5

a2

a4
v3

v5

a1a6

u1

Hypergraph Learning

User Aggregation

Item Aggregation

Attribute Aggregation

V1

Node Aggregation M
ultilayerPerceptron GGNN

Graph Pooling

c
Graph

Pooling
RecV1

U V5
U

V1
I V5

I

V1
A V5

A

…

…

…

V1

V2V2

V3 V3

V4 V4
V5 V5

U1

Vi

Figure 2 The workflow of our proposed HL framework. First, we integrate session information, user infor-
mation and item attribute information into a hypergraph. Then, the hypergraph learning module learns the
intra- and inter-session dependencies between items. Specifically, three node level aggregations are devised
to learn three types of inter-session dependencies, while the node level updating aims to learn the intra-
session dependencies and graph pooling learns a unified representation for each session context. Finally, we
predict the next item by taking the session context representation as the input

Definition 1 (Hypergraph) A hypergraph G = {V, E} on a finite set of vertices (or nodes)
V = {vi : i ∈ ‖n‖}, with a family of hyperedges E = {ej : j ∈ ‖p‖}, where each hyperedge
is a non-empty subset of V , such that ∪j∈‖p‖ej = V .

In a hypergraph, a hyperedge links one or more vertices.

4.2 Hypergraph construction

A traditional graph can only represent the pairwise relationships between any two nodes.
However, in the real world, there will be much more complex relationships like list-wise
relationships than pairwise relationships. Hypergraphs can preserve these list-wise rela-
tionships. For better recommending the next item, we construct the user sessions and
item-attribute values into a unified hypergraph. Firstly, we model the users, items and item
attribute values as three types of nodes in the graph. Formally, V = U ∪ VI ∪ VA be the
node set in the graph, where U , VI and VA correspond to the node set of users, items and
item attribute values respectively.

Secondly, we model user-session relations, the item-item relations, and the item-attribute
value relations as three types of hyperedges in the hypergraph. Formally, E = EU ∪EI ∪EA

constitute the hyperedge set. The hyperedge eu ∈ EU represents the relation that ses-
sion su = {vu,1, vu,2, ..., vu,|su|} purchased by user u. In other words, the several items
vu,1, vu,2, ..., vu,|su| contents of items purchased within one session su by user u are linked
together by this hyperedge eu. Hyperedge eI

i,j ∈ EI represents the item vj occurs after

item vi within one session. The hyperedge eA
i ∈ EA represents that item vi has the attribute

value set Ai = {ai,1, ai,2, ..., ai,|vi |}, and the item vi and its corresponding attribute values
ai,1, ai,2, ..., ai,|vi | are linked together by this hyperedge.

As a result, the unified hypergraph connect the users, items and item attribute values by
integrating user-session graph, session-based item-item graph and item-item attribute graph
that are built on the aforementioned three types of hyperedges respectively together. Such a
complex hypergraph is powerful to model the complex high-order relations among different
types of objects (i.e., users, items and item attribute values).

4.3 Hypergraph learning

HL mainly has three components: (1) node level aggregation, (2) node level updating and
(3) graph level learning. In the node level aggregation part, there are three types of nodes in

431World Wide Web (2022) 25:425–443

the hypergraph, including user nodes, item nodes and item attribute nodes, and we mainly
learn the latent representations for user nodes and items nodes in the hypergraph. For user
nodes, we learn the latent representations of users via session aggregation, which is utilized
to aggregate information from a user’s historical sessions and the current sessions to learn
his/her preference representation. For item nodes, we learn the latent representations based
on three different types of hyperedges. Therefore, three aggregation operations are intro-
duced to respectively process the hypergraph. After we aggregate information for user nodes
and item nodes, we update the latent representations of items and users by graph gated neu-
ral netwoks (GGNN) based on the constructed hypergraph. Finally, we learn a graph level
latent representation for each session sub-hypergrap using graph pooling. We discuss each
model component in detail below.

4.3.1 Node level aggregation in hypergraph

In this part, we aim to aggregate information from various hyperedges for user nodes u ∈ U
and item nodes v ∈ VI in hypergraph. Firstly, we map each user node u ∈ U and item
node v ∈ VI into a unified low-dimension latent space to obtain the initial representation
u, v ∈ R

d , where d denotes the dimension of the representation. Then, for each item node
v ∈ VI , we employ three aggregation operations to learn three types of latent representa-
tions vU

i , vI
i , v

A
i by absorbing the information from three types of neighborhood nodes of

v respectively in G. Each type of latent representation can be seen as a sub-representation
of the item from a particular perspective. Similarly, for each user node u ∈ U , we employ
one aggregation operation to update its latent representation by learning the user preference
from her/his historical and current sessions.

The first aggregation operation, denoted as user aggregation, is utilized to learn the user-
based latent representation vU

i ∈ R
d of item vi . The aim of user aggregation is to aggregate

information for items from the joint users. We mathematically represent this aggregation:

vU
i = Aggreuser {vj , ∀vj ∈ Nuser (vi)}, (1)

Nuser (vi) is the user-based neighborhood set of item node vi , which consists of item nodes
having been interacted by the same user who interacted with item node vi . We specify the
user aggregation as follows:

Aggreuser (vi) = Au
i [vi,1, vi,2, ..., vi,|Nuser (vi)|]T , (2)

where [vi,1, vi,2, ..., vi,|Nuser (vi)|] is the list of latent representations of item nodes
vi,1, vi,2, ..., vi,|Nuser (vi)| ∈ Nuser (vi). The weight matrix Au

i shows the importance of each
item node in Nuser (vi) for item node vi , which is calculated as follows:

Au
i,j =

∥
∥
∥Veu

i,j

∥
∥
∥
2

∥
∥Veu

i

∥
∥
2 +

∥
∥
∥Veu

j

∥
∥
∥
2

(3)

where Veu

i,j = {u|(vi, vj , u) ∈ eu} consists of the user nodes u that have hyperedges eu with

item node vi and vj simultaneously. Veu

i = {u|(vi, u) ∈ eu} consists of the user nodes u

that have hyperedges eu with item node vi . ‖·‖2 is the L2 norm.
The second aggregation operation, denoted as item aggregation, is utilized to learn the

inter-session-based latent representation vI
i ∈ R

d of item vi . The aim of item aggregation is
to aggregate information from other items which occurred in the same session as item vi .

vI
i = Aggresess{vj ,∀vj ∈ Nsess(vi)}, (4)

432 World Wide Web (2022) 25:425–443

Nsess(vi) is the session-based neighborhood set of item node vi , which contains all the
item nodes in the hypergraph that occur in the same session with item node vi . The item
aggregation is specified as:

Aggreitems(vi) = As
i [vi,1, vi,2, ..., vi,|sess|]T , (5)

where [vi,1, vi,2, ..., vi,|sess|] is the list of latent representations of item nodes
vi,1, vi,2, ..., vi,|sess| ∈ Nsess(vi). The weight matrix As

i shows the importance of each item
node in Nsess(vi) for item node vi , which is calculated as below:

As
i =

∥
∥
∥VeI

i,j

∥
∥
∥
2

∥
∥
∥VeI

i

∥
∥
∥
2
+

∥
∥
∥VeI

j

∥
∥
∥
2

(6)

where VeI

i,j = {sess|(vi, vj , sess) ∈ eI consists of the sessions sess that have hyperedges

eI with item node vi and vj simultaneously. VeI

i = {sess|(vi, sess) ∈ eI } consists of the
sessions sess that have hyperedges eI with item node vi .

The third aggregation operation, denoted as attribute aggregation, is utilized to learn the
attribute-based latent representation vA

i ∈ R
d of item vi . The aim of attribute aggregation

is to aggregate information from items, which have shared attribute values with a given item
vi . To mathematically represent this aggregation, we use the following function:

vA
i = Aggreattri{vj , ∀vj ∈ Nattri (vi))}, (7)

where Nattri (vi) is the attribute-based neighborhood set of item node vi , which consists
of item nodes sharing the same attribute values with item node vi . Aggreattri is the item
aggregation function based on attribute information. The aggregation function is specified
below:

Aggreattri (vi) = AA
i [vi,1, vi,2, ..., vi,|Nattri (vi)|]T , (8)

where [vi,1, vi,2, ..., vi,i,|Nattri (vi)|] is the list of latent representations of item nodes
vi,1, vi,2, ..., vi,i,|Nattri (vi)| ∈ Nattri (vi). The weight matrixAA

i shows the importance of each
item node in Nattri (vi) for item node vi , which is calculated below:

AA
i =

∥
∥
∥VeA

i,j

∥
∥
∥
2

∥
∥
∥VeA

i

∥
∥
∥
2
+

∥
∥
∥VeA

j

∥
∥
∥
2

(9)

where VeA

i,j = {a|(vi, vj , a) ∈ eA consists of the attribute values a that have hyperedges eA

with item node vi and vj simultaneously. VeA

i = {a|(vi, a) ∈ eA} consists of the attribute
values a that have hyperedges eA with item node vi .

4.3.2 Node level updating in hypergraph

Once the three types of latent representations of a given item vi are learned, they are com-
bined together to form the final latent representation vi of item node vi via a standard
MLP. The vU

i , vI
i , and vA

i are concatenated before feeding into MLP. Formally, the latent
representation is defined as

vi = σ(W · Concat[vU
i , vI

i , v
A
i] + b), (10)

where the activation function σ is specified as the activation function. Then, for each item
node vi , we employ a gate graph neural network (GGNN) to iteratively update its repre-
sentation vi by aggregating the information from other item nodes within the given session.

433World Wide Web (2022) 25:425–443

Therefore, the intra-session dependencies are learned and encoded into the item represen-
tations. We first aggregate information at

s,i from the intra-session-based neighborhoods of
vs,i via the connection matrix Ms :

at
s,i = Ms

i,:[vt−1
s,1 , vt−1

s,2 , ..., vt−1
s,|s|]T H + b, (11)

whereH ∈ R
d×d is the weight matrix, b is the bias, [vt−1

s,1 , vt−1
s,2 , ..., vt−1

s,|s|] is the list of latent
representations of item nodes vs,1, vs,2, ..., vs,|s| in the intra-session-based neighborhood set
of vs,i at (t − 1)th iteration. The connection matrix Ms = [Ms,I ,Ms,O] ∈ R

|s|×2|s| is the
concatenation of Ms,I and Ms,O , Ms

i,: denotes the ith row of Ms corresponding to vi . The

matricesMs,I andMs,O indicate the connections between two item nodes within session s,
which is specified as below:

Ms,I
i,j = |eI

i,j |
|DI (vi)| Ms,O

i,j = |eI
j,i |

|DO(vi)| (12)

where eI
i,j is the set of heyperedges eI , which connect from item node vi to item node

vj , DI (vi) and DO(vi) represent the indegree and outdegree of item node vi respectively.
In this way, the communications between item nodes within one session indicated by the
frequencies of hyperedges are captured. We give an example of a user session s : v1 − v2 −
v3 −v4 −v2 −v1, specially, in our dataset, we regard the order of the appearance of items in
one session as the shopping order in one transaction. The corresponding connection matrix
Ms,i in Figure 3.

We input the aggregated information at
s,i within one session and the latent representation

vt−1
s,i of vi to update the latent representation ṽt

s,i in the t th iteration by the equations below:

zt
s,i = σ(Wzat

s,i + Uzv
t−1
s,i), (13)

rt
s,i = σ(Wrat

s,i + Urv
t−1
s,i), (14)

ṽt
s,i = tanh(Woat

s,i + Uo(r
t
s,i � vt

s,i)), (15)

vt
s,i = (1 − zt

s,i) � vt−1
s,i + zt

s,i � ṽt
s,i , (16)

where rt
s,i represents the reset gate vector and zt

s,i represents the update gate vector,

which are determined by the aggregated intra-session information at
s,i in the t th iteration.

Wz,Wr ,Wo ∈ R
2d×d and Uz,Ur ,Uo ∈ R

d×d are learn-able weight matrices, activation

Figure 3 An example of a directed subgraph based on session s and the corresponding connection matrixMs
i

434 World Wide Web (2022) 25:425–443

function σ(·) is specified as the sigmoid, the � is the element-wise multiplication opera-
tion. The latent representation vt

s,i of vs,i in the t th iteration is decided by the update gate

vector zt
s,i , the reset gate vector rt

s,i , the latent representation vt−1
s,i of vs,i in the (t − 1)th

iteration and aggregated intra-session information at
s,i .

After we obtain the latent representation of each item node, firstly, we devise session
aggregation to aggregate the information from historical sessions and current session of
user ui , which is specified as:

Aggreu(ui) = Au
i [vi,1, vi,2, ..., vi,|N(ui)|]T , (17)

where N(ui) is the neighborhood set of user node ui , which consists of all item nodes in
both historical and current sessions of user ui , [vi,1, vi,2, ..., vi,|N(ui)|] is the list of latent
representations of item nodes vi,1, vi,2, ..., vi,|N(ui)| ∈ N(ui). The weight matrix AA

i shows
the importance of each item node in N(ui) for user node ui , which is calculated using:

Au
i =

∥
∥
∥Veu

i,j

∥
∥
∥
2

∥
∥Vi,j

∥
∥
2

(18)

where Veu

i,j = {vj |(vi, vj , u) ∈ eu} is the number of item nodes vj that have connected with
item node vi and user node u with hyperedges eu. Then, we feed the aggregated information
Aggreu(ui) and the initial latent representation ui into a MLP, and obtain the final latent
representation uFinal

i of user node ui below:

uFinal
i = σ(W · [Aggreu(ui),ui]), (19)

where the activation function σ is specified as the sigmoid function, andW is the learnable
weight matrix.

4.3.3 Graph learning in hypergraph

Once the final representations v1, v2, ..., v|VI | of all items and uFinal
1 , uFinal

2 , ...,
uFinal|U | of all users are learned, we can learn the latent representation for each user session.
This task is often referred to as graph pooling, i.e., pooling together the latent representa-
tions of all the nodes to learn the latent representation of the entire graph [22]. Specifically,
given a user u’s session context C = {vc,1, vc,2, ..., vc,|C|}, the representation C of C is
obtained below:

C0 = uFianl, (20)

C∗
t = LST M(Ct−1), (21)

Firstly, we set the latent representation of user u as the initialization vector C0 and then
use LSTM to update it iteratively. C∗

t ∈ R
d represent the query vector, which is used to

calculate the attention vector ec,i,t for item node vc,i .

ec,i,t = f (vc,i ,C∗
t), (22)

ac,i,t = exp(ec,i,t)
∑

c,j exp(ec,j,t)
(23)

The attention vector ec,i,t of item node vc,i is determined by the query vector C∗
t and the

latent representation of item node vc,i , f is an attention function. Then, we normalize the

435World Wide Web (2022) 25:425–443

attention vector ec,i,t to compute the attention probability score ac,i,t .

rt =
∑

c,i

ac,i,tvc,i , (24)

Ct = Contact[C∗
t , rt], (25)

Then, in Equation (24), a weighted sum of the latent representations of all item nodes
in the session context is computed based on the attention probability score. Finally, we
output Ct as the latent representation for user session context that is used for next-item
recommendations.

4.4 Prediction and optimization

After we get the context representation C, we compute the probability ŷi for target item
vi by input C and the latent representation vi of candidate item vi . Firstly, we calculate
the inner product of the context representation C and the latent representations vi of the
candidate item, and then we employ the softmax function to calculate the probability ŷi for
candidate item vi :

ŷi = sof tmax((vi)
T C). (26)

For each user session, we employ cross-emtropy as the loss function to learn the parameters
of our HL framework and predict the next item. The loss function is specified as:

Loss = −
m

∑

i=1

yi log(ŷi) + (1 − yi)log(1 − ŷi), (27)

for each candidate item vi , yi is the label it, When the candidate item is the true target item,
the value of yi is 1, otherwise its 0. Finally, we use the Back-Propagation Through Time
(BPTT) algorithm to train the proposed model.

5 Experiments

In this section, we first describe the datasets, evaluation metrics, and comparison meth-
ods and parameter settings used in the experiments. Then, we evaluate the recommendation
performance of our proposed HL framework by comparing it with other representative
methods. Finally, we make detailed analysis of our results.

5.1 Experiment setup

5.1.1 Data preparation

We evaluate the proposed method on two real-world datasets, i.e., Tmall and Dunnhumby:

– Tmall:1 involves more than 130,000 sessions accumulated on Tmall.com/
Taobao.com and the app Alipay (i.e., the Chinese version of Amazon) within six month.
This dataset contains user information, session information, item information and item
attribute information.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

436 World Wide Web (2022) 25:425–443

https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

– Dunnhumby:2 contains household level transactions over two years from a group
of 2,500 households who are frequent shoppers at a retailer. It provides all of each
household’s purchases, and the category of the items.

For fair comparison, following [25], we firstly filter out items appearing less than 5 times
and users appearing less than 3 times in both datasets. Then, we generate a session of a
given user by putting all the items purchased in one transaction together. Following, we
filter out the user sessions containing less than one item since at least two items should be
used to build an information context and one item as the target item. Finally, for each user
sessions, we split them into three sets: a training set, a test set and a validation set, specially,
we randomly select 70% of each user sessions as the training set, 20% of each user sessions
as the test set, and the remaining sessions as validation set. The statistics of two datasets are
shown in Table 1.

5.1.2 Evaluation metrics

Following metrics are used to evaluate all the compared methods, which are also widely
used in other related works [29, 32]:

– Rec@k (Recall) is widely used as a measure of predictive accuracy. It represents the
proportion of correctly recommended items amongst the top-k recommended items.
Here we choose k ∈ {10, 20}.

– Mrr@k (Mean Reciprocal Rank) is the average of reciprocal ranks of the correctly-
recommended items. The reciprocal rank is set to 0 when the rank exceeds 20. The
Mrr measure considers the ranking order of recommended items, where a large Mrr
value indicates that correctly recommended items are ranked in the top positions of the
recommendation list. Here we choose k ∈ {10, 20}.

– NDCG@k (Normalized Discounted Cumulative Gain) is a standard ranking metric. In
the context of session based recommendation, it is formulated as:

NDCG@k = DCG@k

IDCG@k

where DCG@k is the discounted cumulative gain and IDCG@k is the ideal dis-
counted cumulative gain. They can be computed as below:

DCG@k =
k

∑

i=1

reli

log2(i + 1)
IDCG@k =

k
∑

i=1

1

log2(i + 1)

where reli is the graded relevance of the result at position k, reli ∈ {0, 1}. Here we
choose k ∈ {5, 20}.

5.1.3 Comparisonmethods

In our experiments, we compare the performance of HL with the following ten baselines,
which are divided into three classes of SBRSs: (1) conventional SBRSs, including POP,
BPR-MF, FPMC, (2) deep learning based SBRSs, including iGRU4Rec-BPR, STAMP,
NextItNet, ATEM, SR-GNN, and (3) the state-of-the-art SBRSs, HMGL.

2https://www.kaggle.com/frtgnn/dunnhumby-the-complete-journey

437World Wide Web (2022) 25:425–443

https://www.kaggle.com/frtgnn/dunnhumby-the-complete-journey

Table 1 Statistics of the experimental datasets

Statistics Tmall Dunnhumby

#Sessions 134,544 167,327

#Items 24,766 23,987

#Users 2,251 2,067

#Item category 763 583

#Item brand 3,641 n.a.

Avg. session length 4.98 6.56

– POP is a simple baseline that always recommends the most popular item in the training
dataset.

– Item-KNN recommends items similar to the previously purchased items in the session,
where similarity is defined as the cosine similarity between the vector of sessions [19].

– BPR-MF is a learning method based on stochastic gradient descent with bootstrap
sampling, and is optimized for personalized ranking using a Bayesian analysis [15].

– FPMC is a Markov chains and factorization based method for next item recommen-
dations, which factorizes the user-item transition matrix between two adjacent items
within one session to learn both the general taste of a user and transitions over items
[16].

– iGRU4Rec-BPR is a RNN-based approach for SBRSs, which employ gated recurrent
units (GRUs) to model the rigid order dependencies between items within one session,
and introduce a novel ranking loss function to improve the performance [5].

– STAMP is an attention-based approach for next item recommendations, which employs
attention layer to capture the users’ general interest from the previous click and employs
a self-attention to capture the current interest from the last click [14].

– ATEM is an attention based transaction embedding model for session context embed-
ding to weight each observed item in a transaction without assuming order [25].

– NextItNet is a CNN-based approach for next item recommendations, which employs a
convolutional generative network to learn the high-level representation from both short-
and long-rang item dependencies [33].

– SR-GNN is a GNN-based approach for next item recommendations, which employs a
gated graph neural networks to capture the complex dependencies within one session,
and then generate the latent representations by attention mechanism [20].

– HMGL is a GNN-based SBRSs, firstly constructs a heterogeneous graph to integrate
session information and item attribute information, and then learns a unified represen-
tation for each item by simultaneously modelling the local and global dependencies for
next-item recommendations [29].

5.1.4 Parameter settings

For a fair comparison, we initialize all the compared approaches with parameter settings
in their papers and optimize them for best performance. For our HL framework, all the
parameters are initialized using a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. The sizes of the latent representations of item nodes and user nodes are set
to 128. We use the Adam optimizer with the initial learning rate 0.001. The batch size for

438 World Wide Web (2022) 25:425–443

mini-batch optimization is set to 128, and we run 30 epoches to train our HL model for best
performance.

5.2 Evaluation of the recommendation accuracy

In this section, we conduct the extensive experiments on two dataset, which aim to answer
the following research questions: how does our proposed HL framework perform compared
with the state-of-the-art SBRSs?

We compare the performance of our HL model with the nine representative approaches
in terms of Rec and Mrr and show the results in Table 2. As for the result of conventional
SBRSs, the first two methods PoP and Item-KNN, due to the simple intuition based on the
frequency of appearance, the performances is relatively poor. The performance of BPR-
MF is better than PoP and Item-KNN, because it factorizes the user-item transition matrix.
However, the matrix are extremely sparse and easily suffer from data sparse problem. For
instance, in Tmall dataset, each session only contains an average of 4.98 items of over
24,766 ones, leading to the case that each row of the constructed matrix contains less than
five items and all other entries are empty. Compared with BPR-MF, FPMC is a Markov
Chains and factorization machines based methods, which can takes the advantages of them,
thus the performance improved. In a word, both BPR-MF and FPMC predict the target item
based on its previous one only while ignoring all other items bought in the same session,
which lost some information.

As for the deep learning based SBRSs, including iGRU4Rec, STAMP, ATEM, NextIt-
Net, SR-GNN, they achieved better performance than conventional SBRSs. For example,
iGRU4Rec employs a GRUs, which can capture the rigid order dependencies between items
within one session. Thus it achieved better performance. STAMP employs attention mech-
anism to attentively learn the long-term dependencies within sessions and thus performs

Table 2 Rec and Mrr values of all compared methods on two datasets

Tmall Dunnhumby

Model Rec@10 Rec@20 Mrr@10 Mrr@20 Rec@10 Rec@20 Mrr@10 Mrr@20

POP 0.0165 0.0322 0.0049 0.0057 0.0489 0.0690 0.0245 0.0256

Item-KNN 0.1277 0.14989 0.0693 0.0754 0.0436 0.0611 0.0214 0.0234

BPR-MF 0.1744 0.2156 0.0946 0.103 0.0183 0.0343 0.0080 0.0087

FPMC 0.2889 0.3002 0.2211 0.2543 0.0433 0.0787 0.0168 0.0245

iGRU4Rec 0.3155 0.3445 0.2313 0.2387 0.0500 0.0745 0.0254 0.0298

STAMP 0.3045 0.3150 0.2337 0.2519 0.0715 0.1188 0.0300 0.0354

ATEM 0.3433 0.3938 0.2437 0.2486 0.0867 0.1655 0.0543 0.0749

NextItNet 0.2487 0.2714 0.1725 0.1788 0.1204 0.1631 0.0624 0.0669

SR-GNN 0.3656 0.4033 0.2457 0.2488 0.1925 0.2544 0.0936 0.0992

HMGL 0.3798 0.4200 0.2556 0.2598 0.2006 0.2667 0.0992 0.1035

HL 0.3867 0.4311 0.2634 0.2696 0.2067 0.2708 0.1033 0.1056

Improvement(%)3 1.81 2.64 3.05 3.77 3.04 1.53 4.13 2.03

3Improvement achieved by HL over the best-performing compared method.

439World Wide Web (2022) 25:425–443

better. ATEM also employed an attention mechanism to build an attentive context embed-
ding over the session context without any order assumption, which can capture more flexible
and complex dependencies within each session. Thus, it achieved better performance than
STAMP. NextItNet does not perform well on Tmall dataset but perform well on Dunnhumby
dataset, this maybe caused by the different data characteristics, e.g., the average session
length. SR-GNN employs a graph neural network, which can capture the complex transi-
tions among items within one session and thus the performance have improved. However, it
captures the intra-session dependencies from the limited session information only and fails
to explicitly capture the inter-session dependencies by utilizing available side information,
leading to information loss.

As for the performance of the state-of-the-art methods HMGL in SBRSs, which can
capture both local dependencies (i.e., the dependencies between items within a session)
and global dependencies (i.e., the dependencies across multiple sessions). Thus, the per-
formance of HMGL is better than the methods above. However, this work ignores the
significant role of users in connecting the different but relevant sessions as well as items.
In contrast, our HL framework can explicitly capturing both the intra-session dependencies
and the inter-session dependencies via effectively utilizing both session information and
side information. we get the best performance of our HL framework on two datasets. As
show in Table 2, our proposed HL framework outperforms all the other baseline methods.
The improvements of HL over the best-performing method HMGL, range from 1.53% to
3.04% with an average of 2.25% in terms of Rec, and range from 2.03% to 4.13% with an
average of 3.24% in terms of Mrr. The NDCG (cf. Figure 4) on two datasets also shows HL
leads all the baseline methods.

The simplest method PoP recommends the next item solely based on the occurrence fre-
quency of items, which is problematic in session-based recommendation scenarios. As for
Item-KNN, they recommend similar items with previously purchased items in the session
are recommended, which lead to the recommendation of the same item repeatedly, thereby
reducing the recommendation accuracy. When the conventional SBRSs such as BPR-MF
and FPMC are considered, they learn the probabilities to capture first-order dependencies,
and can not capture the high-order dependencies. As for the deep-learning based SBRSs,
including iGRU4Rec-BPR, STAMP, NextItNet, SR-GNN, HMGL owing to the powerful

Figure 4 Our proposed HL achieves the highest NDCG values on both datasets

440 World Wide Web (2022) 25:425–443

of deep neural networks, these methods outperform the conventional methods. A RNN-
based approach iGRU4Rec-BPR employs GRUs to capture the long-term dependencies
in each session, while STAMP improves the recommendation accuracy with an attention
layer. ATEM achieved better performance due to the non-order assumption. NextItNet is a
CNN-based approach for next item recommendations, which employs a convolutional gen-
erative network to learn the high-level representation from both short- and long-range item
dependencies. Those methods usually model the rigid order within one session, while SR-
GNN further capture the item dependencies within one session with graph neural networks.
HMGL incorporates the session information with item attribute information to further
improve the recommendation accuracy. However, it neglects the significant role of users.
Our framework HL incorporates the session information and item attribute information and
user information together, and captures the intra and inter-session dependencies to further
improve the recommendation accuracy.

6 Conclusions

In this paper, we have proposed a hypergraph learning (HL) framework for next-item rec-
ommendations. We introduced side information including item attribute information and
user information simultaneously to enrich the information for next-item recommendations.
We have constructed a hypergraph to connect the items, item attribute values and users to
effectively integrate both the session information and side information together in prepa-
ration for leaning informative item representations. Then, we have built a hypergraph
leaning model to learn the representation of each item while modeling both the intra- and
inter-session dependencies from the constructed hypergraph for more accurate next-item
recommendations.

Current works mainly focus on single behaviours (e.g., purchasing), however, in real sit-
uations, there are usually multi-behaviour (e.g., clicking, adding to cart and purchasing) in
each session. Hence, in order to capture item dependencies among multi-behaviours and fur-
ther recommend the next item and the corresponding behaviours associated with it, we plan
to extend the HL framework to learn more complex dependencies between items embedded
in sessions consisting of other types of behaviours, e.g., clicking, adding to cart. Conse-
quently, more informative item representations can be learned for recommending next item
and its associated behaviours accurately.

Acknowledgements This work was supported by ARC (Australian Research Council) Discovery Project
DP180102378.

References

1. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: ICML, pp. 17–24 (2006)
2. Eirinaki, M., Vazirgiannis, M., Kapogiannis, D.: Web path recommendations based on page ranking and

markov models. In: WIDM, pp. 2–9 (2005)
3. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565

(2019)
4. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-d object retrieval and recognition with hypergraph analysis.

IEEE Trans. Image Process. 21(9), 4290–4303 (2012)
5. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommenda-

tions. In: CIKM, pp. 843–852 (2018)

441World Wide Web (2022) 25:425–443

6. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session based recommendations with recurrent
neural networks. In: ICLR, pp. 1–10 (2016)

7. Hosseini, S., Yin, H., Zhou, X., Sadiq, S., Kangavari, M.R., Cheung, N.-M.: Leveraging multi-aspect
time-related influence in location recommendation. World Wide Web J. 22, 1001–1028 (2019)

8. Huang, Y., Liu, Q., Metaxas, D.: Video object segmentation by hypergraph cut. In: CVPR, pp. 1738–
1745 (2009)

9. Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural networks. In: IJCAI, pp. 2635–
2641 (2019)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE
Comput. 42(8), 30–37 (2009)

11. Li, X., Yin, H., Zhou, K., Zhou, X.: Semi-supervised clustering with deep metric learning and graph
embedding. World Wide Web J. 23, 781–798 (2020)

12. Liang, D., Altosaar, J., Charlin, L., Blei, D.M.: Factorization meets the item embedding: regularizing
matrix factorization with item co-occurrence. In: RecSys, pp. 59–66 (2006)

13. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and
temporal contexts. In: AAAI, pp. 194–200 (2016)

14. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for
session-based recommendation. In: KDD, pp. 1831–1839 (2019)

15. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking
from implicit feedback. In: UAI, pp. 452–461 (2009)

16. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains for next-
basket recommendation. In: WWW, pp. 811–820 (2010)

17. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Berlin
(2011)

18. Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based recommendation with
graph neural networks. In: CIKM, pp. 579–588 (2019)

19. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation
algorithms. In: WWW, pp. 285–295 (2001)

20. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural
networks. In: AAAI, pp. 346–353 (2018)

21. Wu, S., Zhang, M., Jiang, X., Xu, K., Wang, L.: Personalizing graph neural networks with attention
mechanism for session-based recommendation. arXiv:1910.08887 (2019)

22. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets. In: ICLR (2016)
23. Wang, S., Cao, L., Wang, Y., Sheng, Q.Z., Orgun, M., Lian, D.: A survey on session-based recommender

systems. ACM Computing Surveys (CSUR) 54(7), 1–38 (2021)
24. Wang, Y., Feng, C., Chen, L., Yin, H., Guo, C., Chu, Y.: User identity linkage across social networks via

linked heterogeneous network embedding. World Wide Web J. 22, 2611–2632 (2019)
25. Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., Liu, W.: Attention-based transactional context embedding

for next-item recommendation. In: AAAI, pp. 2532–2539 (2018)
26. Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q.Z., Orgun, M., Cao, L., Francesco, R., Yu, P.S.: Graph

learning based recommender systems: a review. In: IJCAI, pp. 1–9 (2021)
27. Wang, S., Hu, L., Wang, Y., Sheng, Q.Z., Orgun, M., Cao, L.: Modeling multi-purpose sessions for

next-item recommendations via mixture-channel purpose routing networks. In: IJCAI, pp. 3771–3777
(2019)

28. Wang, S., Hu, L., Wang, Y., Sheng, Q.Z., Orgun, M., Cao, L.: Intention nets: psychology-inspired user
choice behavior modeling for next-basket prediction. In: AAAI, pp. 6259–6266 (2020)

29. Wang, N., Wang, S., Wang, Y., Sheng, Q.Z., Orgun, M.: Modelling local and global dependencies for
next-item recommendations. In: WISE, pp. 285–300 (2020)

30. Wang, Z., Wei, W., Cong, G., Li, X.L., Mao, X.L., Qiu, M.: Global context enhanced graph neural
networks for session-based recommendation. In: SIGIR, pp. 169–178 (2020)

31. Xu, C., Zhao, P., Liu, Y., Seng, V.S., Xu, J., Zhuang, F., Fang, J., Zhou, X.: Graph contextualized self
attention network for session-based recommendation. In: IJCAI, pp. 3940–3946 (2019)

32. Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., Tan, T.: TAGNN: target attentive graph neural networks for
session-based recommendation. In: SIGIR, pp. 1–5 (2020)

33. Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network
for next item recommendation. In: WSDM, pp. 582–590 (2019)

34. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: clustering, classification, and embed-
ding. In: NIPS, pp. 1601–1608 (2007)

35. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, Hua., Tian, Gang.: Personalized app recommendation
based on app permissions. World Wide Web J. 21(1), 89–104 (2018)

442 World Wide Web (2022) 25:425–443

http://arxiv.org/abs/1910.08887

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

NanWang1 · Shoujin Wang1 ·YanWang1 ·Quan Z. Sheng1 ·Mehmet A. Orgun1

Nan Wang
nan.wang12@students.mq.edu.au

Shoujin Wang
shoujin.wang@mq.edu.au

Quan Z. Sheng
michael.sheng@mq.edu.au

Mehmet A. Orgun
mehmet.orgun@mq.edu.au

1 Department of Computing, Macquarie University, Sydney, Australia

443World Wide Web (2022) 25:425–443

http://orcid.org/0000-0002-5344-1884
mailto: nan.wang12@students.mq.edu.au
mailto: shoujin.wang@mq.edu.au
mailto: michael.sheng@mq.edu.au
mailto: mehmet.orgun@mq.edu.au

	Exploiting intra- and inter-session dependencies for session-based recommendations
	Abstract
	Introduction
	Related work
	Conventional SBRSs
	Deep learning based SBRSs
	Hypergraph learning

	Problem statement
	Hypergraph learning framework
	Preliminaries
	Hypergraph construction
	Hypergraph learning
	Node level aggregation in hypergraph
	Node level updating in hypergraph
	Graph learning in hypergraph

	Prediction and optimization

	Experiments
	Experiment setup
	Data preparation
	Evaluation metrics
	Comparison methods
	Parameter settings

	Evaluation of the recommendation accuracy

	Conclusions
	References
	Affiliations

